
UNCLASSIFIED

Executive summary

UNCLASSIFIED

Nationaal Lucht- en Ruimtevaartlaboratorium

National Aerospace Laboratory NLR

This report is based on a presentation held at the Intelligent Agents Technology
Conference, Milan, Italy, September 15-18, 2009.

Report no.
NLR-TP-2009-336

Author(s)
P. van Leeuwen
C. Witteveen

Report classification
UNCLASSIFIED

Date
July 2009

Knowledge area(s)
Planning, geavanceerde (sensor-
)informatieverwerking en regeling
Luchtverkeersmanagement(ATM)-
en Luchthavenoperaties

Descriptor(s)
Turnaround
Ground handling
Simple Temporal Networks
Temporal Decoupling
Resource Allocation

Temporal Decoupling and Determining Resource Needs of
Autonomous Agents in the Airport Turnaround Process

Introduction
Despite a temporary decrease due to the
current financial crisis (2009), air
traffic in Europe is still expected to
grow significantly in the longer term.
One of the most constraining factors in
accommodating this growth is the
turnaround process at airports. During
turnaround, a number of services need
to be provided to aircraft at the gate:
deboarding, cleaning, catering, fueling,
etc. In previous research, a
methodology and prototype have been
developed to plan these services as

efficiently as possible in time. In this
paper, an additional algorithm is
introduced to determine the minimum
number of resources required for each
service provider.

Problem area
The general context of this paper is
Collaborative Decision Making (CDM)
and Total Airport Management (TAM).
CDM has been identified as an
important enabler of capacity and
efficiency in air transport. TAM can be
seen as the following step,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NLR Reports Repository

https://core.ac.uk/display/53034067?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

UNCLASSIFIED

UNCLASSIFIED

Temporal Decoupling and Determining Resource Needs of Autonomous
Agents in the Airport Turnaround Process

Nationaal Lucht- en Ruimtevaartlaboratorium, National Aerospace Laboratory NLR

Anthony Fokkerweg 2, 1059 CM Amsterdam,
P.O. Box 90502, 1006 BM Amsterdam, The Netherlands
Telephone +31 20 511 31 13, Fax +31 20 511 32 10, Web site: www.nlr.nl

encapsulating CDM and bringing a
planning and decision support
component to it.

This paper builds on previous research
conducted in the Co-ordinated Airport
through Extreme Decoupling (CAED)
project. In this project, funded by the
CARE INO III research programme of
EUROCONTROL, a decision support
tool has been developed to assist
planners in the establishment of a
robust, pre-tactical stand plan including
all ground handling services. Central to
the approach has been the assumption
that local parties are in the best position
to plan their resources and activities.
Based on this assumption, a
methodology called ‘extreme
decoupling’ is presented to ensure that
– given an initial stand plan – service
providers can plan their activities
locally (i.e., decoupled from the stand
plan and each other) as much as
possible.

Description of work
In this paper, a multi-agent approach is
presented to solve the planning of
ground handling processes at airports.
In the first part of the paper, a temporal
decoupling method is introduced to
partition the overall plan into several
independent sub-plans that can be
solved locally and merged again into a
conflict-free plan. This approach offers
one major advantage: it allows service
providers at airports to plan their
activities independently of other
service providers as much as possible.

In the second part of the paper, a new
algorithm is presented to determine the
number of resources needed to execute
all activities in a decoupled service

plan. Apart from the travelling time
between activities, this algorithm also
takes the earliest and latest start and
end times of each activity into account.
By doing so, the algorithm offers a
minimum and maximum number of
resources required to perform the
service. The minimum may correspond
to minimal costs for the service
provider, the maximum to maximum
service reliability through maximum
flexibility in re-pairing plan
disruptions. The service provider is thus
given an upper and lower bound: the
choice, depending on his preferences
and business model, is his.

Results and conclusions
The methodology presented in this
paper both automates the strategic
planning process of ground handling
activities and offers plan
representations that are particularly
suited to deal with last-minute tactical
disruptions. The decoupling approach
renders complex and time-consuming
re-planning and co-ordination between
agents superfluous in case of such small
disruptions. Given the large number of
delays occurring daily at airports, this
seems a valuable approach.

Apart from the temporal planning of
ground handling activities, this paper
presents an algorithm for allocating
resources to these activities. The
algorithm specifies the minimum and
maximum amount of resources needed,
as well as the time and place of their
allocation. Together with the temporal
planning methodology, the
implemented algorithm presented here
may offer an important decision
support tool for planners of ground
handling services.

Nationaal Lucht- en Ruimtevaartlaboratorium
National Aerospace Laboratory NLR

NLR-TP-2009-336

Temporal Decoupling and Determining Resource
Needs of Autonomous Agents in the Airport
Turnaround Process

P. van Leeuwen and C. Witteveen1

1 Delft University of Technology

This report is based on a presentation held at the Intelligent Agents Technology Conference, Milan, Italy,
September 15-18, 2009.

The contents of this report may be cited on condition that full credit is given to NLR and the authors.

This publication has been refereed by the Advisory Committee AIR TRANSPORT.

Customer NLR
Contract number ----
Owner NLR
Division NLR Air Transport
Distribution Unlimited
Classification of title Unclassified
 April 2010
Approved by:

Author

Reviewer Managing department

NLR-TP-2009-336

 3

Contents

1 Introduction 4

2 Background 5
2.1 The turnaround process 5
2.2 Modeling the turnaround process by an STN 5
2.3 The Temporal Decoupling Method 7

3 Determining the number of resources needed 8

4 Conclusions and Further Research 10

References 10

Appendix 11

Temporal Decoupling and Determining
Resource Needs of Autonomous Agents in the

Airport Turnaround Process
Pim van Leeuwen

National Aerospace Laboratory NLR
Amsterdam, The Netherlands

Email: leeuwenp@nlr.nl

Cees Witteveen
Delft University of Technology

Delft, The Netherlands
Email: C.Witteveen@tudelft.nl

Abstract

Air traffic in Europe is getting more and more congested with the
turnaround process at airports as one of the most constraining factors. During
this turnaround process, a number of services need to be provided to aircraft
at the gate: de-boarding, cleaning, catering, fueling, etc. These services are
provided by different agents (the service providers), who have to coordinate
their activities in order to respect the turnaround time slot, the required service
times and existing regulations. Usually, a global turnaround plan respecting
all temporal dependencies is constructed. Such a global plan, however, has
several disadvantages. First of all, it contains several (time)dependencies
between agents, preventing them to optimize the scheduling of their activities
autonomously. Secondly, in case of disruptions (and delays are common at
any airport), re-planning is complex, time-consuming and will often affect all
agents. The contribution of this paper in addressing this problem is twofold.
First of all, we propose a method to decouple the overall turnaround plan
into local plans for each agent, allowing them to schedule their activities
independently of one another. The decoupling method guarantees that the
merging of all local schedules always satisfies the original set of plan
constraints. Moreover, in case of disruptions, we could try to fix the local plans
affected instead of repairing the global plan. Secondly, since by decoupling
every agent now is free to choose its own schedule, each agent might select a
schedule that optimizes its own objectives. Therefore, we show these benefits
of decoupling in the turnaround process by developing a new algorithm that
can be used by an agent to determine the minimum number of resources it
requires to accomplish its ground handling task. We illustrate the application
of this algorithm by determining the minimum number of vehicles a fueling
agent will need in order to perform all its fueling services in the turnaround
process.

1. Introduction

Despite a predicted 5% decrease for 2009 (see [6], [9]), air
traffic in Europe is expected to grow again significantly in the
longer term. To accommodate this growth, sufficient airspace
and airport capacity needs to be ensured. As expansion of
airports is expensive and often impossible due to noise and
environmental regulations, airport capacity has become a ma-
jor bottleneck in the air transport system. To still meet traffic
demand, airport authorities are seeking improved planning
methods to make more efficient use of existing resources.

Airport planning is generally subdivided into a number of
domains: arrival management, departure management, stand
allocation management, and taxi planning. In all of these areas,
already extensive research has been conducted to improve
planning and assist planners by means of decision support

tools (e.g., [1], [11], [12], [13]). Ground handling, denoting
all processes that take place when an aircraft is at the gate or
stand, is a notable exception. It is only recently that research
has focused on a more efficient planning of ground handling
processes [12]. This seems a promising direction, since ground
handling is recognized as the second most common source of
delays in the air transport system [14].

This paper presents a new approach to the planning of
ground handling activities at airports. These activities (e.g.,
boarding, fueling, cleaning and baggage loading) are per-
formed during the so-called turnaround, when an aircraft
is serviced at the stand between two flights. Since these
activities are performed by several agents (a boarding operator,
a cleaning team, etc.), and are subject to time constraints, the
problem domain can conveniently be modeled as a multi-agent
planning and scheduling problem.

Usually, a global ground handling plan is provided, stating
all the constraints that have to be satisfied in order to complete
all the ground handling services. Using these constraints, the
individual agents would like to schedule their own activities
independently from the others, because each of them has
his/her own objectives, preferences, business rules and re-
source constraints that they would like to keep private as much
as possible. Due to the interdependencies of these activities,
however, it is not directly possible for these actors to develop
their own schedule autonomously.

Let’s call this problem the autonomous scheduling problem:
how to ensure that, given a global set of temporal constraints
(temporal plan) for a set of agents, each agent is allowed
to construct a schedule, satisfying its subset of constraints,
without interfering with the schedules of the other agents.

To provide a solution for this autonomous scheduling prob-
lem, we present a method to represent such ground handling
plans as Simple Temporal Networks (STNs) and show how
a well-known method (Temporal Decoupling), developed by
Hunsberger [7], can be applied to achieve a set of indepen-
dently schedulable temporal plans, one for each of the service
providers.

Then we show how this method can be used to find out,
for each of the service providers involved in the turnaround

NLR-TP-2009-336

 4

process, how a minimum amount of resources (e.g. vehicles)
needed to perform the scheduled activities per time period can
be determined. We present a very simple, but elegant algorithm
that can be used for e.g. the fueling and catering providers to
determine how many vehicles they minimally would need to
perform their activities given a specification of their part of
the turnaround process.

Note that in principle, this approach can be applied to more
general problems than the turnaround process alone. Basically,
the general version of the problem we discuss in this paper
can be stated as follows:

Given: a set Ac of activities to be performed by a
set Ag of autonomous agents, for each agent agi ∈
Ag a disjoint subset Aci ⊆ Ac of activities to be
performed by agi and a set C of constraints imposed
on the set Ac of activities, where Ci ⊆ C is the set
of constraints pertaining to the set of activities Aci.
Question: (i) how to obtain for each agent agi ∈
Ag a set C ′i of local constraints for its activities
Aci ⊆ Ac, such that each agent agi can schedule
its activities independently from the others, and (ii)
how to provide each agent agi with its own resource
plan, i.e., an estimation of the number of resources
r ∈ R it minimally needs to carry out its set of
activities.

This problem can be viewed as a coordination problem,
since it requires the establishment of a set of local temporal
constraints for each agent in such a way that, while each agent
can choose its own schedule and resource plan independently
from the others, the feasibility of the overall solution is still
ensured.

To illustrate its potential relevance and applicability, we
discuss a solution of this problem in the context of the
turnaround process at airports, In Section 2 the necessary
background on the representation of the problem as an STN
and the Temporal Decoupling method is discussed. In Section
3, the algorithm to solve the resource consumption problem
is detailed. Finally, in Section 4 some possible extensions of
this solution are discussed.

2. Background

2.1. The turnaround process

Ground handling concerns all activities that have to be per-
formed during the turnaround of aircraft at the gate: between
on-block (the time an aircraft arrives at the gate) and off-
block (the time an aircraft is pushed back from the gate). For
this time period, a so-called turnaround plan specifies which
services (catering, cleaning, boarding, fueling, etc.) should be
performed when for specific aircraft. The collection of these
turnaround plans constitutes the overall turnaround plan for an
airport for a specific day. An example high-level entry of such
a turnaround plan is:

(KL1857, C06, 12:00, 13:28)

where the flight number (KL1857), the gate (C06), and the on-
block (12:00) and off-block time (13:28) of a specific aircraft
is specified. At a lower level, all services such as catering,
cleaning, boarding and fueling that need to be planned between
the on- and off-block times are listed. Usually, these services
are constrained: for each service there is usually a minimal
duration (minimum service time) and a maximal duration
(norm time) specified. Moreover, there are constraints between
several services. For example, fueling cannot take place when
passengers are on-board, so fueling has to take place before
boarding. Boarding itself has to end at most 15 minutes before
off-block.

2.2. Modeling the turnaround process by an STN

To model the collection of turnaround plans we use a Simple
Temporal problem (STP) [5]:

Definition 2.1: A Simple Temporal Problem S is a tuple
S = 〈X, C〉 where X is a finite collection {x0, . . . , xn}
of time variables, and C is a finite collection of temporal
constraints over these variables. Each constraint c ∈ C is of
the form cij : xj−xi ≤ bij , for some bij ∈ Z. The variable x0

represents a special fixed time value, the temporal reference
point, taking the value 0.

To use an STP to specify temporal constraints on activities,
every service a for a given aircraft is represented by a pair
(xi, xi+1 of time variables (events) indicating respectively the
starting, and the finishing time of a. Moreover, per aircraft
we use two additional time point variables indicating the on-
block time and the off-block time of the aircraft. The temporal
reference point x0 will usually indicate the beginning of a
day (00:00) or afternoon (12:00). So, given n aircraft and
m services per aircraft, we need to specify one variable to
indicate the temporal reference point, 2n variables to indicate
the on- and off-block times and 2mn variables to indicate the
start and finishing times of all the mn activities. Therefore, in
total we need 2mn + 2n + 1 variables.

To specify all constraints for the variables, it suffices to
constrain the duration of the services by indicating mini-
mum and maximum service times, their temporal relation
and absolute constraints on the starting and ending times of
the services. All these constraints can be specified as upper
bounds on the difference of temporal variables. For example,
if the start of service a is indicated by x1 and its ending
by x2, while the start of service b is indicated by x3, then
specifying that a might take at least 3 but no more than 5
minutes can be expressed by the constraints x2 − x1 ≤ 5
and x1 − x2 ≤ −3. Requiring b to start after a has ended is
specified by x2 − x3 ≤ 0.

Without loss of generality1 we can assume that for every
pair of variables xi, xj ∈ X there is a constraint cji : xi−xj ≤
bji and a constraint cij : xj−xi ≤ bij . If these constraints are
combined we obtain the interval constraint −bji ≤ xj −xi ≤

1. Note that if xi and xj are temporally unrelated, the constraints xj−xi ≤
∞ and xi − xj ≤ ∞ capture this relation.

NLR-TP-2009-336

 5

bij , also written as Iij = [−bji, bij]. In this paper we will
use both notations. As a special case we mention the interval
constraint 0 ≤ xi − xj ≤ ∞ specifying that xj has to occur
before xi.

Let us now present a simplified example of an STN in the
turnaround domain.

Example 2.1: Suppose we have a flight with an on- and
off-block time of 13:00 and 15:30, respectively. Therefore,
all required ground services like fueling, (de)boarding and
cleaning have to be done between 13:00 and 15:30. It is
required that deboarding has to start within 15 minutes after
on-block and it takes at least 10 and at most 20 minutes.
Fuelling can only start if deboarding has ended. Finally, we
know that fueling takes at least 20 and at most 40 minutes
and has to be completed 30 minutes before off-block. We can
model these constraints using an STP as follows:

Consider the following set of variables X =
{x0, x1, x2, x3, x4, x5, x6}, where

x0 = temporal referential point (0 = 12:00)
x1 = on block time
x2 = begin time deboarding
x3 = end time deboarding
x4 = begin time fueling
x5 = end time fueling
x6 = off-block time

The following constraints should be specified:

60 ≤ x1 − x0 ≤ 60 on-block is exactly 60 minutes
after 12:00

150 ≤ x6 − x1 ≤ 150 the time between on- and
off-block is 150 minutes

0 ≤ x2 − x1 ≤ 15 deboarding has to start within
15 minutes after on-block

10 ≤ x3 − x2 ≤ 20 duration of deboarding is
between 10 and 20 minutes

20 ≤ x5 − x4 ≤ 40 fueling takes 20 to 40 minutes
0 ≤ x4 − x3 ≤ ∞ fueling starts after deboarding

has ended
30 ≤ x6 − x5 ≤ ∞ fueling has to completed at least

30 minutes before off-block
Given an STP S = 〈X, C〉, a direct labeled graph represen-

tation GS = 〈NX , EC , l〉 of S can be obtained by using

• NX as the set of nodes ni representing the time points
xi and

• EC as the set of labeled directed arcs, where e =
(ni, nj) ∈ E has label l(e) = bji whenever cji :
xj − xi ≤ bji occurs in C.

Figure 1 contains a graphical representation (a Simple Tem-
poral Network) derived from this STP S.

A solution of an STN S = 〈X, C〉 is a specification of suitable
values for time variables x ∈ X:

Definition 2.2: [8] A solution for a STN S = 〈X, C〉 is a
complete set of assignments {x0 = 0, x1 = v1, . . . , xn = vn}

60 - 60

15

20

0

-10

0

-30

-20

∞

40

∞

150

-150

x0

x1

x2

x3 x4

x5

x6

Fig. 1. A Simple Temporal Network GS derived from the
STP S discussed in Example 2.1.

of values vi ∈ Z to variables xi ∈ X , such that all constraints
c ∈ C are satisfied.

Example 2.2: The following assignment is a possible solu-
tion to the STP S discussed above:

{ x0 = 0, x1 = 60, x2 = 70, x3 = 90,

x4 = 105, x5 = 135, x6 = 210 }

If such a solution exist, we say that the STN S is consistent,
else it is said to be inconsistent.

There is an efficient algorithm to check (in)consistency of
a STN S = 〈X, C〉 based on the following idea (see [4]):
If the labels l(e) on the edges e in the associated graph
GS = 〈NX , EC , l〉 are interpreted as distances between nodes,
the well-known O(n3) Floyd-Warshall All-Pair-Shortest-Path
(APSP)[3] algorithm can be used to determine the shortest
distance d(i, j) between all nodes ni and nj ∈ NX . It is not
difficult to show (see [4]) that now the inconsistency of S can
be decided by checking whether d(i, i) ≥ 0 holds for all nodes
ni ∈ NX .

(To see this note that, if there exists some ni such that
d(i, i) < 0, it implies that xi should occur before itself, which
is clearly impossible. Hence, there is no assignment to xi that
satisfies all constraints, implying that S is inconsistent.

Conversely, suppose that for all ni we have d(i, i) ≥ 0. Then
the shortest path d(i, j) between every pair of vertices is well-
defined. We show that S is consistent. Consider the following

NLR-TP-2009-336

 6

assignment: x0 := 0 and for every i > 0, xi := d(0, i). Take
an arbitrary constraint cij : xj−xi ≤ bij . Since by the shortest
path property d(0, j) ≤ d(0, i) + d(i, j) and d(i, j) ≤ bij , it
follows that d(0, j)−d(0, i) ≤ d(i, j) ≤ bij and the constraint
ci,j is satisfied. Therefore, every constraint is satisfied by this
assignment. Hence, S is consistent.)

The graph obtained by applying the APSP algorithm to
the STN GS containing all shortest distances between the
nodes in NX will be denoted by GD

S . This graph, also called
the d-graph associated with the STN S, specifies the tightest
constraints between the time variables in X . Note that the d-
graph is a complete graph and contains for every node pair
one edge with the shortest distance between them as its label.

2.3. The Temporal Decoupling Method

We model the collection of turnaround plans using an STN.
This STN contains the specifications of all activities to be
performed by the different agents (service providers) for a
collection of aircraft while these are on-block. In order to
provide a solution for the complete turnaround process we
have to specify the values of all begin and end points of
these activities. Finding such a solution (i.e. joint schedule)
would require either a centralized solution process or a rather
elaborate coordination process requiring negotiation between
the different agents involved. As we already remarked in the
introduction, both these approaches to find a solution are not
acceptable, since the service providers require a specification
of the constraints between the activities they have to perform
that enables them to come up with a schedule independently
of the others.

This requires a modification of the original STN S such that
• S is split into k sub STNs Si, i = 1, 2, . . . , k, where each

Si contains all the constraints for the services of service
provider i in the turn round process. We assume that all
STNs have the variable x0 in common.

• each of the agents is allowed to solve its own sub STN
Si by specifying an arbitrary solution si (schedule) for
it.

• whatever solutions sj are chosen by the agents, their
merge, i.e., a complete solution s = s1 ∪ s2 ∪ . . . ∪ sk,
always constitutes a valid solution to the overall problem
S.

This is exactly the idea behind the so-called Temporal
Decoupling method specified by Hunsberger [8]. This method
can be described in a more formal way as follows:

Definition 2.3: (Temporal Decoupling)
Let X1, X2 ⊆ X two subsets of the set of variables X such
that both X1 and X2 contain x0 and X1−{x0} and X2−{x0}
partition X − {x0}. Such a (near) partitioning is called a z-
partition of X .
A temporal decoupling of the STN S = 〈X, C〉 using X1 and
X2 is a pair of STNs S1 = 〈X1, CX1〉 and S2 = 〈X2, CX2〉
such that:
• S1 and S2 are consistent,

• the merging of solutions for S1 and S2 always is a
solution for S.

Here, Si = (Xi, CXi
) is the sub-STN generated by Xi by

selecting the constraints c ∈ C that contain variables only
occurring in Xi.

The definition of the z-partition and the temporal decoupling
for more than two sets is analogous to that for two sets. In
our application we choose the z-partition in such a way that
all time points belonging to activities of one service provider
occur in one z-partition. We will now give an example of z-
partitions and the essence of the temporal decoupling process.

Example 2.3: Suppose we have two time point variables x1

and x2 with the constraints: 0 ≤ x1 ≤ 60, 0 ≤ x2 ≤ 120 and
0 ≤ x2 − x1 ≤ ∞, i.e., x1 ≤ x2. Let x0 = 0 (See Figure 2).
We consider the following z-partition: X1 = {x0, x1} and
X2 = {x0, x2}. We can’t solve for x1 independently from x2,
since the inter-block constraint x1 ≤ x2 has to be satisfied.
For example, if we take x1 = 50 and x2 = 30 then they both
satisfy the local constraints 0 ≤ x1 ≤ 60 and 0 ≤ x2 ≤
120, respectively, but x1 ≤ x2 is not satisfied. Temporal
decoupling now essentially comes down to make this latter
constraint obsolete by tightening the local constraints. In
this case, this can be easily accomplished by changing the
constraint 0 ≤ x2 ≤ 120 into 60 ≤ x2 ≤ 120. The effect
of this change is that the constraint between x1 and x2 is
always satisfied and can be removed. As a consequence, the
values for x1 and x2 meeting the local constraints now can be
chosen independently from each other, while still guaranteeing
a correct total solution: every value chosen for x1 cannot be
larger than an independently chosen value for x2.

60 0

0

x0

x1 x2

0
120

Fig. 2. Example of a z-partitioning used for temporal
decoupling in Example 2.3.

In [7], [8] an algorithm is given that given a z-partition per-
forms a suitable minimal temporal decoupling. This algorithm
can be easily applied to STN specifications of the turnaround
process to obtain sub-STNs, one per service provider. These
decoupled STNs can be given to each of the service providers.
Whatever solution is provided by a particular service provider,

NLR-TP-2009-336

 7

it will never create an infeasibility, since merging the individ-
ual solutions will always provide a total solution.

3. Determining the number of resources needed

Once by temporal decoupling an independently schedulable
temporal plan per agent (service provider) has been obtained, a
service provider would like to choose an optimal schedule, for
example a schedule that minimizes the number of resources
needed in order to complete all the activities specified in
his temporal plan. For example, agents such as the fueling
or catering company, need vehicles as resources to service
an aircraft. A service provider would be interested to use
as few vehicles as possible by letting them service multiple
aircraft if the activities take place after each other and there
is sufficient time between them to travel from one aircraft to
another. Hence, we need to take into account the travelling
time between the activities to be performed by each provider.

To give an example, let us consider the sub STN (temporal
plan) of the fueling agent. In such a decoupled STN the
service provider can find the Earliest Starting Time (EST (a)),
Latest Starting Time (LST (a)), Earliest End Time (EET (a))
and the Latest End Time (LET (a)) per fueling activity a,
since for each such an activity the tightest constraints for
the start and end time of a are specified. Table 1 shows an
example of information derived from a decoupled temporal
plan where for each flight to be handled it is indicated at
what time the fueling agent must start (earliest) and when the
agent must end (latest).

TABLE 1. Decoupled plans for fueling service

call sign gate EST LST EET LET

KL1857 C06 12:00:00 12:00:00 12:12:00 13:28:31

KL1013 B13 12:10:00 12:10:00 12:22:00 13:39:37

KL1667 D87 12:14:25 12:14:25 12:45:25 13:59:31

KL1577 F04 12:25:23 12:25:23 12:56:23 14:10:37

.....

In order to determine the number of fueling vehicles for this
fueling agent i, we model the set of activities specified in the
decoupled temporal plans as the set of nodes Vi in a directed
reachability graph Gi = 〈Vi, Ei〉, where there is a directed
edge between two activities a1, a2 ∈ Vi if it is possible to
accomplish activity a2 after a1 using the same resource. That
is, (ai, aj) ∈ Ei if agent i, using the same vehicle, is able
to complete activity a2 without violating the time constraints
after it has completed a1 without violating its time constraints.
Here, we might use two methods to determine whether a2 is
serviceable after a1: the minimum and the maximum method.
• minimum or pessimistic method:

(a1, a2) ∈ Ei iff EET (a1) + distance(a1, a2) ≤

LST (a2)
• maximum or optimistic method:

(a1, a2) ∈ Ei iff LET (a1) + distance(a1, a2) ≤
EST (a2)

Here, distance(a1, a2) is the travel time (distances) between
the gate where activity a1 and the gate where activity a2

has to be performed. In the next example we show how to
construct such a graph Gi using the maximum method.

Example 3.1: We construct the graph Gi = 〈Vi, Ei〉 for a
fueling agent i. First, we need its decoupled plan with a list
of activities with all the flights and the EST, LST, EET and
LET for the fueling service for these flights. Table 1 shows
a part of this list. We also need a table with the travel times
(distances) between gates. Using the maximum method, we
check whether for every possible pair of activities a1 and a2

the constraint LET (a1)+distance(a1, a2) ≤ EST (a2) holds.
If so, we add a directed edge (ai, aj) to Gi. If not, no edge is
added. For example, checking for flight KL1857 and KL1577,
suppose that the distance between these activities is 2 minutes
travel time. From Table 1 and this distance we derive 13:28:31
+ 00:02:00 > 12:25:23. It follows that it is not possible to
service these two flights after each other and consequently no
edge is added. Using a full table of distances and applying this
method to all pairs of services for agent i results in Figure 3.

KL1857

KL1667

KL1577

KL1113

KL0713

KL8004

KL8144

KL1013

KL8437

KL1725

KL4103

KL1795

KL3411

KL0435

Fig. 3. Reachability graph Gi for the fueling agent i
created with the maximum method. There is an edge
between two nodes (flights) if these flights are serviceable
after each other using the same vehicle.

NLR-TP-2009-336

 8

In Figure 3 there is a path from flight KL1857 via KL8437
to KL0435. This means that only one resource is needed to
service these three flights. In order to determine the minimum
number of resources needed, we now have to find out how
many paths we need if we want to cover all nodes exactly
once2. In the literature, this problem is called the Minimal
Node Disjoint Path Cover problem (e.g., [10]). In general,
this problem is intractable, because the decision variant (Node
Disjoint Path Cover) is a special case of the NP-complete
HAMPAD problem (which comes down to covering all nodes
with one path). In our case, however, it is easy to see that the
graph Gi is acyclic, which, as we will show, implies that the
problem can be solved in polynomial time.

We can reduce the acyclic Node Disjoint Path Cover
problem to the polynomially solvable Maximum Flow
problem3 as follows: First, we construct a flow graph Gf

i

from the graph Gi (as e.g., presented in Figure 3). Secondly,
we prove that a solution of this Maximum Flow problem
can be easily converted into a solution of our Minimal Node
Disjoint path Cover problem, i.e., the minimum number of
resources needed.

The flow graph Gf
i = (V ′i , E′i) is constructed from the

directed graph Gi = (Vi, Ei) as follows:
Let Vi = {x1, x2, ..., xn}.
• V ′i = {s, x1, x2, . . . , xn} ∪ {y1, y2, . . . , yn, t}, where s

(the source) and t (the sink) are two nodes not occurring
in Vi and for every xi ∈ Vi, yi is a new node in V ′i ;

• E′i = {(s, xi) : xi ∈ Vi} ∪ {(yi, t) : xi ∈ Vi} ∪
{xi, yj) : (xi, xj) ∈ Ei}.

• each edge e ∈ E′i is given capacity 1.
Example 3.2: Performing this transformation on the graph

Gi, we get the flow graph Gf
i depicted in Figure 4. The top

row is called the X-row with the xi nodes and the bottom row
of nodes is the Y-row of copies yi. Executing a Maximal Flow
algorithm on Gf

i gives the maximum amount of flow from s
to t in the graph and the edges through which it flows (See
Figure 4, the edges in the maximal flow are marked bold). The
flow f is a maximum s− t flow with value 6.

We now show that, in general, the value of the maximal
flow in Gf

i determines the solution specifying the minimum
amount of resources needed (i.e. the solution to the minimum
disjoint path cover problem).

Proposition 3.1: Given a reachability graph Gi = (V,E)
and the constructed flow graph Gf

i = (V ′, E′), let fmax be
the value of the maximal s−t flow of Gf

i . Then the minimum
number of paths needed for a disjoint path cover of Gi is
|V | − fmax.

2. Note that the graph is transitive: if there exists an edge between node
a and b then, according to the maximal method, alet + distance(a, b) ≤
best holds. If there also exists an edge (b,c) then blet + distance(b, c) ≤
cest also holds. By definition best ≤ blet, from which follows that best +
distance(b, c) ≤ cest and thus alet + distance(a, b) + distance(b, c) ≤
cest and alet +distance(a, b) ≤ cest. This transitivity of the graph ensures
that the requirement that each flight is serviced (fuelled) exactly once doesn’t
restrict the solution set.

3. For a description of this problem, see[3].

KL1857

KL1667

KL1577

KL1113

KL0713

KL8004

KL8144

KL1013

KL3411

KL8437

KL4103

KL1725

KL1795

KL0435

KL1857

KL1667

KL1577

KL1113

KL0713

KL8004

KL8144

KL1013

KL3411

KL8437

KL4103

KL1725

KL1795

KL0435

s t

Fig. 4. Flow graph Gf
i constructed from the graph Gi in

Figure 3 .

Proof: See Appendix.
Example 3.3: Applying the Maximum Flow algorithm to

our example in Figure 4, we find a maximum flow of 6. Thus,
the minimum number of resources needed to carry out all
activities is 8 (the number of activities (14) minus the value
of the maximum flow (6)).

Note that in addition to the value of the disjoint path cover
the algorithm also determines which flights can be serviced by
the same resource. Each edge with positive flow is a part of a
path. In Figure 4 these edges are marked bold. Constructing
the paths is now easy. We take for each edge (xi, yj) with
non-zero flow the edge (vi, vj) in Gi and add these to the
path cover. Succeeding nodes are on the same path. Nodes
not belonging to a path belong to their own path with length
zero. In Figure 3 the paths found are the following ones:
• Paths with length 1:
{(KL1857, KL3411)}, {(KL1013, KL8437)},
{(KL1667, KL4103)}, {(KL1577, KL1725)},
{(KL8004, KL1795)}, {(KL1113, KL0435)}

• Paths with length 0:
KL0713 and KL8114

In Figure 5 the number of resources needed is plotted against
time. This figure demonstrates that the maximum capacity of

NLR-TP-2009-336

 9

8 vehicles is only needed between 13:00 and 16:00 - not for
the complete time period.

Fig. 5. Number of resources needed dependent upon
time

As a final remark, note that the reachability graph Gi can
be constructed using the maximum or the minimum method.
This enables a service provider to come up with a pessimistic
and an optimistic estimation of the number of vehicles (s)he
has to use to perform all the activities.

4. Conclusions and Further Research

In this paper, a multi-agent approach has been presented to
solve the planning of ground handling processes at airports. In
particular, a temporal decoupling method has been introduced
to partition the overall plan into several independent sub-
plans that can be solved locally and merged again into a
conflict-free plan. This approach offers one major advantage:
it allows service providers at airports to plan their activities
independently of other service providers as much as possible.
This renders complex and time-consuming re-planning co-
ordination between agents superfluous in case of small disrup-
tions to the original plan. Given the large number of delays
occurring daily at airports, this seems a valuable approach.

Based on the decoupling approach, a new algorithm has
been presented to determine the number of resources needed
to execute all activities in a decoupled service plan. Apart
from the travelling time between activities, this algorithm also
takes the earliest and latest start and end times of each activity
into account. By doing so, the algorithm offers a minimum and
maximum number of resources required to perform the service.
The minimum may correspond to minimal costs for the service
provider, the maximum to maximum service reliability through
maximum flexibility in re-pairing plan disruptions. The service
provider is thus given an upper and lower bound: the choice,
depending on his preferences and business model, is his.

Another advantage of the algorithm is that it not only
specifies the amount of resources needed, but also the time
and place of their allocation. For example, Figure 4 shows
that the minimum capacity of eight resources is only needed

for three hours; during the rest of the day, fewer resources
will suffice. Other solutions with the same minimum capacity
may exist and could be calculated. The time complexity of
this algorithm is rather modest: it is bounded above by the
complexity of the Maximum Flow algorithm and below by
O(n2).4

Future research may focus on a number of extensions.
First, resource determination may be made more realistic
by including information about the availability of resources
or travel routes. Fuelling vehicles may for instance become
temporarily unavailable during the re-fueling of these vehicles
themselves.

Second, support may be given to the re-planning of resource
allocation in case things go wrong. As a first step, an overview
could be generated listing which extra resources may be
available in case of disruptions. Further steps may be directed
towards increasing the level of decoupling. The underlying
idea here is to merge certain service providers (e.g., cleaning
and catering) in case local re-planning is not feasible. In
such a mechanism, the new decoupling combines the planning
margins of both agents, thus increasing the total margin
that can be used to re-plan their activities. Current research
focuses on implementing this merge mechanism; other efforts
address right-shifting and swapping resources in order to re-
plan services.

After adding more realism to the current algorithm and
implementing re-planning decision support, we intend to pro-
ceed towards an all-encompassing prototype. We then hope to
validate this multi-agent prototype and its underlying ideas
during real-time simulation test trials. In the near future,
a decision support application based on this prototype may
become operational at a real airport.

References

[1] D. Böhme. Tactical departure management with the eurocontrol/dlr
dman. In Proceedings of the 6th USA/Europe Seminar on ATM R&D,
Baltimore, USA, 2005.

[2] B. V. Cherkassy and A. V. Goldberg. On implementing push-relabel
method for the maximum flow problem. In Proceedings of the 4th Inter-
national IPCO Conference on Integer Programming and Combinatorial
Optimization, pages 157–171, London, UK, 1995. Springer-Verlag.

[3] Th. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Introduction
to Algorithms. McGraw-Hill Higher Education, 2001.

[4] R. Dechter. Constraint Processing. Morgan Kaufmann Publishers, 2003.
[5] R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks. Artif.

Intell., 49(1-3):61–95, 1991.
[6] Eurocontrol. Prediction of air traffic growth in europe.

http://www.centreforaviation.com/news/2009/03/25/eurocontrol-
predicts-5-reduction-in-european-flights-in-2009—weak-growth-likely-
in-2009 page1, 2009.

[7] L. Hunsberger. Algorithms for a temporal decoupling problem in
multi-agent planning. In Eighteenth national conference on Artificial
intelligence, pages 468–475, Menlo Park, CA, USA, 2002. American
Association for Artificial Intelligence.

[8] L. Hunsberger. Group Decision Making and Temporal Reasoning. PhD
thesis, Cambridge, MA, USA, 2002.

[9] IATA. Prediction that cargo traffic in the world will fall by 13%, pas-
senger traffic will contract 5.7%. http://www.iata.org/pressroom/pr/2009-
03-24-01.htm, 2009.

4. In [2] the fastest algorithms available up till now are presented.

NLR-TP-2009-336

 10

[10] J. M. Kleinberg. Approximation algorithms for disjoint paths problems.
PhD thesis, 1996.

[11] H. Oberheid and D. Söffker. Cooperative arrival management in air
traffic control - a coloured petri net model of sequence planning.
In Applications and Theory of Petri Nets, Proceedings of the 29th
International Conference on PETRI NETS, pages 348–367, Berlin,
Germany, 2008. Springer-Verlag.

[12] P. van Leeuwen. Requirements and design document for LEONARDO’s
collaborative decision making multi-agent system CDMMA. Technical
Report NLR-TR-2003-653, National Aerospace Laboratory NLR, Jan-
uary 2004.

[13] P. van Leeuwen, L. I. Oei, P. Buzing, and C. Witteveen. Adaptive
temporal planning at airports. In Proceedings of the International Multi-
conference on Computer Science and Information Technology, Wisla,
Poland, 15 - 17 October, 2007.

[14] Cheng-Lung Wu and Robert E. Caves. Modelling and optimization
of aircraft turnaround time at airports. Transportation Planning and
Technology, 27(1):47–66, 2004.

Appendix

Proposition A.1: Given a graph G = (V,E) and the con-
structed flow graph G′ = (V ′, E′), let f be the value of
the maximal flow of G′. Then the minimum number of paths
needed for a disjoint path cover of G is |V | − f .

Proof: We show that G′ has a flow with value |V | − k if
and only if k is the size of the set of disjoint paths covering
V . From this correspondence it follows immediately that
maximal flows correspond to minimum disjoint path covers.

(⇐) Given graph G with a path cover consisting of k
disjoint paths, there are k nodes as the starting point of a
covering path and |V | − k nodes which are not. Because
the covering paths are node disjoint, each of these |V | − k
nodes must have a unique predecessor on the covering path
at which they occur. We construct a flow graph G′ according
to the method described earlier. For each node vi+1 with
predecessor vi there is an edge in G′ between xi from the
X-row and yi+1 from the Y-row over which one unit of flow
can be pushed. Because each node has a unique predecessor,
the capacity constraint holds because each node xi has at
most one outgoing flow and each yi+1 has at most one
incoming flow. So G′ has as flow of |V | − k.

(⇒) Consider flow of size |V | − k in the graph G′ con-
structed from graph G = (V,E). It is not difficult to see that
this implies that there are k disjoint paths from the source s
to the sink t. Hence, there are k disjoint nodes (note that the
edge capacity is 1) in the X-row from which 1 unit of flow
flows to a unique node in the Y-row. From this follows that
there are k nodes in G that are a successor of some node on a
flow path, and |V |−k that are not. Clearly, these |V |−k nodes
are the starting point of a covering path. Therefore, there are
|V | − k paths in the path cover for G.

NLR-TP-2009-336

 11

	1 Introduction
	2 Background
	2.1 The turnaround process
	2.2 Modeling the turnaround process by an STN
	2.3 The Temporal Decoupling Method

	3 Determining the number of resources needed
	4 Conclusions and Further Research

