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I. ABSTRACT 

With Airport Collaborative Decision Making (A-CDM) as a generic concept of 

working together of all airport partners, the main aim of this research project was to 

increase the understanding of the Influences on the Target Off-Block Time (TOBT) 

Prediction Accuracy during A-CDM. Predicting the TOBT accurately is important, 

because all airport partners use it as a reference time for the departure of the flights after 

the aircraft turn-round. Understanding such influencing factors is therefore not only 

required for finding measures to counteract inaccurate TOBT predictions, but also for 

establishing a more efficient A-CDM turn-round process.   

The research method chosen comprises a number of steps. Firstly, within the 

framework of a Cognitive Work Analysis, the sub-processes as well as the information 

requirements during turn-round were analysed. Secondly, a survey approach aimed at 

finding and describing situations during turn-round that are critical for TOBT adherence 

was pursued. The problems identified here were then investigated in field observations 

at different airlines’ operation control rooms. Based on the findings from these previous 

steps, small-scale human-in-the-loop experiments were designed aimed at testing 

hypotheses about data/information availability that influence TOBT predictability. A 

turn-round monitoring tool was developed for the experiments.   

As a result of this project, the critical chain of turn-round events and the decisions 

necessary during all stages of the turn-round were identified. It was concluded that 

information required but not shared among participants can result in  TOBT inaccuracy 

swings. In addition, TOBT predictability was shown to depend on the location of the 

TOBT turn-round controller who assigns the TOBT: More reliable TOBT predictions 

were observed when the turn-round controller was physically present at the aircraft.   

During the experiments, TOBT prediction could be improved by eight minutes, if 

available information was cooperatively shared ten minutes prior turn-round start 

between air crews and turn-round controller; TOBT prediction could be improved by 15 

minutes, if additional information was provided by ramp agents five minutes after turn-

round start.   
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I. LIST OF ACRONYMS AND DEFINITIONS  

1 Acronyms 

ACARS Aircraft Communication Addressing and Reporting System 

A-CDM Airport Collaborative Decision Making 

ACIS  Airport CDM Information Sharing  

ACISP  Airport CDM Information Sharing Platform  

ADEP  Aerodrome of Departure 

ADES  Aerodrome of Destination 

A-DPI  ATC-Departure Planning Information Message 

ADS  Aeronautical Decision Making 

ADS  Abstraction-Decomposition Space 

AEGT  Actual End of Ground Handling Time 

AGHT  Actual Ground Handling Time  

AHM  Airport Handling Manual 

AIBT  Actual In-Block Time 

ALDT  Actual Landing Time 

AMAN  Arrival Manager 

ANSP  Air Navigation Service Provider 

AO  Aircraft Operator 

AOBT  Actual Off-Block Time 

AOC  Airport Operator Committee 

AOC  Airline Operation Centre  

AOT  Airport Operations Team  

APT  EUROCONTROL Throughput Division Airport  

ARDT  Actual Ready Time (for Movement)  

ARTCC Air Route Traffic Control Centres 

ASAT  Actual Start-Up Approval Time 

ASBT  Actual Start Boarding Time 

A-SMGCS Advanced Surface Movement Guidance and Control System 

ASRT  Actual Start-Up Request Time 

ATA  Air Transport Association 

ATC  Air Traffic Control 

ATD  Actual Time of Departure 

ATM  Air Traffic Management  

ATFCM Air Traffic Flow Capacity Management  
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ATFM  Air Traffic Flow Management  

ATOT  Actual Take-Off Time 

ATTT  Actual Turn-round Time 

AXIT  Actual Taxi-In Time 

AXOT  Actual Taxi-Out Time 

CDM  Collaborative Decision Making 

CEDM  Cognitive Engineering and Decision Making 

CFMU  Central Flow Management Unit 

CODA  Central Office for Delay Analysis 

CPDLC Controller Pilot Data Link Communication 

CRM  Crew Resource Management  

CSA  Common Situational Awareness 

CSCW  Computer Supported Cooperative Work 

CSE  Cognitive Systems Engineering 

CTA  Cognitive Task Analysis 

CTOT  Calculated Take Off Time 

CTRP  CDM Turn-Round Process 

CWA  Cognitive Work Analysis 

DAA  Delivery at Aircraft 

DDM  Distributed Decision Making 

DEP  Departure 

DMAN  Departure Manager 

DMEAN Dynamic Management of European Airspace Network 

DPI  Departure Planning Information message 

DSA  Distributed Situational Awareness 

DSS  Decision Support System 

DTM  Direct Mode Turn-round Management 

EATM  European Air Traffic Management  

ECAC  European Civil Aviation Conference 

EIBT  Estimated In-Block Time 

EID  Ecological Interface Design 

ELDT  Estimated Landing Time 

EOBT  Estimated Off-Block Time 

ETOT  Estimated Take Off Time 

ETTT  Estimated Turn-round Time 
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EXIT  Estimated Taxi-In Time 

EXOT  Estimated Taxi-Out Time 

FAA  Federal Aviation Administration 

FADE  FAA/Airline Data Exchange 

FMP  Flow Management Position 

FUM  Flight Update Message 

GEMS  Generic Error-Modelling System 

GH  Ground Handler 

GUI  Graphical User Interface 

HHI  Human-Human Interaction  

HCI  Human-Computer Interaction 

HMI  Human-Machine Interface 

IATA  International Air Transport Association 

ICAO  International Civil Aviation Organisation 

IDSS  Intelligent Decision Support System 

IFPS  Integrated Initial Flight Plan Processing Unit 

IOSA  IATA Operational Safety Audits 

ISO  International Organization for Standardization  

KBB  Knowledge Based Behaviour  

LTM  Local Turn-round Management  

MTTT  Minimum Turn-round Time 

NAS  National Airspace System 

NBAA  National Business Aviation Association 

NDM  Naturalistic Decision Making 

PAX  Passenger  

RAA  Regional Airline Association 

RBB  Rule Based Behaviour  

RFID  Radio Frequency Identification 

RP  Response Planning  

RTM  Remote Turn-round Management  

RWY  Runway 

SA  Situation Assessment/ Situational Awareness 

SBB  Skill Based Behaviour 

SESAR   Single European Sky ATM Research Programme  

SIBT  Scheduled In-Block Time 
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SJU  SESAR Joint Undertaking 

SLA  Service Level Agreement 

SME  Subject Matter Expert 

SMR  Specialized Mobile Radio 

SMGCS Surface Movement Guidance and Control System  

SOBT   Schedule Off-block Time 

SSCT  Scheduled Service Completion Time 

SSDT  Scheduled Service Deliver Time 

STTTT  Scheduled Turn-round Time 

SWIM  System Wide Information Management  

TAM  Total Airport Management  

TIBT  Target In-block Time 

TLDT  Target Landing Time 

TMA  Terminal Control Area 

TMAC  Target Movement Arrival Entry Count 

TMAT  Target Movement Area Entry time 

TOBT  Target Off-block Time 

TRCM  Turn-round Control Mock-up 

TSAT  Target Start Up Approval Time 

TSCT  Target Service Completion Time 

TSDT  Target Service Delivery Time 

TTOT  Target Take-off Time 

UDPP  User Driven Priorisation  

ULD  Unit Load Device  

VTTC  Variable Taxi Time Calculation 

WCH  Wheelchair 

WDA  Work Domain Analysis 

WLAN  Wireless Local Area Network 

WIFI  Wireless Ethernet Compatibility Alliance 
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2 Definitions 

For purpose of understanding, some terms applied in this project require definition 

because their interpretation of the meaning is often differs throughout the literature. 

Emphasis here is not placed on erroneous or correct interpretation, but on an 

unambiguous usage within this research project. Attention should be given to the 

definition of ‘collaboration’ versus ‘cooperation’ or ‘situational awareness’ (e.g. shared, 

common, distributed....) because of the tendency to use them interchangeably.  

A-CDM: Airport Collaborative Decision Making is the concept aimed at improving Air 

Traffic Flow and Capacity Management (ATFCM) at airports by reducing delays, 

improving the predictability of events and optimising the utilisation of resources. 

Implementing Airport CDM allows each Airport CDM Partner to optimise their 

decisions in collaboration with other Airport CDM Partners, knowing their preferences 

and constraints and the actual and predicted situation. Decision making by the Airport 

CDM Partners is facilitated by the sharing of accurate and timely information and by 

adapted procedures, mechanisms and tools. The Airport CDM concept is divided into 

the following elements: 

• Information Sharing; 

• Milestone Approach; 

• Variable Taxi Time; 

• Pre-departure Sequencing; 

• Adverse Condition; and 

• Collaborative Management of Flight Updates.  

Airport CDM is also the name of the EUROCONTROL project coordinating the 

implementation of the Airport CDM concept at European Civil Aviation Conference 

(ECAC) airports. 

A-DPI: A Departure Planning Information (DPI) message sent by the CDM Airport to 

the CFMU notifying them of the Target Take-off Time (TTOT) between ATC time of 

pre-departure sequencing and Actual Take-off Time (ATOT). 

Adverse Condition Concept Element: Adverse Condition Element consists of 

collaborative management of the capacity of an airport during periods of a predicted or 
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unpredicted reduction of capacity. The aim is to achieve a common situational 

awareness for the Airport CDM Partners, including better information for the 

passengers, in anticipation of a disruption and expeditious recovery after the disruption. 

The concept elements Information Sharing, Milestone Approach, Variable Taxi Time, 

and Pre-departure Sequencing need to be in place at the airport before the Adverse 

Conditions Element can be implemented successfully.  

Airport CDM Information Sharing Concept Element:  The Information Sharing 

Element defines the sharing of timely and accurate information between the Airport 

CDM Partners in order to achieve common situational awareness and to improve traffic 

event predictability. The Airport CDM Information Sharing Platform (ACISP), together 

with defined procedures agreed on by the partners, are the means used to reach these 

aims. Information Sharing is the core Airport CDM Element and the foundation for the 

other Airport CDM Elements. It needs to be implemented before any other Concept 

Element.  

ACISP: The Airport CDM Information Sharing Platform (ACISP) is a generic term 

used to describe the means at a CDM Airport of providing Information Sharing between 

the Airport CDM Partners. The ACISP can comprise systems, databases, and user 

interfaces. 

Airport CDM Partner:  An Airport CDM Partner is a stakeholder of a CDM Airport, 

who participates in the CDM process. The main Airport CDM Partners are: 

• Airport Operator; 

• Aircraft Operators; 

• Ground Handlers (including push-back, catering, cleaning, etc.);  

• De-icing companies; 

• Air Navigation Service Provider (ATC); 

• Central Flow Management Unit (CFMU); 

• Support services (Police, Customs and Immigration etc.).    

Alert:  A system generated message which alerts the Airport CDM Partners of an 

irregularity and which normally requires one or more partners to make an active 

intervention to resolve the irregularity.  
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Arrival Manager (AMAN):  An arrival flow management tool that optimises the traffic 

flow to a Terminal Control Area (TMA) and/or runway(s) by calculating Target 

LanDing Time (TLDT) taking various constraints and preferences into account.  

Anticipation-action-comparison unit: An anticipation-action-comparison unit is a set 

of information components allowing to predict changes in the environmental input as 

resulting from our own actions and our changes in our position and posture. 

A-SMGCS: System at airports having a surveillance infrastructure consisting of a Non-

Cooperative Surveillance (e.g. SMR, Microwave Sensors, Optical Sensors etc) and 

Cooperative Surveillance (e.g. Multi-lateration systems). 

ATFM:  A service established with the objective of contributing to a safe, orderly and 

expeditious flow of air traffic by ensuring that air traffic control capacity is utilised to 

the maximum extent possible, and that the traffic volume is compatible with the 

capacities declared by the appropriate Air Traffic Services authority. (ICAO Annex 11, 

Chapter 1) 

CDM Airport:  An airport is considered a CDM Airport when Information Sharing, 

Milestone Approach, Variable Taxi Time, Pre-departure Sequencing, Adverse 

Conditions and Collaborative Management of Flight Updates Elements are successfully 

implemented at the airport.  

Cognition: Human thought processes and their components such as perception, 

memory and decision-making.  

Cognitive Task Analysis (CTA): The framework and methods used to analyse 

cognitive structures and/or processes that support job performance. CTA differs from 

traditional task analysis in many ways, including the goals, methods used, and data 

produced.  

Common Situational Awareness: CSA is used here as defined by EUROCONTROL 

(2008b) to describe the desire that all relevant up-to-date flight progress information is 

freely and universally available to all participating airport partners via the ACISP which 

allows them to improve their pre-tactical and tactical planning processes. CSA does 

neither account for the fact of how much information is required by individual airport 
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partner nor how it should be presented to support decision making (EUROCONTROL, 

2008b) 

Collaboration:  The process of two or more people/machines working together by in an 

intersection of common goal(s). Unlike cooperation, collaboration can also take 

adversarial forms thriving on differences and dissents among participants. It seeks 

divergent insights and spontaneity, rather than structural harmony and uses this 

information to create something new.   

Collaborative Management of Flight Updates Concept Element: The Collaborative 

Management of Flight Updates Element consists of exchanging Flight Update Messages 

(FUM) and Departure Planning Information (DPI) messages between the CFMU and a 

CDM Airport, to provide estimates for arriving flights to CDM Airports and improve 

the ATFM slot management process for departing flights. The aim is to improve the 

coordination between Air Traffic Flow and Capacity Management (CFMU) and airport 

operations at a CDM Airport. The Concept Elements such as Information Sharing, 

Milestone Approach, Variable Taxi Time, Pre-departure Sequencing, and Adverse 

Conditions need to be implemented at the airport before the Collaborative Management 

of Flight Updates can be implemented in cooperation with the CFMU. 

Communication: The process of transferring data/information/knowledge from one 

entity to another including the way of the interchange forms, not only just facts, but also 

policies, prospects, failures, and human experiences.  

Complexity: For the A-CDM context, complexity refers to the large number of 

dependencies that intentionally or not are built within the various items of the system.  

Cooperation: The process of working together versus separately and in competition.  

CTOT:  A time calculated and issued by the appropriate Central Management Unit as a 

result of tactical slot allocation at which a flight is expected to become airborne. (ICAO 

Doc 7030/4 – EUR, Table 7) 

Decision Making: Decision-making is one of the basic functions of Turn-round 

monitoring. It is an active cognitive process which selects one out of a set of possible 

courses of action. It includes a weighing-up of the pros and cons of different 

alternatives.  
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Decomposition: A structured analysis that breaks down higher level units based on 

categories, such as consistent components, decision required, or concurrent tasks. 

Decomposition is useful in most types of analyses.  

Distributed Situational Awareness (DSA): DSA defines SA as a dynamic, and 

collaborative process among actors on a situational basis. It regards different systems as 

having different purposes and different partners as having different domain knowledge. 

This requires in turn all participating to actively create an understanding of the situation 

from the information available.   

DMAN:  DMAN is a planning system to improve the departure flows at an airport by 

calculating the Target Take off Time (TTOT) and Target Start Up Approval Time 

(TSAT) for each flight, taking multiple constraints and preferences into account.  

Ground Handling:  Ground Handling covers a complex series of processes and services 

that are required to separate an aircraft from its load (passengers, baggage, cargo and 

mail) on arrival and combine it with its load prior to departure.  

IFPS: A system of the CFMU designed to rationalise the reception, initial processing 

and distribution of IFR/GAT flight plan data related to IFR flight within the area 

covered by the participating States. (ICAO Doc 7030/4-EUR, paragraph 3.1.1) 

Mental Model: Mental models are the cognitive processes/representations whereby 

humans are able to generate descriptions of system purpose and form, explanations of 

system functioning and observed system states and predictions about future system 

states (according to Rouse and Morris, 1986). 

Mental Picture: The actual mental picture of a situation represents a moment-to-

moment snapshot of the actual situation based on the mental model and the actually 

perceived external cues. A series of mental pictures represents the actual mental model 

including the actual parameterisation (Whitfield & Jackson, 1982).  

Milestone: This is a significant event that occurs during the planning or operation of a 

flight. A successfully completed milestone will trigger the decision making process for 

downstream events and influence both the further progress of the flight and the accuracy 

with which the progress can be predicted.  
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Milestone Approach Concept Element: The Milestone Approach Element describes 

the progress of a flight from the initial planning to the take off by defining Milestones to 

enable close monitoring of significant events. The aim is to achieve a common 

situational awareness and to predict the forthcoming events for each flight with off-

blocks and take off as the most critical events. The Concept Element Information 

Sharing needs to be in place at the airport before it can successfully implement the 

Milestone Approach. The Milestone Approach combined with the Information Sharing 

element is the foundation for all other Concept Elements.  

Monitoring:  Monitoring is a process of continuous or discrete comparison between the 

actual state of the system and the expected state of the turn-round situation. Monitoring 

is a top-down process governed by the expected state of the system.  

Pre-departure Sequencing Concept Element: The pre-departure sequencing is the 

order by which aircraft are scheduled to depart from their stands (push off-blocks) 

taking into account partners’ preferences. It should not be confused with the pre-take off 

order whereby ATC organise aircrafts at the holding point of a runway. The aim is to 

enhance flexibility, increase punctuality and improve slot-adherence while allowing the 

airport partners to express their preferences. The concept elements Information Sharing, 

Milestone Approach, and Variable Taxi Time need to be implemented at the airport 

before the Pre-departure Sequencing can be implemented. The Pre-departure sequence 

can also be derived by a departure manager (DMAN) which calculates the take off time 

TTOT based on demand and derives the TSAT from the runway sequence. Airports can 

implement different solutions to achieve the pre-departure sequence, depending on local 

traffic complexity and surface congestion.   

Situational Awareness (SA): SA is the perception of environmental elements within a 

volume of time and space, the comprehension of their meaning, the projection of their 

status in the near future, and includes a prediction of how their behaviour may affect the 

environment (Endsley, 1995). Situational awareness is often used in the literature with 

confusing meanings and terms like Individual versus Shared Situational Awareness, 

Common Understanding, Team shared Awareness, Shared Understanding, Distributed 

Cognition, Distributed Understanding, Group Situational Awareness, Shared Cognition, 

Shared Visualization, Team Awareness, and Coherent Tactical Picture are often used 
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interchangeable. For the purpose of this research project, only the terms ‘common’ 

versus ‘distributed’ situational awareness are used, compared with each other, and 

determined how they are used for this project. 

System: A system in A-CDM context denotes the set of all features required for the 

performance during the time of a certain function. These features include humans, 

machines, interfaces, data, computers, procedures, and processes.  

TOBT:  The time that an Aircraft Operator or Ground Handler estimates for an aircraft 

to be ready, all doors closed, boarding bridge removed, push back vehicle available and 

ready to start up/ push back immediately upon reception of clearance from the TWR .  

TSAT:  The time provided by ATC taking into account TOBT, CTOT and/or the traffic 

situation that an aircraft can expect start up/ push back approval. Thereby, the Actual 

Start-up Approval (ASAT) can be given in advance of TSAT.  

Variable Taxi Time:  Variable Taxi Time is the estimated time that an aircraft spends 

taxiing between its parking stand and the runway or vice versa. Variable Taxi Time is 

the generic name for both inbound as outbound taxi time parameters, used for to 

calculate TTOT or TSAT. Inbound Estimated Taxi Time (EXIT) includes runway 

occupancy and ground movement time, whereas Estimated Outbound Taxi Time 

(EXOT) includes push back and start up time, ground movement, remote- or apron de-

icing, and runway holding times.  
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1 INTRODUCTION  

1.1 Development of A-CDM     

The European Civil Aviation Conference (ECAC) adopted a strategy in the 1990s 

with the overall objective ‘to provide increasing airspace and control capacity 

urgently…while maintaining a high level of safety’. As a consequence, the European Air 

Traffic Control Harmonization and Integration Program (EATCHIP) and Airport/Air 

Traffic System Interface (APATSI) were introduced (EUROCONTROL, 2009b). These, 

together with the implementation of the Central Flow Management Unit (CFMU), 

should help to improve capacity and efficiency. However, these improvements have 

been overtaken in recent years by continuing increase in demand. The ECAC Air 

Traffic Management (ATM) Institutional Strategy from 14th February 1997 was 

superseded by a comprehensive Gate-to-Gate oriented ATM Strategy for the years 

2000+ in order to meet future air transport needs. The principal characteristics 

governing the new concepts of the ATM Strategy 2000+ include strategic organisation 

and enhanced predictability, flight management from gate-to-gate, enhance flexibility 

and efficiency, collaborative decision making, responsive capacity management to meet 

demand, and collaborative airspace management. The Airport CDM Project and the 

Airport CDM Concept support these characteristics directly or indirectly by facilitating 

better decision making and improved predictability.  

Many individual initiatives towards improved co-operation, communication, and 

information sharing are currently undertaken in the European ATM community. The 

EUROCONTROL Experimental Centre has been involved in CDM through many 

studies that have opened the perspectives for Collaborative Decision Making. These 

include ATFM Priorities (1998), CDM Expert Group (1999), FASTER Study (1999), 

CDM Applications (1999), ATFM Improvement (2000), and the A-CDM-D Evaluation 

(2000).  

 The Airport CDM Information Sharing and the Turn-round Process (Milestone 

Approach) concept developments were based on experimental work conducted at 

several major European airports during trials at Brussels, Barcelona, Helsinki, 

Stockholm, and Milan.  
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An Airport CDM Task Force has been created under the European Air Traffic 

Management (EATM) Airport Throughput Division Airport (APT) to guide the Airport 

Operations Team (AOT) in Airport CDM issues and undertake specific work. This task 

force has now initiated additional projects in other airports such as London Heathrow, 

Lisbon, Budapest, Athens, Zurich, and Munich where the various Concept Elements are 

being tested, taking into account local constraints and requirements.  

The A-CDM concept was established within an Airport Operations Plan having five key 

areas like A-SMGCS, Airport CDM, ACE, Airport Safety, and Wake Vortex. Since then, 

the EUROCONTROL Airport CDM team in Brussels coordinated the initial trials at 

selected airports and is now responsible for ensuring standardisation and dissemination 

of best practice of Airport CDM implementation at European airports. Meanwhile, the 

A-CDM concept is also an integral part of both the Dynamic Management of the 

European Airspace Network (DMEAN) and the Single European Sky ATM Research 

(SESAR) program. Within the SESAR proposed operating principles, Airport CDM, 

System Wide Information Management (SWIM), Network management function in 

support of User Driven Priorisation Process (UDPP), and the Total Airport Management 

(TAM) have been introduced as the main enablers to support such airspace/airport users’ 

requirements (EUROCONTROL, 2008b) 

A number of common objectives for A-CDM are defined which include: 

• improvement of on-time performance and predictability; 

• enhance/optimize use of ground handling resources, stands, gates and  

       terminals; 

• reduction of ground movement cost; 

• optimize the use of the airport infrastructure and reduce congestion; 

• reduce ATFM slot wastage; 

• flexible departure planning; and 

• reduce apron and taxiway congestion.  
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1.1.1 The European Airport-CDM Concept  

Different CDM concepts have been proposed in the US and Europe. Within Europe, 

the CDM concept is called Airport-CDM (A-CDM) and a number of A-CDM concept 

elements are defined aiming at achieving greater operational efficiency.  

For the implementation of A-CDM, different phases through a bottom-up concept are 

described:  

• Information Sharing: is the essential part that forms the foundation for all the other 

elements and must be implemented first. This should be achieved by creation of an 

Airport CDM Platform for information sharing between partners with a 

standardised format. This includes real-time data and alert messages to all partners 

available via interdependent user displays or HMIs allowing generic or local 

processes a direct link to the A CDM Platform. All airport partners contribute to the 

Information Sharing: 

o Aircraft Operator/ Handling Agent: delivers planning data, turn-round times, 

flight plans, movement data, priority of flights, aircraft registration and type 

changes, TOBT, and movement messages.  

o Air Traffic Control: contributes information like Estimated Landing Times, 

Actual Landing Times, Target Start up Approval Times, Target Take off 

Times, runway and taxiway conditions, taxi times, SID allocation, runway 

capacity. 

o Airport Operations: stand and gate allocation, environmental information, 

special events, reduction in capacity, airport slot data, ADES, Scheduled 

Off-Block Times. 

o CFMU: data from flight plans, SAMs, SRM, CHG, CNL, changes or 

cancellations, actual movement messages, ELDT, FUMs. 

o Service Providers: de-icing companies, MET office with weather forecast or 

actual weather, others including police, customs, fuel, etc..) 
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• Milestone Approach: is often referred as Turn-Round Process aims at achieving a 

common situational awareness by tracking the progress of a flight from the initial 

planning to the take off via a continuous sequence of different events. Different 

airport partners can be responsible for different milestones; significant events are 

determined in order to track the progress of flight via these key events. 

Implementation of these milestones requires a technical infrastructure and hence 

information sharing with agreement on the required processes in place and working 

properly. A total of 16 milestones have been defined, however, more milestones 

may be needed to cover for extra updates on key events, e.g. de-icing. Local 

procedures may substitute milestones; therefore not all milestones are highly 

recommended.  
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     TABLE 1: THE A-CDM MILESTONES (SOURCE: EUROCON TROL, 2009) 

 

NUMBER MILESTONES 
TIME 

REFERENCE 
EXPLANATION 

1 
ATC Flight Plan 

Activation 
3  hours before 

EOBT 
First point of Awareness 

2 EOBT – 2h 
2 hours before 

EOBT 
CTOT Allocation in case of airspace or 

local constraints 

3 
Take-off from 

Outstation 
ATOT from 
Outstation 

Most commonly transferred via 
Movement Messages 

4 
Local Radar 

update 
Varies according to 

Airport 
Arrival Manager builds sequence 

5 Final Approach 
Varies according to 

Airport 
Usually the trigger for ATC to set the 

first TOBT according to MTTT 

6 Landing ALDT Aircraft now under Local Management 

7 In-block AIBT Trigger for Ground Handling start 

8 
Ground Handling 

Starts 
ACGT 

Aircraft Operator now provides 
information to the Partners 

9 
TOBT Update 
prior TSAT 

Varies according to 
airport 

Most accurate TOBT should be 
provided 

10 TSAT Issue 
Varies according to 

Airport 
ATC issues TSAT based on latest 

TOBT 

11 Boarding Starts 
Varies according to 

Airport 
Trigger independent from mode of 

boarding (e.g. air-bridge, stand) 

12 Aircraft Ready ARDT Aircraft is physically ready to move 

13 Start-up Request ASRT Flight crew ask for start-up clearance 

14 
Start-up 

Approved 
ASAT Start-up approval by ATC 

15 Off-block AOBT Aircraft starts push-back or taxi 

16 Take off ATOT Aircraft takes off from the runway 

 

• Variable Taxi Time: is the key to predictability of accurate take-off and in-block 

times especially at complex airports. This is also used by the CFMU in order to 

calculate the CTOT and due to the complexity of airports taxi time may vary 

significantly depending on the parking position or runway configuration.  

• Pre-departure Sequencing: Establishing a pre-departure sequence for the off-block 

time taking operators’ preferences and operational constraints into account in order 

to replace the common principle of ‘first come first serve’. This allows avoiding 
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long waiting times at the runway and ATC to provide a TSAT which places each 

aircraft in an efficient pre-departure sequence for the off-block time.  

• CDM in Adverse Conditions: achieves Collaborative Management of partners 

during periods of predicted or unpredicted reductions of capacity, because different 

events either planned or unplanned can disrupt the normal operation of an airport far 

below normal operation. Such conditions may be snow, industrial action which 

means adverse conditions can be foreseen with more or less accuracy. A manager 

should be employed who is able to collaboratively reduce capacity in the most 

optimal manner and to facilitate a swift return to normal capacity once adverse 

conditions no longer prevail. This includes increased predictability during de-icing 

processes.  

• Collaborative Management of Flight Updates: as an information exchange of flight 

updates between CFMU and CDM Airport, it enhances the quality of arrival and 

departure information. Within this scope, the goal is to enable flight punctuality and 

efficiency having regard to the available resources with emphasis on optimizing the 

network capacity. This strategy does not look for imposing ATFCM solutions to 

airspace users through ATFM delays, but rather through a robust and comprehensive 

collaborative decision making process that will allow widespread dissemination of 

relevant and timely information. This is realized through Departure Planning 

Information Messages (DPIs) from the airport to the CFMU or Flight Update 

Messages (FUMs) from the CFMU to the airports concerned.  

With all these concept elements in place the local airport is regarded as a CDM Airport. Additionally, there 

are advanced concepts available. As yet undefined, these Elements will enhance and 

extend common situational awareness and increase collaboration between airports by 

utilizing advanced technologies and linking with advanced tools, e.g. A-SMGCS, 

AMAN/DMAN:  

• DMAN: is a planning system to improve departure flows at an airport by 

calculating the TTOT and TSAT for each flight, taking multiple constraints and 

preferences into account. It is the technical enabler developed by several 

industrial companies, using the data elements provided by Airport CDM and A-

SMGCS concept. However, its application within European has not yet been 
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harmonized and it must also be considered reliable before considered by 

operational controllers.  

• AMAN: is a planning system improving arrival flows by optimal throughput, 

considering relevant constraints like airspace structure, runway system, wake 

vortex category, speed, restrictions, wind, etc. 

• A-SMGCS: Advanced Surface Movement Guidance and Control System. The 

main functions of A-SMGCS as they are defined in the ICAO A-SMGCS Manual 

are: 

� Surveillance, which provides controllers (eventually flight crews and 

vehicle drivers) with situational awareness on the movement area (i.e. a 

surveillance display showing the position and identification of all aircraft 

and vehicles). 

� Control, providing conflict detection and alerting on runways (and 

eventually the whole movement area). 

� Routing, through which manually (eventually automatically) the most 

efficient route is designated for each aircraft or vehicle. 

� Guidance, giving flight crews and drivers indications enabling them to 

follow an assigned route. 

1.1.2 The US CDM Concept 

Starting in 1993, experiments with data exchange between the Federal Aviation 

Administration (FAA) and the airlines (FADE experiments) where airlines sent updated 

schedule information, the FAA proved to positively impact air traffic management 

decision making. CDM has evolved from this same principle, based on the belief that 

shared information on all sides will create a National Airspace System (NAS) that is 

beneficial to everyone. CDM brings together airlines, government, private industry and 

academics in an effort to improve air traffic management through information exchange 

and data sharing. This philosophy of collaboration promises to become the standard in 

aviation (FAA CDM Webpage, 2009). A stakeholder group consisting of the Air 

Transport Association (ATA), National Business Aviation Association (NBAA), 

Regional Airline Association (RAA), and the Federal Aviation Administration (FAA) 

provides recommendations to the FAA. A number of sub-teams like the Flow Evaluation 
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Team, Future Concepts Team, Surface CDM Team, Enhanced Ground Delay Program, 

Special Traffic Management Program, Weather Evaluation Team, Fuel Team and CDM 

Training Team are established to address specific issues in a focused group of experts. 

Additionally, joint initiatives are undertaken and aimed at exchanging ideas that will 

mutually benefit both European and American CDM organizations. These initiatives 

include mutual exchange programs of CDM team members where interest was raised by 

the FAA to build on expertise from European Concept of A-CDM. 

1.1.3 The Differences between the European and the US CDM Concept 

While both the European and the US CDM concepts are aimed at increasing the 

predictability and reliability of air traffic, differences between the two approaches evolve 

from the regulatory environments and the different measures as they are established in 

Europe, respectively the US. The main difference between both approaches is the non 

adoption of Target Start-up Approval Time (TSAT) as a means to control the traffic 

flow on the ground in the US. Instead, ATC provides the Target Movement Arrival 

Entry Count (TMAC), a number of slots to that spot when ATC takes over with aircraft 

start taxiing to the runway. A Target Movement Area Entry time (TMAT) is allocated 

by Departure Reservoir Management (DRM). The reason for this is that in the US the 

Aprons are controlled by the airlines and not ATC.  

In Europe, focus is applied to monitoring of delays through key monitoring stages 

because airports are getting increasingly congested and parallel planning exists between 

airports and Air Traffic Flow Management (ATFM). Consequently, the harmonisation 

between the various local airport partners and the CFMU has initially been in the 

spotlight in Europe, while the US CDM has established their focus in the various sub-

teams. As a result, the collaboration among participating partners at strategic, tactical and 

operational level has developed quite differently during day-to-day flight operation.  

1.1.4 A-CDM Implementation 

There are four distinct and fundamental phases defined for the implementation 

process which are the Information Phase, Analysis Phase, Implementation Phase, and 

the DPI Operational Implementation Phase. To ensure data quality, a validation process 

will take place before to assess level of CDM implementation at the airport. 
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EUROCONTROL offers far ranging assistance to support the local implementation 

including CBA at airport sides, gap analysis, dedicated website, CDM document library, 

multiple subgroup meetings, and yearly coordination group meetings. 

Collaborative Decision Making (CDM) has now been established as a concept of 

working together of all airport partners who are best placed for operational decision 

making. Partners recognized as required for CDM include airport operators, aircraft 

operators, ground handlers, Central Flow Management Unit (CFMU) in Brussels, and 

Air Traffic Control (ATC). CDM aims at improving operational efficiency at airports by 

reducing delays, improving the situational awareness during the progress of the flight, 

and optimizing the utilization of resources. The inherent aim is to make improved 

decisions based on more accurate and timely information that result in all airport partners 

having the same operational picture, with the same meaning to all involved. By knowing 

possible constraints of the actual or predicted situation, each airport partner is able to 

improve own decisions in collaboration with other partners by applying own preferences. 

The improved decision making by all airport partners will be facilitated by the sharing of 

accurate and timely information (EUROCONTROL, 2009a).  

With CDM in place, also the ATM network benefits from more accurate information 

about the flight status. This allows deriving ATFM slots based on the actual situation and 

reducing the current buffer capacity for the en-route phase of the flight.  

For the implementation of CDM, operational procedures, automated processes and 

tools have to be established at the participating airports. The EUROCONTROL Airport 

CDM team is responsible for proposing standardization and dissemination of best 

practice Airport CDM implementation guidelines at European airports, but does not 

have regulatory power. 

1.2 The Milestone Approach Concept Element (Turn-round Process Element) 

The Milestone Approach Element has traditionally been called ‘CDM Turn-round 

Process Element’ (CTRP) and describes the progress of a flight from the initial planning 

to the take off by defined milestones that allow close monitoring of significant events. 

Turn-round operation has so far been viewed as a standalone process with 

responsibilities shared between airline and airport. SESAR Air Traffic Management 

(ATM) research however aims at eliminating today’s fragmented approach to European 



  Chapter 1: Introduction  

 

          Matthias Groppe                Influences on Aircraft TOBT Prediction Accuracy                    27                 

air traffic management by synchronising all stakeholders and network resources. Because 

successive flights depend on each other, today’s ATM concept links the arrival phase, 

turn-round, and departure phase of a flight as one entity, The ground process and en 

route traffic are now considered as part of a time-dependent chain. Airport Collaborative 

Decision Making (A-CDM) is used as the mechanism to integrate airports into the ATM 

network. An airport is considered a CDM airport when the Information Sharing, the 

Milestone Approach, the Variable Taxi Time, the Pre-departure Sequencing, the Adverse 

Conditions, and the Collaborative Management of Flight Updates concept elements are 

successfully implemented at an airport (EUROCONTROL, 2009b).  

Figure 1 shows the milestones within the different phases - arrival phase (inbound), 

turn-round phase, and departure phase (outbound). Flight Update Messages (FUMs) and 

Departure Planning Information (DPI) are in place to inform all participating CDM 

partners of the flight progress, thus improving ATFM slot management process for 

departing flights (Collaborative Management of Flight Updates Element). 

 

 

FIGURE 1: AIRPORT CDM GENERIC MILESTONES (SOURCE: E UROCONTROL, 2006) 
 

Among the milestones used for monitoring the flight progress, the period of the flight 

between milestone 7 (actual in-block time) and milestone 15 (actual off-block time) is 

called Turn-round. Monitoring this turn-round phase is a complex task, because 
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situational awareness has to be established across various subsystems of different 

organizational and operational structures with their own causal and intentional domain 

constraints. Subsystems are here referred to as participating partners and include airport 

operator, airline company, air traffic control, ground handler, service provider and 

Central Flow Management Unit (CFMU). Additionally, many terminal and ramp 

processes have operational interdependencies, e.g. processes that normally cannot be 

done in parallel, as well as legal requirements, e.g. one side of the aircraft has to be clear 

of obstructions to ensure that fire fighting access is always possible (Fricke et al, 2008). 

In order to increase situational awareness during turn-round, a number of agreed trigger 

events are defined by the A-CDM concept to inform all partners of updates to estimates 

and/or aircraft turn-round status. A CDM compliance alert will appear on the Airport 

CDM Information Sharing Platform (ACISP) in cases of disruptions. Any internal or 

external disruption at these milestones generates an alarm and has to be communicated to 

all partners in order to maintain situational awareness.  

 Due to the complexity, size, speed, and functionality of the ATM network between all 

airport partners during this turn-round phase, it is important to understand how operators 

monitor the turn-round operation, the challenges they face in the monitoring task, and 

the tools they use for monitoring and decision support. Designers can use this 

information to create interfaces that not only enhance operation monitoring, but also 

alleviate information overload, integrate or highlight required information, decrease 

response time, and thereby increase efficiency by providing an intelligent decision 

support for turn-round related decision making. Failures during turn-round monitoring 

can result in insufficient situational awareness with negative consequences on TOBT 

reliability.  

1.3 The Role and Importance of TOBT  

Within A-CDM, the Target Off-block Time (TOBT) represents the time that an 

airline or handling agent estimates an aircraft to be ready, all doors closed, boarding 

bridge removed, push back vehicle available, and ready to start up or push back 

immediately upon receiving clearance from air  traffic control (EUROCONTROL, 

2009b). The airline or airline representative (referred to here as ‘turn-round controller’) 

issues the TOBT and is ultimately responsible for its accuracy. The turn-round 
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controller controls and monitors the CDM turn-round process. He can update the TOBT 

up to 15 minutes before Estimated Off-Block Time (EOBT), but needs approval from 

the airlines’ dispatch manager if deviation from EOBT is greater than 15 minutes. 

The TOBT is an important trigger for all airport partners in departure management 

because ATC issues a Target Start-up Approval Time (TSAT) based on the TOBT to 

inform the flight crew and all partners of the time when the aircraft can expect start-up 

and/or push back approval. Such a TSAT also takes into account a possible Air Traffic 

Flow Management (ATFM) slot delay, and/or the actual traffic situation at the airport. 

As such, the TOBT is not only the key indicator for all participating actors and 

operators: But it is also used by the airport and ground handlers as a basis for resource 

planning, by the CFMU to assess airspace congestion, by local ATC to build pre-

departure sequence, and by the passengers as the expected departure time of the flight. 

The large number of participants who depend on accurate TOBT predictions reveals the 

importance of this milestone for the success of an efficient and reliable flight operation.  

Airport partners are also referred to as ‘decision makers’ at the tactical level; individuals 

participating at the airport terminal or the ramp are referred to as ‘actors’, and 

encompass flight managers, pilots, ramp agents, loaders, cleaners, catering personnel, 

vehicle drivers, and fuelling personnel.    

The crucial role of milestone 9 (Final Update of TOBT) within all other milestones has 

to be emphasized. While all other milestones can potentially be important to increase 

the situational awareness among A-CDM decision makers, milestone 9 requires the 

highest accuracy because it ties up the largest number of resources including airspace, 

ground handling equipment, airport facilities, personnel, and passengers’ time.  

As a consequence of predictable and accurately assigned TOBTs, ATC is able to 

reduce time buffers between period of milestone 14 (Actual Start-up Approval Time 

ASAT), and milestone 16 (Actual Take-off time ATOT). Due to the continuing 

instability in predicting TOBT, it is common practice for ATC to build time buffer into 

the period between milestone 14 and milestone 16 in order to account for irregularities 

that emerge during turn-round. Consequently, better predictability and accuracy in 

TOBT assignment enables ATC to reduce these time buffers.  
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When TOBT is more reliable, Actual Take-off Time (ATOT) also becomes more 

predictable and other positive network benefits can be expected. A study has shown that 

a broader implementation of A-CDM could increase sector capacity, reduce en-route 

delays, and reduce the number of regulated flights (EUROCONTROL, 2008a). Other 

advantages of reliable TOBT predictions include reduced taxi times, environmental 

benefits, improved resource planning, and last, but not least, increased passenger 

satisfaction. 

A prototypical situation showing the importance of the TOBT is a flight constrained 

by a Calculated Take-Off Time (CTOT). Central Flow Management Unit (CFMU) is 

the enforcing power for delaying flights based on a calculated airspace sector overload 

or restrictions that emerge before the departure by imposing a CTOT on the flight. Such 

CTOT requires the flight to get airborne within a 15-minute-window [-5;+10 minutes] 

This CTOT is based on the TOBT resulting from the Departure Planning Information 

(DPI) that the airline forwards to the CFMU. If the TOBT is inaccurate the flight fails to 

depart within the CTOT window and the airspace reserved for this flight gets redundant 

because it cannot be assigned to another flight anymore that has also been delayed. This 

example shows the key role of the TOBT in coordinating the turn-round phase with the 

en-route phase of the flight.  

1.4 Characteristics and Dynamics of the TOBT 

TOBT decision making has the characteristics of an evolutionary approach within a 

dynamic environment: The task of assigning the TOBT is only one component of a 

larger decision making problem that does not simply end with a TOBT assignment. It 

requires continuous monitoring of the turn-round situation, because any unanticipated 

event can affect the TOBT significantly. Thus, coordination of actions is mandatory: 

depending on the required response to a single turn-round process or any unexpected 

situation, a long sequence of subsequent process coordination or remedial decision 

making may be necessary. Such response may include actions like data exchange or 

sharing information up to jointly creating contingency plans via numerous interactions 

between actors or operators involved.  

During  flight operation at congested airports, the minimum time available for turn-

rounds is often restricted by predefined minimum periods called Minimum Turn-round 
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Time (MTTT). However, such MTTTs are not based on the actual turn-round duration 

required, but are a fairly arbitrary choice of the airline. If only MTTT is available, the 

TOBT needs to be updated even when only one turn-round process is delayed during the 

so called critical path of the sequential turn-round processes: While a number of turn-

round processes can be executed simultaneously, the critical path stems from the 

sequential sub-processes, where a delay can propagate across the turn-round, thereby 

affecting the TOBT. Therefore, not only close monitoring of this critical path is required, 

but also predictions are required for each single turn-round process, since TOBT 

accuracy depends heavily on the exact prediction of all sequential sub-processes.   

However, until today no unified approach has been found on what time, space, 

individuals or units are required during turn-round management or whether decision 

making should be centralized or distributed among participants. Examples of who is 

responsible for forwarding information, when should information be shared, or how the 

nature of the distributional network should look like because accountability in decision 

making is an inherent point of conflict between the various actors and participants. 

Additionally, the influence of external factors like time pressures during turn-round, 

interruptions in the ATM network, or the consequences resulting from the uncertainty of 

situations have not been systematically investigated so far. Such characteristics and 

dynamics of the current approach to turn-round decision making reveal opportunities for 

an improvement in the overall TOBT prediction.        
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1.5 Motivation for this Research 

Sections 1.3 and 1.4 have outlined how TOBT plays a key role for all airport 

partners, not only as a benchmark time for the execution of all ground services, but also 

as the reference time for the airport, ATC, CFMU, the passengers and the aircrews. This 

importance for all involved together with the little attention that TOBT has gained so far 

marks the motivation for this research project.  

Moreover, the issue of TOBT accuracy has not been systematically investigated at 

airports thus far. A number of reasons may explain this fact:  

� Operational A-CDM airports: only a few airports in Europe have officially 

introduced A-CDM and are using the milestones as outlined in the A-CDM 

implementation manual (EUROCONTROL, 2009b). 

� The importance of TOBT predictability has not yet been sufficiently emphasized 

when considering the introduction of A-CDM at an airport; focus has always 

been applied on other CDM implementation issues.  

� Lack of awareness required for TOBT during A-CDM: due to insufficient 

dissemination of working rules and guidelines of the CDM procedures, turn-

round managers are not fully aware of the newly implemented procedures not 

directly affecting their own working environment. TOBT awareness however, 

has to be established via an interdepartmental information exchange.  

� Airlines and ground handlers are worried about possible negative consequences 

when sharing their internal data to allow accurate TOBT predictions: precise 

information on expected turn-round completion may also potentially reveal 

ground handling irregularities. Communicating such information demands a 

culture change by the airline or the representative ground handler, because 

penalties from providing poor turn-round service have to be expected, e.g. IATA 

delay code assignment or payment deductions. Finally, airline agents often 

remain hopeful that delay encountered during turn-round might be compensated 

for by accelerated working procedures: In such cases, providing a late TOBT 

early would be disadvantageous for the airline.  
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1.6 Aims, Objectives and Research Questions   

The overall aim of this project has been defined as:   

Identifying measures that can increase TOBT prediction accuracy.  

A number of objectives were derived from this aim for the research project: 

• Understanding the environmental constraints influencing TOBT decision making. 

• Identifying unexpected situations critical for TOBT adherence. 

• Understanding how major European airlines actually assign TOBT today. 

• Determining countermeasures for dealing with unanticipated situations and  

• Identifying strategies and decision support systems able to predict accurate TOBTs. 

Taking the environment within today’s A-CDM context into consideration, the first 

research questions looked at the social and organizational aspects of the turn-round and 

were formulated:  

� What are the fundamental constraints that are imposed on TOBT decision making?  

� What are the specific environmental factors that influence TOBT decision making? 

The perspective of the flight crews was used to describe situations critical for TOBT 

adherence: 

� Which situation can arise unexpectedly that is critical for TOBT adherence?  

� Within the identified situations, does cooperative behaviour of participating actors 

have an influence on TOBT adherence? 

The next questions were aimed at zooming closer into the actual TOBT decision making 

process and include:  

� What are the different modes for monitoring the turn-round and what are the current 

strategies used to predict the outcome of the turn-round via the assignment of the 

TOBT? 

� What cognitive strategies have operators developed to facilitate early detection and 

resolution of a critical TOBT adherence situation? 

� What factors contribute to turn-round monitoring difficulty because key indicators 

for emerging problems are not available? 
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The underlying motivation for the next questions was to find countermeasures for the 

identified problems, formulated as: 

� How can provision of cooperative information increase TOBT prediction accuracy? 

� Is cooperative information sharing able to identify strategies that can be applied 

during unexpected turn-round situations? 

� Is it possible to get more accurate TOBT predictions already earlier than today? 

1.7 Organization of the Thesis 

The scope of the thesis is delimited to the A-CDM Information Sharing and Milestone 

(Turn-round Process) Element of the A-CDM concept. While it was realized that also 

other concept elements are useful to be included, this boundary was chosen because the 

overall aim is to identify measures that are able to increase TOBT prediction accuracy by 

kind, but not by quantity. This means, it was preferred to find suitable measures that can 

be transferred to other A-CDM concept elements. While the concept element of CDM in 

Adverse Condition (e.g. de-icing) was deliberately not included, interactions with Air 

Traffic Control were initially considered (e.g. Flight Crew Survey), but later disregarded 

as not being useful to be included in the experiments.  

The conceptual research framework was selected based on the specific characteristics 

of today’s turn-round management and its influence on TOBT prediction, while 

considering the specific environment and the identified constraints that are shaping turn-

round management and TOBT decision making.  

For such problem setting, the theoretical framework being used should be able to 

provide a method for analysis, evaluation, and design of a decision support system that 

can aid decision makers during turn-round operation. For example, how can the required 

information be displayed, which format should be used to display information in order to 

facilitate cooperative working behaviour and effective decision making? How should the 

tasks be effectively distributed across manual or automated systems? The proposed 

system design should be evaluated at a later stage to determine its usability and 

effectiveness, and whether it leads to enhanced performance.  

Therefore, the literature review was performed with three major goals in mind: First, 

the environment of the A-CDM turn-round should be captured. While legal, operational, 

or cognitive perspective that may influence the turn-round operation, and consequently 
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also the TOBT, should also be considered. Second, the design criteria for a system that 

could support reliable TOBT decision making should be identified. Third, a suitable 

framework for the analysis of the research objectives should be chosen. The following 

chapters are therefore organized as follows:  

Chapter 2: This chapter provides a review of the overall A-CDM turn-round 

environment, outlines how turn-round is managed, and looks at the processes required 

for its execution. This includes a review on the identified shortcomings of the turn-round 

processes as well as the legal aspects shaping the turn-round management.  

Chapter 3: provides the theoretical approach towards A-CDM. It begins by looking at 

the design lessons from decision support literature and identifies some challenges in 

designing of a human-computer interaction system that could potentially support TOBT 

decision making. Subchapter 2 describes the disciplines of Decision Making and 

Information Sharing with concepts that are available to support effective human-

computer systems, while focus is placed on the cooperative element that supports 

decision making. Subchapter 3 describes the cognitive element as one of the 

interdependent elements between actors within the given decision making environment 

and how cognitive engineering can be used to find design criteria for decision support in 

the given environment. The following Subchapter 4 examines the first stages of a 

Cognitive Work Analysis that were used as the framework for the project and how it was 

applied as an overall modelling tool for capturing the cognitive constraints influencing 

the decision making environment. The results of the literature review were then used to 

determine the research methods.  X 

The following chapters use the Cognitive Work Analysis as an overall framework. 

Four major studies were executed, each using a different research method and 

different mode of analysis. The research method used for each study was determined 

using the results from the previous literature review. The issues identified during the 

investigations were outlined in the relevant section of this paper.  

Chapter 4: outlines the application of the Cognitive Work Analysis (CWA) to the A-

CDM work system and turn-round management. First, the aims and objectives of this 

analysis are provided as well as the limitations of a Cognitive Work Analysis to be useful 

applied to the A-CDM work domain. Subchapter 3 provides the Work Domain Analysis 
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as the first step of a CWA, while Subchapter 4 describes the Control Tasks Analysis as 

the second step of a CWA. Both steps rely on a methodology proposed by Naikar et al. 

(2005) who describes how the analysis should be applied.  

Chapter 5: provides a flight crew survey and how it was used to identify the critical 

situations for A-CDM turn-round management.  It includes the aims, objectives, method, 

findings, and concluding aspects of the study. The study shows how flight crews are 

involved in decision making during turn-round, how cooperative behaviour of all 

participating affects the turn-round, and which situations are critical for accurate TOBT 

predictions.  

Chapter 6: provides a study via field observations during turn-round management 

with the aims, and method applied. Details are given that describe how turn-round 

management is established at major European airports and how the outcome of the turn-

round is assessed by the various turn-round representatives. Due to the quantity of 

identified data/information during the observations, the findings of the study were 

integrated into a qualitative cognitive model that was used to identify critical areas for 

data/information flow. Identified data/information was seen as essential for accurate 

TOBT predictions. 

Chapter 7: As a central part of the investigations, small-scale human-in-the-loop 

experiments outlined here were proposed in order to find measures to counteract 

inaccurate TOBT predictions. A Turn-round Control Mock-up that was exclusively 

developed for the experiments is described as well as details on the participants, the 

experimental design, the method applied, and the analysis of the collected data, are 

given. This Chapter concludes with a discussion about the validity and limitations of the 

experiments.   

Chapter 8: presents a summary and conclusions drawn from the overall results, offers 

recommendations, suggests possible areas for future research, and discusses the 

limitations encountered. While some concluding aspects are given for each of the studies 

at the end of the relevant Chapter, the conclusions given here draw a line from the initial 

development of the research concept to the specific details of the final results.    

Chapter 9: Publications and References 
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Chapter 10: includes appendices with further details on A-CDM, theoretical aspects 

of cooperation, distributed decision making, and turn-round management. These are in 

particular the A-CDM concept with the mandatory or recommended milestones, the 

design of the flight crew survey, the IATA Delay Code Table, turn-round tools that are 

currently used in Europe, further results of the literature studies on cooperation and the 

Cognitive Work Analysis, and details of the Games-Howell Test. 

1.8 Potential Contribution to Knowledge  

Prior to a more detailed discussion of the literature review, this section provides the 

main areas of this project that are aimed at contributing to the existing body of 

knowledge. 

• Despite the connotation of A-CDM as highly relevant to the success of airport 

operation, a surprisingly small amount of research has been dedicated to the 

domain specific problems of aircraft turn-round operation. 

• Furthermore, no research project has been found to date that applies a cognitive 

engineering approach to investigate the factors influencing the predictability of 

aircraft off-block times.  

• In addition, following the Cognitive Work Analysis framework outlined by 

Vicente (1999), a concept of human-information work interaction analysis has 

been applied to turn-round management for the first time.  

• Finally, a major effort has been dedicated to cooperation analysis of the work 

domain being investigated. In order to better understand the specific aspects of 

the A-CDM turn-round process management, two alternative forms of 

cooperation analysis were integrated into the research framework, by way of a 

descriptive and an experimental form of investigation. Such an approach has not 

been taken in this turn-round management environment thus far.  
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2 THE A-CDM TURN-ROUND PROCESS   

2.1 Introduction  

     A number of issues that frame the management of the turn-round relate to the 

environment in which the turn-round takes place. Such issues include organizational as 

well as legal aspects. They are outlined here in order to understand the specific 

constraints that influence the A-CDM processes including TOBT decision making.  

2.2 The IATA Airport Handling Standards and the Air line Standards  

Historically, airports were managed and owned by federal governments around the 

globe. However, the development and adoption of standards for airport handling arose in 

Europe where an overlap of many different airlines resulted in the necessity for airlines 

to arrange handling contracts with each other (IATA, 2004). These standards were 

developed under the auspices of the International Air Transport Association (IATA) over 

a period of thirty years and have been established as procedures for passenger and 

aircraft handling during turn-round. As of August 2009, more than 230 airline or ground 

handling companies are members of IATA and have to adhere to these standards. IATA 

Operational Safety Audits (IOSA) are performed to assess the operational management 

and control systems of the airlines. In the Airport Handling Manual (AHM) all standards 

are lined out affecting passengers, cargo/mail, aircraft handling, load control, airside 

management and safety, aircraft movement control, and ground handling agreements 

including the handling of ground support equipment. Service Level Agreements (SLAs) 

are in place to act as a structure for measuring the service quality of ground handling 

service providers. Finally, the airlines themselves develop their own standards to ensure 

that ground handling performance is maintained during the turn-round processes. 

2.3 The EU Directive on Ground Handling in Europe 

In 1996, 15 member states of the European Union adopted a Directive to encourage 

competition in ground handling services at European airports. In a number of member 

states, ground handling services had historically been provided on a monopoly basis, 

either by the major base airline (e.g. Iberia, Olympic) or by the airport operator itself. 

This was a common model in Austria, Germany and Italy. However, many problems 

arose from the new arrangement created by this Directive (Smith, 2001). Smith outlines 
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the different configurations of stakeholders’ interests which may result from the various 

combinations of circumstances. These configurations range from a simple model where 

the airport operator is responsible to appoint third party ground handlers while taking 

the interests of the various airlines into account to more complex models where airports 

and airlines provide ground handling services at the same airport. Since governments 

are frequently shareholders of the airport, such configurations of handling 

responsibilities may create potential for conflicting interests. Airport operator 

involvement in ground handling services creates suspicion in the minds of other ground 

handlers who feel disadvantaged in terms of access to facilities (e.g. air bridge served 

parking stands) or a centralized infrastructure (e.g. baggage handling system or even 

terminal building).    

2.4 The IATA Delay Code System 

As part of the Airport Ground Handling Manual (AHM), the IATA Delay Codes 

were established to help the airlines with standardization of the delay causes from their 

commercial flights. Traditionally, airlines were using their own delay assignment 

system; The IATA however standardized the transmission format of delay information 

into delay codes. Such delay codes assign the responsibility and time of the delays to a 

function that is seen as the cause of the delay. As a consequence, the airlines may 

penalize the service company or other partner according to the contract or Service Level 

Agreement (SLA) in place. Airlines often use bonus-penalty or other incentive systems 

that affect the remuneration for services provided.  

Several groups of delay codes exist that group the delays into categories like 

passenger processing, baggage handling, or aircraft defects (See Appendix III). The 

delay can also be attributed to several sources, if more than one cause of delay was 

determined.    

However, identifying the function where the delay originates is not always easy 

because delays are often reactionary. Moreover, during turn-round, restrictions to 

providing service may not be visible at first glance, or the background of the delay 

reason is not available to the function which is responsible for assigning the delay code. 

Although service providers may encounter restrictions or face hurdles from other 

participants, the delay code is assigned to them. For instance, hindrances to start the 
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service may be caused by another ground handling service or a blocked equipment. 

These factors are often not visible from the location where the delay code is assigned. It 

is questionable whether an accurate code can be attributed to delays encountered away 

from the physical locations of their emergence. According to EUROCONTROL (2007), 

there are suggestions that delay statistics are compromised if they are gathered by 

airlines, because of the temptation to assign blame and the attempts by one or more of 

the direct contributors to hide their influence on the delay caused. Delay statistics 

collected by aircraft operators are used primarily to direct improvement efforts. 

However, airlines tend to focus on infrastructure deficiencies that serve their individual 

needs. Differences can be observed when comparing Central Flow Management Unit 

(CFMU) and Airline delay statistics (see Figure 2). 

Conversely, for delay codes 81-84 and 89 (Air Traffic Flow Management (ATFM) 

and airport delays), EUROCONTROL realized a tendency that airlines are keener today 

to solve the problem accurately. So the relationship between airspace users and airport 

service providers has become more cooperative: Regular statistics from 

EUROCONTROL’s Central Office for Delay Analysis (CODA) compared with those 

recorded by operators’ shows that although absolute values vary slightly due to the 

comparison of sample data to full data, the trends nonetheless match exactly 

(EUROCONTROL, 2007).  

 

 
FIGURE 2: COMPARISON OF DELAYS (SOURCE: EUROCONTROL CODA, 2007) 
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2.5 Turn-round Complexities 

A turn-round delay may have numerous causes. Even though each turn-round is 

unique in itself, there are complications occurring on regular basis that have to be taken 

into account when calculating TOBT. E.g. the company SITA (SITA, 2009) describing 

itself as the world's leading specialist in air transport communication and IT solutions, 

notes that aircraft turnaround complications can emerge from:  

• processes that differ depending on the airlines and/or the aircraft; 

• airports having different levels of capacity that impact turnaround performance; 

• pressure to achieve the optimal long-haul passenger/ cargo mix; 

• the shrinking window for receiving passengers/cargo prior to departure affects 

fuel truck availability and fuel requirements; 

• reduced staff; 

• pressure to utilize aircraft more efficiently and to limit ground time; 

• zero excess fuel requirements (excess fuel is kept close to safe minimums); 

• increased air traffic; and  

• limited airport expansions (increasing need for operational efficiencies). 

The complexities which arise from the differences between the turn-round processes 

are part of the focal point of this project. The analysis starts with a categorization of 

turn-round processes as either within the critical path of parallel or part of the sequential 

chain of turn-round events. While parallel turn-round processes can also cause delays, 

poor coordination or unawareness about the progress of sequential turn-round processes 

is usually responsible for a turn-round delay. Through the number and kind of processes 

can differ between airlines, airports, operators and situation. Figure 3 provides a general 

overview of the different sequential and parallel turn-round processes:  
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FIGURE 3: TURN-ROUND PROCESSES (SOURCE: WU, 2008 & SNELLING, 2002) 

 

In order to get time estimates for turn-round process durations, each individual 

process has to be analysed. As illustrated by the example of baggage loading time, the 

issues that have to be taken into consideration when analysing process duration of 

baggage loading include size, amount, and weight of baggage, transit time available, 

nature of baggage, bulk, baggage per passenger, location of compartment, timing for 

loading, special passenger baggage, life cargo, available loaders, available equipment, 

amount of Delivery At Aircraft (DAA), Unit Load Device (ULD) or loose loading, 

distance and movement time from baggage check-in to aircraft to be loaded, etc. This is 

an example of the complexities arising from just a single process within this turn-round 

process chain that has to be considered in order to make estimates of the time when 

baggage loading is completed. Accurate process completion times for all turn-round 

processes however, are essential for making reliable predictions of the TOBT.  

Additionally, the overall turn-round time varies from flight to flight because of the 

different passenger numbers or the amount of ground handling services required. A 

typical approach of airlines to managing the turn-round operation is by using a turn-

round reference model, where pre-defined timeframes indicate the coordination of all 

ground handling processes towards the end of the turn-round. The reference model 

incorporates the different durations of ground handling services for different aircraft 

types.   

The airlines assign ground handling services to third party companies. Service Level 

Agreements (SLAs) are negotiated between the airline and the ground handling company 
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to reinsure that quality standards are maintained as required by the airline. Figure 4 

shows a generic reference model of a turn-round at a remote position where the number 

indicates the time before EOBT in minutes; however depending on the specific turn-

round situation the actual turn-round itself can be far more complex.  

 

FIGURE 4: GENERIC MODEL OF TURN-ROUND TIMES  

 

Different strategies exist among airlines for the execution of the turn-round. While 

low-cost carriers tend to use a ‘team strategy’ where a team is assigned to each turn-

round to handle all turn-round activities, the prevailing strategy among incumbent 

airlines is to handle the turn-round through grouped processes and sequential work flows, 

where different units are responsible for individual flows, e.g. baggage handling, 

catering, cleaning, etc. This strategy however requires good coordination between the 

participating units. In general, the number of participating functions today is rising 

because the airlines are increasingly employing third party service providers for ground 

handling services. This complicates the coordination required during each turn-round 

with the consequence that the responsibility for the overall turn-round management is not 

visible or is lost among participants. 
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2.6 Turn-round Monitoring Systems 

To counteract emerging delays resulting from increasingly complicated ground 

handling processes and the short time often available for the turn-round, airlines often 

use different turn-round monitoring systems which enable them to compile timestamps 

in real-time - either manually or automatically, e.g. via an Aircraft Communication 

Addressing and Reporting System (ACARS) or other sensors on-site. Such monitoring 

devices range from WIFI (Wireless Fidelity) hand held or WLAN (Wireless Local Area 

Network) systems with manual process tracing to fixed installations based on Radio 

Frequency Identification (RFID) technology and that often allow tracking each single 

ground handling process while using this data for monitoring the overall turn-round.   

However, in order to understand how a single ground handling process can influence 

the overall turn-round performance, the effect of an individual turn-round process on the 

path of ground handling events (See Chapter 3.4) has to be taken into consideration. 

 Allegro or HubStar are tools that are used for monitoring  the turn-round in the 

Airline Operation Centers (AOCs) or used as a ground handling data base. HubStar 

describes itself as a generic product able to adapt to any turn-round operation. It also 

claims being able to monitor the concatenation of correlated handling tasks for turn-

round flights, arrivals and departures, to identify the critical path and in doing so, 

supplying all decision-support information required.ALLEGRO was developed to 

gather information with focus on timeliness of turn-round processes between in-block 

and off-block time. Landside and airside processes can be analysed in order to identify 

required measurement points where timestamps can be set (See Appendix IV). Such 

monitoring tools are named differently when used by different airlines; however, the 

functionalities of these tools are similar. Wu (2008) claims that application of such real-

time monitoring systems makes turn-round operation more transparent, identifies 

potential delay sources, and helps to develop airline schedule optimization algorithms.  

2.7 Turn-round Shortcomings during A-CDM 

The Airport CDM Operational Document (EUROCONTROL, 2003) describes 

shortcomings of today’s operational processes. These include: 

• Unsatisfactory information exchange between aircraft operators/ground handlers 

and ATC/FMP or airport operators. As a result, not only decisions regarding 
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management of ATC and airport resources such as runway, taxiways, stands and 

gates are suboptimal, but also adherence to Air Traffic Flow Management 

(ATFM) restrictions and airport slots are likely to be compromised. 

• Often no visible link between airborne and ground segment of the flight exists 

with the consequence that changes within one segment are not communicated to 

all participating partners. Hence, pre-planning of appropriate measures to re-

schedule resources or other activities necessary cannot be done. This results in 

poor data quality or predictability of flights or segments of flights. 

• At most airports today, default taxi times are used to calculate an in-block or off-

block taxi time. However, due to the size of the airports and the weather at the 

airport that defines the runway configuration, taxi times can vary significantly and 

default values result in inaccuracies and hamper Calculated Take-off Time 

(CTOT) adherence. As a result, poor traffic prediction leads to inefficient use of 

existing en-route capacity, bunching or even sector overload. 

• Ground processes and en-route traffic is not yet considered as a time-dependent 

chain and therefore, the impact on down-stream events is not evaluated. Aircraft 

operators compensate for this information lack by using their own fleet 

management systems. However, the picture gained of one aircraft operators’ daily 

network operation is only a part of the entire network - often failing to include 

ATC and stand or gate management from airport of departure. Airport partners 

often do not believe that such information could be interesting for them. To tackle 

this problem, CFMU tries to obtain a view of the complete ATM network in order 

to identify bottlenecks and calculate regulations, if required. However, the quality 

of such regulations depends largely on the quality of available data. The major 

source of inaccuracy is the Estimated Take-off time (ETOT) derived from 

Estimated Off-block Time (EOBT) + default taxi time. 

•   The still prevailing principle of ‘first-come-first-served’ does not reflect the ATC 

situation or takes aircraft operators’ preferences into account. 

• Also an airport aiming for maximum efficiency can run into problems during 

events that require procedures different from standard operations or cooperation 

among partners. Even though operators have different methods of dealing with 
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such events, the overall operation can be affected if these methods are 

inconsistently applied or cooperation is poor. As a result, available capacity is not 

fully used at the time needed during such adverse conditions. X 
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3 HUMAN DECISION MAKING AND DECISION SUPPORT 

3.1 Decision Support Systems  

3.1.1 Introduction   

Human decision making is a crucial element of turn-round management and airport 

operation, but often shows conflicting demands among participating partners. As an 

answer to the increasing complexities at airports especially during aircraft turn-round, 

the A-CDM concept was established which considers decision making as one of the 

most critical activities for successful flight operation (EUROCONTROL Doc, 2009a). 

In order to provide support for all airport partners during turn-round decision making, 

the Airport CDM Information Sharing Concept has been created as one of the essential 

elements for decision support. This should be available during all phases of the flight, 

including the turn-round phase. The most crucial decision during this phase is the 

TOBT assignment and TOBT updates to the actual situation. However, the decision 

support that is required for TOBT assignment especially during the turn-round phase, 

has never been systematically analysed to the effect that TOBT prediction typically is 

based on oversimplified approaches leading to poor accuracy and stability of the 

predictions.    

During management of the turn-round, every decision about the affected turn-round 

processes produces a TOBT. This target time marks the turn-round controllers’ estimate 

of the time that the aircraft is ready for push-back and start-up. This decision includes 

her/his opinion about completion of the turn-round and sharing this information via the 

A-CDM Information Sharing Platform. This decision can either be based on her/his sole 

opinion about the turn-round completion or on a shared opinion encompassing her/his 

own assessment and the inputs or turn-round updates which he receives from other 

participating actors like ramp agent, aircraft pilot, or flight manager.  

The underlying question for the development of a Decision Support System (DSS) 

that aids TOBT prediction is now: What role and functions can be assigned to a DSS 

that as a result is then able to assist the turn-round manager in his task? Millot (1987) 

states a number of functions required by such a system if seen from user’s perspective 

which include ‘assisting decision makers in their decision process during semi-

structured tasks; supporting and enhancing rather than replacing managerial 
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judgments; improving the effectiveness of decision-making rather than its efficiency; 

attempting to combine the use of models or analytical techniques with traditional data 

access and retrieval functions; specially focusing on features that make them easy to 

use by none-computer people in an interactive mode; emphasizing the flexibility and 

adaptability to accommodate changes in both the approach of the decision maker and 

the environment in which he acts’.    

However, even with the improvement of today’s technologies for enhancing the 

performance of DSSs, the growing complexity creates a hurdle for the design of support 

systems incorporating these functionalities.  Chalmers (2002) realizes this problem and 

proposes as a first step to describe the requirements for understanding decision makers 

by asking: 

• What are the specific data needed, in what context, and when? 

• How does it need to be processed and integrated? 

• What should be its representational form? 

• How should this form be encoded into sensory form and mapped to an interface 

for information extraction by the decision maker? 

• What are the performance limitations of decision makers in accessing and 

decoding information? 

• What proactive strategy is used by the decision maker in unanticipated 

situations? 

The search for a suitable decision support system for turn-round management might 

also benefit from comparisons to the current shortfalls and functionalities of other 

decision support systems. O’Neill (1996) describes the limitations of current decision 

support in command and control environments which include:  

• difficulty in eliciting tacit expert knowledge; 

• decision makers’ discretionary need for ordering tasks and determining task 

goals themselves based on their local, dynamic situations; 

• difficulty in eliciting implicit expert knowledge about desired situation end 

states (goals) and impossibility of representing such knowledge as symbolic 

rules; 
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• difficulty, if not impossibility in particularly dynamic situations, to completely 

predefine information requirements; 

• failure to incorporate knowledge about operational plans and context in which 

aid is provided; 

• lack of mechanisms for supporting change; 

• no formal facility for framing and solving ill-structured problems; and  

• lack of support for informal communication among decision makers and for 

capturing the context of this communication for purposes of recall and reuse.  

In order to accommodate these limitations O’Neill proposes the design of a highly 

flexible decision aid architecture that is able to support also emergent work behaviour 

and provide an answer to the inadequacy of the routine problem-solving method which 

is currently used for decision making. Examples of attempts to design methods to 

operate on routine basis are the ‘Turn-round Reference Models’ of the airlines (See 

Chapter 2.6); However, such standardized turn-round models are not able to 

accommodate for non-standard situations requiring flexible decision making aids.  

3.1.2 Intelligent Decision Support for TOBT Assignment  

The traditional A-CDM Information Sharing Concept does not provide a decision 

support that gives the flexibility required for the assignment of a realistic TOBT based 

on all available information. Existing systems provide extensive information and data; 

nonetheless, no concept for structured ways of dealing with complex turn-round 

situations can be found. In addition to the aspects hampering successful turn-round 

management as outlined in Chapter 1, the complexity of the relations between all airport 

partners, the number of decision makers and organisations involved, the amount of 

information sources available, and the decreasing time of the turn-round itself are 

contributing to the requirements for a DSS that is able to aid TOBT decision making.   

Intelligent Decision Support Design is an approach that integrates human intellectual 

and computer capacities to not only provide passive information, but to actively 

improve decision making quality in semi-structured problem situations (Keen and 

Morton, 1988). It is particularly necessary, if the amount of information is so large or 

time constraint so high that human errors are likely (Gadomski, 1999). Especially when 

coping with unexpected situations, decision makers are required to immediately apply 
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complex knowledge which - if not properly available - causes poor decisions. Gadomski 

(1999) proposes an Intelligent Agent Approach for the development of an Intelligent 

Decision Support System (IDSS).  

According to Hollnagel et al. (1985), the development of an IDSS that is able to 

perform such cognitive tasks requires a corresponding shift in the multiple disciplines 

that can support effective human-computer systems. As a consequence, contributions 

from decision theory, systems engineering, cognitive engineering, and artificial 

intelligence have to be integrated into the development of an IDSS (Figure 5).  

A minimum of two of such disciplines should be combined in order to develop a 

comprehensive description of an IDSS (Hollnagel, 1985). For this research study the 

disciplines of Cognitive Engineering (see Chapter 3.3) and Decision Theory (see 

Chapter 3.1) were chosen in order to describe and develop a decision support system 

that can support decision making in the A-CDM work system. While studying the 

literature some overlaps of the cognitive engineering and systems engineering 

disciplines were found.  

 

 
FIGURE 5: DECISION SUPPORT IN PROCESS ENVIRONMENTS (SOURCE: HOLLNAGEL, 1985) 
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3.2 Decision Theory  

3.2.1 Introduction to Decision Making 

Decision making can be defined as an outcome of mental processes (cognitive 

processes) leading to the selection of a course of action among several alternatives (Mc 

Dermott, 2008). Decision making has been subject of active research from several 

perspectives, e.g. from a psychological perspective as the ‘individual decisions in the 

context of a set of needs, preferences and values of an individual are examined’ or from 

a cognitive perspective where the decision making process is regarded as ‘a continuous 

process integrated in the interaction with the environment’. From a normative 

perspective, the analysis of individual decisions is concerned with the logic and 

rationality of the decision-making.  

This chapter does not intend to provide a comprehensive analysis of decision making 

perspectives or theories, but to introduce theoretical decision making aspects that could 

have an influence on the design of a possible decision support system for TOBT 

decision making. The aim hereby is to identify critical aspects for decision making 

related to the specific operational scenarios of the turn-round and the task of assigning 

an accurate completion of the turn-round by predicting the TOBT. The Decision Making 

Theory is one of the four pillars that have been chosen to develop an intelligent decision 

support for the A-CDM work system (See Figure 5). 

Even though the A-CDM concept has already been established and realized as a key 

enabler for today’s turn-round operation, a number of theoretical decision making 

aspects can be identified that have not yet been sufficiently taken into account, but are 

necessary to understand how decision support in such a specific process environment 

can be provided. Due to the turn-round complexity and therefore limited possibilities to 

manage the turn-round processes - especially in unexpected situations, a structured way 

of decision support for turn-round monitoring and TOBT decision making is seen as 

beneficial.  

According to Hollnagel (1985), decision making in complex environments no longer 

follows a single set of rules or strategy, but constant attention to the process is required, 

because its state can change dynamically. In addition, a process execution with 
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optimized outcome depends more on the environment of the processes than on an 

optimized sequence (Boeckmann et al, 2008).  

A number of aspects from decision theories that affect CDM during turn-round 

management with focus on TOBT decision making are lined out.  

3.2.2 Situational Awareness during Decision Making 

Situational Awareness (SA) can be defined as ‘the perception of environmental 

elements within a volume of time and space, the comprehension of their meaning, the 

projection of their status in the near future, and including the prediction of how their 

behaviour may affect the environment’ (Endsley, 1988). Common Situational 

Awareness (CSA) has been proposed as a key enabler for successful A-CDM 

(EUROCONTROL, 2003) and describes the aim that flight progress information is 

freely and universally available to all interested parties within the A-CDM Information 

Sharing Platform. Although a common view of the flight progress is not essential as a 

core of information available to all users in the same form and for common awareness, 

many types of flight progress information are required that are able to turn out in an 

unique understanding and response by the particular airport partner or actor. For 

instance, the airport focuses on a picture of the flight progress for taxi guidance or 

parking stand assignment, while the airline focuses on a picture of the aircraft and 

passenger flows.  

SA has become a central model of many real-time decision making problems within 

dynamically alterable environments where information is constantly changing and 

frequent monitoring is necessary to grasp the current state of knowledge (Endsley, 

1988). Stewart et al (2008) argue that SA should be examined in a system-wide 

perspective rather than individual-oriented. She proposes the novel characterisation of 

Distributed Situational Awareness (DSA) in a teamwork context based on the argument 

that cognitive processes in distributed teams occur at a systems rather than an individual 

level. Relevant cognitive factors include the representation, transformation, and 

manipulation of information. As a consequence, each individual member of a team uses 

the information in a way that supports his/her own mental picture of the situation. 

Stewart (2008) defines Distributed Situational Awareness (DSA) therefore, as activated 
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knowledge for a specific task within a system. The DSA theory was developed by 

Stanton et al (2006) and is based on six basic propositions: 

• SA is held by both human and non-human agents. 

• Communication between agents may be in the form of non-verbal behaviour, 

customs, and/or practice. 

• Non-overlapping and overlapping SA depends on the agent’s goals. 

• There are multiple facets of SA pertaining to the same scene held by different 

agents. 

• One agent may compensate for degradation in another agent’s SA. 

3.2.3 The Aspect of Time 

While process environments are characterized by time constants, Volta et al. (1986) 

points out that decision theories traditionally do not contain any element of time and 

therefore fail to recognize an essential attribute of process environments. However, 

decisions can be viewed as separation or cut in time. Before and after a decision has 

been made, things may look different. Volta also connects space and time as 

phenomenological dimensions. When viewed from the perspective of experience, 

decisions can be completely different and so has to be linked with the decision making 

process as part of the decision making structure, if time is a factor. Although 

historically, preference has been given to static models of decision making and the time 

dimension has been realized, the dichotomy between the subjective/perceived and 

objective/physical time aspects remains a challenge when modelling time aspects in 

decision making processes.  

Recognized time aspects during TOBT decision making are the dynamical changes 

of the turn-round process state requiring constant attention by the decision maker. 

Decision making trade-offs result from the number of turn-round processes that require 

a decision and the time available for monitoring the processes in order to make the 

decision. Control loss has to be expected, if decision maker fails to maintain attention. 

Available knowledge bases are required in order to consult the decision makers - 

assuming time is sufficient. Another time aspect is the moment itself when the 

information required for TOBT decision-making emerges. The significance of the 

moment that this information is available and then directly used for TOBT decision has 
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not been analysed yet, but may affect TOBT decision making significantly. Interactions 

for such information exchange between participating airport partners and actors with 

time aspects are referred to here as ‘asynchronous’ and ‘synchronous’ interactions. 

3.2.4 Turn-round Dynamics: The Uncertainty Aspect  

Another characteristic of turn-round management is the uncertainty about data and 

information arising from the complexity and dynamics of the turn-round. Since time can 

be critical during turn-round management, required knowledge for the process must be 

directly available, if a decision is required. Thereby, knowledge is seen as a set of 

flexible and adaptable skills allowing the actor or decision maker involved to wield and 

to apply information as required to the specific turn-round situation/problem. Such 

skills are in part, what differentiates information or data from knowledge. On the other 

hand, the information/data available has to be shared between partners involved where 

required, and procedures need to be established for standardized sharing of such 

information/data opposite to sharing information/data accidentally as it is predominant 

during real time operation.  The amount of processes and number of actors involved for 

each turn-round process can be so high that failures in sharing information during a 

single turn-round process can jeopardize the overall turn-round. 

 Another uncertainty aspect is the inherent risk of unanticipated events resulting 

momentarily in a heterogeneous information sharing situation, e.g. the captain detects a 

technical failure during the outside visual inspection of the aircraft, but so far no one 

else is informed about it. This however, can happen even shortly before passengers start 

boarding, but during normal turn-round operation flight crew members are generally not 

directly involved in turn-round process coordination. Therefore, this information has 

first to be transferred to the turn-round controller in order to be reflected in the TOBT 

decision. Since such necessary interactions between actors and airport partners can arise 

at any time during turn-round, optimized coordination of the processes is required in 

order to make reliable TOBT updates.   
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3.2.5 Human-Information Interactions during Decision Making 

A. Introduction to Human-Human Interactions  

The design of interfaces for intelligent decision support systems requires an 

understanding of the human-human information interactions taking place within the 

system under analysis (Belkin, 1985).The concept of A-CDM elicits only information 

interactions between the recognized airport partners via the Information Sharing and 

Milestone Approach (See Appendix I). Interactions between airport partners are here 

referred to as Human-Human Interactions (HHI) and Human-Computer Interactions 

(HCI) at the planning level. However, many interactions required for information 

exchange during the turn-round arise from HHI at the action level or HHI between the 

action and planning levels: whereby, HHIs at the action level refer to interactions that 

can be found among actors like pilots, ramp agents, service providers or others. Usually 

they have a shorter time span and less abstraction compared to HHIs at planning level.     

In this context it will be investigated, how the interactions between the action level 

and the planning level are established during turn-round and whether they create the 

situational awareness required by all participating. Focus is applied to HHI situations 

between aircrews and other airport partners during turn-round where cooperation is 

required for the coordination of processes. All processes between Milestones 7 and 14 

should be regarded where interactions between the action and planning levels are 

mandatory. Examples include not only interactions during all turn-round processes like 

boarding, loading, catering, fuelling, cleaning, but also those interactions with ATC: 

Starting from aircraft leaving the parking position, coordination with other departing 

aircraft is necessary prior off-block for the usage of taxiways, runways and airspace. 

While it is the responsibility of the pilots to execute the flight according to defined rules 

aiming at the highest degree of safety possible, ATC is responsible for flight safety by 

keeping sufficient separation between aircraft already during taxi and take-off, and 

managing air traffic flow by issuing clearances to the pilots. Differences in the level of 

control between pilots and operators like ATC in such situations are that ATC has 

authority over assigning the taxiways, runways, and airspace in form of clearances to 

the pilots and again depend on cooperation from pilots, to adhere to these clearances.  
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The results gained from the literature research of this Chapter have largely 

influenced the design of the experimental study on cooperative information sharing (See 

Chapter 7).  

B. Incomplete and Asynchronous Information-Interactions  

The designers of the turn-round process control also have to determine the level and 

timing of information required allowing for adequate situational awareness. They need 

to determine what kind of information has to be shared and when. However, 

Parasuraman et al. (1996) argues that as far as humans are involved in information 

provision and creation, failures may occur resulting in drifts of perception and not 

established situational awareness having obvious consequences on process reliability.  

To share information, operators like aircrews, ground handlers or other airport 

partners communicate with each other either verbally (e.g. via phone or radio) or 

through written text (e.g. via ACARS) while Controller Pilot Data Link Communication 

CPDLC is only used during en-route phase of the flight. Hence, how the airport CDM 

information sharing process is influenced by the following variables, has to be analysed: 

• Synchronous versus asynchronous interactions: synchronous interaction means 

that all actors and airport partners share the information required for TOBT 

decisions at the time that the information arises using any available interaction 

tool as opposed to asynchronous interactions where a time delay arises between 

emerging and passing on of information.  

• Homogeneous or heterogeneous information distribution: actors and/or airport 

partners do not have the same information available (heterogeneous) as opposed 

to homogeneous information where all involved share the same information.  

During turn-round process management, interactions between participating actors or 

airport partners can be synchronous or asynchronous. Coordination of actions takes 

place by way of predetermined key events (milestones), organized as a sequence of 

interactions between airport partners; if a non-standard situation (like aircraft change, 

technical repair, adverse weather operation, etc.) occurs, ad hoc coordination through 

face-to-face communications or via two-way radio/mobile phone between the affected 

actors has to take place. However, because of the information dynamics in the volatile 
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environment of the turn-round processes and the varying tasks of the different 

participating actors/airport partners’ information distribution during the turn-round 

process is still heterogeneous between participating airport partners and actors.  

Homogeneous information sharing is not always easy to achieve because barriers to 

sharing information can exist. 

C. The Notion of Cooperation during Human-Human Interactions  

According to Ferber (1995), three variable components of HHI are required to classify 

different types of interaction situations as cooperation, antagonism, and indifference 

situations. These components are the aims, resources, and abilities inherent in the minds 

of all participating actors. Depending on the distribution of the components among 

actors it can thus be analysed whether a contemplated turn-round situation is 

cooperative or non-cooperative in itself (see Figure 6). The question is whether the 

individual aims of the participating actors are compatible or conflicting, the resources 

sufficient or limited, and the abilities of the participating actors sufficient or insufficient 

to complete their assigned tasks.   

The aim of the analysis here was to identify how the HHI are established between the 

pilots and the others during the turn-round and the extent of cooperative behaviour 

during the day-to-day turn-round operation among all actors. This was done during a 

survey study with airline pilots, which aimed at identifying critical situations for TOBT 

adherence (See Chapter 5). Cooperation is assumed to be necessary in the context of A-

CDM and therefore, TOBT decision making.  

D. The Emergence of Cooperation  

     In the context of turn-round operation, HHIs are seen as dynamic relations between 

pilots and other operators and are established through a number of mutual actions. Each 

action by one operator has consequences that influence the behaviour or the prospective 

behaviour of the other operators. Ferber (1995) defines interaction situations as a 

number of behavioural patterns which evolve from a group of agents, who have to act in 

order to reach their targets; thereby, they have to regard their more or less limited 

resources and capabilities. By using this definition, interaction situations can be 

described and analysed, because it defines abstract categories like cooperation, 
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antagonism, and indifference by differentiating observed key commonalities and 

different interaction situations. The relevant components for classification of interaction 

situations are the aims and intentions of the different agents, the relations of the agents 

to available resources, and abilities of the agents with regard to their assigned task. 

These criteria are used to define the different types of interaction situations (Figure 6). 

 

 
FIGURE 6: CLASSIFICATION OF INTERACTION SITUATIONS (SOURCE: FERBER, 1995) 

 

Each type of interaction situation has its own relation towards cooperation: In an 

Independence situation, no interaction takes place and sufficient resources and abilities 

allow a coexistence of operators without any constraint. This situation has no relevance 

for ATM at congested airports. A Simple Working Together situation defines a 

collaboration situation which does not require coordination between operators because 

resources are sufficient, while a Blockade, Coordinated Collaboration, Pure 

Individual/Collective Competition, and Individual/Collective Resource Conflict are 

situations which are expected to dominate in our contemplated HHI situations. These 

situations require coordination between operators and, depending on resources, aims, 

and abilities, can result in cooperative or antagonistic behaviour. 

According to Ferber (1995), the prerequisites for human-human interactions to take 

place are: 

• a number of actors, who are able to act and communicate;  

• situations where actors meet or act via telephone with each other;  

Aims/ Interests Ressources Abilities Type of Situation Category

compatible sufficient sufficient Independence Indif ference

compatible sufficient insufficient Simple working together Indif ference

compatible insufficient sufficient Blockade Cooperation

compatible insufficient insufficient Coordinated collaboration Cooperation

incompatible sufficient sufficient Pure individual competition Cooperation

incompatible sufficient insufficient Pure individual competition Antagonism

incompatible insufficient sufficient Individual resource conflict Antagonism

incompatible insufficient insufficient Collective resource conflict Antagonism
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• dynamic elements, which allow local, time limited relations between agents; and 

• a certain slack within the relations between the agents, in order to not allowing 

them to maintain or get out of the relations. 

According to Hoc (2001), cooperation can exist within various levels in terms of 

distance from the action itself: A cognitive architecture of cooperation model classifies 

cooperation in abstraction level and process time depending on the proximity to the 

action itself (Figure 7).  

 
FIGURE 7: PROCESSING ARCHITECTURE OF COOPERATION (S OURCE: HOC 2000) 

 

The main benefit from the study of HHI situations is expected from an identification 

of antagonistic situations on the action, planning, or between the action and planning 

levels. At action level, the operators perform operational activities related to their 

individual goals, resources, and abilities. Hoc has defined four types of activities at 

action level: Interference creation (e.g. mutual control), interference detection, 

interference resolution, and goal identification (Goal identification also incorporates the 

identification of other operators’ goals). Cooperation at action level has short-term 

implications for the activity, as opposed to the more abstract type of cooperation at 

planning level. Interference creation relates to the deliberate creation of interactions; 
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whereas interference detection to the ability of detecting interferences, especially in 

non-deliberate interference situations. Interference resolution relates to the actual 

interaction in order to find a cooperative solution. Mutual domain knowledge is the 

basis for other operators’ goal identification, to facilitate operator’s own task, the 

other’s task, or the common task.  

At planning level, operators work to understand the situation by generating schematic 

representations that are organized hierarchically and used as an activity guide (Hoc et al, 

1998). Schematic representations include the concept of situation awareness (Salas et al, 

1995), and operators’ goals, plans, and meta-knowledge (Hoc et al, 1998). Therefore, 

the current approach to CDM operation in ATM is seen as an approach with the aim of 

achieving cooperation on planning level. De Terssac and Chabaud (1990) use the term 

‘Common frame of Reference’ (COFOR) as a mental structure playing a functional role 

in cooperation. As a shared representation of the situation between operators, a COFOR 

is likely to improve their mutual understanding (Carlier et al, 2002). The topmost level 

in Hoc’s model, the meta-cooperation, as a level developed from knowledge of the other 

two levels.  

A number of further theories on cooperation were found during the course of research 

that deserve attention, because of their potential to improve cooperation in complex 

environments. They can be found in Appendix V.  

3.2.6 The Influence of Aircrew Decision Making  

Aircrew decision making is usually seen in the context of (aircrew) team 

performance, Crew Resource Management (CRM), and team training. However, while 

the turn-round manager is primarily responsible for the turn-round operation planning, 

participating actors – including aircrew – are responsible to safely execute the turn-

round processes: Dispatch of the aircraft is only possible, if the pilot deems all 

processes complete under the maximum possible safety considerations. In various 

situations, these considerations require interactions and interrelations between aircrew 

and other actors involved in turn-round operation, because relevant information required 

for TOBT can result from such aircrew decision making and has to be shared with the 

turn-round manager.  
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Redding et al (1983) mentioned the problem of not having a unified framework for 

sharing a common decision-making process with aircrews, but emphasises the 

importance of having a shared mental model for situational awareness and decision 

making.  

For the design of a DSS that enables optimum decision making, it has to be analysed, 

how information sharing and situational awareness between aircrews and ground parties 

can be accomplished. Hence, these questions have to be addressed:  

• How is required information delivered to the cockpit?  

• How is required information delivered to cockpit on-time? 

• How is the information, forwarded from cockpit handled by other actors? 

• How long is the delay resulting from information that is not shared between 

cockpit and ground? 

3.2.7 Modes for Sharing Information between Aircrew and Ground 

Information-interaction tools available to the cockpit differ depending on whether the 

aircraft is on ground or in flight. Some possible means that are available during flight in 

the cockpit for providing information include: 

� ACARS: interface to address information requests or to provide operational 

information directly to the turn-round controller at the arrival or departure 

airport. This can be used to address all issues concerning ground handling 

processes, especially those arising during flight. Other ground handling service 

providers can also be addressed directly. 

� Direct voice communication can be established between aircraft cockpit and 

turn-round controller can also be established via two-way radio communication, 

if the aircraft is within the reception range of the ground stations. 

� On Ground: Mobile phones with short-dial function are available for cockpit to 

contact turn-round controller or other ground handling service providers.  

� Direct Information exchange with ramp agent. 

3.2.8 Decision Aiding for A-CDM 

Given the number of characteristics that may influence the outcome of the decision-

making, the proliferation of decision aiding though consultants, analyses, or computer is 
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not surprising (Humphreys et al, 1983; Stokey and Zeckhauser, 1978; Wheeler and 

Janis, 1980). A number of reasons can be attributed to the difficulty of individual 

decision making. These include identification of all possible courses of action, 

evaluation of attractiveness or possible consequences, assessment of the likelihood of 

each consequence, and the integration of all these considerations (Fischhoff, 1986).  

 
While already individual decision making can be difficult, decision making becomes 

more demanding in complex systems where interdependent decision makers are 

responsible for overlapping portions of dynamic situations. If putting together the 

various perspectives of multiple decision makers, the notion of distributed decision 

making has been characterised and defined as any situation in which decision-making 

information is not shared completely by those with a role in shaping the decision 

(Fischhoff, 1986). A further characteristic of TOBT decision making is the spatial 

separation of decision makers, but only with a certain distribution of freedom to 

decision-making. Airlines’ control rooms provide a set-up to centralise TOBT decision 

making. However, it is still a form of decision making asking for future elaboration, 

because it has not yet been analysed how decision making at the various locations 

versus centralizing decision making has affected the outcome of the overall TOBT 

decision.  

Common data sets are established among airport partners when introducing A-CDM. 

Such data sets include also process updates at the various milestones aiming at 

increasing the common situational awareness among partners and creating an overall 

picture of the situation. However, it has also never been analysed what parts of the 

overall picture is actually required by the individual decision maker at the various 

locations of airport in order to create a situational awareness that he/she requires for 

making his/her decision: do all partners really need to have the same overall picture or 

is it even better if each partner only possesses the information about the parts of the 

picture that he/she requires for making the decisions or is necessary for managing 

his/her own resources? Such considerations should also investigate what 

communication/interaction links are required so that the information can be best shared 

among actors.   
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It is also argued that distributed decision-makers should have a picture of the other 

participating actors’ aims and intentions in the relevant situation, because this picture 

will shape their situational awareness and communication behaviour and thereby affect 

the outcome of the decision making.  

Complications increase even further with the number of individuals involved during 

turn-round management. This again calls for analysis of behavioural significant patterns 

about how the individual actors understand and manipulate their environment. This 

should be considered when designing an Intelligent Decision Support System.    

3.2.9 Single versus Multiple Decision Makers 

When centralizing turn-round decision making into a single-person decision making 

process, the risk of cognitive or personal biases increases because of the difficulties like 

those mentioned above. According to Fischhoff (1986), complications can arise through 

uncertainty factors like misperception or overconfidence in decision makers’ 

knowledge. In dynamic situations, undue adherence to favoured hypotheses or potential 

solutions can also be causes for poor decision making. When comparing these issues 

with those arising from multi-person decision making, observable arguments in favour 

of individual decision making include the multiple goals of participating individuals that 

have to be managed and the more views that have to be heard. Nevertheless, any 

participating actor’s experiences could significantly influence both, the affected process, 

as well as the overall turn-round process and should therefore be taken into account by 

decision makers. 

A further aspect which should be mentioned in multi-person decision making 

situations is reliability whereby the source of failure can be external (e.g. disruption or 

equipment failure) or internal (e.g. disinterest or desire for autonomy).  

The volume of information can have a double-sided effect: while too much 

information can create an overload condition with the risk of not being able to handle 

the situation anymore, a suitable amount creates situational awareness. Information 

volume also has an impact on the required communication for information exchange: if 

communication lines are not linked appropriately, it can become impossible to manage 

the coordination of information. 
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3.2.10 The Notion of Distributed Decision Making 

Based on the identified characteristics of such multi-person decision making, the 

approach used for TOBT decisions requires modelling decision making situations with 

clear sharing of responsibilities and either centralized or decentralized ways of 

communicating the information and mechanisms to ensure the highest extent of 

reliability possible. For decision making in such an environment, the notion of 

Distributed Decision Making is used as a relatively new terminology in order to account 

for the changes in multi-person decision making that are possible through advances in 

technology. Such technology includes expert systems or computerized decision aids 

which not only increase the distance over which individuals share data, information or 

instructions, but also the amount and the automation of such exchanges. Fischhof 

(1986) proposes a number of design guidelines, if an approach to distributed decision 

making is used:  

• The reality of all participating decision makers at each node should be regarded 

for the design (e.g. if designers are unfamiliar with the operation, they must first 

learn about it). 

• Many group problems may be variants of individual problems. 

• Problems attributed to technology are not necessarily caused by their novelty. 

•  Distributed Decision Making design requires detailed empirical work achieved 

by resisting simplistic design philosophies. 

Nevertheless, approaches to implement such guidelines apparently failed when used 

to design decision support for complex technical systems (National Research Council, 

1983; Perrow, 1999; Rasmussen and Rouse, 1981). Therefore, Fischhof et al. (1986) 

propose describing such problems, to devising possible countermeasures, and validating 

these through empirical tests. He identifies possible remedies like: making contingency 

plans more realistic, generating options for novel decision-making situations, improving 

accessibility of information via computerized databases, structuring judgmental tasks to 

make better use of people’s mental capabilities, and formulating policies that will be 

meaningful in varied circumstances. 

Today, Distributed Decision Making (DDM) provides a framework within the 

Distributed Cognition Theory (see Appendix V) to study automated supervision systems 
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in interaction with humans in complex networks (Rasmussen et al, 1990). It analyses the 

segregation and subsequent coordination of a complex decision problem. Such a 

problem may consist of one or more decision makers who may possess individual 

information.  The DDM approach can be applied to a wide range of complex decision 

making problems; the focus here however is on problems of coordinating complex 

decision models for turn-round situations with multiple distributed decision makers 

having a synchronous or an asynchronous state of information. Whereby, during a 

synchronous state of information as all decision makers are having the same 

information at the same time available for decision making opposite to an asynchronous 

state where decision makers do not have the same information available.  Such 

situations often illustrate problems with the hierarchical structures of decision making.  

Physical separation of decision makers owning individual information critical for the 

affected turn-round process is a possessing problem facing decision makers during turn-

round management. While various means exist to bridge this problem, the cognitive 

phenomena also have to be considered when designing interactions (Wellens, 1988; 

Daft and Lengel, 1984; Short, Williams and Christie, 1976) as well as the influence on 

problem solving and team performance when manipulating the communication structure 

(Leavitt, 1951; Shaw, 1964).  

 

 
FIGURE 8: DISTRIBUTED DECISION MAKING MODEL (SOURCE : WELLENS ET AL, 1988) 
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3.2.11 Distributed Decision Making during the Turn-round Process 

Despite the tendency to centralise decision making for TOBT decision to a single 

turn-round controller who monitors the turn-round in a control room using different data 

sources and interaction tools, the responsibility for the individual turn-round processes 

remains within a number of airport partners including the various service providers, 

ground handlers, airport operator, airline representatives, and participating actors. But 

not only the decision maker, also the information, authorities, and resources are 

physically distributed. Consequently, coordinating and making decisions suitable for 

TOBT accuracy as an overall process outcome and that serve the interests of all 

participants is fundamentally problematic. This reveals the underlying trade-off between 

controlling the individuals involved and the need to let them respond to their own 

demands. Other problems caused by such environments is the difficulty in creating an 

overall objective that is meaningful in the diverse or unanticipated turn-round situations 

and in creating an incentive system that motivates everyone participating.   

Hence, turn-round management shows distinct characteristics of distributed decision 

making among airport partners and actors with diverse interests. The theoretical concept 

of Distributed Decision Making (DDM) is therefore used in order to model the A-CDM 

approach. DDM comprises numerous areas as part of different disciplines like 

operations research, computer science, organisational theory, psychology, sociology, 

and others. Research in human factors disciplines aims at anticipating and 

understanding such decision making in order to shape the design of the organisations 

and technologies involved. This means that skills from different contributing 

professions include psychology, industrial engineering, physical anthropology, applied 

mathematics, training, and sociology. Consequently, each problem requires from all of 

these areas expertise contributing to human factors. Collaboration among specialist 

experts from participating domains has to be established in order to analyse the 

environment where collaboration takes place. Despite existing differences between 

different systems or domains, they all have similar functions and challenges that make it 

possible to identify commonalities. These can be e.g. process coordination, allocation of 

resources, or responsibility and control.  
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Distributed Decision Making research has already been applied in areas like military 

command and control (Warner et al, 2002), fire fighting, and the development of shared 

software.  

Schneeweiss (1999) provides a quantitative decision analysis approach to DDM for 

application to supply chain management, service operations, and managerial accounting. 

He describes three properties of distributed decision making systems like anticipation as 

the ‘base-level’s bottom-up influence on the top-level, instruction as the top-level’s 

decision, and reaction as the base-level’s reaction to the instruction. Reaction can be 

either a communication or negotiation process.  
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3.3 Cognitive Engineering  

3.3.1 Introduction  

Cognitive Engineering arose during the 1980s caused by the increased complexities 

and challenges faced by human operators, as computer technologies became ubiquitous 

in the workplace and changed the nature of work (Woods, 1987). Cognitive Engineering 

offers a principled approach to the design and development of human centred systems 

(Pfautz and Roth, 2006). Researchers in cognitive engineering have addressed problems 

like the decision making and problem solving support via computer systems in domains 

like military systems, aviation, manufacturing, process control, and medicine. 

Fundamental to the research is the emphasis on an interacting triad of humans, the 

system to be acted upon, and the manner in which the humans view and control the 

system (Woods, 1987; Woods and Roth, 1988). Thereby, the inherent goal of the 

interaction design is a mediation that augments rather than limits humans’ view and 

control of humans within the system (Bisantz, 2006).  

Cognitive engineering is also an interdisciplinary approach to designing computerized 

systems intended to support human performance (Roth et al, 2008). It is concerned with 

the analysis, design, and evaluation of complex socio-technical systems (Andriole and 

Adelman, 1995, Rasmussen et al., 1994, Woods and Roth, 1988, and Vicente, 2003). The 

methods of cognitive engineering consider workers and the tasks they perform as the 

central drivers for system design and provide a framework of how people perform 

cognitive work.  

Bonaceto and Burns (2003) describe a number of cognitive engineering methods for 

system design and/or system evaluation, and group them into categories according to 

their intended purpose. Each method can be organized into one of five primary 

categories: (1) describing cognitive/behavioural processes, (2) modelling/simulating 

cognitive processes, (3) modelling/ simulating behavioural processes, (4) modelling 

erroneous actions, and (5) modelling human-machine systems. While some methods 

overlap multiple categories, each method is assigned to a "primary" category (Figure 9). 
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FIGURE 9: COGNITIVE ENGINEERING METHODS (SOURCE: BO NACETO AND BURNS, 2003) 

 
Cognitive analysis also needs to satisfy a number of analytical aspects, if design 

information for innovative decision support is required (Potter, 2006). He mentions 

criteria like:   

• Cognitive analysis must be far more than knowledge elicitation. 

• Cognitive analysis must capture the fundamentals of the work domain and 

resulting decision making. 

• Cognitive analysis must systematically transform knowledge elicitation into a set 

of complementary analytic artefacts.  

• Cognitive analysis must serve as the basis for innovative decision support system 

design concepts. 

    Viewing the A-CDM implementation concept however reveals that so far focus has 

been placed on the organisational aspects. While such an approach is useful for the study 

of how the processes of information exchange and interactions with airports partners 

should look, it is argued that the confinement of cognitive aspects in these attempts could 

fundamentally contribute to turn-round problem solving: Given the fact that many work 

activities are inherently cognitive, e.g. decision makers have to process information, 

solve problems, predict TOBT, and make decisions, it is also argued that an 

understanding is required of how work activities are performed at current level of A-

CDM implementation in order to design information systems that can support both 

cognitive activities and social interactions. Therefore, a cognitive analysis and 
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engineering approach is proposed for the analysis of the A-CDM turn-round concept, 

because such an approach comprises a variety of methods to describe, model, and 

simulate cognitive and behavioural processes for the design of human-machine systems.  

3.3.2 Selection of a Cognitive Engineering Method 

In order to find the most suitable method for the objectives of this study, the range of 

factors that should be considered when choosing an engineering method as proposed by 

Stanton (Stanton et al, 2006) was evaluated. These include:  

• the accuracy of the method; 

• the criteria to be evaluated, such as time, errors, communications, movement, 

usability, etc; 

•  the acceptability and appropriateness of the methods to the people being 

analysed; 

• the domain context; 

• the resources available; and 

• the cost-benefit of the method. 

The selection of the method applied was also based on the factors proposed by Annett 

and Stanton (2000) that included:  

• How deep should the analysis be? 

• Which methods of data collection should be used? 

• How should the analysis be presented? 

• Where is the use of the method appropriate? 

• How much time/effort does each method require? 

• How much, and what type of expertise is needed to use the method(s)? 

• What tools are there to support the use of the method(s)? 

• How reliable and valid is/are the method(s)? 

The engineering methods that were assessed for the analysis comprised of 11 

categories and included  

• data collection techniques; 

• task analysis techniques; 

• cognitive task analysis techniques;  
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• charting techniques; 

• human error identification techniques;  

• mental workload assessment techniques;  

• situation awareness measuring techniques; 

• interface analysis techniques; 

• design techniques; 

• performance time prediction/assessment techniques; and  

• team performance analysis techniques. 

The main aim during the selection was to find a method that is useful in providing a 

valid and reliable output. Thereby, a main selection criterion was the usage of the gained 

knowledge: while e.g. psychologists need to get a better understanding of the cognitive 

functioning, the usage for the research project however had practical objectives. The 

findings should contribute to provide intelligent decision support and countermeasures 

for inaccurate TOBT predictions.  Therefore, each method was assessed against the 

characteristics inherent in the A-CDM work system and the possible output of the 

analysis applied. A process model proposed by Stanton (Stanton et al., 2006) was used as 

a strategy for deciding what methods to use in, and how to adapt to the domain context 

(Figure 10). Annett et al. (2000) points out that care and skill is required in developing 

an approach for analysing the problem, formulating the intervention, implementing the 

intervention, and determining the success of the intervention.  

 

 

FIGURE 10: VALIDATING THE METHODS SELECTION (SOURCE : STANTON, 2006) 
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Hence, a method from the category Human-Machine System was used for the analysis 

of the A-CDM work system. Such a method considers how the entire system, consisting 

of all the machines and all the humans, is supposed to work as a whole in order to 

accomplish the overall system goal. In contrast, more traditional human factors 

approaches are primarily focused on determining what role individual human operators 

in the system will play (system-oriented methods).   

From the category Human-Machine Systems, cognitively oriented methods such as 

the Cognitive Work Analysis (CWA) focus on the fundamental characteristics of the 

work domain and the cognitive demands that are imposed on humans operating in those 

domains. These methods complement the Cognitive Task Analysis and Knowledge 

Elicitation methods by mapping out the structure and purpose of the domain, allowing 

analysts to identify which cognitive strategies arise from actual domain demands and 

which are workarounds due to poorly designed systems (Bonaceto and Burns, 2003). 

The CWA was therefore chosen as an overall framework and provided a conceptual 

structure for gathering, analysing, and structuring the required system knowledge and 

system functionality. Figure 11 shows the conceptual structure that was used as the basis 

for the analysis during the project: 

 

FIGURE 11: APPLIED CONCEPT FOR THE PURSUED ANALYSIS  (SOURCE: POTTER, 2006) 
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The analysis of A-CDM turn-round process was thus performed at a whole-system 

level. The focus thereby is not the role of the individual operator within A-CDM, but the 

fundamental characteristics of the A-CDM work domain and the cognitive demands that 

are imposed on humans operating within the system.  

3.4 Cognitive Work Analysis 

3.4.1 Introduction 

Cognitive Work Analysis (CWA) is a framework that emerged as a principal 

conceptual and methodological tool in the approach to cognitive engineering and uses 

the distributed cognition as its underlying theory. While the primary aim of Chapter 3.4 

is to introduce the CWA, the distributed cognition concept is outlined in Appendix V.  

CWA is a systems-based approach to the analysis, design, and evaluation of human-

computer interactive systems that unifies psychological and technical considerations, 

cognition and the environment where cognition takes place. While traditional human-

computer interaction and system design models are not able to adequately assess user 

needs or to design efficient computer-based information support systems, modelling 

concepts from engineering, psychology, cognitive science, information science, 

computer science, and cognitive systems engineering are taken together and aimed at 

providing a much broader and dynamic framework for analysis. CWA has recently 

grown in popularity for application in various domains, e.g. for the conceptual and 

empirical work of Vicente and Benda at University of Toronto, Lintern and Sanderson at 

the University of Illinois, Higgins, Watson, Skilton, and Camerion at the Swinburne 

Computer-Human Interaction Laboratory, and Lintern and Naikar at the Aeronautical 

and Maritime Research Laboratory at Fishermens Bend, and Stanton at the University of 

Southampton.   

Using from the problems faced in nuclear power plant control in the 1970’s as a 

backdrop, Rasmussen (1986) developed the analytical framework of a Cognitive Work 

Analysis (CWA) at the Risø National Laboratory in Denmark in order to facilitate a 

human-centered design of technologies that people use in their work.  

CWA is able to provide the basis for the design of decision support systems in 

complex socio-technical environments, which is essential for the design of information 
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systems. The rapid development of all types of technologies causes an increasing number 

of recorded failures, because these technologies were not designed to fit the work 

practices of their users.  

 

FIGURE 12: THE LAYERS OF A COMPLEX SOCIO-TECHNICAL SYSTEM (SOURCE: RASMUSSEN, 1996) 
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Issues showing the relevance of CWA towards A-CDM include the fact that the 

courses of events in the A-CDM work system can often not be anticipated, e.g. aircraft 

arrival delays, technical failures requiring flight cancellations, etc. This means that 

interfaces must be designed to support the adaptive and flexible behaviour of 

participating workers. Another issue is the technology used during A-CDM. New 

developments like turn-round monitoring control rooms should allow a radically new 

approach to the way how the turn-round is managed. However, designers still fail to take 

the advantages of new opportunities into account, because they are caught in an 

evolutionary task-artefact cycle in which existing work practices are allowed to 

constrain the options for new designs (Naikar, 2002). Moreover, the fundamental 

constraints in the workplace of all participating during A-CDM have not yet been 

analysed; so far, focus has only been applied to the human cognitive system instead of 

the complex socio-technical system. 

3.4.2 Cognitive Work Analysis and Information Science 

According to Fidel et al. (2004), the CWA is useful for the study of human-

information interactions and the design of information systems because: 

• CWA provides a holistic approach that allows accounting for several dimensions 

simultaneously. 

• CWA is able to facilitate an in-depth examination of the various dimensions of a 

context. A study of a particular context is, therefore, an interdisciplinary 

investigation aimed at understanding the interaction between people and 

information in the work context. 

• CWA provides a structure for the analysis of human-information interaction, 

rather than subscribing to specific theories or models. It is possible to employ a 

variety of conceptual constructs or tools that may be useful for the analysis of the 

specific situation.  

Using this framework in Information Science, CWA first evaluates the system already 

in place, and then develops recommendations for design. As such, the evaluation is based 

on the analysis of information behaviour in context (Fidel et al., 2004). For the design of 

a system, it is necessary to understand the work actors do, their information behaviour, 

the context of their work, and the reasons for their actions. 
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As a conceptual framework, CWA allows for analysis of the forces that shape human-

information interactions via the application of conceptual constructs rather than the 

testing and verification of models and theories (Fidel et al, 2004). It is work-centred 

rather than user-centred and considers people who interact with information as actors 

involved in their work-related actions, rather than as users of the system.  

 

FIGURE 13: THE DIMENSIONS OF THE CWA (SOURCE: FIDEL  ET AL, 2004) 
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design proposals (Naikar and Sanderson, 2001); to analyze training needs (Naikar and 

Sanderson, 1999); and to develop specifications (Leveson, 2000).  

The relevance of Cognitive Work analysis for aviation was lined out in a special issue 

of the ‘International Journal of Aviation Psychology’ (Volume 9, Number 3). In 

particular, relevance was demonstrated in the complex information system exemplified 

by modern aircraft cockpits (Lintern, 1999).   

Naikar (2006) emphasizes the applicability of CWA to applications other than 

interface design. These applications include the use of WDA to identify training needs 

and training system requirements, to evaluate alternative system design proposals, to 

develop team designs, and finally to identify training strategies for managing human 

error. Often organisations assume that simply purchasing expensive training devices will 

reduce training costs, increase levels of skill in the workforce, and reduce the risk of 

accidents on the job. For Lintern and Naikar (2002) however, limited attention has been 

placed on the systematic specification of training-system requirements and training 

needs. 

Lintern et al (2002) proposed WDA for the development of a virtual information-

action workspace that is able to organize information for effective actions. Such a tool 

requires an understanding of the information everyone needs for their jobs with this 

information presented in a desirable form of abstraction, suitably organized, and 

including the modes required for acting on it. For instance, vessel command and control 

has numerous information support requirements: Burns et al. (2000) presents an iteration 

of WDA models based on these information requirements for application to decision 

support of the vessel command and control system.  

Ahlstrom (2005) also used WDA for an aviation related problem that results from 

weather displays used by air traffic controllers. Adverse weather conditions create safety 

hazards for pilots, constrain the usable airspace for air traffic control, and reduce the 

overall capacity of traffic. However, it is currently unclear what weather information 

would be beneficial for tactical operation (Ahlstrom, 2005). For this reason, he applied a 

WDA for the assessment of weather information needs for terminal controllers.  

Reising et al. (2002) extended Rasmussen’s abstraction hierarchy to describe where 

sensors should be placed in a system if reliable higher-level information about the 



 Chapter 3: Human Decision Making and Decision Support 
 

          Matthias Groppe                Influences on Aircraft TOBT Prediction Accuracy                    78                 

system, e.g. for display design, is to be derived, while Watson et al. (1998) evaluated 

human interactions with anaesthesia alarm systems. 

B. Research in Domains Having Characteristics of the A-CDM Work System 

Fidel et al. (2004) used CWA during field studies for the design development of a 

new collaborative work task that did not yet exist. The challenge of this study was to 

determine the constraints and possibilities for collaboration among actors in different 

organisations over different countries. The new task is about work with censorship 

documents that has never been conducted as a collaborative task, with neither national 

nor international censorship material available in one central location. A-CDM also 

requires collaboration among different organisations within different countries. 

Therefore, Figure 14 provides an overview of the methods used for this analysis which 

might also be useful also when analysing the A-CDM work system. 



 Chapter 3: Human Decision Making and Decision Support 
 

          Matthias Groppe                Influences on Aircraft TOBT Prediction Accuracy                    79                 

 

CWA Framework Analysis of Cooperative Work Empirical Techniques 

Work Domain 

Abstraction Hierarchy 

Goals and constraints 

Priorities 

Functions 

Work processes 

Objectives and Tools 

Policies, Strategies, Visions 

Prototypical National and 
International Collaboration 

Databases, communication tools, 
Products 

Focus Group interviews 

Semi-structured Interviews 

Analysis of archive materials, 
products and tools 

Tasks 

Abstraction Hierarchy 

Research, collaboration, 
Information retrieval, Indexing, 

Annotation cataloguing, 
Preservation 

Semi-structured Interviews 

Observations 

Meetings 

Telephone Interviews 

Emails 

Decision Making 

Decision Ladder 

Abstraction Hierarchy 

Analysis, Comparison, Evaluation, 
Selection 

Expert Talks 

Decision Making using tools 

Working with prototypes 

Strategies 

Paradigms 

Decision Ladder 

Abstraction Hierarchy 

Entity focused procedural strategies 

Analytical, Problem exploration 
strategies 

Collaboration among experts using 
prototypes 

Work stories 

Organisation, Management, Role 
Allocation 

Abstraction Hierarchy 

Collaborative Tasks and Institutions 
Research, Information retrieval, 

Indexing and Annotation, 
Preservation 

Focus Group interviews, Semi-
structured Interviews with 

managers and staff 

Actors’ Knowledge Preferences 
Heterogeneous competence and 

values 
Questionnaires, Interviews 

 
FIGURE 14: EMPIRICAL ANALYSIS TECHNIQUES FOR A CWA (SOURCE: FIDEL ET AL, 2004) 

 
 

Another approach to CWA constitutes the application to Manufacturing Scheduling as 

proposed by Higgins (1998). The study explores the problems that arise with an 

intentional system rather than a system with physical constraints. Higgins points out 

limitations in using the Decision Ladders because of the difficulties to integrate the sub-

goals towards the systems’ desired goal state. This characteristic phenomenon is 

comparable with the A-CDM system, because A-CDM also includes predominantly 

intentional constraints inherent at the participating actors. Therefore, his approach of 

integrating a goal theoretic approach from Hacker et al. (1982) could also be useful also 

for A-CDM system analysis.   
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3.4.4 The Work Domain Analysis 

Primary focus of a Cognitive Work Analysis is originally on the work domain. The 

first phase of the analysis identifies a fundamental set of constraints imposed on the 

actions of any actor, and develops an event-independent representation that can be used 

to cope with novel situations. However, a clear distinction between the different types of 

hierarchical relations within the work system is necessary for a proper Work Domain 

Analysis (WDA) (Vicente, 1999). The decomposition (part-whole) hierarchy and an 

abstraction (means-end) hierarchy together form a two-dimensional Abstraction-

Decomposition Space (ADS) that is able to show the generic properties of a complex 

system. While the bottom two layers of the abstraction represent the physical context in 

which the workers operate, they describe the functional capabilities and limitations of 

physical objects. The ADS is independent of specific devices, events, or workers, and is 

valid for many different situations including unanticipated events. This adds unique 

value for understanding the system, and the ADS is used here as a modelling tool to 

develop a schematic representation of the A-CDM domain. The important feature of the 

ADS is the way it provides a representation of the complex system and also how it 

provides a basis for identifying the information actors need, in order to deal with 

unanticipated events.    

Problem solving using the ADS can be carried out via the identification of constraints 

by starting at a high level of abstraction and then deciding which lower level function is 

relevant to the current situation. This iterative “zoom-in” supports goal-oriented problem 

solving through “why, what, or how” questioning. For example, the present level of 

observation defines the what level, while the level above specifies why or the level below 

how.  

However, the greatest value of this framework can be derived from its ability to 

identify information needs that are required to cope with unanticipated events. Although 

some researchers argue that it is not possible to identify such information (Mitchell, 

1996; Shepherd, 1993), Rasmussen (1974) disagrees by laying out the rationale of 

complex systems control requirements imposed by unanticipated events. This leads to 

the design requirements of information representation for actors’ needs during such 

events.    
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mentions also that some traditional techniques do not separate the question of what 

needs to be done from those of how it is done or by whom. Furthermore, while 

traditional methods only allow information processing via a linear sequence, studies 

have shown that experts rarely follow such a linear sequence. Rather, they can develop 

routines based on experience or training that can be linked in different ways in order to 

tackle diverse situations. 

The methodological guidelines developed for the CTA by Naikar et al (Naikar, 

Moylan and Pearce, 2006) consolidate the approaches of Rasmussen and Vicente 

(Vicente, 1999). The guidelines outlined by Vicente (1999) include the decision ladder 

(Rasmussen, 1974) as the most commonly used modelling template for this stage of 

analysis. However, a number of critical aspects were identified that revealed problems 

in the application of the decision ladder to the A-CDM turn-round system (see 

Appendix VI). Therefore, the CTA was confined to identify the contextual activities that 

are relevant for the critical path of the turn-round.  

B. Method 

The CTA decomposes turn-round activities into a set of recurring work situations to 

deal with and/or a set of work functions to perform (Naikar, 2006). Activities are 

characterized as a combination of recurring work situations and work functions within 

their contextual relationships. Therefore, Naikar (2006) introduces contextual activity 

templates for representing activities in work systems that are characterized by work 

situations and work functions. The work situations are shown along the horizontal axis 

and the work functions are along the vertical axis in     below. The circles indicate the 

work functions and the boxes around each circle indicate all of the work situations in 

which a work function can occur (as opposed to must occur). The bars within each box 

indicate those work situations in which a work function will typically occur. The work 

situations and work functions of the turn-round process can occur combined in various 

ways and as such, impose qualitatively different sets of cognitive demands on actors.  
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A-CDM TURN-
ROUND PATH 

Work  

Situation 1 

Work 
Situation 2 

Work  

Situation 3 

Work 
Situation 4 

Work Function A     

Work Function B     

Work Function C     

Work Function D     

Work Function E     

Work Function F     

 

   FIGURE 16: THE CONTEXTUAL ACTIVITY TEMPLATE (SOU RCE: NAIKAR, 2006) 
 

 
Figure 16 depicts the template as it was applied to the turn-round work functions. 

Discussions with subject matter experts were used to identify which functions cannot be 

executed in parallel, but have to be done in a sequence, because they depend on each 

other. During turn-round, these functions are especially critical, because any failure 

during one work function has consequences on the following functions. The contextual 

activity approach was used to summarise the underlying control tasks within each 

process of the critical turn-round path.   
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4 COGNITIVE WORK ANALYSIS ON A-CDM  

4.1 Application and Limitations of the Cognitive Work Analysis (CWA) 

The Cognitive Work Analysis will be used in the following sections as an integrated 

framework to the A-CDM work system with focus on turn-round management. Originally 

the CWA steps include (1) the Work Domain Analysis WDA, (2) the Control Task 

Analysis, (3) the Strategies Analysis, (4) the Social Organisation and Cooperation 

Analysis, and (5) the Worker Competencies Analysis.  

The first stage of the CWA allowed for modelling the A-CDM work system with 

different levels of abstractions showing the mean-end relations, deriving domain 

constraints, as well as revealing operational information requirements. The following 

steps of the CWA however revealed to have some critical aspects. Therefore it was not 

expected to gain knowledge from these steps as defined within the project aims, because 

of the limitations inherent in the modelling templates that are proposed by the CWA. 

Nevertheless, the CWA framework itself remained useful for providing a conceptual 

model and so only the first two steps of the CWA were applied here. The limitations and 

shortcomings of the omitted steps are outlined in Appendix VI.     

4.2 Aims and Objectives of the Analysis  

The aim of the CWA was to identify constraints that can then be used as conceptual 

distinctions for the A-CDM work system and then be linked to particular types of systems 

design decisions (e.g. which milestones are required, who should participate in decision 

making, etc.). However, this study focused solely on identifying the conceptual 

distinctions related to TOBT decisions in order to tackle the particular problems relevant 

for TOBT decision making. Many other conceptual distinctions could potentially 

contribute to improving the A-CDM work system; however, this was not the intention of 

the project here.  

As a result of this study a representation of design requirements should be created that 

is based on the existing physical A-CDM workspace of an Airline Control Centre This 

should be able to present design concepts and information processing requirements. 

Finally, a prototype or storyboard of an A-CDM decision making environement that is 

suitable to make more accurate TOBT predictions should be made.  
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4.3 Work Domain Analysis    

This first phase of the Cognitive Work Analysis, called Work Domain Analysis (WDA) 

was aimed at finding the fundamental environmental constraints that are imposed on the 

A-CDM turn-round as well as the actions for all participating that are required during turn-

round. As a result, an event-independent representation of the A-CDM turn-round work 

system was described that was used to deduct pilots’ information requirements. A further 

benefit of such turn-round representation is the possibility to identify opportunities of how 

to cope with unexpected turn-round situations.  

4.3.1 Method Applied  

Naikar et al. (2005) describes a step-by-step methodology for the WDA that was 

applied in order to capture the generic properties of the A-CDM system.  

Step 1: Establish the purpose of the WDA 

This first step involved defining the purpose of the analysis. It included two parts - 

defining the problem and defining how WDA will be used to address the problem (Naikar 

et al., 2005). During analysis, two main purposes were identified which are to determine 

the information requirements of all operators during turn-round necessary to maintain 

turn-round process predictability, and to identify the underlying airport infrastructure 

needed to support these requirements. The WDA was used to develop such a functional 

model of A-CDM system from the viewpoint of the flight crews. They should be able to 

identify the different categories of information which decision makers require during 

aircraft turn-round, and the airport infrastructure that might be required to support decision 

making during A-CDM.  

Step2: Identify Project Constraints  

Not only the purpose, but also the constraints that may affect how the WDA is 

conducted have to be identified in order to maintain the desired scope and focus of the 

analysis. The main constraints to this analysis emerged from complexity of the problem 

environment, time, and expertise related constraints. The scope of the analysis depended 

heavily on the information made available by participating stakeholders. 

Step 3: Determine the Boundaries of the WDA 
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The analysed work system of A-CDM can be defined as ‘the processes and information 

necessary to maintain situational awareness during turn-round in order to achieve a 

reliable TOBT’. During this step, the analysis was limited to the timeframe between 

milestones 6 and 15 and included the human-human or human-computer interactions 

related to operational information sharing of all information required to assign an accurate 

TOBT. The purpose of this artificial boundary was to keep the WDA in a useful and 

achievable scope. There are numerous elements outside the focus system which influence 

elements within the focus of the analysis, e.g. weather, legal requirements, but for practical 

considerations they will be excluded from the analysis.   

Step 4: Identify the Nature of Constraints  

According to Naikar (Naikar et al., 2005) it is necessary to identify the location of the 

focus system on the causal-intentional continuum, because the nature of the constraints 

that should be modelled in the Abstraction-Decomposition Space (ADS) has to be 

identified (Hajdukiewicz et al., 2004). Categories defined by Rasmussen (Burns, 2000) are 

used as a basis to determine the nature of the constraints of the proposed problem space. It 

was concluded that A-CDM has major attributes of a system governed by actors’ 

intentions and the nature of constraints modelled by the WDA are intentional constraints 

based on organisational policies, legislation, and other forms of regulation, social laws or 

conventions, and actors’ intentions or motives. This is in line with the defined purpose of 

the WDA. 

Step 5: Identify Potential Source of Information 

The potential sources of information have to be identified to construct an ADS (Naikar 

et al., 2005). A large number of data/ information sources were found that could inform 

the A-CDM system domain. This is due to the presence of numerous and diverse 

participating operators in this system encompassing the airport representatives, airline 

companies, flight crews, air traffic control, technicians, ramp agents, loaders, airport and 

ramp personnel, Central Flow Management Unit and passengers. Major information 

sources are documents relating to legislation and company policies, training manuals, 

airport infrastructure, company reports, and the A-CDM generic procedures.  

The work setting itself was used as the second source of information gathering, where 

observations of work scenarios were made with minimal interruptions to the observed 
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activities. The items observed include the tools and interactions that participants use. 

Hajdukiewicz et al. (2004) recommends distinguishing between exploratory observations 

for understanding the work environment, and focused observations concentrated on 

particular aspects of a chosen system that should be made. Initially only exploratory 

observations were made for this first stage of analysis.  

Focus group meetings, further observations, brainstorming, and interviews with pilots 

as SMEs also contributed to information gathering. Additional data was also gathered 

using talk-throughs, and tabletop analyses. For this phase of research, Rasmussen (1986) 

points out that the analyst should keep in mind that real constraints and actual reasons for 

behaviour are often hidden behind routines and rationalizations. Regardless of the source 

of information the analyser should stay aware of the constraints that shape the behaviour.  

Step 6: Construct ADS- First Iteration 

For a first iteration of the ADS, Naikar (Naikar et al., 2005) outlines the following five 

phases of development:   

• identification of work-domain properties; 

• defining the levels of abstraction and decomposition; 

• developing a sketch of the ADS; 

• evaluating which cells of the ADS to populate; and 

• populating the selected cells of the ADS. 

4.3.2 Results from the Work Domain Analysis 

As a first result of following Naikar’s step-by-step methodology, a matrix was 

developed which populates all cells based on the identified work-domain properties, 

levels of abstraction, and levels of decomposition (Figure 17). This matrix describes a 

conceptual view of the A-CDM system and offers a conceptual level of resolution for 

viewing the A-CDM work domain. The three cells at the purpose-related functions level 

of abstraction is that of the possible functions of the A-CDM system. The three cells offer 

different resolutions for viewing the functions of the A-CDM which are the functions of 

the whole A-CDM Decision Making system, the functions of the CDM Turn-Round 

Element, and the functions of the different components of A-CDM like the milestones, 

Airport-CDM Information Sharing Platform (ACISP), and A-CDM Partners (Figure 17). 
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The five cells in the first column describe the A-CDM work system with an abstraction 

hierarchy that is defined by ‘a structural means-ends relationship between levels’ 

(Rasmussen, 1986). According to Rasmussen (1986), five levels of constraints have been 

found to be useful for describing domains: At the functional purpose level of the analysed 

domain, the lower level of abstraction can be identified by asking ‘how’; while the higher 

level of abstraction has to be justified by asking ‘why’. At functional level the purpose of 

the A-CDM is described and the abstract functional level represents the intended causal 

structure of the A-CDM work system in terms of information it intends to provide to all 

airport partners. At generalised functional level the basic functions are described that A-

CDM is designed to achieve. The characteristics of the A-CDM components are 

described at physical function level, while the physical form level finally describes the 

spatial location of the components in the system.  
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 Total System  

Airport Collaborative 
Decision Making 

Sub-System  
CDM Turn-round Process 

Element 

Component 
   Milestones, ACISP, A-CDM 

Partners 

Functional 
Purpose 

Purposes 

■ Improve working  together at an 
operational level 

■ Efficient and safe daily flight 
operation with reliable information 
provision & Established Common 
Situational Awareness 

External Constraints 

■ Laws & Regulations by airport, 
national government, Europe, 
IATA, EUROCONTROL, ICAO  

■ Local Standard Operationg 
Procedures 

Purposes 

■ Provide the A-CDM partners 
with a common situational 
awareness 

■ Anticipation of disruptions & 
expeditious recovery through 
information sharing among all 
partners including passengers 

External constraints 

■ Distributed location between 
CDM partners and actors 

■ Laws & Regulations   

 

Purposes 

■ Milestones: To provide decision 
makers with information about 
flight progress and trigger 
decision making 

■ ACISP: To provide information 
sharing between the Airport CDM 
Partners 

■ A-CDM Partner Goals 

 

External Constraints 

■ No & design of Milestones, Alert 

Abstract 
Function 
 

Criteria 

■  ATTT 

■ Turn-round compliance    
(STTT vs ATTT) 

■ TOBT/TSAT Predictability 

■ EIBT Predictability: EIBT vs 
time 

■ Ready Reaction Time: AOBT - 
ARDT 

  

Criteria 

■ ATTT 

■ Turn-round compliance (STTT 
vs ATTT) 

■ TOBT/TSAT Predictability 

■ EIBT Predictability: EIBT 

    vs time 

■ Ready Reaction Time: AOBT – 
ARDT   

 

Milestones 

■ CDM Procedure Group 
Meetings 

■ Performance Assessments 

ACISP & A-CDM Partners 

■ User feedback & Performance 
Assessment 

  

Generalised 
Function 
 

■ Safe & efficient usage of 
available resources 

■ Effective law, regualation, 
procedure, and policy 
enforcement 

■ Redesign of airport operational 
procedures  

■ Implementation of CDM 
functions 

 

■ Safe & efficient turn-round & 
flight 

■ Adherence to CDM procedures 

■ Efficient implementation of 
collaborative decisions at action 
level 

■ Enforcement of laws, 
regulations, procedures 

 

Milestones 

■ Data/ Information availability & 
Practicability of Information  

 

ACISP & A-CDM Partners 

■ Physical dynamics of user 
behaviour 

 

Physical 
Function 
 

■ Provision of reliable 
information for all CDM partners 

■ Collaborative operational 
decision making 

■ Increasing Situational 
Awareness 

■ A-CDM Information Sharing 
Platform (ACISP) 

 

■ Efficient information provision 
& cooperation between operators 
& actors 

■ Distributed Situational 
Awareness at action level 

■ Efficient command & control 
structure between pretactical & 
action level of operation 

 

Milestones 

■ Functionality/capability/ 
limitations & status 

■ Inform all partners 

ACISP & A-CDM Partners 

■Functionalability/capability/ 
limitation 

■ Establish Situational Awareness 

 

Physical 
Form 
 

■ IT platforms with operational 
information sources, e.g. TOBT/ 
TSAT 

■ AMAN/DMAN 

■ Airport Operation Centre 
(APOC) 

■ Representative Decision 
Makers of all partners 

■ Meteorlogical features, e.g. 
adverse weather condition 

■ Printed Information/ Data 
about TOBT/TSAT 

■ Information Screens for 
passengers 

■ Airport Infrastructure & 
Airspace  Structure 

■ Alert Messages to all CDM 
partners via the ACISP 

■ Flight Update Messages 
(FUMs) 

■ Electronic Data/ Information 

■ Software Applications 

■ HMIs, e.g. ACARS, Telefon, 
computer 

■ Computer Network 

■ Operation Room 

■ Passengers 

■ Actors 

 

 
FIGURE 17: THE A-CDM CONCEPTUAL MATRIX
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Step 7: Construct ADS- Second Iteration 

For the second iteration of the ADS, additional information sources were used to 

further develop the ADS. Therefore, the following phases were repeated: 

• focused field observations; 

• walkthroughs and talk-throughs; 

• interviews; and 

• table-top analyses with SMEs. 

The resulting ADS (Figure 18) involved reviewing the ADS with domain experts 

who agreed on the various elements of the ADS model including the levels of 

abstraction and means-end relations in the ADS, the level of decomposition and part-

whole relations in the ADS, and the categories of constraints in each cell of the ADS. 

When moving from a higher to a lower level of abstraction or vice versa, it should be 

able to withstand a ’why’, respectively a ‘how’ question.  

 Total System  
Airport Collaborative 

Decision 

Sub-System  
CDM Turn-round 
Process Element 

Component 
   Milestones, ACISP, A-
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FIGURE 18: THE A-CDM ABSTRACTION-DECOMPOSITION SPAC E  
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There are different possibilities of using the ADS. While it can provide a field 

description of the analysed work domain that allows mapping the activities of all 

participating as trajectories (Vicente, 1999), it was used here to derive information 

requirements of flight crews.  

Step 8: Derive Flight Crews’ Information Requirements from the ADS (Conceptual 

Matrix) 

The next step was to draw implications from the ADS for possible information 

provision to flight crews and flight crews´ support for operational decision making 

during turn-round. These identified information requirements will later be mapped 

against results from a flight crew survey in order to confirm that the WDA is ‘on track’ 

and the ADS is valid.  

    Information requirements identified by the ADS include data that should be provided 

to flight crews for increasing situational awareness at the distributed location of the 

cockpit. Failing to present required data, presenting data in an inappropriate manner or 

presenting too much data can potentially have detrimental effects upon task 

performance (Salmon et al, 2006). These information requirements can then be used to 

inform the A-CDM design by specifying what data should be presented to the cockpit 

via available communication devices like ACARS, phone, or two-way radio. Salmon et 

al. (2006) has used the ADS to specify information requirements for a command and 

control knowledge wall display, or Ahlstrom (2005) used the ADS for determining the 

types of information that air traffic controllers require for effective performance during 

adverse weather conditions. Therefore it is argued that the ADS of the A-CDM system 

can also be used to identify different categories of information that flight crews require 

to support effective decision making during turn-round. 

Information requirements were extracted from the ADS of A-CDM as they relate to 

purpose related functions of flight crew information requirements (Figure 19).  
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FIGURE 19: PILOTS’ INFORMATION REQUIREMENTS  

 
The information requirements that were derived from the ADS were grouped in 

categories like information already available, not available, or partially available to 

flight crews during current A-CDM turn-round operation (Table 2) and include: 

 

 Total System  
Airport Collaborative 

Decision 

Sub-System  
CDM Turn-round Process 

Element 

Component 
   Milestones, ACISP, A-CDM 

Partners 

Functional 
Purpose 

■ A-CDM Information Sharing, e.g. 
TOBT, TSAT 

■ Common Situational Awareness 

  

■ A-CDM Information Sharing, e.g. 
TOBT, TSAT 

■ Common Situational Awareness 

 

■ Pilots`Goals 

■ Safety Level   

■ Airport Performance 

■ Aircraft Technical Status 

■ A-CDM Partner Goals 

Abstract 
Function 
 

■ ETTT 

■ Turn-round compliance of Actors 
involved 

■ TOBT/TSAT/TTOT/CTOT 
Creation 

■ EIBT Predictability: EIBT vs 
proposed waiting time 

■ Milestones 6 until milestone 15 

■ Not  time & time related data 

■ Aircraft operational statu 
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■ CDM operating procedures 
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• A-CDM Information Sharing elements, e.g. Target Take-Off Time 

(TTOT), Estimated Taxi Out Time (EXOT); 

• A-CDM compliance alarms; 

• airport warnings and recommendations; 

• operational status information including disruptions and other actors’ 

goals; 

• participating actors’ performance, status, and knowledge level; and 

• availability of resources.   
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TABLE 2: PILOTS’ INFORMATION REQUIREMENTS AS IDENTI FIED VIA ADS  

 
INFORMATION REQUIREMENTS 

 Information is available Information is provided 
 Yes No Partly Yes No Partly 
Information from ACISP   x     x   

TOBT/ TSAT x     x     

ETTT  x      x   

Turn-Round Compliance of other actors  x      x   

CTOT x     x     

TTOT  x      x   

Apron Rules and Regulations x     x     

Infrastructure related warnings          x 

Behavioural Recommendations   x     x   

Operational Information      x     x 

CDM Operating Procedures x     x     

Passenger Boarding Time  x      x   

Environmental Condition Information x     x     

Turn-Round Disruptions  x      x   

Time related Data, e.g. changes in Traffic Flow, Weather  x        x 

Aircraft Operational Status x     x     

Variable Taxi Time Calculation x      x   

CDM Compliance Alerts x      x   

Target In Block Time x      x   

 Stand Information x     x     

Ground Handling Start Delay  x      x   

Runway in Use x     x     

EOBT/TOBT/CTOT Compliance alarms     x   x   

EXOT  x      x   

Airport Performance     x   x   

Aircraft Technical Status  x    x     

A-CDM Partner Goals   x     x   

Economic Cost of planned/ alternative Turn-Round     x     x 

Performance and Status of all participating actors   x     x   

Aircraft Requirements and Status x     x     

Physical turn-round control task support     x     x 

Cognitive turn-round control task support   x     x   

Turn-Round Compliance control task support   x     x   

Capability/ Knowledge Level of all participating actors   x     x   

Available Resources, e.g. push-back, fuelling, catering, other s  x      x   

Current task status in relation to goals   x     x   

Current component performance and status  x      x   

Current airport and aircraft condition  x        x 

Other A-CDM users location and future movements  x      x   
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     During current approach to A-CDM, focus has not yet been applied on provision of 

such information to the flight crews or how it should be provided. It is argued however 

that availability of this information could potentially contribute to an improved 

distributed situational awareness and thereby also improving turn-round time prediction 

accuracy.      

Step 9: Derive Flight Crews’ Information Requirements from Survey 

A flight crew survey examined air crews’ information requirements during typical 

turn-round operation situations that entail the risk of jeopardizing flight punctuality 

because of problems with information sharing between aircraft cockpit and operational 

decision makers. Pilots were asked to report recent experiences on failures to share 

operational information and the consequences onto the turn-round process, e.g. delay 

encountered during service delivery.   

The survey was conducted on-line for a period of two months and pilots from 

different European airlines were invited to take part. 196 pilots who participated in the 

survey are from airlines such as Austrian (n=2), Air Berlin (n=16), Air France (n=9), 

Easy Jet (n=1), Lufthansa (n=167), and Transavia (n=1). 44.6% of the pilots were 

captains, 55.4% first officers. Average experience rates of 6.6 years as First Officer 

and 14.0 years as Captains were reported. The detailed questions that were asked to 

the cockpit crew members can be found in Appendix II. 

Although the pilots were asked to report events that they experienced, most of the 

pilots used the proposed events. Table 3 shows the turn-round situations that were 

provided to the pilots with the frequency of the reported situation in percentage.  
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TABLE 3: INFORMATION REQUIRED BY PILOTS  

 
Turn-round Situations with Flight Crew Information R equirement Situation Reported  in %  

ATC Request 99 

Availability of Parking Stand 95.1 

Aircraft Change 63.1 

Crew Proposal: Avoidance of A/C Change 47.5 

Baggage Loading/ Unloading Delay 47.1 

Crew Proposal: Necessary A/C repair 33.0 

Crew Duty Change (new duty roster) 18.4 

Boarding Delay 13.7 

Ramp Transfer Bus (Passenger or Crew) Delay 11.8 

Technical Repair 7.8 

VIP Boarding 5.9 

Crew Proposal: Connecting Passenger 5.8 

Crew Other Proposal 5.8 

Fuelling Delay 4.9 

Airport Facilities break down 4.9 

Other 3.9 

Wheelchair boarding 3.3 

Cleaning Delay 2.9 

Delay though Security 2.0 

Missing Flight Documents 2.0 

Crew Change (new crew member) 1.9 

Catering Delay 1.0 

Late Check-In Passengers 1.0 

Special Loading (e.g. musical instrument) 1.0 

UM Boarding 0.0 

 

4.3.3 Further Results derived from the ADS 

A significant number of constraints could be derived from the ADS for the A-CDM 

turn-round process when mapping physical forms of the turn-round components to the 

abstract functions or functional purpose of the A-CDM work system. As these 

constraints appear to have influence on the functional purpose of the work system, 

they should be taken into account when making conceptual distinctions to attain a 

more efficient A-CDM system design. The constraints identified were then discussed 

with A-CDM experts who also shared details for each of the constraints. These are:    

 
Number of participants involved: Airlines are increasingly outsourcing ground 

handling services to third party providers who are often new to the aviation business. 

This requires an identification of third party operators’ inherent goals, motivations, 
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and skills because an adaption to the requirements and needs of the client airline and 

the network itself is mandatory. The airlines and the network also have to understand 

the constraints stemming from a multi-party turn-round process itself. Turn-round 

management requires focus on coordination of supporting turn-round processes 

between the different stages of the turn-round (See also Error! Reference source not 

found.). Particularly during the critical path of sequential ground processes where the 

associated processes cannot be done in parallel and often when a short turn-round time 

is only available cooperation among all partners responsible for controlling the 

supporting processes during critical path is essential.  

Distributed location of partners: Short term coordination is required in the case of 

last-minute changes during turn-round, but service providers are usually physically 

located at different areas of the airport and communication has to be established via 

available channels. However, communication and coordination among parties is not 

standardized yet and coordination takes place on an ad hoc basis via the airline’s 

operation centre or at pilots’ initiatives through interactions with turn-round controller.  

Resistance to sharing information: Competition not only exists among airlines; 

interests among airport partners also not necessarily converge. As a result, some 

partners may withhold information required by others and individual aims are placed 

above possible network benefits - especially if e.g. third party provider is owned by 

competitor. Resistance to share information increases even due to the current practice 

of delay code assignment (See Chapter 2.4).    

Unanticipated events: Unanticipated events require efficient communication and 

coordination among partners involved. However, no procedures are established to 

forward short term turn-round process failures in a standardized format to partners and 

actors involved.  

Not-established situational awareness: During flight, the aircrew often hold 

operational information or information affecting the following turn-round. This 

information is needed by the turn-round controller at destination operation control 

centre in order to prepare the next turn-round on ground, but pilots do not 

automatically have awareness about the need to share this information. Such 

information can include various issues, like technical problems or passenger related 
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handling requirements occurring or emerging during flight.  On the other hand, turn-

round controllers fail to inform the aircrew of the status of turn-round and updates to 

turn-round process estimates. Often this is only a lack of awareness from the turn-

round controllers that the information is required by the pilots.  

Non-standardized acronyms and approaches to the CDM turn-round process at 

different airports: In order to achieve the required situational awareness between the 

airline cockpit and the turn-round controller standardized ways of information sharing 

and cooperation have to be established. EUROCONTROL has published a harmonized 

phraseology and acronyms for the A-CDM, but implementation of such harmonized 

procedures is still very fragmented in Europe. Airports, ANSP, airlines and ground 

handlers are still using different procedures and acronyms. Due to the large number of 

airports within Europe that are within the network of the major airlines, regional pilots 

are facing the challenge of familiarizing themselves with different airport procedures. 

As a consequence, awareness of the local turn-round procedures does not always exist. 

Introduction of new procedures like A-CDM is still greeted with scepticism by pilots 

because of frequent changes and the number of different approaches that airports and 

airlines have taken within the last years. In contrast, when A-CDM became operational 

at Munich airport in June 2007, the results of a study of 300 flight reports by pilots 

revealed increased acceptance of new CDM procedures already shortly after their 

introduction (Source: Lufthansa Internal Company Information, 2010).   

Traffic Density: Low-cost carriers do not avoid major airports only because of 

higher landing fees; they are fully aware of how reliable turn-round operation affects 

airline profitability through higher aircraft utilization and lower exposure to 

unexpected delays. Legacy carriers however, often depend on major airports for their 

hub-and spoke business models and have to build in buffer times into the flight 

schedules to accommodate unexpected disruptions and any consequent delays. Since 

airlines have more control over the turn-round phase than over the flight phase, the 

scheduled ground times for turn-rounds are often used as a tactical means to stabilise 

aircraft rotations or to prevent reactionary delay via time buffers. Fricke et al (2008) 

note that time buffers are not applied systematically yet and suggests an optimisation 

of buffer times by integrating inter-process time buffers during the gate allocation 

planning phase. Given the complex resource connection mechanism between aircraft, 
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passengers, and flight crews, not only the importance of such measure for airlines is 

realized during day-to-day flight operation, but also the cost that is inherent for such 

operations control.  

4.3.4 Validation of the ADS 

In order to make valid conclusions for the A-CDM work system a validation of the 

implicit constraints that were identified is required. This was done by mapping the 

various components on the ADS. Therefore, the results from an independent study 

were used to provide an early validation that the analysis is on track: 

Step 10: Validation of the ADS via Mapping the Survey Results on the ADS 

This step was aimed at determining whether the ADS is as accurate as possible. 

Naikar et al. (2005) proposes a number of possibilities for the validation of ADS. One 

possibility is to use the material already studied for the construction of the ADS-

however it is not necessarily useful to employ the same sources of information for 

validating the ADS.  

A better option is to use reasoning patterns of actors in various situations, e.g. 

incident reports that require decision making (Naikar et al., 2005). For this reason, the 

flight crew survey that was available from the second study was used in order to 

reconstruct inaccurate TOBT prediction situations as reported by the flight crews. 

Thereafter, the identified situations were examined for work-domain properties that 

characterized actors’ reasoning patterns during these turn-round situations and then 

mapped in the form of examples onto the Flight Crews’ Information Requirements 

(Table 1) extracted from the ADS. Thereby, it was examined whether the situations are 

captured by the different categories of constraints. Then it was analysed which parts of 

the decomposition space that are represented in the ADS, were involved. The relevant 

areas identified were highlighted in grey colour.  

It could be determined that the particular information gained from the Flight Crews’ 

survey followed the same functional relations as the ADS identified by the analysis. 

Error! Reference source not found. shows an example of the flight crew information 

requirement ‘Target In-Block Time and Stand Information’ before turn-round start. 
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FIGURE 20: MAPPING OF FLIGHT CREWS INFORMATION REQU IREMENTS I   
 

 
In such way it could be demonstrated (Figure 20) that information sharing with 

flight crews at generalized function level can be tracked through all levels of the ADS. 

The low level details of information about the capability/knowledge level of all 

participating at the physical function level can be traced back to the overall purpose of 

A-CDM Information Sharing. The physical form of the identified components which 

reveals a need for the current component performance and status, can affect other CDM 

related processes in a dynamic way as shown by the other active highlighted areas of 

the ADS (grey colour). Therefore it is argued that sufficient situational awareness has 

to be established through information sharing among all partners or actors involved.   

Another instance of information not being shared was reported by flight crews 

regarding information updates by apron control. Because information about a runway 

change is not communicated to the flight crews, they require extra time for changing 

take-off performance calculations after clearance request and thereby run the risk of not 
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adhering to TOBT and TTOT. Additionally, runway changes at short notices can also 

significantly change taxi times with the added risk of missing the CTOT. Therefore, 

such change of runway configuration has to be communicated timely to all 

participating.  If the flight is regulated by a CTOT, the estimated taxi out time also has 

to be taken into consideration either by the flight crew or local ATC. Figure 21 shows 

the specific information requirements for such situations as identified from the survey 

mapped on the Flight crews’ Information Requirements extracted from the ADS.  

 

               FIGURE 21: MAPPING OF FLIGHT CREWS INFORMATION REQUIREMENTS II  

 

Figure 21 only shows flight crews’ information requirements.  A runway change that 

is not communicated also affects other A-CDM partners as well as it affects the 

environment.   

These two examples only give a snapshot of the overall information requirements 

from flight crews during A-CDM. The other proposed situations follow a similar 
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pattern throughout the ADS. However, it could be confirmed that the information 

requirements reported in the survey can be identified by using the ADS.  

4.4 Control Task Analysis  

4.4.1 Method Applied 

A representation of the turn-round activities was seen to be useful for turn-round 

management because activities during turn-round are not clearly delimited in time and 

space; instead, activities are better characterized by their content – regardless of their 

temporal or spatial attributes (Vicente, 1999). Therefore, the activities during turn-

round were decomposed into work functions such as passenger processing, aircraft 

dispatch, and monitoring activities, while the activities within a specific work situation 

were further delineated in terms of their functional content. For example, the turn-

round process was decomposed into a set of recurring work situations including: de-

boarding, boarding, unloading, loading and aircraft services. Activities within the 

work situation (i.e. boarding) were then further decomposed into a set of recurring 

work functions including: delivery of wheelchair passengers /unaccompanied minors 

to the cabin crew, open boarding doors, registering of boarded passengers, or loading 

the coach for the transfer to the aircraft at remote position. In this way, the control 

tasks for each work situation can be analysed in terms of when, by whom, and where 

the decision can be made.  

4.4.2 Results from Control Task Analysis  

The CTA was performed analogous to the consolidated approach described by 

Naikar et al. (2005). This approach includes two steps which are ‘identification of 

what needs to be done’ during critical turn-round in terms of work situations and work 

functions, and ‘identification of what needs to be done’ during critical turn-round in 

terms of control tasks for each work situation and work function. The contextual 

activity template (See Figure 16) was used to represent the results of the analysis. 

These steps are now described.  
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Result I: Identification of Work Situations and Work Functions 

The first task of the consolidated CTA was to examine the work segmentation 

within the critical turn-round path. This was done by using the two-dimensional 

activity templates during focus group discussions with participating stakeholders in 

order to identify the valid critical turn-round path that shows the interdependencies 

between the work functions.  Focus group discussions took place during three two-

hour sessions with 15 participants consisting of flight crews and responsible SMEs of 

the relevant turn-round function that are normally at distributed locations during turn-

round management.  

This approach was useful because the work organized during turn-round takes place 

at various stages and at various places.  However, particular functions need to be 

performed in a pre-defined sequence in order to adhere to the TOBT that was 

predicted for the off-block time of the aircraft. While other turn-round activities can be 

performed in parallel to the critical sequence (see also Chapter 2.5). Standard 

terminology that is predominantly used for turn-round management during A-CDM 

was applied to determine work situations. Three flight crews, three controllers, and 

one airport representative performed the activity analysis of the work function as 

representatives of the focus group. At an early stage, documented A-CDM turn–round 

procedures together with procedural descriptions from airlines like Lufthansa, Air 

France, and British Airways were used, updated from observation and validated using 

the stakeholders’ experience on critical turn-round management. Descriptions from A-

CDM documents contained the A-CDM turn-round process with the associated 

milestones as key monitoring events. Even with small variations that may be present at 

different airports, all stakeholders could agree on all work functions required for the 

critical turn-round path. All participating SMEs were asked questions like - ‘Are these 

all functions occurring during critical turn-round path’, ‘Is the critical turn-round path 

correct as shown’, ‘Are the responsibilities during critical turn-round correctly 

depicted’, ‘Are there other locations/potential to better depict the critical turn-round 

path’.  

The critical turn-round path thereby developed includes all processes potentially 

required; however, depending on the given situation, not all work functions will 
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necessarily take place during critical turn-round, e.g. crew change will not always take 

place or no catering on specific flights.  

The decomposition of work situations and work functions during turn-round can be 

done at different levels of detail and granularity. As it concerns the work situations, a 

level was chosen that contemplates only the work situations within the critical path 

that are located at the ramp side of the airport or that directly influence the critical path 

of turn-round. These processes have to follow the described sequence, but other 

processes are taking place in parallel in the airport terminal as well as at other 

locations of the airport. Passenger or cargo handling working situations and functions 

remained outside of the scope of this project.  

As a result of this analysis, the critical turn-round path can be depicted by using the 

contextual activity template (See Figure 22).  
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A-CDM TURN-

ROUND PATH 

DE-BOARDING TURN-ROUND 

SERVICES 

BOARDING CLOSING FLIGHT 

Park/ Marshalling     

Equipment     

Flight Documents     

DAA/ Baggage     

Bus/ Stairs/Bridge     

PAX De-boarding     

Special De-board     

Crew Change I     

Aircraft Cleaning     

Catering     

Fuelling     

A/C Maintenance     

Special Service     

Cabin Sec Check     

Crew Change II     

Special Board     

PAX Boarding     

Baggage Loading     

Load sheet     

Documentation     

Last PAX     

Closing Doors     

Remove Equip     

Start Up      

Push Back     

 

FIGURE 22: CONTEXTUAL ACTIVITY REPRESENTATION (NAIK AR, 2005 & SNELLING, 2002) 
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The boxes surrounding the work functions indicate all turn-round situations in which 

the work function can occur. The typical timing for the work function however, is 

indicated by the bars.  

Result II: The Responsibilities within the Critical Turn-round Path  

During the analysis of the critical turn-round path, the decisions that are required 

during these sequenced processes were also identified. Any decision within one of 

these supporting turn-round processes interacts with other supporting processes, 

especially during time-critical turn-round management.  

During the three focus group meetings between aircrews from the German Regional 

Carrier, Lufthansa CityLine and turn-round controllers from Lufthansa German 

Airlines Control Centre, the specific order of the critical events during turn-round 

were determined and consensus reached on the sequence and responsibility of the 

processes. As already mentioned, not all turn-round processes take place during each 

turn-round. However, the proposed path includes all eventual decision making 

processes that can occur during turn-round. Different airlines might have alternative 

turn-round process models, but it was argued that the constraints are similar and do not 

affect the concept. The structure of the focus group discussions was modelled on a 

series of questions to gradually move the participants from an operational perspective 

of the turn-round processes to the control tasks that were necessary to perform the 

functions of these processes. The questions which were used for the discussions were: 

• Does the proposed critical path include all turn-round processes as they appear 

during turn-round in the correct order? 

• Who is responsible for each process: a single actor or multiple functions? 

• Where is potential for improvement of the critical path? 

• Who could contribute in improving the efficiency of each process? 

• What are the major challenges and what are the problems associated with these 

processes?  

• What are the control functions for each process? 

In a second step, the results were analysed during table-top discussions (Kirwan 

and Ainsworth, 1992). Overall, it was agreed conclusively that the impact of a 
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decision by only a single participant can have significant influence on the outcome of 

the overall turn-round because the outcome of the decision propagates throughout 

other processes. Therefore, a way of decision making has to be pursued that is able to 

coordinate the distributed decisions of participating functions into global decision 

making where all information is centralized for such control. Many airlines today have 

started to coordinate decision making in their operation centres. Decisions that cannot 

be transferred into a control room have to be regarded for the overall TOBT decision.  

The discussions were also aimed at finding an agreement on who should be 

responsible for the work function. Today, distinctive functions are in place to either 

perform the work function or solve a specific problem during critical turn-round path. 

This means that control tasks for most of the work function are shared among actors 

executing the work functions and those monitoring the critical turn-round path. For 

instance, during normal turn-round flow the actor who executes the work function is 

decision maker. However, during unexpected situations, the actor monitoring the turn-

round will take over the responsibility of deciding on a new target state.   

As a result of the CTA, Figure 23 shows now the turn-round processes with the 

functions that are responsible for the necessary decisions within the processes. 
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Responsibilities within Critical Turn-round Path 

Airport Operator • Availability of parking position 
• Availability of marshaller/ docking system 
• Provision of Passenger coach/bridge 
• Push-back environment  

Airline/ Ground Handler • Provision of pre-arrival information to the air crew 
• Ground handling equipment (GPU, stairs, truck...), 

handling personnel 
• Flight documents for next flight sector 
• Delivery at Aircraft (luggage) 
• Stairs 
• Passenger & cabin baggage de-boarding 
• Special de-boarding (WCH, UM, Load) 
• Crew change  
• Aircraft cleaning/ catering/ fuelling 
• Special catering/ other services 
• Special boarding (WCH, UM, Load) 
• Passenger & cabin baggage boarding 
• Baggage, cargo, Delivery at Aircraft loading 
• Loadsheet, documentation, and last passenger  
• Closing all doors 
• Removal of equipment & personnel 
• Provision of push-back & ground crew for engine start 

 

Air Crew • Crew change (cockpit & cabin) 
• Information on aircraft status 
• Cabin security check 
• Closing passenger doors 

Mechanics • Scheduling of turn-round maintenance  

 
 
 
FIGURE 23: RESPONSIBILITIES  WITHIN THE CRITICAL TU RN-ROUND PATH (SNELLING, 2002) 
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4.5. Concluding Aspects  

The CWA unveils a number of environmental factors that influence A-CDM turn-

round management. It allows for deriving domain constraints of the A-CDM work 

system and operational information requirements of airline flight crews by means of a 

Work Domain Analysis. The results could be verified by mapping the data from the 

flight crew survey (See Chapter 5) onto the pilots’ information requirements extracted 

from the ADS. The analysis also revealed that a large quantity of information is lacking 

during day-to-day operation. Provision of such information could potentially aid in 

stabilizing the turn-round operation. This encourages its further application in 

identifying information requirements of other participating actors.  

It cannot be claimed that the ADS is able to cover all system constraints, but 

evidence could be given that a significant amount of operational information required 

by flight crews is not yet provided to them.  

As an essential part of successful turn-round management, the critical turn-round 

path could be derived from the CTA by using the contextual activity template. At a 

later stage of this project, the results of this analysis were used to model the turn-round 

scenarios and the design of a turn-round control mock-up in order to further investigate 

the influences on TOBT prediction accuracy (see Chapter 7).  

Since the critical path is now defined, the next step of the project should analyse 

how the critical path is affected by turn-round events that hamper reliable TOBT 

predictions. The following chapter describes how such events were identified by a 

flight crew survey.    
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5 FLIGHT CREW SURVEY ON TURN-ROUND CONSTRAINTS 

5.1 Aims and Objectives of the Survey 

The aim of the survey was to identify and describe critical situations for TOBT 

adherence seen from the perspective of flight crews. The underlying objectives thereby 

were not only to demonstrate how frequently turn-round problems occur, but also to 

identify information requirements of flight crews and actors on the ground during such 

problems. Even though flight crews are not primarily realized as airport partners during 

A-CDM, information from the cockpit is used for TOBT assignment decisions.    

If the information from the flight crew and their information requirements were 

known earlier, the influences on TOBT could be assessed systematically. As a 

consequence, such information would be useful in gaining insights for future TOBT 

decision making - especially during unexpected situations. Such information also yields 

benefits for a more efficient decision making with less tactical and strategic effort for 

all partners.    

A further objective of the investigation was to gain information from flight crews 

about the relevance of various problems during ground handling processes. I.e. how do 

delayed ground services or late passengers affect the overall turn-round duration and 

consequently the TOBT, seen from the perspective of flight crews as users of the 

system. This also included capturing air crews’ views on cooperative/ non-cooperative 

behaviour during such situations. Analogous to the definition of cooperation (see VI: 

Definitions), cooperative behaviour is viewed here as the synchronous and 

homogeneous sharing of information required for operational decision making or for 

the creation of situational awareness required among participating actors.   

5.2 The Design of the Survey  

First, information about the critical events during the turn-round situations that are 

relevant for an interaction analysis between flight crews and other operators were 

obtained during in-depth interviews with experienced flight crews from different 

airlines. Airline flight crews were asked to brainstorm all possible turn-round 

situations by using a checklist in order to identify interactions during turn-round that 

are relevant for operational information sharing. All turn-round situations were then 
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decomposed into elementary activities to identify where the behaviour of all 

participating can potentially be cooperative, antagonistic or indifferent (see also 

Chapter 3.2).  

Next, a self-administered on-line questionnaire was developed with questions based 

on the interactions identified as outlined between flight crews and other operators, 

using the interaction model adapted from Ferber (1995) that is outlined in Chapter 

3.2.5. The aim thereby was to identify the status of the relevant components aims, 

abilities, and resources in the interactions during the turn-round that were reported to 

be critical. 

Compatibility and incompatibility of aims: Incompatible aims can negatively affect 

cooperation. Therefore critical activities during turn-round were assessed to discover 

conflicting goals between flight crews and other operators. Since decision making 

power can also be a reason for conflicting goals, flight crews were also asked to assess 

whether the currently used mode of sharing responsibility for decision making is 

suitable in the relevant situations. Questions were then asked, whether the decision 

maker is accepted by the flight crews in term of responsibility and control or if 

decision making causes problems because the decision maker is seen as inappropriate. 

Availability of resources: Resources are limited; therefore conflicts can arise 

between all participating partners, if airport congestion increases or turn-round times 

are getting shorter. Shortage of resources may result in competition between operators. 

Questions were asked if resources - in terms of the time available for ground processes 

- are aligned with the operational requirements. An essential part of a CDM airport 

operation is to manage resource constraints through coordination of actions. Such an 

approach can be also beneficial in predicting conflicts (Ferber, 1995). Therefore, the 

survey also investigated how the current CDM approach is able to anticipate conflicts 

in order to resolve possible conflicting situations between flight crews and other 

operators. Conflicts should so be identified and quantified by occurrence and 

probability.  

Ability of operators in relation to their assigned task: It cannot be assumed that 

operators’ knowledge and abilities are always sufficient to execute assigned tasks. 

However, it is unlikely to get realistic results about abilities of other operators when 
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asking airline flight crews. It was questioned that flight crews judge whether a 

decision-maker has required competence to make a decision, if it is made physically 

away from the aircraft. Therefore, the question that were asked in this context were not 

aimed at identifying insufficient abilities of the relevant actor or function, but 

comparing the competencies of the responsible decision-makers within the different 

turn-round problems from the perspective of an experienced user of the system. Such 

comparison was seen as useful to find trends between the contemplated situations.      

Interviews with flight crews revealed numerous problems with information sharing 

that may have an effect on the turn-round process, and questions were therefore asked, 

whether there is a relation between failures in information sharing and off-block or 

turn-round process delay.     

Overall, the survey aimed at examining the flight crew’s perspective on current 

approach to A-CDM turn-round management. It described turn-round situations during 

A-CDM which entailed the risk to jeopardize flight punctuality by delayed turn-round 

processes caused by problems with information-interactions between aircraft cockpit 

and decision makers like airport partners at operation center or actors at the ramp. It is 

argued that homogeneous and synchronous information sharing enables all airport 

partners or actors to respond to the local context in real time: While some situations 

during aircraft turn-round operation can be pre-planned, decision makers at tactical or 

action level will always be faced with unanticipated situations resulting from unknown 

variables in the environment or technological capabilities. Therefore, each turn-round 

presents unique challenges for information sharing between all participating partners 

or actors.  

Flight crews were asked to report recent experiences of non-cooperative information 

sharing behaviour, how it affected turn-round process duration, and if it resulted in a 

departure delay (if applicable).  

Table 4 provides an overview of the different turn-round operation situations and the 

categories of questions which were posed to the flight crews. 
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  TABLE 4: CATEGORIES OF TURN-ROUND SITUATIONS  
 

TURN-ROUND 
COOPERATIVE 

COMPONENT 
FREQUENCY RELEVANCE 

Gate Assignment Aims/Resources/ Abilities Daily/Weekly /Monthly  Avoidable Delay  

Ground Handling/ 

Ramp  
Aims/Resources/ Abilities Daily/Weekly /Monthly Avoidable Delay  

ATC Related Delay Aims/Resources/ Abilities Daily/Weekly /Monthly Avoidable Delay 

Operational Info From 

Cockpit 
Aims/Resources/ Abilities Daily/Weekly /Monthly Avoidable Delay  

Operational Info To 

Cockpit 
Aims/Resources/ Abilities Daily/Weekly/ Monthly Avoidable Delay  

 

After three 90-minute brainstorming sessions with 8 flight crews from Lufthansa 

CityLine, Air Berlin, and Deutsche British Airways (DBA) it was concluded that 

information sharing problems during turn-round can be manifold and each event can 

potentially be unique in a specific circumstance. However, a number of problems 

occur regularly and can potentially be attributed to a specific category of problem. 

Therefore, the questionnaire (See Appendix II) proposed to the flight crews included 

various situations with all partners and actors involved in operational information 

sharing. These are the airport operator, air traffic control, CFMU, airline company, 

ground handler, ramp agent, flight manager, check-in and boarding personnel, loaders 

for cargo, mail and baggage, and service providers like fuelling, catering, cleaning. 

5.3 Data Analysis  

For the data analysis, only situations were chosen where flight crews reported that 

an information-interaction problem has taken place with an impact on ground handling 

or on other service delivery during turn-round (Table 5). The problem must have taken 

place on a regular basis of at least once per month. The collected data was organised 

as follows:  

� The situations reported by flight crews that require information-interaction 

between cockpit and others were summarised in Table 5. 

� Actual events attributed to an information-interaction failure during turn-round 

are shown in Table 6, displaying the reported frequency of the four proposed 

turn-round situations of all flight crews and reported turn-round events. 



 Chapter 5: Flight Crew Survey on Turn-Round Constraints  

 

          Matthias Groppe                Influences on Aircraft TOBT Prediction Accuracy                    114                 

� Descriptive data analysis was used to obtain measures of central tendency or 

dispersion about the delays that are avoidable seen from flight crews’ 

perspective. Data was collected via a Likert scale (Figure 24).  

� Correlation analysis was carried out between the turn-round process delay and 

the departure delay (Figure 25). 

Statistical Analysis was performed with SPSS 17.0 and Excel. An α level of .05 

was chosen as decision criterion. Non-parametric statistics were used with Spearman’s 

rho as a measure of correlation.  

TABLE 5: REQUIRED INFORMATION-INTERACTIONS DURING T URN-ROUND  

 
Turn-Round Problem Information Required 

Availability of Parking Stand Expected Delay /Reason of Delay for Parking 

Baggage Loading/ Unloading Delay: Expected duration, reason, No of baggage 

Ramp Transfer Bus (Passenger or Crew) Delay: Expected duration, reason 

Catering Delay: Expected duration, reason 

Cleaning Delay: Expected duration, reason 

Fuelling Delay: Expected duration, reason 

Check-In Delay: Expected duration , reason 

Security Delay: Expected duration, reason 

Boarding Delay: Expected duration, reason 

Airport Facilities Delay: Expected duration, reason 

Wheelchair boarding Delay: Expected duration, reason 

UM Boarding Delay: Expected  duration, reason 

Special Loading (e.g. musical instrument) Delay: Expected duration, reason 

VIP Boarding Delay: Expected duration, reason 

ATC Request Delay: Expected duration, reason 

CFMU Regulation Delay: Expected duration, reason 

Aircraft Change Reason and status of new aircraft 

Technical Repair Reason and expected duration of repair 

Crew Duty Change (new duty roster) Timely Provision of Information 

Crew Change (new crew member) Timely Provision of Information 

Crew Proposal: Connecting Passenger Response and expected action 

Crew Proposal: Necessary A/C repair Response and expected action 

Crew Proposal: Avoidance of A/C Change Response and expected action 

Other: No Flight documents delivered Response and expected delivery 

Other: No Ramp Agent available Status of Service Delivery 

Crew Proposal: Avoidance of A/C Change Response and expected action 

    Flight crews were asked to choose their level of agreement between two statements 

entailing one of the information provision problems from table:  

� I was informed of the problem in time (includes possibility to take appropriate 

action) 

� I learned about the problem by observing that the process was not executed or I 

received information too late. 
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For each turn-round situation, the flight crews were then asked to rate (on a scale 

from 1 = very unlikely to 4 = very likely), whether the delay of the turn-round process 

was avoidable or not, as seen from their own perspective.  

Additionally, the flight crews were asked to assess how many minutes of delay 

resulted from the turn-round process which deviated from established turn-round 

reference schedules, and how many minutes departure delay was encountered after 

that turn-round with this service failure. Only events reported to occur at least monthly 

were taken into account. 

Flight crews were also asked to assess the possible reasons for the cause of service 

failure analogous to a cooperation model by Ferber (1995). The category of 

cooperation was determined by three components - the aims, resources, and abilities of 

participating actors (see chapter 3.3). The level of agreement on each of the three 

components was measured with 1 = very unlikely to 4 = very likely. This data was 

then used to identify non-cooperative situations corresponding to his model.  

In all questions, multiple and equivalent choices were allowed, meaning that the 

flight crews could assign multiple causes of failures for each specific event.  

5.4 Results from the Survey  

5.4.1 Flight crews’ General Information 

The experience level of the flight crews participating ranged between 1 and 8 years 

(av. 6, 58; σ = 4, 40) for First Officers and for Captains additional flight experience 

between 1 and 20 years (av. 7, 37; σ = 5, 87) of experience. The average experience of 

the Captains includes First Officers’ plus experience reported as a Captain.  

5.4.2 Flight Crews’ Information Requirements 

The results concerning flight crews’ information requirements are shown as a 

function of ‘delays avoidable’. This means, if the information was provided to flight 

crews or received from flight crews, a turn-round delay could have been avoided (1 = 

very unlikely, 2 = unlikely, 3 = likely, 4 = very likely). Figure 24 shows the mean 

values of ‘information requirements’ that all received high ratings from the 

perspective of the airline pilots: 
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FIGURE 24: MEAN RATING ‘DELAYS AVOIDABLE’  

 

Highest ratings were assigned to the statement ‘need to take the information into 

account which was proposed by flight crews’, where flight crews see fewest options to 

avoid delays through ‘timely notification of problems with parking stand assignment’. 

However, the initial assumption that ‘reliable provision of operational information 

to the flight crews is correlated with ‘delays avoidable’ did not show statistical 

significance.  

Flight crews were also asked to report about events of information sharing failures that 

they experienced; however, most of the flight crews used the proposed events in the 

questionnaire that were identified as critical for information sharing during focus 

group meetings. Table 6 shows the reported frequency of the five proposed turn-round 

situations and events from all participating flight crews as frequency in percentages. 

Only turn-round events were proposed between milestone 7 and 15; all other events 

are attributed to the concept element A-CDM in Adverse Condition (e.g. de-icing):  
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TABLE 6: CRITICAL TURN-ROUND EVENTS AS REPORTED BY FLIGHT CREWS  

TURN-ROUND PROBLEM FREQUENCY OF REPORTS 

 
SITUATION I:  Availability of Parking Stand    (Totall y Reported by 95.1% of Participants) 

Availability of Parking Stand 95.1% 
SITUATION II: Delay of Ground Services   ( Totally Reported by 100% of Participants) 

Baggage Loading/ Unload 47.1 
Ramp Transfer Bus (Passenger or Crew) 11.8 
Catering 1.0 
Cleaning 2.9 
Fuelling 4.9 
Check-In 1.0 
Security 2.0 
Boarding 13.7 
Airport Facilities 4.9 
Wheelchair boarding 3.3 
UM Boarding 0 
Special Loading (e.g. musical instrument) 1 
VIP Boarding 5.9 
Missing Flight Documents 2 

SITUATION III: Operational Changes (Totally Reported b y 95.1% of Participants) 
Aircraft Change 63.1 
Crew Duty Change (duty roster updates) 18.4 
Crew Change (new crew member) 1.9 
Technical Repair 7.8 
Other 3.9 

SITUATION IV: Proposals by Flight Crew (Totally Report ed by 95.1% of Participants) 
Connecting Passenger 5.8 
Necessary Aircraft Change 33 
Avoidance of Aircraft Change 47.5 
Other 5.8 

 

5.4.3 The Aircraft Cockpit as Information Source 

The information that should be shared from cockpit via standardized status alarms 

with turn-round controller was also identified. Issues to create status alarms included: 

� Technical: if a maintenance action is required at destination, mechanics should 

be employed to assess the expected duration of the necessary inspection or 

repair. 

� Catering: Incorrect catering service (e.g. incorrect quantities or catering items 

planned for another flight) or additional required items. 

� Fuelling: Required extra fuel due to route or flight plan changes.  

� Cleaning: special cleaning required. 

� Crew request: rest time requirements or health related problems. 
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� Cruising Speed: Due to technical reasons, cruising level changes or weather, 

speed changes may be necessary; (because flight updates are only calculated 

with standard speeds). 

� Passenger requests emerging during flight (Pick-up request, health problems, or 

others). 

� Bulk cabin loading: requires extra time for un-loading. 

� MTTT or less: crew agreement to shortened MTTT. 

This information together with the information held by the turn-round controller 

should feed into the decision making about the length of turn-round required at 

destination, e.g. is MTTT acceptable, and finally the decision about the TOBT.     

5.4.4 Flight Crews’ Strategies for Creating Situational Awareness  

A number of strategies which are used by flight crews to create a situational 

awareness for operational issues occurring at the aircraft could be identified. While the 

majority of flight crews (70% of all participating flight crews) still argue in favour of 

more cockpit involvement in operational decision making, the novel approach to turn-

round decision making is increasingly taking place at airline operation centres, 

however different airlines use different approaches to turn-round management (see 

Chapter 6.3). 

A. Knowledge-Based Situational Awareness (SA) 

Flight crews frequently engage in knowledge-based approaches to create SA of the 

turn-round. Rather than merely reacting to stimuli from turn-round processes, flight 

crews actively seek specific information, as a function to the given situation. Examples 

include: 

� In-flight, flight crews actively sought status alarms that they communicate to 

turn-round control. Confirmation from turn-round controller for TOBT adaption 

is normally expected in this case. 

� On the ground, flight crews contact turn-round controller to update/ confirm 

about passenger or turn-round process status. This is used to increase SA of 

turn-round manager and flight crews. This can be viewed as a way to 
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compensate for the non-existent standard information exchanges previously 

mentioned.   

B. Facilitating Activities of Flight Crews 

• Creating interference during standard procedures of the turn-round, like 

initiating a halt of passenger boarding: if flight crews observe unanticipated 

demand for extra turn-round time due to any reason, they can halt passenger 

boarding process and resume own responsibility for the length of turn-round. 

This requires exact tuning between cockpit and turn-round controller, because 

new TOBT has to be proposed based on cockpits’ assessment of the situation.  

• Requiring TOBT be adapted: if flight crews see reduced/increased demand for 

turn-round time, they propose TOBT adaption to the turn-round controller. 

This reflects the variables inherent in every turn-round process (e.g. amount of 

passengers, catering/ fuelling requirements…) and contradicts the initial A-

CDM concept where air crews are not realized as A-CDM partners.  

• Creating a new status alarm: often issues arise during the critical turn-round 

path that are not foreseeable. This status alarm will be shared with the turn-

round controller who will then adapt the TOBT accordingly. Process planning 

gets more demanding, if alarms arise in the last minutes before TOBT and this 

requires exact coordination between all partners and actors. Failures to adapt 

TOBT often arise during this last minute coordination process where last 

minute problems were reported by airlines to vary between 8 and 15% on all 

flights. 

5.4.5 Effect of Process Delay on Departure Punctuality 

Figure 25 provides an overview with  significant correlations that were identified 

between delayed turn-round processes (independent variable) from service processes 

in relation to the Off-block delay (dependant variable) which followed these delayed 

turn-round processes While the first column shows the amount of process delay in 

minutes, the second column shows the minutes that the flight left delayed from 

parking position. This indicates that the delays caused by these turn-round processes 
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round processes. 
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directly affected by the delay and were physically present where the turn-round took 

place. 

5.4.6 Possible Failure Causes for Cooperation during Aircraft Turn-Round 

Error! Reference source not found. provides flight crews’ assessment of possible failure 

causes expressed in three components aims, resources, and abilities. Even though it was 

questioned whether it is possible for flight crews to identify or understand such failure 

causes objectively (See Chapter 5.2), the usefulness of the results for providing a 

meaningful comparison between different turn-round failures is likely for the following 

reason: flight crews have operational experience from a home base airport with which 

they are familiar. Since all participating flight crews fly for airlines having a large 

network operation, flight crews can easily compare turn-round services from other 

airports with their home base airport. Error! Reference source not found. therefore 

compares the different ratings of the three components aims, resources, and abilities as 

possible failure causes like reported by the flight crews: 

 

FIGURE 26: POSSIBLE FAILURE CAUSES DURING TURN-ROUN D EVENTS 
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crews’ perspective and analogous to Ferber’s cooperation model is the assignment of 

parking stands.  

Flight crews were also asked to report about possible other reasons for turn-round 

failures (Figure 27):  

 
FIGURE 27: OTHER REASONS FOR TURN-ROUND PROBLEMS  

 

The main reason reported refers to the turn-round time that is too short: If this is the 

case, there is not sufficient time to compensate any process delay.  The second 

reported was the responsibility for decision making that was reported to be 

inappropriately shared. Further reasons mentioned were reason related to important 

information that is hidden among an overload of information provided to the flight 

crews, and also the inappropriate communication facilities that do not allow 

addressing concerns during turn-round.   

Flight crews also had the possibility to mention other causes of problems in free 

text. Although some reported results correspond to the causes proposed in the 

questionnaire, they were stated explicitly using the free text option. Table 7 presents 

these responses. 

 

1 1.5 2 2.5 3 3.5 4

Turn-Round Time too short 

Information Overload 

Inappropriate Sharing of Responsibility 

Inappropriate Communication Facilities
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   TABLE 7: POSSIBLE CAUSES FOR TURN-ROUND FAILURES  

Possible Causes No of Reports 
Not sufficient ground personnel 7 

Motivation and competence of ground personnel 6 

Lack of competent ramp agent 5 

No situational awareness of airport partners and actors 3 

Too many different decision makers 3 

Not enough training of ground personnel 2 

No clear sharing of responsibilities 1 

No or inappropriate use of communication devices 1 

Bad coordination of ground handling processes 1 

Unrealistic scheduling of processes 1 

Decisions outside of captain's assessment 1 

Inappropriate delay code assignment falsifies real causes 1 

Too much time pressure during turn-round 1 

Information sharing with service providers 1 

 

A further question to be answered aimed at identifying the flight crews’ perspective 

to decision making during turn-round was: 

“Do you think it would be an advantage if the flight crew were more involved in 

decision making on operational issues during turn-round?” 

From 93 flight crews who answered this question, 65 answered with “Yes” 

(representing 70 % of all valid answers) giving the following reasons (n = 28 or 30.1 

% were against more flight crew involvement) listed below in Table 8. 

 

   TABLE 8: REASONS FOR COCKPITS’ INVOLVEMENT IN DE CISION MAKING  

Reasons in Favour of more Flight Crew Involvement No of Reports 
Situational Awareness best placed at aircraft 34 

Earlier detection of problems and so earlier solutions possible 5 

More information in hand 5 

Crew has final responsibility for the flight 5 

Dispatch too far away from action level 3 

Fastest possible response + solution to arising problems 3 

Better evaluation of possibilities in hand and time required 2 

Captain should be place where information gather 2 

Last minute problems only present at the cockpit 2 

Often other decision makers do not have sufficient time in hand 2 

Less mental stress through avoidance of 'surprises' 1 

More experiences with similar situations 1 

More flexibility 1 

Dispatch not always competent enough 1 

For specific situations, e.g. aircraft change, technical 1 

Only, if decision making is defacto made by flight crew 1 

Better teamwork instead of debating with dispatch 1 

Only for decisions where judgement is better possible from cockpit 1 
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Flight crews who are against more involvement in decision making argue (Table 9): 

TABLE 9: REASONS AGAINST COCKPITS’ INVOLVEMENT IN D ECISION MAKING 

Reasons against Cockpits’ Involvement  No of Reports 
Crew has other tasks 4 

Work load already too high 6 

Against Flight Safety 2 

Not sufficient Situational Awareness at Aircraft 12 

Only shifting of responsibilities to cockpit 1 

Not enough time 3 

Not necessary, if appropriate processes are in place 2 

If necessary, information can be forwarded  1 

Too many different opinions 1 

5.5 Concluding Aspects    

Having identified the constraints framing A-CDM and turn-round management, 

the survey as designed to find the situations where these constraints occur during 

turn-round operation and result in service failures, process delays, and TOBT 

inaccuracy. Given the rising number of stakeholders and participants involved in 

even for a single turn-round only, it was assumed that a number of turn-round 

process failures could result from non-cooperative behaviour among participants. 

Therefore, an investigation was pursued that utilises qualitative data of aircrews 

because they are normally not blamed for failures during turn-round. However, seen 

from the perspective of the airline flight crews, the overall collaboration during day-

to-day turn-round operation was perceived as cooperative. The only example that 

was captured as being non-cooperative is the assignment of parking stands (Chapter 

5.4), if following the theoretical model of cooperation as proposed by Ferber (1995).  

According to Ferber (1995) a cooperative situation is the prerequisite for 

successful collaboration and cooperation depends on aims, abilities and resources 

(see Chapter 3.2). In the context of turn-round operation, information was viewed as 

one of the resources that have to be provided to the TOBT decision maker. However, 

another result from the survey reveals that turn-round operation is limited by failures 

to share timely and relevant information with the airline flight crews, and also by not 

using the information that is provided by the flight crews. At the same time, the study 

was also used to identify which information is finally required to predict turn-round 

process duration and which can so be used for calculating TOBT predictions. Which 

information is already available that would allow making earlier and more accurate 
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TOBT updates was also analysed. These findings were later used to design the 

experiments (see Chapter 7).   

The initial assumption that timely provision of information about turn-round 

service problems to aircrews could be beneficial in avoiding a turn-round process 

delay was not provable. However, the effects of information sharing failures on 

TOBT predictability could be demonstrated by comparing the delay caused by turn-

round process failures with the overall delay of the turn-round: the relation between 

the turn-round delay and the process delay showed significantly higher values for the 

turn-round delays. This result was compared with the inaccuracy swing effect 

(bullwhip effect) as an analogy from the production industry where the network of 

service providers can oscillate in very large swings - if the process takes place within 

the critical path of turn-round events.  
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6 FIELD OBSERVATION DURING A-CDM TURN-ROUND   

6.1 Aims and Objectives of the Analysis   

The aim of this study was to develop a better understanding of how operators 

monitor the complex, dynamic aircraft turn-round operation and to identify the 

influences of the monitoring strategies on TOBT prediction accuracy. It outlines the 

currently used practice of turn-round monitoring of flights preferably having only 

minimum turn-round time available for the turn-round process. The analysis is 

expanded to consider:  

• aspects of situational awareness required for turn-round management; 

• problems identified in achieving an accurate and reliable TOBT; 

• cognitive aspects that have influence on the turn-round process and TOBT 

prediction; and 

• current modes used for information sharing among airport partners. 

The underlying aim was also to identify whether TOBT predictions are influenced by 

the current approach to turn-round monitoring and whether TOBT predictions can be 

improved so that less updates are required and deviations from first assigned TOBT 

remain small.   

6.2 Method 

While some turn-round situations can be pre-planned, decision makers will always 

be faced with unanticipated situations resulting from unknown variables in the 

environment or technological capabilities. These situations can affect time estimates of 

turn-round processes resulting in an inaccurate TOBT prediction.  However, since 

ATC uses the TOBT as a reference for building the pre-departure sequence, deviations 

from TOBT may interfere with the stability of the departure sequence. To 

counterbalance this unreliability, ATC has to build in extra buffers between TSAT and 

Target Take-Off Time (TTOT) with the consequence of poor TTOT prediction for the 

airlines and the overall network.  

Therefore, field observations were conducted to capture how airline operators 

monitor the complex, dynamic turn-round process of aircraft, passengers, and cargo in 
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normal operation in situ for a total of 122 hours. The observation time was different 

between airlines a, b,c,d, and e (a = 82h, b = 14h, c = 10h, d = 8h, e = 8h) because of 

the large differences among the airlines in managing the turn-round process. 

Observations took place in five different operation centres from Lufthansa German 

Airlines, British Airways, Air France, KLM, and Brussels Airlines. Focus was applied 

placed on monitoring turn-rounds with only minimum turn-round time available.  

According to Su et al (2005), visualisation, situational awareness, proactive/reactive 

monitoring, and interactive capabilities are the four core elements necessary for 

effective human monitoring of complex systems. If one of these elements is missing, 

decision making will always involve handling uncertainties. The control room 

observations at the airline operation centres were carried out with focus on these core 

elements while keeping in mind that decision making is never fully predictable 

because of the imponderability from environment or operators intentions.       

Turn-round operation is getting increasingly complex, because of interdependencies 

between third party ground handling service providers, the number of participating 

parties for each turn-round, size and dimension of airports, and the decreasing time 

available for each individual turn-round. How human operators monitor the quality of 

these networks not only has a great impact on the efficiency of the turn-round 

operation, but also flight punctuality and passenger satisfaction depend highly on a 

reliable turn-round process.   

The method used for analysis evolved from this given situation. Observations 

(preferably with minimal interruption to activities) were carried out with the following 

questions as key drivers: 

• What are the tasks of the turn-round controller and what does the practice of 

TOBT assignment look like? 

• What are the current modes used for monitoring the turn-round?  

• What are the monitoring and facilitating activities used by the turn-round 

controllers? 

• What technological configurations are available for turn-round monitoring? 

• What cognitive challenges are inherent in the turn-round monitoring task? 

• What strategies do turn-round controllers use? 
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To organize the results, a model analogous to that of Vicente (1999) was applied 

that is able to capture the cognitive, monitoring, and the facilitating activities of the 

controller that he applies during turn-round. A detailed description of his model can be 

found in Chapter 6.3.8 that also provides the reason for its relevance for turn-round 

monitoring. High importance was assigned to the findings and therefore detailed 

results from control room observations are given in Chapter 6.3. They were also used 

as basis for designing the experiments.  

6.3 Results  

6.3.1 Current Modes of Turn-round Monitoring 

For the benefit of the ATM network, the airline company is responsible for 

predicting an accurate TOBT. This task is usually delegated to the turn-round 

controller who monitors the turn-round process closely. Different modes of turn-round 

monitoring, based on airlines’ individual requirements and operational concepts could 

be identified.   

Monitoring activities during turn-round process control very much depend on the 

actual situation and turn-round controllers’ strategies for responding to the local 

context. Controllers are often required to monitor multiple turn-rounds simultaneously, 

with the effect that the time available for each individual turn-round event can be very 

limited. In general, two different modes of monitoring the turn-round process were 

observed: 

• Local Turn-round Management (LTM): a turn-round controller is assigned to an 

individual flight and is physically present at the aircraft where he directly 

controls the turn-round process. He can either prepare turn-round processes 

based on requirements of the airline, his own experiences and knowledge-based 

strategies, or simply react to problems arising. Local turn-round monitoring was 

traditionally used by the majority of airlines until cost pressure caused airlines 

to pursue less labour intense modes of monitoring.    

• Remote Turn-Round Management (RTM): a turn-round manager controls turn-

round from an operation centre typically at the airport, but remote from the 

aircraft. He is using automated data and inputs from different agents, e.g. flight 
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crews, loaders, flight managers. This approach is less labour-intensive and 

increasingly being used by airlines.   

Which approach can most accurately predict TOBT (thus making it more reliable 

for the ATM network) has not yet been demonstrated. There are also other approaches 

to turn-round monitoring, e.g. like flight crew controlled turn-round monitoring, which 

were not observed during this study. 

6.3.2 Current Practice of TOBT Assignment    

The role of a turn-round controller can be described as monitoring the turn-round 

process while being responsible chief executive for all turn-round events assigned to 

him via coordination of all ground handling related processes aimed at achieving 

highest punctuality possible. If punctuality is a factor or turn-round processes cannot 

be handled as specified by airlines, he actively intervenes in the ground handling. The 

task of the turn-round control can be either performed by the airline operator directly 

or any contracted ground handling company. The main partners the turn-round 

controller interacts with are: 

• cockpit crew (coordinates aircraft processes); 

• ramp agent (coordinates ramp processes); 

• airline representative (coordinates flight schedule, e.g. flight cancellations or 

equipment changes); 

• gate manager ( coordinates passenger flow); 

• gate employee ( coordinates passenger check-in and boarding); 

• airport representative (coordinates parking position and ramp services); 

• one or several external coordinator(s) ( coordinates third party service 

deliveries). 

The turn-round controller deals with all irregularities. He also coordinates the turn-

round process with other controllers or coordinators responsible for the affected sub-

processes. His responsibility is also to inform partners or actors involved about 

irregularities known to him and decision about possible strategies in case of arrival 

delays with consecutive turn-round having only MTTT available, e.g. initiate quick 

turn-rounds with special attention or leave baggage/ passengers behind.  
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The underlying aim of turn-round control is to dispatch the flight as close as possible 

to the SOBT. 

Differences in assigned tasks exist between turn-round controllers during Local 

Turn-round Management and Remote Turn-round Management (see Chapter 6.3.1). 

While turn-round controllers at the ramp (Local Turn-round Management) are able to 

derive information for coordination of turn-round processes by observing real-time 

events, the controllers at the control room have to use available data displayed on 

computer screens as main information source, or initiate interactions via telephone, 

radio, or ACARS. 

It was observed that Remote Turn-round Management controllers often have 

additional tasks compared to Local Mode Turn-round controller. One of the major 

tasks is monitoring data that may have consequences on flight punctuality because of:  

• positioning crew delays or crew schedules changes; 

• published CTOTs; or  

• assigning delay codes to the airport partner who is responsible for causing the 

process delay.  

A number of working processes are defined for Remote Turn-round Management 

controllers, but they differ depending on airline policies. These tasks include:  

• loading of all required IT systems; 

• preparing individual roster with assigned turn-rounds; 

• checking for crew rotation; 

• processing telexes received; 

• creating movement messages; 

• answering or forwarding data or voice messages; 

• work the required aircraft changes in the schedule; and 

• delegating operational tasks to participating actors.  

Only a few processes have predefined procedures designed for necessary deviations 

from standard procedures, e.g. if delay is greater than a certain threshold value or 

aircraft/equipment changes.  
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However, for the ATM network and all Airport Partners, the most critical output of 

the Turn-round Process is the Target Off-Block Time (TOBT), because TOBT defines 

not only the coordination and controlling of all operational processes related to ground 

handling, but it is used as a reference time for ATC to issue the TSAT. TOBT is the 

mandatory time for all participating actors, where aircraft loading has to be completed, 

doors closed, and all ground handling equipment removed. If it becomes necessary 

that TOBT cannot be maintained, the turn-round controller is responsible for updating 

TOBT depending on the given conditions and considering of all logical requirements. 

Regardless of turn-round controllers’ strategies, the process of TOBT assignment 

depends on local procedures defined by participating airport partners. 

6.3.3 Monitoring and Facilitating Activities used by the Turn-round Controller   

Now, turn-round controllers’ actual monitoring activities – from indication of 

pieces of data to proactive acquisition of information are described here. The 

following list is a comprehensive set of resources that were provided by airlines during 

the observed modes of turn-round control, either at the ramp or in the control rooms. 

Not all airlines use all of the resources described, but those procedures and tools 

corresponding to their own requirements. 

• Actively conducted field monitoring: as described earlier, different modes of 

turn-round monitoring are possible. In some cases, turn-round controllers were 

always physically present at the aircraft. 

• Monitoring turn-round status using cameras: controllers obtain visual turn-

round status information via cameras; while some controllers prefer to monitor 

individual aircraft parking stand, others used a more apron oriented camera 

perspective. 

• Monitoring aircraft status using displayed data: controllers use data about 

aircraft status to obtain information of planned aircraft arrival times.   

• Monitoring turn-round status using displayed data: controllers use displayed 

turn-round status data to obtain information about landside and airside turn-

round status. 
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• Monitoring passenger/baggage status using displayed data: controllers use data 

about passenger check-in/boarding status and baggage location data to obtain 

information about airside and landside turn-round status. 

• Communication with field operators: controllers communicate by phone or 

radio with actors at all relevant locations in the terminal building as well as on 

the ramp to obtain an indication of information about the turn-round status. 

• Communication with other airport partners: controllers communicate via phone 

or face-to-face with other airport partners to obtain indications of information 

about the status of resources e.g. availability of parking position, manpower, 

equipment, and whereabouts of proceeding crews. 

• Monitoring alarm panels: controllers obtain alarm messages automatically (by 

pop-up windows) for some missing indications of turn-round status data or 

critical crew proceedings - which in some cases- should be provided by 

participating partners. 

• Monitoring other turn-rounds: controllers use status information about non-

assigned turn-rounds in order to obtain information about resources that may be 

awaited, e.g. manpower or equipment.  

• Monitoring data link messages: controllers use indications made available by 

flight crews to obtain information about operational processes at the aircraft. 

• Reviewing log records: controllers use printed information with turn-round 

overviews and turn-round reference models to log or initiate 

actions/information required by participating partners.  

A number of activities could be identified that are used by controllers to make 

monitoring more efficient. These activities reveal useful insights for analysing 

procedures or tools for future turn-round monitoring. Facilitating activities used by the 

controller to make monitoring more efficient include: 

• creating external support by using their own strategies adopted from 

experience, training, or knowledge; 

• initiating interactions with other partners or actors, e.g. via phone, radio, or 

ACARS; 
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• creating external reminders for monitoring including personal notes or 

coloured stickers; 

• ignoring pop-up alarms, because situational awareness could be established 

earlier; and 

• creating shared situational awareness with other participating actors through 

initiation of interactions.  

Controllers also adjust their tasks in order to make monitoring more manageable. 

They achieve this by setting priorities, scheduling jobs, and allocating tasks to 

participating actors. Activities identified at this stage are very much knowledge-driven 

and the success of the turn-round depends on decisions made at this level. Su et al 

(2005) claim that controllers who are able to regulate their workload in order to make 

it well calibrated to their cognitive capabilities are less susceptible for failures or 

errors.  

6.3.4 Technological Configurations Available for Monitoring  

A number of data and information sources are available at airline operation centres 

depending on the airlines’ requirements and the purpose of its intended usage.  

During turn-round management, human-information interactions are established via 

human-human and human-machine interactions. These interactions require 

standardisation to accomplish turn-rounds defined by airline companies’ pre-sets like 

the reference turn-round procedures models. However, during various key stages of 

the turn-round process, no standardised or automated process of information sharing 

could be observed, e.g. via procedural working standards or mandatory data exchange, 

so as to facilitate human-information interactions especially required during 

unanticipated turn-round process steps.   

If e.g. unknown variables are encountered, predefined data has to be shared 

between actors like flight crews, turn-round managers, or mechanics. However, only 

rough guidelines exist about who should be informed and when. If standardisation is 

not used to the maximum possible extent, failures to share data, knowledge, or 

information during such situations can result in an inaccuracy swing of the turn-round 

delay (see Chapter 5.4). 
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Although these information interactions are often required across organisational 

boundaries involving airport partners and service providers, but so far they only take 

place spontaneously, depending on the actors involved and their information 

processing behaviour.  

A. Human-Human Interactions during CDM Turn-round 

Modes used for human information interactions among operators include telephone, 

two-way radio facilities, or face-to-face communication: 

• Telephone facility: allows participating partners to call each other in order to 

exchange data/information and time estimates, data sharing with cockpit only 

between actual on-block time and actual off-block time.  

• Radio facility: allows participating partners to contact each other in order to 

collect or forward data and time estimates already before actual on-block time. 

• Face-to-face communication: allows participating partners to contact each other 

in order to collect or forward data and time estimates during turn-round. 

• Typed Messages: flight crews and other participants can access computer 

terminals to download flight related data/information. 

A.1 Interactions between Turn-round Manager and Cockpit: 

During direct turn-round management, human-human interactions usually take 

place via face-to-face communication between the turn-round manager and flight 

crews. Whereby proactive behaviour by both turn-round manager and cockpit 

contributes not only to avoid turn-round process delay, but helps to avoid turn-round 

process delay and enables other partners to take appropriate actions by establishing a 

distributed situational awareness. Local Mode of turn-round management is also 

influenced by skill, rules, and knowledge-based behaviour by the turn-round manager. 

During remote turn-round management, all interactions between cockpit and 

control centre take place in order to assure that situational awareness is shared 

between the turn-round manager and flight crew for standard and non-standard turn-

round processes. However, the distance between the cockpit and turn-round manager 

creates a physical hurdle that has to be overcome by means of telephone or two-way 

radio communication. Hence, it is important that interactions are initiated because not 
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all required data or knowledge is automatically shared between the turn-round 

manager and flight crews.   

A.2 Interactions between Cockpit and Other Actors: 

The flight crew possess the most knowledge relevant to the aircraft status. 

Therefore, operators involved at the ramp communicate directly with flight crews, 

while operators at the terminal usually communicate with the turn-round controller. 

Turn-round process coordination is provided by a turn-round manager or in some 

cases established as an automated process, e.g. boarding process starts at a predefined 

time before TOBT.   

A.3 Interactions between Turn-Round Manager and Other Actors: 

The number of interactions depends on the complexity of the specific situation (e.g. 

passenger numbers or composition, baggage volume etc) or inherent constraints (e.g. 

MTTT or resources available).  

A.4 Human-Machine Interfaces during Turn-round 

The specific configuration used for turn-round monitoring is determined by airlines’ 

individual requirements and the emphasis it puts on turn-round management. Various 

software tools for turn-round monitoring exist; however, airlines use similar tools in 

different ways. As a consequence it is necessary that beside technological 

requirements also the user-specific requirements including cognitive demands are 

taken into account for the design of the communication and monitoring tools. The 

following list shows the HMIs that are available for turn-round control in the control 

rooms, aircraft cockpit, and at the ramp: 

B. HMIs available at the Turn-Round Control Rooms: 

• Airlines’ operation control systems: can be accessed and updated with new 

information from all stations served by the airlines’ network a level of detail 

depending on individual airlines’ requirements. Examples of data usually 

received automatically by airlines’ operation control systems include AOBT, 

ATOT, EOBT, ALDT, AIBT, EIBT. Movement and Delay messages are sent 

by interactions from outstations.   
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• ACARS Messages for communication with aircraft and flight crew (See also 

Chapter 7.4); 

• fax/telex: electronically and automatically received messages from all partners; 

• ARR/DEP overview of all flights, additionally stand number, TOBT, ELDT, 

and ALDT can be obtained; 

• real-time baggage tracking information; 

• real-time passenger processing information; 

• real-time ramp processes tracking information; 

• cameras for aircraft status monitoring; 

• sequence planning tool with TSAT from ATC; 

• CFMU interface for CTOT, FUM, and DPIs; and   

• specific passenger information. 

HMIs at the Cockpit: 

• ACARS: sending and receiving data to and from turn-round partners. Turn-

round information requirements can be communicated via ACARS, two-way 

radio, or telephone.  

HMIs at the Ramp:  

• Sending and receiving data from and to the airline operation centre. HMIs used 

here have real time capabilities and attempt to increase situational awareness as 

well as the proactive capabilities of actors at the ramp or terminal building. 

6.3.5 Factors Contributing to Monitoring Difficulty  

The remote mode of turn-round management is a relatively new approach to turn-

round control; the factors that contribute to monitoring difficulty are now discussed:  

• Number of turn-rounds: the total number of turn-rounds assigned to an 

individual controller determines the time available for monitoring each single 

turn-round process. A great difference could be observed in the number of 

turn-rounds which were assigned simultaneously to an individual controller 

among the different airlines where turn-round monitoring was observed, 

varying between 3 and 15 turn-rounds. It is questioned whether sufficient 
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attention can be maintained to each individual turn-round, if the number of 

turn-rounds monitored by one controller in parallel exceeds a specific value 

and workload, whereat the workload again depends on a number of issues that 

have require attention (See chapter 2.5).   

• Multiple parties with differing goals involved: Multiple parties responsible for 

the various supporting turn-round processes during a single turn-round process 

with each party having its own resource constraints and inherent intentional 

goals. However, understanding individual actors’ goals is necessary to 

establish a global goal among all participating actors and airport partners. It is 

also unlikely that in case of individual goal sets different from a global goal, 

actors will share their goals with others. Individual actors’ goals can range 

from personal interests to achieving advantages for the own company. 

Therefore, in order to enable successful monitoring, it is necessary to identify 

the inherent goals and motivations of all participating operators and the 

constraints within the different domains during A-CDM. This information 

should then be used to identify and apply cooperation-building factors to day-

to-day turn-round practices.   

• Reliability of information: information provided by supporting actors is not 

always as available as required because of the different approaches and 

procedures towards information sharing established by the individual 

operators. Even when required, operational information from the action level is 

not necessarily available at the monitoring level due to the failure to establish 

standardised processes of information sharing, e.g. information about boarding 

status is not shared or actors forget to feed their data into the tools established 

for monitoring the flight/turn-round progress. 

• Incomplete process status data: due to the complexity of the handling 

processes at some major airports, operators’ resource constraints or companies’ 

internal regulations, not all turn-round processes can be tracked automatically 

yet. As a consequence, required data for monitoring is not provided and turn-

round controllers have to make decisions based on an incomplete picture of the 

situation. 
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• Degree of automation support: ‘Self-procurement’ of data e.g. via telephone or 

radio is not only time-consuming, there is high risk of missing key indicators 

or focusing on minor items, while critical data is hidden within turn-round 

complexities.  

• Cognitive demands: cognitive workload of controllers depends on the level of 

automation, individual knowledge, and workload regulation activities. While 

cognitive capabilities vary among controllers, workload regulation activities 

are used very much by controllers and so determine turn-round success. If the 

workload is too high, the possibility for controllers to develop their own 

regulation strategies is reduced.   

• Feedback from actors: controllers require feedback from actors and operators 

on the ramp or terminal building for monitoring, e.g. about execution of 

services or availability of resources. No standardised feedback processes could 

be observed because actors’ individual goals do not necessarily correspond to 

the controllers’ need for feedback.   

• Number of third-party providers: an increasing number of participating service 

providers also increases monitoring complexity. This in turn imposes a 

challenge for the turn-round controller to identify the service provider or actor 

who is involved in an individual turn-round process. As a consequence, the 

controller is not always aware who provides the turn-round service. If he 

requires process related data, he may have to contact several companies in 

order to identify the assigned actors.  

• System complexity and reliability: Airport size, technological level, and 

cultural diversities also contribute to system complexity and monitoring 

difficulties. Monitoring solutions have to be adapted to local needs.  

• Alarm system design: some monitoring tools have an automatic pop-up alarm 

for e.g. delays of flights with proceeding crews on board or delayed ground 

handling start. However, in all observed cases, the timing of the alarm was too 

late in order to initiate a corrective action able for avoiding a delay. Again, 

cognitive workload adjustment is applied by controllers and so far the only 

solution available to solve such problems. 
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• Display and control design: The standard workplace of the turn-round 

controllers has five screens with functionalities selectable by controllers. The 

workplace also includes telephones with short dial-up options to all airport 

partners involved. However, controllers often have to switch between different 

scenarios or displays and a view of the overall turn-round process information 

showing all required data is not available.   

• Sharing of Responsibilities: different actors have different levels of 

responsibilities for decision making. This information is not always shared 

with turn-round controller and therefore he has to contact multiple actors to 

identify the responsible function. 

• Delay Code assignment: the turn-round controller assigns delay codes for the 

function that he considers to be responsible for the delay. However, this 

practice of delay code assignment challenges the whole ATM network 

philosophy of the A-CDM approach. Even though the turn-round controller 

often has to rely on information provided by third parties, this procedure is still 

seen as a punishment for operators’ behaviours and fosters the perception of a 

blame culture among participating actors. This however is counter to the idea 

of creating a cooperation building culture with mutual trust among operators.  

Some of the challenges in turn-round monitoring mentioned here could be 

overcome through process reengineering, cultural change or technological progress. 

As a next step in the research process, focus group discussions between turn-round 

controllers and other functions will be carried out to identify the potential for such 

alternative approaches towards turn-round management.  

6.3.6 Cognitive Challenges for Turn-round Monitoring 

A number of challenges for turn-round monitoring arise due to cognitive 

vulnerabilities while on-task. Examples include:  

• Monitoring requires visual sampling and selective attention: this involves turn-

round controllers being vulnerable to missing critical events or information 

because of breakdowns in the serial scanning process. When scanning turn-
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round processes, controllers face information overload, time constraints, and 

may not be able to detect unanticipated events at the time required.  

• Data exchange between partners across functions has to be established 

throughout distributed locations and also via different modes. Data exchange 

between turn-round controllers and other actors takes place with external 

functions often having unknown goals and mindsets. Where competing 

interests are likely to exist, required communication, e.g. between turn-round 

controller and flight crews is not always pursued as needed and as a 

consequence, situational awareness cannot be created.  

• During peak hours, interactions are initiated from multiple sides: telephone, 

supervisor, colleagues, incoming ACARS messages, or requests via radio. 

Prioritising and selective problem solving skills are required. 

• Insufficient data from turn-round service providers or about the aircraft turn-

round status are available for a reliable TOBT decision making, therefore 

TOBT has to be assigned without having real data on hand.  

• Situational awareness depends on the ability of the turn-round manager to use 

the tools, data and displays given to create a mental strategy. Prior experience 

and long-term knowledge in turn-round management can greatly contribute to 

monitoring success. E.g. how to detect events requiring attention and now to 

find solutions for these events. 

• Information representation on displays themselves can be the cause of a 

problem. Is it possible to extrapolate the information required to tackle turn-

round problems from the screens or does essential data have to be acquired by 

initiating interferences with other actors?  

• Some systems are available which create alarms in the form of displayed 

messages about, e.g. a process that has not started or crew arriving delayed 

from an inbound flight. Turn-round controllers often ignore these because the 

mental strategy for solving the problem is different from the solution proposed 

by the system logic. Moreover, the high amount of false alarms results in 

controllers tending to disregard them completely.   
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• Data overload versus insufficient data: a major reason for cognitive 

vulnerabilities reported by turn-round controllers includes the composition of 

provided data. The large amount of data available does not represent the 

information format required for operational decision making as well as the way 

it is made available entails the risk to overlook essential information which is 

hidden among other data. More importantly, decisions made by other airport 

partners or the results of such decisions are not automatically available.  The 

reasons for non-data sharing could be cognitive factors, avoidance of blame, or 

other not yet identified hurdles having the effect that updates of controllers’ 

situational awareness is not always possible as required.  

• Data filtering: by using the large amount of data available, Remote Turn-round 

Management controllers have to create a visualisation of the turn-round 

without being able to inspect the situation with their own eyes.  This poses a 

high risk of missing necessary signs indicating process delays that would be 

obvious during DTM. 

• Network data or status information from ramp/terminal processes: data about 

the status of sub-processes from all participating actors during turn-round are 

not automatically shared, but this is required in order to create a situational 

awareness especially during the critical path of all sequential turn-round 

processes. Furthermore, data about participating actors is presented in various 

formats (e.g. visual, numerical, or interactive). Even through a single source 

format, visualisation has been proven to be the most effective way to create 

necessary situational awareness it is not yet available for turn-round 

management.   

• Proactive versus reactive monitoring: A major challenge arises from the 

current practise of reactive turn-round controlling behaviour. Tools with 

predictive capabilities for the turn-round processes during critical path enable 

controllers to create a situational awareness via proactive monitoring of turn-

round with determination of current state followed by predicting the trajectory 

of the future state of the turn-round. However, controllers today have to track 

turn-round in real-time, react to alarms created by the system, or respond to 
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interactions created by participating actors. Such monitoring only permits 

reacting to the problem occurring by following an official process – not 

assessing the future state of the turn-round.  In contrast proactive monitoring 

would enable prediction and result in increased reliability for the network and 

passengers.    

6.3.7 Strategies Used by Turn-round Controllers for Monitoring   

Airline companies provide working strategies and modes for monitoring turn-round 

flows to the controllers. These strategies differ significantly among airlines observed.  

The turn-round controllers themselves again adopt their own strategies for monitoring 

the turn-round depending on the given working procedures, situations, knowledge, and 

tools available. However, it has never been demonstrated which strategy used by the 

airlines results in the most reliable turn-round processes needed to make TOBT 

prediction as accurate as possible. Flight crews argue in favour of the traditional mode 

of turn-round monitoring like the local mode turn-round monitoring, because new 

modes established are so far not able to replace the benefits that are available during 

local mode turn-round monitoring. The new remote turn-round monitoring was 

generally accepted, but many difficulties during turn-round are still attributed to the 

new mode of monitoring. 

The major concepts used by turn-round controllers will now be described: 

A. ‘Situational Model’ Driven Monitoring 

One major finding witnessed in the observation was to see that regardless of the 

mode of turn-round control or the tools available, turn-round controllers were trying to 

build and maintain their own situational model which in turn directed their attention 

and set their expectations during monitoring activities. This situational model 

however, is greatly different depending on the mode of turn-round control. For 

example the turn-round controllers at the aircraft could already anticipate problems 

arising with de-boarding or loading and consequently initiated required actions 

proactively. Turn-round controllers at remote positions had to be updated about such 

situations by the ramp agents or the flight crews in order to establish the required 

situational awareness.   
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One key aspect of this observed behaviour is the difference between local turn-

round management and remote turn-round management which emerges through the 

technologies and the cognitive driven approaches used. While during local turn-round 

management controllers use their eyes to observe events which may require predictive 

analysis of the situation, turn-round controllers at the operation centres have to rely on 

the information displayed on their monitors, the incoming calls from actors at the 

airport terminal or the ramp, and the cameras facing towards the aircraft parking 

positions. This induces that predictive behaviour required for turn-round control is not 

possible in the operation centre because of the missing information visually perceived 

by the ramp agent at the aircraft. Situational analysis is therefore only possible based 

on information received via human-human and human-computer interactions. This 

simple example shows that the task goals are the same in all modes of turn-round 

monitoring, but the situational manifestations between the of direct and remote 

monitoring locations shaped the behavioural manifestations of turn-round control 

between proactive at the ramp and reactionary at remote.   

B. Rule- And Knowledge Driven Monitoring 

It was observed during local mode of turn-round management that turn-round 

controllers usually engage in rule- and knowledge-driven monitoring of the processes 

at the ramp for estimation of the TOBT. Rather than merely reacting to stimuli from 

process failures, turn-round controllers seek out specific information of the current, 

but often - unfamiliar situation. Examples of this type of behaviour include:  

� Already before the aircraft arrives at parking position, turn-round controller re-

confirms availability of personnel and required equipment with participating 

actors. 

� Not only normal turn-round processes were coordinated, but also special ground 

handling issues were prepared with confirmation calls to participating actors. If 

a problem arose during pre-arrival phase, a possible solution was already 

analysed to avoid failures during the critical chain.  

� Problems forwarded from flight crews after landing were analysed directly after 

AOBT. 
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� Actual passenger numbers are used to make estimates of boarding/de-boarding 

times.  

Therefore it is proposed to engage in further analysis about the possibility of also 

establishing proactive behaviour as it was observed during direct turn-round 

monitoring at remote operation centre.  

It is hypothesized that reliable TOBT prediction also depends on the number of 

turn-rounds which the turn-round controller has to monitor simultaneously. Great 

differences exist among the observed airlines about the number of turn-rounds being 

monitored in parallel. In some cases, it was observed that turn-round controllers have 

to monitor up to 15 turn-rounds at the same time. It is argued that sufficient time is not 

on hand to proactively prepare each turn-round as observed during local mode turn-

round monitoring – particularly if unanticipated events are encountered during the 

critical path of turn-round processes. 

Nonetheless, advantages could also be observed during RTM stemming from tools 

and information sources available at the operation centre which allow turn-round 

controllers to use other forms of monitoring using activities they are able to apply or 

the information sources at the working position.  

Turn-round controllers adopted strategies like: 

� Proactive telephone calls: As the most frequently observed mode of 

communication turn-round controllers used the direct-dial functions on their 

telephones to check with actors at the ramp about the availability of personnel 

and equipment. Needless to say, the number of proactive calls very much 

depends on the number of turn-rounds being monitored at the same time. The 

difference observed in the number of turn-rounds being monitored 

simultaneously ranged from three and 15 turn-rounds. While during turn-round 

monitoring of only three turn-rounds at the same time, proactive behaviour was 

applied as prevailing turn-round strategy of the controllers, larger turn-round 

numbers allow only to react to requests from incoming calls of other actors or 

to focus on the discrepancies already known by the controller.   

� Reducing MTTT: While some operators also use different acronyms for the 

TOBT, large differences could be observed during current practices of TOBT 
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assignment. It is in the interest of the airlines to reduce MTTT even further, if 

AIBT is delayed more than SOBT – MTTT, and as a consequence, a departure 

delay has to be faced. To prevent delays from becoming too long, turn-round 

controllers use two different strategies: either they reduce the MTTT by 

applying a special turn-round procedure (e.g. increase support via additional 

ground personnel), or they only reduce the MTTT by a certain margin without 

taking any other information or factors into account. During some observed 

cases, turn-round controllers used only the MTTT as a core reference for 

TOBT assignment; if TOBT deviations from original SOBT were greater than 

a predefined value, the new TOBT had to be approved by the airline dispatch 

or flight crews.   

� Creating indicators or alarms: Quite a number of examples of turn-round 

controllers exploiting the flexibility and functionalities of the available tools 

and functions could be observed. For turn-round monitoring, most airline 

operators provide the controllers with five displays and different tools for 

flight, turn-round, or process monitoring. Turn-round controllers can choose 

display scenarios and tools depending on their own preferences. The strategies 

used here also depend on the knowledge level of controller and the ability to 

extract information as required.   

� Difference in creating an overview of displayed information which turn-round 

controllers were using for day-to-day monitoring: While some controllers used 

their displays dedicated to individual turn-round events as a detailed depiction 

of all turn-round processes, others used a more flight status oriented tool where 

all monitored flights are visible at the same time on a time axis. The detailed 

turn-round depiction allows them to follow up each turn-round process in real-

time, while the flight status oriented tool only depicts an overview of all 

monitored flights. This tool however requires additional information on the 

turn-round status to allow real-time monitoring of the critical turn-round chain.   

• Setting Rules: The adopted strategies used also depend on the rules and 

policies defined by the individual airline. The most prominent example is the 

definition of the length of a MTTT: For the same type of aircraft, comparable 
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type of turn-round and size of airport, the MTTT during one Turn-round 

Process differed up to 20 minutes.  

• Other rules set by the airlines include the amount of turn-rounds monitored in 

parallel. Here, large differences in turn-round numbers were observed because 

of the different policies among actors involved. In some cases, turn-round 

controllers are not permitted to contact the flight crew during turn-round, 

however during other observations the flight crews were contacted by phone up 

to thirty times.  

� Creating external reminders for monitoring: to reduce the demand on their 

memory, turn-round controllers frequently create external reminders for 

monitoring. Several examples of this type of facilitating activity were 

observed, with differences existing between LTM and RTM. During LTM, 

controllers used e.g. turn-round cards or written notes to add process 

information related to the assigned flight. Remote Turn-round controllers 

however, use scratch pads and lists with all assigned turn-rounds. A common 

practice during monitoring is to take notes during incoming calls onto 

notepads. When monitoring turn-round, flight status, or incoming messages via 

data link, discrepancies arise or particular service requirements become 

necessary which have to be arranged. Some of them are not time critical and 

notes were written onto the turn-round lists. This strategy was particularly 

observed, when the notes taken were used to brief the next shift.  

� Shifting turn-rounds: During peak hours, turn-round control does not allow 

leaving working position because observed work demand is very high. To 

allow breaks or to react to schedule changes due to weather, turn-round 

controllers can shift assigned turn-rounds to other controllers who have the 

capacity to handle additional turn-rounds.  

� Employ additional turn-round controllers: some airlines observed have 

designated personnel available during peak hours allowing controllers to 

maintain the same amount of turn-rounds for monitoring - even during high 

traffic demand. These ‘spare’ controllers can either handle excess traffic or 

turn-rounds with high monitoring demand due to extra service requirements. 
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6.3.8 Organizing the Results in a Qualitative Cognitive Model 

Given the high number of cognitive challenges identified during turn-round 

monitoring, the findings from airline control room observations were organized in a 

qualitative cognitive model that allowed making conclusions and giving 

recommendations. Therefore, a model was applied – analogous to that of Vicente et al 

(2004) who developed this model specifically for operators monitoring a nuclear 

power plant under normal operation. The qualitative cognitive model of monitoring 

can be generalized across other domains, because of the general types of activities and 

cognitive functions used when monitoring complex dynamic systems (Vicente et al 

2004). Similarities of such systems include the vast number of interactions and the fact 

that time and pace of external events determine the mental workload. While failures 

during nuclear power plant monitoring may result in threats to public and 

environment, failures during turn-round monitoring has financial and inconvenience 

impact only.  

The model (Error! Reference source not found.) includes four major elements: 

initiating events, cognitive activities, facilitating activities, and monitoring activities.  
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FIGURE 28: MONITORING MODEL ANALOGOUS TO VICENTE (S OURCE: VICENTE, 2004)  
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• Data-driven events: not actively sought by operators, but rather prompted by 

changes in the environment, e.g. alarms by the system, interaction creation 

from system or other partners/ actors.  

• Standard controller practices, policies, or procedures: events in this category 

are designed to ensure controllers’ periodical and knowledge-driven working 

practices.   

• Scheduled tasks and activities: have to be carried out during normal shifts, e.g. 

close the flights after monitoring is completed.  

Most of the triggers result from periodical events, e.g. flight movement messages, 

but many triggers also relate to specific events, e.g. incoming calls from participating 

actors. Alarms automatically created through the monitoring system are not usually 

used as triggers for monitoring events, because the late provision of the alarm requires 

an action from turn-round controller already much earlier. Once monitoring is 

initiated, it may result in a specific path of actions and coordination with other airport 

partners or actors. Also, multiple initiating events may be in effect at the same time, 

requiring the controller to time-share several activities, especially during time-

constrained turn-round situations.    

The initiating events result in cognitive activities by the turn-round controllers. 

These are formed and influenced by interactions with control room interfaces/ other 

personnel, or knowledge which is held by the respective turn-round controller. The 

major element that drives cognitive activities however is the situational model 

developed by the controller as an incomplete mental representation integrating his/her 

current understanding of functional turn-round aspects, and the automated control 

system. Applying this situational model to turn-round monitoring, encompasses a 

number of general cognitive processes: 

• Developing turn-round controller’s knowledge of the turn-round’s physical 

processes, their characteristics and interfaces; 

• supports controller in developing a cause-and-effect relationship for analysing 

turn-round failures and participating actors’ process delays; 

• supports controller in integrating separately received or automatically created 

data to account for all data; 
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• supports controller in developing a turn-round description that captures a 

process state at a level higher than individual actor perception; 

• it allows the controllers to create a mental simulation of the turn-round to 

anticipate future states of turn-rounds, or evaluate turn-round performance 

under various configurations.   

According to Vicente (2004), training and experience allows operators to evolve 

their inherent mental model into a somewhat idealized design and a mirror on the 

actual operation. The situational model being used for monitoring can so be adjusted.  

 At a higher level of description, all controllers’ cognitive activities can be split into 

Situation Assessment (SA) and Response Planning (RP). However, situation 

assessment refers to the process of ‘constructing an explanation to account for 

observations’ plus consequences and future system state, and studies show that 

operators actively develop a coherent understanding of the current state. This in turn 

emphasizes the need to provide reliable indications for situation assessment. Any 

failure to provide essential turn-round data from participating actors may stall the 

assessment process due to missing key indicators. During turn-round, controllers not 

only monitor, but often proactively retrieve information required for situation 

assessment via automated systems or interaction creation. However, the often 

constrained time available during turn-round does not allow controllers to get updates 

as needed. Different types of situation assessment (SA) were identified:  

• Confirm expectations about the flight/turn-round progress (SA1): based on the 

given data, e.g. Flight Update Messages (FUMs) or movement messages, 

controllers develop expectations about actual in-block or off-block time. Based 

on these expectations, turn-round controllers develop strategies as a response to 

the actual situation. During this arrival phase of flight, monitoring the status of 

the flight serves either to maintain the current strategy or adapt it to the actual 

situation.  

• Pursue unexpected situations (SA2): a controller often encounters situations that 

are not expected, but response is required, e.g. aircraft change, crew change. In 

these cases, the controller will actively direct monitoring to identify 
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complementary data that might help him better respond to the unexpected 

situation.  

• Check for problems considered to be likely (SA3): the controller is best placed 

to identify problems likely to arise during turn-round. The controller 

understands that certain processes create the potential for particular problems to 

be solved, e.g. coordination of sequential processes within the critical chain and 

needs to be vigilant. Therefore, monitoring is actively directed to indications 

that can reveal the occurrence of a likely problem.  

• Validate initial indications (SA4): in general, control room and interface 

technologies are not perfectly reliable nor do they always provide an 

appropriate visualisation of the situation. Therefore, controllers often mistrust 

received information and have to validate it by creating interaction (e.g. phone, 

ACARS, radio). 

After assessment of the actual turn-round situation, a response is usually required. 

This involves decision making on the necessary course of action. In general, response 

planning involves identifying goals, generating, evaluating, and selecting response 

plan that best meets the goals identified (Hoc, 2000). Since there are only a few formal 

written procedures that guide response, controllers use their own assessment of the 

situation and evaluate whether the actions they are taking can help to achieve their 

goals. This may include deviation from formal procedures. Five types of 

actions/monitoring were identified that support response planning (RP). 

• Assess goal achievement (RP1): controllers’ actions are taken in order to 

achieve their own or airline operators’ goals. However, current procedures 

within A-CDM require weighing operators’ interests against ATM network 

benefits. This becomes necessary since TOBT assigned by turn-round controller 

can only be updated three times after TSAT has been issued by air traffic 

control. Otherwise the flight being re-sequenced by air traffic control and 

departure time may be delayed. Therefore, the controller has to monitor the 

progress towards achieving the target off-block time and actively monitor 

indications that can support the assessment of this goal.  
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• Other duties while on-task (RP2): turn-round control comprises variety of 

situations: while some turn-rounds require only little attention, others are time-

constrained (e.g. if MTTT or even less is available due to arrival delays) and 

have a high monitoring demand. During these situations, controllers proactively 

initiate interactions with other airport partners or actors for duties like 

information forwarding, e.g. inform ramp agents about direct transfer of 

passengers, follow up late crew arrivals, or identify solutions to resource 

constraints. Coordination with others is usually required during these situations.    

• Assess potential delay effects of contemplated actions (RP3): a key activity of 

controllers is to ensure that their activities and those of other airport partners 

and actors do not produce a delay, or if unavoidable, to ensure that the delay 

remains as short as possible. While airlines have established reference models 

for standard turn-round flows, controllers are often faced with events resulting 

from uncontrollable variables in the environment or variables identified late. 

This requires adapting the reference turn-round flow to the actual situation with 

necessary assignment of IATA delay codes to actors causing the deviation from 

standard procedures.  

• Assess means for achieving goals (RP4): As a consequence of a turn-round 

process delay, the controller needs to consider that the process could fail and an 

alternative process would be required (e.g. aircraft change).  Thus, active 

monitoring is needed to support the evaluation of resource availability. Due to 

the large number of actors and partners involved, this remains a difficult task. 

• Obtain feedback on actions (RP5): after completion of turn-round, controller 

needs to obtain feedback about how the processes were carried out (departure 

time or time required for alternate courses of actions). Feedback has usually to 

be actively sought -although in some cases, actors call.  

• Assess pre-condition for action (RP6): for all sequential turn-round processes, a 

certain pre-condition is necessary for the next step of turn-round. This requires 

that the controller actively monitors status of turn-round and informs partners or 

actors if problems arise at one stage. Due to the high workload required 
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therefore, response planning RP6 at some operation centres only marginally 

takes place so far.    

6.4 Concluding Aspects 

This step of the research was aimed at focusing more closely into such problems 

of information sharing and applying focus on information that is beneficial for TOBT 

prediction and able to avoid a inaccuracy-swing-effect of delay duration as identified 

during the survey. Therefore, field observations were undertaken to study the 

emergence of such information deficiencies. The investigation should also identify 

the different modes of turn-round monitoring and how this monitoring affects TOBT 

prediction accuracy. Procedural differences between a traditional mode of turn-round 

management at the aircraft and the increasingly applied approach towards remote 

turn-round management in a control centre were identified. Moreover, different 

strategies of the turn-round controller for creating or extracting required information 

were observed.  

Rasmussen’s terminology was applied to classify the various strategies of how 

turn-round controllers monitor the turn-round and predict its outcome via TOBT 

assignment as it could be observed at various airline operators’ turn-round 

operations. Differences between rule-, data-, and knowledge driven turn-round 

monitoring were found as well as their effect on TOBT predictability.  

It was concluded that turn-round management is largely influenced by the 

strategies of turn-round controllers that they apply for coordinating turn-round 

processes and the availability of resources necessary for predicting the TOBT. Turn-

round strategies are not only determined by individual controllers’ knowledge-, rule-, 

or skill-based behaviour, but also by the mode of turn-round monitoring that airlines 

have established based on their requirements. Hereby, reference models are used to 

define the milestones of the turn-round and process times required for the overall 

CDM turn-round process.  

Based on the results of a cockpit survey and the observations in various airline 

operators’ control rooms, it is argued that available data for the controller are 

insufficient to make reliable TOBT predictions: missing inputs from participating 

actors, poor monitoring capabilities, and unavailability of predictive turn-round 
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information results in TOBT estimates which allow only assessment of a TOBT rather 

than reliable TOBT decision making based on facts.  

It was found that little attention is placed on supporting turn-round processes with 

the effect that critical path of turn-round events are not sufficiently monitored and 

necessary data required for updates to TOBT is not available when required. For the 

benefit of the network however, exact TOBT assignment should be done as early as 

possible with minimum updates required.  

Finally, certain pieces of information available from participating actors like flight 

crews or ramp agents are not sufficiently taken into consideration for TOBT 

assignment - consequently making TOBT updates necessary.  

6.5 Discussion  

It is questionable whether the mutual trust required for the exchange of all 

information in order to make reliable TOBT predictions is possible with the current 

practice of delay code handling. Since the turn-round controller has to assign the delay 

via a code to the function, which she/he estimates as causing the delay, actors or 

operators involved at action level will not be keen on sharing data revealing their 

failures. This delay code assignment procedure is usually combined with bonus-mal 

practices where actors identified as being responsible for the delay have to expect 

financial penalties (Groppe et al., 2008). Therefore, problems with service delivery 

will not automatically be communicated to the turn-round controller with a negative 

effect on his ability to make reliable TOBT predictions (Tempelaar, 2009).  
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7 TOBT PREDICTION ACCURACY EXPERIMENTS  

The A-CDM concept requires that operational information is shared between all 

participating partners in order to establish sufficient situational awareness for 

operational decision making. It has been shown earlier that as a part of this decision 

making the Target Off-block Time TOBT is an important trigger for all ATM decision 

makers and CFMU for the status of the flight.  

This Chapter describes the experimental design and analysis of human-in-the-loop 

simulations where the TOBT assignments for turn-rounds were compared under 

different information sharing conditions. The experiments targeted turn-round 

operation situations under adverse conditions and were aimed at evaluating the 

influence of cooperative information sharing on TOBT prediction accuracy. During 

three simulated turn-round scenarios the participants were asked to monitor the 

progress of 15 aircraft in parallel and determine the Target-Off Block Time (TOBT) 

ten minutes prior to Estimated Aircraft In-block Time (EIBT) and five minutes after 

Actual In-block Time (AIBT). While for a number of turn-rounds the turn-round 

controllers received simulated information from flight crews or ramp agent 

automatically which was required for TOBT updates (cooperative information 

sharing); for other turn-rounds the turn-round controllers had to call an interlocutor 

representing the flight crew/ramp agent by themselves  in order to get the required 

information for TOBT updates (non-cooperative information sharing).   

7.1 Introduction 

Throughout the course of daily operations, an airline is often faced with unexpected 

situations developing from adverse conditions like weather patterns or industrial 

actions that may result in substantial deviations in its planned operations. As a result, 

decisions often have to be made few hours before the actual schedule. These decisions 

can have significant impact on the overall operation of the airline for the rest of the 

day affecting all aspects of the airline’s operation, but most detrimental to the hub-and 

spoke schedules for basic resources such as aircraft, flight crews, and turn-round 

equipment.  



 Chapter 7: TOBT Prediction Accuracy Experiments   

 

          Matthias Groppe                Influences on Aircraft TOBT Prediction Accuracy                    156                 

As a consequence, turn-round controllers are constantly faced with operational 

problems that emerge from adverse conditions like flight cancellations or changing 

aircraft equipment. Turn-round times are so becoming increasingly constrained with 

aircraft arriving delayed from outstation. Often not even the minimum turn-round time 

is available for the turn-round.  

Because each individual turn-round can have up to 35 supporting processes, early 

coordination of these turn-round processes with TOBT updates is required. Such 

updates need to be accurate enough to provide the ATM network and CFMU with 

reliable TOBT predictions. Therefore, all participating actors have to share their 

information because a single turn-round process failure that is not communicated can 

have dramatic impact on TOBT reliability and thus affect the entire network.  

Failures to update the TOBT correctly can often be traced back to information that 

is not automatically available for TOBT decision making. Since such information is 

usually obtained by distributed actors like flight crews or ramp agents, a more 

standardised form of situational awareness has to be created that encourages 

cooperative information sharing by participating actors.  

During three experimental conditions the influence of various information 

availabilities and information dispositional factors on TOBT prediction accuracy was 

analysed.  

7.2 Aims, Objectives and Hypotheses of the Study 

The over-arching objective of this research phase was derived from the previous 

phases. After describing the influences on TOBT accuracy, the aim is now to capture 

these influences and whether they can be measured or quantified in controlled 

laboratory scenarios. A number of variables were included that might be relevant for 

TOBT accuracy and which were assumed to have influence on TOBT. As a result of 

this study, a concept for the design and analysis of decision support functionalities for 

TOBT decisions should be produced. Such concept is so based on the results of a 

comparison between standardised and cooperative information sharing between turn-

round controllers and distributed functions like flight crews or ramp agents via 

ACARS/HMI, with the currently used baseline data and functionalities available to the 

turn-round controller today. The experimental setting was designed to obtain 
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quantitative measures of the influence of information that is cooperatively shared 

between turn-round controllers and flight crews/ramp agents on the TOBT 

assignments at two measurement points. Such a set-up should allow sharing 

information in a more standardised form that creates situational awareness and 

encourages information forwarding. Therefore, the focus applied for the turn-round 

laboratory scenarios was set to factors related to information disposition and 

information accuracy that have not been investigated before.   

Hypothesis I: Information required for TOBT updates (independent variable) which is 

cooperatively shared between flight crews and turn-round controller before |EIBT - 10 

Minutes| increases the accuracy of TOBT, i.e. reduces |TOBT - AOBT| (Dependent 

Variable).  

Hypothesis II: Information required for TOBT updates (independent variable) which 

is cooperatively shared between flight crew, ramp agent and turn-round controller 

before |AIBT + 5 Minutes| increases the accuracy of TOBT, i.e. reduces |TOBT - 

AOBT| (Dependent Variable).  

 

Constraints that were considered included: 

• How does the level of workload influence the interactions that are created 

between turn-round controllers and flight crews/ramp agents? 

• Can lack of trust between turn-round controller and flight crews/ramp agents 

resulting from past experience influence TOBT decision making? 

• How does established working procedures of turn-round controllers influence 

TOBT decision making (See also Chapter 6)?  

7.3 The Participants 

The participants (N = 6) were recruited from the very small group of turn-round 

controllers with operational A-CDM experience at Lufthansa Hub Control Centre at 

Munich Airport.  All turn-round controllers at Munich airport have been performing 

turn-round control for a minimum of three years. The age of the turn-round controllers 

ranged between 35 to 52 with 2 females and 4 males in each condition. Munich 

Airport is the first airport in Europe that has emerged as an operational CDM airport 

from prior trials, while other European airports either still have trial status only or 
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handle only smaller amounts of traffic. Due to the local environment, Munich airport 

is a representative example of adverse weather conditions and therefore has experience 

with such operational restrictions. Participants are trained in handling more than 15 

turn-rounds in parallel.  

Problems realized with the selection of such participant group include: 

• Established working procedures may interfere with new turn-round 

functionalities like the proposed experimental design. 

• Inherent refusal to use or mistrust of new functionalities perceived as a threat 

to existing working practices.  

• Inherent mistrust towards other participating actors like ramp agents or flight 

crews based on prior experience.  

The method used was a within-participant experimental design that offered advantages 

like: 

• Intra-operator comparisons increase statistical strength by eliminating 

between-subject variability. 

• The rare existence of the participating group requires fewer subjects to be 

recruited. 

7.4 Experimental Design 

A. Concept of the Experiments: 

The TOBT prediction accuracy experiments built on the design requirements as 

identified during the Cognitive Work Analysis. With the starting point Turn-round 

Control Centre, representing the A-CDM workspace today, a concept for an 

information sharing concept was created that provides a prototype of a cooperative 

environment. It should be able to deliver more accurate and earlier TOBT predictions 

and so avoid CTOTs being made, that cannot be used because the flight is not ready 

for dispatch (see Chapter 1.3). While the Turn-Round Control Mock-up (TRCM) 

provides decision support for TOBT decisions, the improvements for A-CDM as 

pursued by the experiments should result from the increased cooperation that emerges 

from the way of working together. This means that information that is available by 

stakeholders, is proactively shared with A-CDM decision makers compared to 
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information that is shared via request or by accident only. As this is a significant 

change of cooperating during daily working practices, such approach might be able to 

change existing working practices via creation of an awareness where information is 

available or needed and can so used to improve decision making.  

 
 

B. The Turn-round Scenarios: 

The scenarios used for the experiment incorporated real flight data as recorded from 

actual operation at Munich airport. First, an extract was chosen from a daily flight 

schedule of Lufthansa CityLine flights where a peak was observed and all flights 

arrived delayed from outstation due to adverse weather condition (Table 10). During 

the consecutive turn-rounds of these flights, various events were encountered that 

resulted in additional delays of the following outbound flights. The delay causes of 

these turn-round events were then given to experts from other airports who were asked 

to estimate the delay duration of various turn-round events independent from the real 

time duration of the turn-round data from Munich in order to get mean values of the 

turn-round delay events that should be used for building the scenarios. The expert 

assessment was needed to avoid variations of the delay events that should be used for 

the experiments being too large or too small.  

 

TABLE 10: DATA SET AS RECORDED FROM ACTUAL OPERATIO N (SOURCE: LUFTHANSA, 2009) 

 

FLIGHT DEP EIBT ARR A/C REGT STTT 

 

FLIGHT DES EOBT 

LH 5590 ZAG 11:30:00 MUC AR8 DAVRF 00:35:00 LH 3744 BCN 12:05:00 

LH 7200 GOT 11:35:00 MUC CR9 DACKG 00:35:00 LH 3402 BEG 12:10:00 

LH 4100 BRU 11:50:00 MUC CR9 DACKE 00:35:00 LH 4364 MRS 12:25:00 

LH 5432 BRE 11:50:00 MUC CR7 DACPN 00:35:00 LH 3084 CPH 12:25:00 

LH 4549 BIO 11:55:00 MUC CR7 DACPO 00:35:00 LH 4700 AMS 12:30:00 

LH 5610 FMO 11:55:00 MUC CR2 DACJD 00:30:00 LH 3828 BSL 12:25:00 

LH 4861 MAN 12:00:00 MUC AR8 DAVRB 00:35:00 LH 3314 WAW 12:35:00 

LH 4153 NCE 12:05:00 MUC CR9 DACKA 00:35:00 LH 3334 KRK 12:40:00 

LH 3313 WAW 12:05:00 MUC AR8 DAVRK 00:35:00 LH 4250 CDG 12:40:00 

LH 3083 CPH 12:10:00 MUC CR7 DACPT 00:35:00 LH 4916 BHX 12:45:00 

LH 3685 GVA 12:15:00 MUC AR8 DAVRQ 00:35:00 LH 1072 DRS 12:50:00 

LH 3333 KRK 12:15:00 MUC AR8 DAVRL 00:35:00 LH 3558 TIA 12:50:00 

LH 4345 BUD 12:20:00 MUC CR2 DACJE 00:35:00 LH 5448 VIE 12:55:00 

LH 7564 LHR 12:20:00 MUC CR7 DACPA 00:35:00 LH 3698 DUS 12:55:00 

LH 8342 BEG 12:20:00 MUC AR8 DAVRE 00:35:00 LH 6678 BIO 12:55:00 
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As a next step, only the turn-round events with inherent delays were chosen that are 

highly likely to be known to the pilot or ramp agent before the flight arrives at the 

parking position. Therefore, the flight crew or ramp agents are able to estimate the 

amount of delay caused by this event that has to be reckoned with. The assumption 

was that if this information had been cooperatively shared with the turn-round 

controller either on flight crews’ or ramp agents’ initiative (cooperative information 

sharing), a more accurate TOBT prediction could have been made. All turn-round 

events chosen could be allocated to a specific IATA delay code event.  

Table 11 shows measured operational delay data together with the delay range in 

minutes that actually occurred on from Lufthansa CityLine flights between March and 

September 2009. The event types were used for building the experimental scenarios. 

Thereby it was assumed that all these turn-round events were known to the flight crew 

and such knowledge could be used to cooperatively share it with the turn-round 

controller. Today however, the information about these events and the expected 

duration of delay is not shared in a standardised way. While some flight crews are 

using the ACARS or some ramp agents are using their mobile phone to update the 

turn-round controller about such turn-round events, other flight crews/ ramp agents do 

not forward this information.  

 

TABLE 11: MEASURED OPERATIONAL DELAY DATA I  (SOURC E: LUFTHANSA, 2009) 

 

 

 

 

DELAY CODE 9 15 15 32
∆t in Minutes [3-15] [3-29] [3-29] [3-45]
EVENT TYPE  ADD FUEL  ADD PAX ADD DEBOARDING ADD BULK
Event No 1 2 3 4
Description High Fuel Load Heavy Carry on Luggage 

increases deboarding 
time/ Other related PAX 

Additional WCH or UM 
have to be picked up

Cello or other cabin bulk

DELAY CODE 15 41 18 15
∆t in Minutes [3-29] [2-70] [4-15] [3-29]
EVENT TYPE ADD BOARDING  ADD TEC  ADD LOAD  ADD DEPU  
Event No 5 6 7 8
Description Pre-boarding of WCH, 

UM
Technical Repair Large Amount of DAA 

Baggage  
DEPU on Board
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Keys 

Delay Code Number according to IATA Delay Coding 

∆t in Minutes Delay range in minutes from CLH flights between 
March and September 2009 

CLH Lufthansa CityLine 

Event Type Nature of the delay 

ADD Indicates that the problem was additional to normal 

UPDD Deviation from MTTT due to Updates from Ramp 

PAX Passenger 

WCH Wheel Chair 

UM Unaccompanied Minor 

TEC Technical Issues 

DAA Delivery at Aircraft 

DEPU Deported Passenger 

 

Table 12 shows measured operational delay data together with the delay range in 

minutes that also occurred on these flights with events that were assumed to be known 

to the ramp agent. These event types were additionally used for building the 

experimental scenarios and could be used for cooperative information sharing initiated 

by the ramp agent:  

 

TABLE 12: MEASURED OPERATIONAL DELAY DATA II (SOURC E: LUFTHANSA, 2009) 

 

 
Thereafter, the turn-round events were distributed within the turn-rounds of table 10 

and used for the different experimental scenarios.  

B. The Independent Variables: Different Information Sharing Conditions 

Three different information sharing conditions C0, C1, and C2, used as independent 

variables were embedded within three experimental scenarios A, B, and C. In this 

DELAY CODE 39 35,36,37 32 33,34
∆t in Minutes [5-34] [3-41] [3-45] [3-21]
EVENT TYPE UPDD TEC UPDD SERVICES UPDD LOAD UPDD PERSONNEL 
Event No 10 11 12 13
Description Ground Crew updates 

about changes of 
unavailable services 
(Parking, Air Starter, 
Bridge…)

Service needs 
longer/shorter than 
expected

Loading takes 
longer/shorter than 
scheduled

Missing personnel results in 
delayed turn-round services 



 Chapter 7: TOBT Prediction Accuracy Experiments   

 

          Matthias Groppe                Influences on Aircraft TOBT Prediction Accuracy                    162                 

way, different information was available to the turn-round controller during each 

monitored turn-round: 

• Condition C0 or Baseline Information as the way of information sharing today: 

During condition 0 turn-round scenarios, the turn-round controller was able to 

use information required for TOBT updates which was provided via incoming 

telephone calls and/or by making self-initiated telephone calls with the ramp 

agent or flight crew in order to get the required information. 

• Condition C I  included Cooperative Information from Flight crew shared with 

the Turn-round Controller via ACARS: 

During condition C I turn-round scenarios, the effect on TOBT prediction 

accuracy was identified which resulted from flight crew-induced information 

sharing between aircrews and turn-round controller before the first TOBT 

assignment. The turn-round controller was therefore additionally provided with 

information from cockpit via simulated ACARS messages containing 

information required for TOBT updates.  

• Condition C II included Cooperative Information from flight crew and ramp 

agent shared with the turn-round controller via ACARS and HMI:  

During condition C II turn-round scenarios, the effect on TOBT prediction 

accuracy was identified which resulted from flight crew and ramp agent 

induced information sharing between aircrews/ramp agent and turn-round 

controller before second TOBT assignment. The turn-round controller was 

therefore provided with information from cockpit via simulated ACARS 

messages and information from ramp agent via simulated HMI messages 

containing information required for TOBT updates. 

C. The Experimental Scenarios A, B and C: 

The sample group included six turn-round controllers that participated in all three 

experimental scenarios A, B, and C. Each setting included 15 turn-rounds with 

different information sharing conditions (15 turn-rounds represent one 

experimental scenario A, B, or C). All scenarios included a similar amount of such 

information inputs that had an effect on the duration of the turn-round (5- 6 inputs 
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per turn-round).All scenarios included also a similar amount of information that 

did not have an effect on the duration of the turn-round (1-2 inputs per turn-round). 

Randomisation between scenarios was done with a Latin-square 

design.Additionally, each of the experimental scenarios included 100 incoming 

pre-recorded telephone calls from participating actors like flight crews, ramp 

agents, or airport. 

A one-factorial design type of experiment with three information conditions as 

independent variables and TOBT prediction accuracy as dependent variable (Two 

dependent variables as timely scheduled TOBT predictions).  

The three information sharing conditions (C0/CI/CII) were embedded in the three 

experimental scenarios (A/B/C) with sharing the conditions between the turn-

round scenarios as equally distributed as possible. Thereby, the experimental 

scenarios A/B/C had a similar structure. A total of 15 different turn-rounds based 

on the conditions C0, CI, and CII were used from actual recorded operations of the 

Lufthansa CityLine flights. They were randomly distributed within the 

experimental scenarios A, B, and C   in order to minimise the order effect.  

A total of 15 turn-round delay sets were built from Table 11 and Table 12, each 

represented by a number. The delay sets were randomly distributed within the turn-

rounds in order to minimize the order effect.   

The following tables (Table 13- 15) show detailed information about the experimental 

scenarios A, B, and C:  

While the first column shows the turn-round number and the second number (in 

brackets) indicates the turn-round delay event number that was used for the turn-

round, the second column shows the different information sharing conditions that 

were used in the turn-round. 

The third column has the flight number that was not changed during the different 

experimental scenarios and the last three columns show the information that is 

available to the flight crew or ramp agent. If the cell is highlighted in yellow, this 

information was cooperatively shared between flight crew and turn-round 

controller, respectively between flight crew, ramp agent and turn-round controller. 

The white cells indicate that only baseline information was available to the turn-

round controller and represents the information sharing as it is established today. 
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The content of these cells gives the cause of delay analogous the measured 

operational data in Tables 11 and 12. The time indicates the duration of the 

average delay in minutes that has been validated by the SMEs from other airports, 

independent from the measured operational data. 

The cells highlighted in yellow indicate cooperative information sharing 

conditions (C1/C2), while the white cells indicate that only baseline information 

(C0) was available to the turn-round controller: 
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TABLE 13: TURN-ROUND EXPERIMENTAL SCENARIO A: DELAY  EVENTS 

TR/ 

SET 

No 

CONDT. 
INBOUND 

FLIGHT 
INFORMATION AVAILABLE FROM FLIGHT CREW (ACARS) 

OUTBOUND 

FLIGHT 
INFORMATION AVAILABLE FROM RAMP AGENT (HMI) 

1 (14) C2 
LH 5590 

ZAG 

UM De-boarding 

+4 Minutes 

Musical 

Instrument 

+4 Minutes 

DAA De-

loading 

+4 Minutes 

LH 3744 

BCN 

Late Fuelling 

+3 Minutes 

WCH De-

boarding 

+5  Minutes 

Late Loading 

Personnel 

+2 Minutes 

2 (10) C2 
LH 7200 

GOT 

Crew Change 

+5 Minutes 

Carry-on Lug 

+3 Minutes 

Cabin Baggage 

+3 Minutes 

LH 3402 

BEG 

Security 

+1 Minutes 

WCH Pick up 

Delay 

+26 Minutes 

React. Fuelling 

+7 Minutes 

3 C0 
LH 4100 

BRU 

De-boarding 

WCH 

+5 Minutes 

High Fuelling 

+3 (No ADD) 

Tec (Oven) 

+12 Minutes 

LH 4364 

MRS 

De-boarding 

delay 

+3 Minutes 

Amount 

Luggage 

+2 Minutes 

Spec. Cleaning 

+5 Minutes 

4 (2) C2 
LH 5432 

BRE 

De-boarding 

WCH 

+7 Minutes 

De-loading 

+4 Minutes 
--- 

LH 3084 

CPH 

Loading 

Personnel 

+7 Minutes 

Heavy Luggage 

+3 Minutes 

Air Starter 

Delay 

+2 Minutes 

5 C0 
LH 4549 

BIO 

De-boarding 

+5 (NO ADD) 

Tec (TIRE) 

+49 
------ 

LH 4700 

AMS 

Reactionary 

Ramp Agent 

+7(NO ADD) 

De-boarding 

+3 (NO ADD) 

Loading 

+2 (NO ADD) 

6 (4) C1 
LH 5610 

FMO 

Flight crew 

Request 

+6 Minutes 

De-boarding 

WCH 

+3 Minutes 

----- 
LH 3828 

BSL 

Cleaning Delay 

+1 Minutes 

Conveyor INOP 

+26 Minutes 

Late Loading 

Personnel 

+7 Minutes 

7 (13) C1 
LH 4861 

MAN 

DAA De-loading 

+5 Minutes 

De-boarding 

WCH 

+3 Minutes 

Musical 

Instrument 

+5 Minutes 

LH 3314 

WAW 

Late WCH 

Pickup 

+1 Minutes 

Late Crew 

+6 Minutes 

No Loading 

Person 

+7 Minutes 

8 C0 
LH 4153 

NCE 

Crew Change 

+5 Minutes 

DAA De-Loading 

+4 Minutes 

De- De-

boarding 

+3 Minutes 

LH 3334 

KRK 

No Loading 

Personnel 

+7 Minutes 

No Pick up for 

DEPU 

+3 Minutes 

No Push-Back 

+2 Minutes 

9 C0 
LH 3313 

WAW 

Extra Fuelling 

+3 (NO ADD) 

De-boarding 

+5 (NO ADD) 

Tec (NAV) 

+12 Minutes 

LH 4250 

CDG 

Late Fuelling 

+5 (NO ADD) 

De-boarding 

WCH 

+3 (NO ADD) 

Late Loading 

Personnel 

+2 Minutes 

10 (7) C2 
LH 3083 

CPH 

De-boarding UM 

+2 Minutes 

Musical 

Instrument 

+4 Minutes 

DAA De-

loading 

+4 Minutes 

LH 4916 

BHX 

Loading Time 

+2 Minutes 

Late Catering 

+9 Minutes 

No Cleaning 

Personnel  

+7 Minutes 

11 C0 
LH 3685 

GVA 

De-boarding 

WCH 

+12 (NO ADD) 

Tec (COMP.) 

+39 Minutes 
----- 

LH 1072 

DRS 

Late Technician 

+7 Minutes 

Tec Repair 

+3 Minutes 

React PAX Bus 

+2 Minutes 

12 (6) C1 
LH 3333 

KRK 

Cabin Luggage 

+5 Minutes 

De-boarding 

DEPU 

+3 Minutes 

Refuelling 

+3 Minutes 

LH 3558 

TIA 

Late Crew 

+23 Minutes 

Fuelling Block 

+2 (NO ADD) 

WCH Pick-up 

Delay 

+5 (NO ADD) 
13 

(12) 
C2 

LH 4345 

BUD 

Carry-on Baggage 

+3 Minutes 

De-boarding 

DEPU 

+3 Minutes 

Refuelling 

+3 Minutes 

LH 5448 

VIE 

No Air Starter 

+23 Minutes 

Crew Change 

+2 Minutes 

Reaction Push 

B 

+5 Minutes 

14 (1) C1 
LH 7564 

LHR 

De-boarding 

WCH 

+6 (NO ADD) 

Tec. (TIRE) 

+38 Minutes 
---- 

LH 3698 

DUS 

No Loading 

Personnel 

+4 Minutes 

No DEPU Pick 

up 

+3 Minutes 

No Push back 

+2 Minutes 

15 

(15) 
C2 

LH 8342 

BEG 

Carry On Luggage 

+3 Minutes 

De-boarding 

DEPU 

+3 Minutes 

Refuelling 

+3 Minutes 

LH 6678 

BIO 

Late Cleaning 

+4 Minutes 

Conveyor INOP 

+6 Minutes 

No Loading 

Person 

+3 Minutes 

 
 

TABLE 14: TURN-ROUND EXPERIMENTAL SCENARIO B: DELAY  EVENTS 

TR/  

SET 
CONDT. 

INBOUND 

FLIGHT 
INFORMATION AVAILABLE FROM  FLIGHT CREW (ACARS) 

OUBOUND 

FLIGHT 
INFORMATION AVAILABLE FROM  RAMP AGENT (HMI) 

1 C0 
LH 5590 

ZAG 

De-boarding WCH 

+6 (NO ADD) 

Tec. (TIRE) 

+38 Minutes 
---- 

LH 3744 

BCN 

No Loading P 

+4 Minutes 

No DEPU BGS 

+3 Minutes 

No Push back 

+2 Minutes 

2 C0 
LH 7200 

GOT 

De-boarding WCH 

+7 Minutes 

De-loading 

+4 Minutes 
--- 

LH 3402 

BEG 

Loading 

Personnel 

+7 Minutes 

Heavy Luggage 

+3 Minutes 

Air Starter Delay 

+2 Minutes 

3 (11) C1 
LH 4100 

BRU 

De-boarding WCH 

+12 (NO ADD) 

Tec (COMP.) 

+39 Minutes 
----- 

LH 4364 

MRS 

Late Technician 

+7 Minutes 

Tec Repair 

+3 Minutes 

React PAX Bus 

+2 Minutes 

4 (9) C1 
LH 5432 

BRE 

Extra Fuelling 

+3 (NO ADD) 

De-boarding 

+5 (NO ADD) 

Tec (NAV) 

+12 Minutes 

LH 3084 

CPH 

Late Fuelling 

+5 (NO ADD) 

De-boarding  

WCH 

+3 (NO ADD) 

Late Load 

Personnel 

+2 
5 (3) C2 

LH 4549 

BIO 

De-boarding WCH 

+5 Minutes 

High Fuelling 

+3 (No ADD) 

Tec (Oven) 

+12 Minutes 

LH 4700 

AMS 

De-boarding 

delay 

+3 Minutes 

Amount 

Luggage 

+2 Minutes 

Spec. Cleaning 

+5 Minutes 

6 C0 
LH 5610 

FMO 

Cabin Luggage 

+5 Minutes 

De-boarding 

DEPU 

+3 Minutes 

Refuelling 

+3 Minutes 

LH 3828 

BSL 

Late Crew 

+23 Minutes 

Fuelling Block 

+2 (NO ADD) 

WCH Pick-up 

Delay 

+5 (NO ADD) 
7 (7) C1 

LH 4861 

MAN 

De-boarding UM 

+2 Minutes 

Musical 

Instrument 

+4 Minutes 

DAA De-loading 

+4 Minutes 

LH 3314 

WAW 

Loading Time 

+2 Minutes 

No Flight  

Documents 

+9 Minutes 

No Cleaning 

Personnel 

+7 Minutes 
8 (10) C1 

LH 4153 

NCE 

Crew Change 

+5 Minutes 

Carry-on Lug 

+3 Minutes 

Cabin Bag 

+3 Minutes 

LH 3334 

KRK 

Security Check 

+1 Minutes 

WCH Pick up 

Delay 

+26 Minutes 

React. Fuelling 

+7 Minutes 

9 (4) C2 
LH 3313 

WAW 

Flight crew 

Request 

+6 Minutes 

De-boarding 

WCH 

+3 Minutes 

----- 
LH 4250 

CDG 

Cleaning Del 

+1 Minutes 

Conveyor INOP 

+26 Minutes 

Late Loading 

Personnel 

+7 Minutes 
10 (5) C1 

LH 3083 

CPH 

De-boarding 

+5 (NO ADD) 

Tec (TIRE) 

+49 Minutes 
------ 

LH 4916 

BHX 

Reactionary 

Ramp Agent 

+7(NO ADD) 

De-boarding 

+3 (NO ADD) 

Loading 

+2 (NO ADD) 

11 

(13) 
C2 

LH 3685 

GVA 

DAA De-loading 

+5 Minutes 

De-boarding 

WCH 

+3 Minutes 

Musical 

Instrument 

+5 Minutes 

LH 1072 

DRS 

Late WCH Pick-

up 

+1 Minutes 

Late Crew 

+6 Minutes 

No Loading 

Personnel 

+7 Minutes 
12 C0 

LH 3333 

KRK 

Carry on 

+3 Minutes 

De-boarding 

DEPU 

+3 Minutes 

Refuelling 

+3 Minutes 

LH 3558 

TIA 

No Air Starter 

+23 Minutes 

Reactionary 

Ramp Agent 

+2 Minutes 

Reaction Push B 

+5 Minutes 

13 (8) C1 
LH 4345 

BUD 

Crew Change 

+5 Minutes 

DAA De-

Loading 

+4 Minutes 

De-boarding 

DEPU 

+3 Minutes 

LH 5448 

VIE 

No Load. 

Person 

+7 Minutes 

No BGS DEPU 

+3 Minutes 

No Push-Back 

+2 Minutes 

14 C0 
LH 7564 

LHR 

UM De-boarding 

+4 Minutes 

Musical 

Instrument 

+4 Minutes 

DAA De-loading 

+4 Minutes 

LH 3698 

DUS 

Late Fuelling 

+3 Minutes 

WCH De-

boarding 

+5  Minutes 

Late Loading 

Personnel 

+2 Minutes 
15 C0 

LH 8342 

BEG 

Carry On Luggage 

+3 Minutes 

De-boarding 

DEPU 

+3 Minutes 

Refuelling 

+3 Minutes 

LH 6678 

BIO 

Late Cleaning 

+4 Minutes 

Conveyor INOP 

+6 Minutes 

No Loading 

Person 

+3 Minutes  
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TABLE 15: TURN-ROUND EXPERIMENTAL SCENARIO C: DELAY  EVENTS  

TR/ 

SET 
CONDT. 

INBOUND 

FLIGHT 
INFORMATION AVAILABLE FROM FLIGHT CREW (ACARS) 

OUBOUND 

FLIGHT 
INFORMATION AVAILABLE FROM  RAMP AGENT (HMI) 

1 (15) C1 
LH 5590 

ZAG 

Heavy Carry On 

Luggage 

+3 Minutes 

De boarding of  

DEPU 

+3 Minutes 

Refuelling 

+3 Minutes 

LH 3744 

BCN 

Late Cleaning 

+4 Minutes 

Conveyor INOP 

+6 Minutes 

No Loading Person 

+3 Minutes 

2 (3) C1 
LH 7200 

GOT 

De-boarding WCH 

+5 Minutes 

High Fuelling 

+3 (No ADD) 

Tec (Oven) 

+12 Minutes 

LH 3402 

BEG 

De-boarding 

delay 

+3 Minutes 

Amount 

Loading 

+2 Minutes 

Spec. Cleaning 

+5 Minutes 

3 (8) C2 
LH 4100 

BRU 

Crew Change 

+5 Minutes 

DAA De-

Loading 

+4 Minutes 

De-boarding 

DEPU 

+3 Minutes 

LH 4364 

MRS 

No Load. 

Person 

+7 Minutes 

No Pick up for  

DEPU 

+3 Minutes 

No Push-Back 

+2 Minutes 

4 C0 
LH 5432 

BRE 

Flight crew 

Request 

+6 Minutes 

De-boarding 

WCH 

+3 Minutes 

----- 
LH 3084 

CPH 

Cleaning Del 

+1 Minutes 

Conveyor INOP 

+26 Minutes 

Late Loading 

Personnel 

+7 Minutes 

5 (12) C1 
LH 4549 

BIO 

Carry on 

+3 Minutes 

De-boarding 

DEPU 

+3 Minutes 

Refuelling 

+3 Minutes 

LH 4700 

AMS 

No Air Starter 

+23 Minutes 

Crew Change 

+2 Minutes 

Reaction Push B 

+5 Minutes 

6 (5) C2 
LH 5610 

FMO 

De-boarding 

+5 (NO ADD) 

Tec (TIRE) 

+49 
------ 

LH 3828 

BSL 

Reactionary 

Ramp Agent 

+7(NO ADD) 

De-boarding 

+3 (NO ADD) 

Loading 

+2 (NO ADD) 

7 C0 
LH 4861 

MAN 

De-boarding UM 

+2 Minutes 

Musical 

Instrument 

+4 Minutes 

DAA De-loading 

+4 Minutes 

LH 3314 

WAW 

Loading Time 

+2 Minutes 

No Catering 

+9 Minutes 

No Cleaning 

Personnel 

+7 Minutes 

8 (11) C2 
LH 4153 

NCE 

De-boarding WCH 

+12 (NO ADD) 

Tec (COMP.) 

+39 Minutes 
----- 

LH 3334 

KRK 

Late Technician 

+7 Minutes 

Tec Repair 

+3 Minutes 

React PAX Bus 

+2 Minutes 

9 (2) C1 
LH 3313 

WAW 

De-boarding 

(WCH) 

+7 Minutes 

De-loading 

+4 Minutes 
--- 

LH 4250 

CDG 

Loading 

Personnel 

+7 Minutes 

Heavy Luggage 

+3 Minutes 

Air Starter Delay 

+2 Minutes 

10 C0 
LH 3083 

CPH 

Crew Change 

+5 Minutes 

Carry-on Lug 

+3 Minutes 

Cabin Bag 

+3 Minutes 

LH 4916 

BHX 

Security Check 

+1 Minutes 

WCH Pick up 

Delay 

+26 Minutes 

React. Fuelling 

+7 Minutes 

11 (6) C2 
LH 3685 

GVA 

Cabin Luggage 

+5 Minutes 

De-boarding 

DEPU 

+3 Minutes 

Refuelling 

+3 Minutes 

LH 1072 

DRS 

Late Crew 

+23 Minutes 

Fuelling Block 

+2 (NO ADD) 

WCH Pick-up Delay 

+5 (NO ADD) 

12 (9) C2 
LH 3333 

KRK 

Extra Fuelling 

+3 (NO ADD) 

De-boarding 

+5 (NO ADD) 

Technical  

(NAV) 

+12 

LH 3558 

TIA 

Late Fuelling 

+5 (NO ADD) 

De boarding 

WCH 

+3 (NO ADD) 

Late Load Personnel 

+2 Minutes 

13 C0 
LH 4345 

BUD 

DAA De-Loading 

+5 Minutes 

De-boarding 

WCH 

+3 Minutes 

Musical 

Instrument 

+5 Minutes 

LH 5448 

VIE 

Late WCH Pick 

up 

+1 Minutes 

Late Crew 

+6 Minutes 

No Loading 

Personnel 

+7 Minutes 

14 (1) C2 
LH 7564 

LHR 

De-boarding WCH 

+6 (NO ADD) 

Tec. (TIRE) 

+38 Minutes 
---- 

LH 3698 

DUS 

No Loading P 

+4 Minutes 

No DEPU BGS 

+3 Minutes 

No Push back 

+2 Minutes 

15 

(14) 
C1 

LH 8342 

BEG 

UM De-boarding 

+4 Minutes 

Musical 

Instrument 

+4 Minutes 

DAA De-loading 

+4 Minutes 

LH 6678 

BIO 

Late Fuelling 

+3 Minutes 

WCH De 

boarding 

+5  Minutes 

Late Loading 

Personnel 

+2 Minutes 

 
 

D. Experimental Setting Overview 

Experimental Design: Figure 29 illustrates the factorial structure of the 

experiments. Aircraft pilots were participating as interlocutors for the turn-round 

controllers and were placed in a separate room. They were advised to take either the 

role of the flight crew or ramp agent, depending on the kind of contact that the turn-

round controller requested from the interlocutor. 

Counterbalancing: Figure 29 also illustrates how the experimental scenarios were 

counterbalanced. A Latin-square design was used to control this effect as well as a 

switch between the different conditions throughout the experiments. The design was 

counterbalanced for 3 pairs of scenarios with a total of 18 pairs of scenarios. 

 



 Chapter 7: TOBT Prediction Accuracy Experiments   

 

          Matthias Groppe                Influences on Aircraft TOBT Prediction Accuracy                    167                 

 
FIGURE 29: FACTORIAL STRUCTURE AND LATIN SQUARE DES IGN 

 
 
E. Measurement Points 

Measurement Point I:  

As part of the underlying aim of getting earlier and more accurate TOBT 

predictions, the first measurement point was recorded at a time representing Milestone 

5 of the A-CDM information-sharing concept. This point represents the inbound 

aircraft at the final approach and TOBT predictions are currently only available via 

Separate Room with Pilots/Ramp Agents

Pilots as interlocutors for the 

turn-round control lers could take

the role of a pilot or ramp agent

Pilot 1 Interlocutor for Particiapant 1

Pilot 2 Interlocutor for Particiapant 2

Pilot 3 Interlocutor for Particiapant 3

Pilot 4 Interlocutor for Particiapant 4

Pilot 5 Interlocutor for Particiapant 5

Pilot 6 Interlocutor for Particiapant 6

Experiment Room 

Turn-round Controller 1 Turn-round Controller 2

Setting A: 5x C0/4x C1/6x C2 Setting A: 5x C0/4x C1/6x C2

Setting B: 6x C0/6x C1/ 3x C2 Setting B: 6x C0/6x C1/ 3x C2

Setting C: 4x C0/ 5x C1/ 6x C2 Setting C: 4x C0/ 5x C1/ 6x C2

Turn-round Controller 3 Turn-round Controller 4

Setting B: 6x C0/6x C1/ 3x C2 Setting B: 6x C0/6x C1/ 3x C2

Setting C: 4x C0/ 5x C1/ 6x C2 Setting C: 4x C0/ 5x C1/ 6x C2

Setting A: 5x C0/4x C1/6x C2 Setting A: 5x C0/4x C1/6x C2

Turn-round Controller 5 Turn-round Controller 6

Setting C: 4x C0/ 5x C1/ 6x C2 Setting C: 4x C0/ 5x C1/ 6x C2

Setting A: 5x C0/4x C1/6x C2 Setting A: 5x C0/4x C1/6x C2

Setting B: 6x C0/6x C1/ 3x C2 Setting B: 6x C0/6x C1/ 3x C2
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automated calculation of the remaining flight time plus EXIT and MTTT. On average, 

this milestone is ten minutes prior to AOBT and time deviations between Milestone 5 

and Milestone 7 (AIBT) are relatively infrequent. This does not apply at airports with 

parallel runways because waiting times may have to be expected on the second 

runway due to arriving aircraft. However, for the experiments, an adherence to the 

predefined variable taxi time was assumed. Therefore, Milestone 5 is proposed as a 

first predictable TOBT to be assigned by the turn-round controller and also used as the 

first measurement point during the experiments.  

Measurement Point II: 

The second measurement point was also determined using the underlying 

assumption that the majority of unpredictable events during turn-round can be 

captured by the ramp agent during the phase between AIBT and five minutes after 

AIBT. This presumes that all turn-round service providers cooperatively share updates 

to their estimated service delivery time with the turn-round controller between 

Milestone 5 and Milestone 8. Upon arrival of the flight at the parking position, the 

ramp agent captures the remaining irregularities and forwards these to the turn-round 

controller. During the experiments, this procedure was simulated via a HMI message 

sent by the ramp agent. The second measurement point for TOBT updates was 

therefore chosen at AIBT plus five minutes.   

At both Measurement Points, the turn-round controllers had to insert their predicted 

TOBT into a spread sheet. These TOBTs had to be determined by (1) using their prior 

experience with turn-round control, (2) the possible support from the proposed TOBT 

of the TRCM and (3) the information received via telephone. It would have been 

possible that the turn-round controller uses only the TOBTs that are proposed by the 

TRCM, because GUI II and TOBT on GUI I were automatically updated with 

information inserted by the controller. In this case the results of the experiments would 

have been compromised by the fact that in one condition the controller accepts a 

machine-generated proposal that would have been available to him, hence the 

experiments would have reproduced the accuracy of the machine generated 

predictions. However, it has been shown that in only in 12% of all turn-rounds the 
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turn-round controller inserted exactly the time [-1; +1 minute] as proposed by the 

TRCM.  

7.5 Experimental Apparatus 

A. The Turn-round Control Work Station and the Turn -round Control Mock-up 

TRCM:  

The experimental apparatus as well as the simulation software were specifically 

developed for these experiments. The aim thereby was to reduce the functionality of 

the turn-round control system that is used during day-to-day operation as far as 

possible down to the basic functions that are required to allow a control of the 

variables relevant for the study. The equipment provided included: 

•  A Turn-round Control Mock-up TRCM as a basic functional station of the turn-

rounds’ controllers working position having two dynamical Graphical User 

Interfaces (GUI). The first GUI showed all flights represented by rectangular 

symbols during the period of an experimental setting. The flights were moving 

horizontally from the inbound phase of the flight until reaching the turn-round 

phase and the outbound phase of the flight. The simulation started 15 minutes prior 

to Estimated In-block Time EIBT and lasted until the last flight reaches its’ 

outbound phase (AIBT + 10 minutes). The second GUI could be accessed by 

clicking on each flight symbol, showing the critical path of turn-round events of 

the flight together with the related turn-round process times and process 

completion times including the turn-round completion time in form of a TOBT. 

Only one screen was available to display both GUIs. Turn-round updates to each 

of the turn-round processes could be inserted into a defined column resulting in an 

automated calculation of a TOBT update. 

• A telephone with short-dial function to reach the interlocutor.  

• A headset for receiving the incoming pre-recorded telephone calls. 

• A spreadsheet with the turn-round experimental setting having two columns to 

insert the TOBT updates at the pre-defined times (EIBT – 10 minutes; AIBT + 5 

Minutes). 
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FIGURE 30: THE EXPERIMENTAL TURN-ROUND CONTROL MOCK -UP 

B. Requirements for the Simulation Software: 

The software used was also specially developed for the experiments, because the 

following conditions should be met: 

• The experimental environment should be comprehensible for an experienced 

turn-round controller. 

• It should not duplicate turn-round controllers working environment exactly, but 

have the functionalities required for analysing the variables of concern. 

Therefore, the environment should not be too realistic in order to alleviate turn-

round controllers’ resistance to something they perceive as competing with their 

current working environment.  

• The experimental environment should allow for making TOBT predictions 

based on available data. 

Since no other system exists that provides these requirements, a Turn-round 

Control Mock-up (TRCM) was specially developed for this purpose with a set of 

design criteria for the software. 
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C. Development of a Software Application for the Turn-round Control Mock-up:  

Before the experiments, a project was initiated aimed at developing a software tool 

that is able to support the experimental TRCM with TOBT predictions based on 

information or data provided to the system. BeOne Hamburg GmbH, a company with 

more than ten years experience in airport management and process design was asked 

to develop the required software application for the TRCM. The required 

specifications were outlined as follows:    

Software Specifications: 

• The software consists of two GUIs.  

• The first GUI application looks like the picture just below (Figure 31). 

 
 

 
 
      FIGURE 31: GUI I SPECIFICATION FOR THE TRCM  

 
 

Depicted aircraft can be divided in four different categories: 

• approaching aircraft (orange); 

• delayed aircraft during approach or turn-round (flashing red); 

• aircraft during turn-round process (mint); and 
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• departed aircraft (blue).   

Any aircraft encountering a EIBT deviation greater or equal 3 minutes starts 

flashing. The turn-round controller can confirm flashing aircraft by mouse click; 

thereafter the flashing stops.The maximum number of aircraft that can be depicted 

is 15. Aircraft are depicted as moving bars with following information directly 

available: 

• flight number;  

• departure and arrival airports according to IATA codes; 

• SIBT (Scheduled In-block time); 

• MTTT (Minimum Turn-round Time). 

• TOBT (Target Off-Block Time); and 

• EIBT (Estimated In-Block Time). 

Arriving aircraft automatically appear on the screen approximately 15 minutes 

before EIBT according to the flight plan or actual flight status. When the aircraft 

has completed the turn-round, the turn-round controller can shade the aircraft after 

sending a movement message. 

The TOBT is calculated automatically using MTTT, but can be updated at any 

time by inserting relevant values into GUI 2. The middle line (the thick red dashed 

line in Figure 31) describes the time of the beginning of the turnaround process 

and is named AIBT (Actual In-Block Time).  

To support the experiments, two time stamps were defined and depicted in the GUI 

application:  EIBT-10; AIBT; AIBT +5. The left line (left red line in Figure 31) 

describes the time stamp used as Measurement Point I (MP I) 10 minutes before 

the beginning of the turnaround process and is labelled EIBT -10 (Estimated In-

block Time -10). The right line (right red line in Figure 31) describes the time 

stamp used as Measurement Point II (MP II) 5 minutes after the beginning of the 

turnaround process and is labelled AIBT +5 Min (Actual In-block Time + 5 

Minutes). Each aircraft are inserted into the simulation 15 minutes before EIBT 

and stay until the simulation ends, but TOBT updates are only possible until AIBT 

+ 5 Min.  

The second GUI application can be activated by clicking on an aircraft being in the 

1st main GUI as depicted in Figure 32. It shows all turnaround processes that the 
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aircraft is passing through. The 2nd GUI application looks like the picture below 

(Figure 32):  

 

 
 
     FIGURE 32: GUI II SPECIFICATION FOR THE TRCM  

 
Each aircraft runs through different turnaround processes (see the left column). The 

alternating solid and light pink colour indicates the next step in the critical path of 

turn-round processes while all processes either in solid or light pink that are in the 

same sequence can take place at the same time. For each turnaround process, the 

following information is depicted in a separate column: 

• Scheduled starting and finishing times normal duration with regard to MTTT; 

• Process Deviation time (Changes), Scheduled Service Delivery Time (SSDT) and 

Scheduled Service Completion Time (SSCT); 

• Time elapsed with defined TOBT + predicted deviation from SSDT; 

Target Service Delivery Times (TSDT) that can be inserted by turn-round 

controller and automatically updates the TOBT in GUI 1; the Target Service 

Completion Time (TSCT) will be calculated automatically by using the Duration 

Time in column 1.  
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STATUS: Each turn-round process is coloured depending on process status. There 

are four turn-round process states (see status column in Figure 32): 

o Planned; 

o Confirmed; 

o Started; and  

o Finished. 

TSDT updates by turn-round controller automatically shift the start and completion 

times of the other turn-round processes within the critical path with the ‘end- result’ 

being an updated TOBT on GUI 1.Appropriately adjusted TOBT is calculated 

automatically and GUI 1 is updated automatically as well by showing the new TOBT. 

The number of processes are defined analogous to the critical path of turn-round 

events (see Chapter 4.4), but can be adjusted by the operator. If a delay arises within 

the critical path, a TOBT deviation is predicted as indicated in red and the subsequent 

critical processes within the chain change their colour in order to indicate that an 

additional confirmation by the service provider about the TSDT/TSCT is required. 

The last column TOBT gives an indication how the entries under ‘Changes’ affect the 

TOBT, e.g. processes which take place in parallel to the critical path do not 

necessarily change the TOBT. This is seen as an essential part of the decision support 

functionality of the TRCM. 
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7.6 Method 

A. Pre-Trials 

Experimental trials were executed three weeks before the main experiments as a 

dry-run for the experimental set-up and scenarios. The aim was also to evaluate the 

following factors: 

• To simulate the day-to-day workload of the turn-round controller as closely as 

possible. 

• The number of incoming telephone calls represents the average number of calls 

during peak hours (approximately 100 incoming calls per hour). 

• The number of turn-rounds represents an average number of turn-rounds 

during peak hours (approximately 15 turn-rounds in parallel). 

• Any specific information from ramp agent or flight crew that is not included in 

the experiments but should be added, because it is essential for TOBT 

prediction. 

• The experimental set-up can be used and understood after a 40 minute 

introduction, followed by 20-minute individual testing of the TRCM by the 

participants. 

After the trials with two turn-round controllers, some fundamental changes had to 

be made that reflected turn-round controllers’ perception of the TRCM. Major 

resistance to the TRCM from turn-round controllers was observed against the TRCM 

because they viewed this tool as a replacement for their established working 

procedures rather than as a mock-up designed for the sake of the experiments alone. 

To counteract this resistance, statements and power point slides were used during the 

introduction of the main experiments to stress the TRCM’s function as an aid to TOBT 

decision making.   

Some minor refinements to the wording in the ACARS/HMI messages were also 

made.   The content was adapted to the wording on the GUI based on trial participants’ 

input in order to better identify the cell where the change has to be inserted. Other 

minor changes also included changes to the GUIs (i.e. the letters were too small). 

 



 Chapter 7: TOBT Prediction Accuracy Experiments   

 

          Matthias Groppe                Influences on Aircraft TOBT Prediction Accuracy                    176                 

B. Distribution of Instructions and Experiment Run  

The duration of the experiments was settled for one working day and took place in 

a room having all backup functionalities of the standard turn-round control room. 

After the participants took their seats in one of the three rows with the 

workstation/TRCM, the instructions for the experiment were given that had already 

been made available to the participants for home study. A 40-minutes introduction was 

given to the participants on how to use the workstation/TRCM and how to perform 

turn-round control using the telephone, pre-recorded messages, and the TRCM. The 

instructions were also available in printed form. However, the real objectives of the 

study were undisclosed to the participants. This introduction was followed by a 20-

minute individual testing of the TRCM functionalities.  

Airline pilots, employed as interlocutors for the participants, had also received the 

instructions of their tasks two weeks before the experiments in order to have time 

available for home study. A separate 20-minute briefing before the start of the 

experiments was provided to the flight crews as well as a printed form of the 

instructions.  
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Instructions for the participants: 

The following list (Figure 33) shows the instructions and guidelines that were 

available to the participants before the study: 

 

INSTRUCTIONS FOR THE PARTICIPANTS 
 

• Three experimental scenarios, each lasting for 55 minutes are proposed that consist of 15 

incoming flights with subsequent turn-rounds. 

• All flights arrive delayed from outstation due to adverse weather in Munich. 

• During each turn-round a number of events occur that have an effect on the length of the 

turn-round. A number of events arrive via simulated ACARS/HMI messages on the turn-

round control Mock-up, other event information arrive via telephone calls or have to be 

asked from the flight crew/ramp agent.  

• Each of the event information that arrives via ACARS/HMI requires a TOBT update by the 

participant, if ADD TIME is indicated; no update if NO ADD TIME is shown. 

• The turn-round control Mock-up as well as the information given does not replace the day-

to-day environment by 1:1. Therefore, the incoming information has to be evaluated by using 

own experience with turn-round control. 

• Two times during each turn-round you will be asked to determine the TOBT for a subsequent 

departure. Please directly insert this TOBT in the spreadsheet on your Table.  

• Additionally you will receive a number of telephone calls and ACARS messages that do not 

require a TOBT update. You can either take the call directly or delay it. The call will then be 

repeated one minute later. Information from telephone calls or other arriving information 

should support getting the required situational awareness about the turn-round status.  

• After the experimental setting is completed you will receive a message: ‘End of 

Experimental Setting - Many thanks for your participation’ 

 

FIGURE 33: INSTRUCTIONS FOR THE PARTICIPANTS 
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Instructions for the interlocutors: 

The following list (Figure 34) shows the instructions and guidelines that were 

available to the interlocutors before the study. Only airline flight crews were used as 

interlocutors because they are familiar with the turn-round procedures of airlines. All 

flight crews had a minimum experience of three years as airline flight crew:  

 

INSTRUCTIONS FOR THE INTERLOCUTORS 
 

General 

• The participants (turn-round controllers) receive three experimental scenarios, each having 

the duration of 55 minutes.  

• Each experimental setting consists of 15 incoming flights with subsequent turn-rounds. 

• All flights arrive delayed so that the participants may want to keep the turn-round time short. 

• During each turn-round a number of events occur that have an effect on the duration of the 

turn-round.  

• While some events are shared with the participants via simulated ACARS/HMI messages 

from cockpit/ramp agent (cooperative information sharing), other events are only available to 

the participant, if he calls the flight crew/ramp agent for the flight/turn-round of concern 

(baseline information sharing). 

• Each of the event information that arrives via a simulated ACARS/HMI requires a TOBT 

update by the participant, if ADD TIME is indicated; no update if NO ADD TIME is shown. 

Confidential 

• The baseline information that is handed over to the flight crews before the start of the 

experiments also includes TOBT update proposals which are only given to the 

interlocutors/flight crews. 

• These update proposals are necessary to make TOBT predictions that are required for the 

TOBT accuracy pursued. 

• The flight crews should play the role of the flight crew/ramp agent and forward the event 

information to the participant, only if he participant calls and asks for turn-round status. 

• Each of the information given to the participants has to be noted in the adjacent column.  

 

FIGURE 34: INSTRUCTIONS FOR THE FLIGHT CREWS 
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Examples of Cooperative Information: 

Figure 35 shows an example of an ACARS message that was provided to the 

participants for condition C1 and required TOBT updates to be inserted into GUI 2: 

 
FIGURE 35: COOPERATIVE INFORMATION SHARED FROM FLIG HT CREWS 

 

 

Figure 36 shows an example of an HMI message that was provided to the 

participants during condition C2 and required TOBT updates to be inserted into the 

GUI2: 

 
FIGURE 36: COOPERATIVE INFORMATION SHARED FROM RAMP  AGENTS 

 

Figure 37 shows an example of additional information that was provided to the 

participants during condition C0/C1/C2 and did not require a TOBT update. This 

message represents information from the working position of a Connex Controller 

who is in charge of managing transfer passengers, if the inbound or the connecting 

flight has a delay: 

 

 
FIGURE 37: TURN-ROUND INFORMATION FROM OTHER PARTIC IPATING ACTOR 
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Figure 38 shows an example of additional information that was provided to the 

participants during condition C0/C1/C2 and did not require a TOBT update. This 

message represents an update received from CFMU about a CTOT for the affected 

flight: 

 
FIGURE 38: TURN-ROUND INFORMATION FROM OTHER PARTIC IPATING ACTOR 

 

Figure 39 shows an example of an incoming pre-recorded telephone call. The 

participant could either take the call directly (ja) or delay it by one minute (nein): 

 

 
FIGURE 39:  MESSAGE FOR INCOMING PRE-RECORDED TELEF ON CALL 

 

Training phase: 

After the instructions were given, the participants had 20 minutes to familiarise 

themselves with the TRCM functionalities they were required to use.  

No questions remained open after this training phase, which included a demonstration 

of all interactions used during the course of the experiments.  

Experimental Conditions: 

Each experimental setting lasted for 55 minutes. After each experimental scenario, 

the participants were allowed to take breaks as necessary. A feedback sheet was 

handed out with questions on the experiments in order to assure that the workload 

perceived by the participants did not exceed day-to-day demand and that the 

participants felt well treated during the day.  
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FIGURE 40: THE PARTICIPANTS & THE EXPERIMENTAL SET- UP 

 

7.7 Data Analysis and Results  

A. Analysis Software 

The collected data was depicted in Excel Tables and SPSS Statistics Version 18.0 

was used to analyse the results using descriptive statistics and inferential statistics via 

Kolmogorov-Smirnov test, Friedman test, Wilcoxon Signed-Rank Tests, Bonferroni 

adjustments, and Games-Howell test on the results. 

B.Selection of Statistical Method 

The nature of the experimental design relies heavily upon non-parametric statistics, 

since a pre-test with Kolmogorov-Smirnov showed that the DV is not normally 

distributed (see Table 17).  

Box plot diagrams were used to analyse and visualize the data. The main statistical 

analysis was done via a Friedman test as such is able for non-parametric testing of 

differences between variables with the dependent variable that is measured being 

ordinal. It is based on the following assumptions: 

• One group is measured on three or more different occasions. 

• The group is a random sample from the population. 

• One dependent variable is either ordinal, interval or ratio and 

• The sample does not need to be normally distributed. 
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A post-hoc test was required in order to identify where the differences between the 

different information sharing conditions exactly occurs. A Wilcoxon-Signed Rank test 

was chosen for this purpose. As a second post-hoc test, the Games-Howell test was 

used to test for the homogeneity of the variance between the participants. The Games-

Howell test is able to identify single differences between the heterogeneity of 

variances and does not rely on homogeneity of variance. 

C. Inducing Statistical Significance: 

The following difficulties were assessed before conducting the analysis on the data 

obtained by the experiments: 

• Carry-over Effect: the participants transfer something from one scenario to 

another. Due to the small amount of participants, the carry-over effect could be 

assessed from each participant individually. No major changes in behaviour 

during the course of the experiments could be observed from all participating. 

• Order Effect: the order of the conditions has an effect on the dependent 

variable. This effect was avoided by counterbalancing the information sharing 

condition within the three experimental scenarios using Latin-Square tables for 

experimental scenarios A/B/C.  

• Imparity Effect: Some turn-round scenarios may be more difficult to handle 

than others. This effect was reduced by maintaining the amount of information 

almost constant for each turn-round condition and scenario. 

D.Data Analysis 

All TOBTs received by the participants in the spreadsheet were organized as 

follows: 

Based on the EIBT of each flight, the turn-round time estimated by the participant 

was calculated via |TOBT I - EIBT| and |TOBT II - EIBT|. This was used to compare 

the deviations from MTTT and get an understanding about the different ways of 

participants’ TOBT assignment behaviour. A significance level of P = 0.05 was 

chosen.  

Then, |TOBT I - AOBT| and |TOBT II - AOBT| were calculated and used in order to 

perform the Friedman test. The Friedman test is able to handle non-parametric data 
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distribution as it is received for the values of the DV ‘expected deviation from MTTT’ 

at the two test points (measurement points) under the three information sharing 

conditions C0/C1/C2. The DV were labelled as (Table 16):  

 

      TABLE 16: LABELING CONVENTION OF TEST VARIABL ES 

Mode of Test Variables Label of Test Variables 

No cooperative Information Sharing C0/ Measurement Point I C0 MPI 

Cooperative Information Sharing C1/ Measurement Point I C1 MPI 

Cooperative Information Sharing C2/ Measurement Point I C2 MPI 

No cooperative Information Sharing C0/ Measurement Point II C0 MPII 

Cooperative Information Sharing C1/ Measurement Point II C1 MPII 

Cooperative Information Sharing C2/ Measurement Point II C2 MPII 

Table 17 shows the results of the Kolmogorov-Smirnov (KS) Test: 

      TABLE 17: KOLMOGOROV-SMIRNOV TEST 

 
The KS-Test reports that the relative distribution of the data from the DV is non-

parametric.  

 

 

 

Turn-round Time 
Actual  

at MP I 

Actual at 

MP II 

Predicted 

at MP I 

Predicted  

at MP II 

Predicted 

at MP I 

Predicted  

at MP II 

Predicted 

at MP I 

Predicted  

at MP II 

Condition C0 C0 C0 C0 C1 C1 C2 C2 

N 90 90 90 90 90 90 90 90 

Parameter of the 

standard 

distribution 

Mean 48,66 57,73 38,50 41,30 45,19 45,48 44,88 52,98 

Standard 

Deviation 

11,20 13,03 10,82 12,68 10,61 11,63 10,43 12,38 

Most extreme 

differences 

Absolute ,359 ,213 ,316 ,269 ,252 ,228 ,251 ,140 

Positive ,359 ,213 ,316 ,269 ,252 ,228 ,251 ,140 

Negative -,153 -,179 -,229 -,188 -,168 -,162 -,172 -,102 

Kolmogorov-Smirnov-Z 3,407 2,018 2,995 2,555 2,386 2,166 2,380 1,330 

Asymptotic  Significance 

 (2-tailed) 

,000 ,001 ,000 ,000 ,000 ,000 ,000 ,058 
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E. Descriptive Statistics  

Table 18 shows the deviations of the predicted TOBT from actual off-block time at the 

different measurement points while applying the different conditions C0, C1, and C2 

in minutes: 

TABLE 18: DESCRIPTIVE STATISTICS FROM EXPERIMENTS 

Measure/ Test 
Point*  

Measurement 
Point 1/C0 

Measurement 
Point 2/C0 

Measurement 
Point 1/C1 

Measurement 
Point 2/C1 

Measurement 
Point 1/C2 

Measurement 
Point 2/C2 

Mean |TOBT- AOBT| 21,21* 20,39 12,74 14,59 12,86 5,00 

Max |TOBT- AOBT| 59 47 38 44 38 26 

Min |TOBT- AOBT| 1 2 0 0 0 0 

Median |TOBT- 

AOBT| 
18,00 18,00 10,00 12,00 11,00 3,00 

Standard Deviation 14,01 12,41 10,95 11,62 10,42 5,27 

*All units in minutes 
 

Figure 41 shows a box-and-whisker diagram with the deviation of the predicted 

TOBT from the actual turn-round time at measurement point I and II during conditions 

C0, C1, and C2 in minutes. While the middle of the box represents the median 

assigned TOBT, the bottom and the top of the box represent the 25th percentile 

(bottom) and the 75th percentile (top) of all assigned TOBTs. While the upper end of 

whisker at C0MPII and the lower end of the whisker at C1MPI, C2MPI, and C2MPII 

represent the maximum, respectively the minimum value of all assigned TOBTs, the 

lowest/ highest ends of the other values are still within 1.5 Inter-Quartile Range (IQR) 

of the lower/upper quartile, but as indicated by the dots/stars there are some weak 

outliers (dots) and some strong outliers (stars). 
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FIGURE 41: PLOT OF THE DIFFERENCES BETWEEN ACTUAL A ND PREDICTED TOBT 

  

x-axis: measurement points with different information conditions 
y-axis: +/- deviation from actual TOBT in minutes 
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Table 19 shows the descriptive statistics of the Friedman Test at Measurement Point I: 

TABLE 19: DESCRIPTIVE STATISTICS AT MEASUREMENT POI NT I 

Descriptive Statistics 

  
N 

Percentiles 

25. 50. (Median) 75. 

C0 MPI 90 10.00 18.00 35.25 

C1 MPI 90 4.00 10.00 17.00 

C2 MPI 90 4.75 11.00 19.00 

 

There was a statistically significant difference in TOBT assignment accuracy 

depending on which information was provided to the participants whilst assigning the 

first TOBT update for the turn-rounds,  χ²(2) = 71,514, P = 0.003. 

Table 20 shows the descriptive statistics of the Friedman Test at Measurement Point II: 

 

TABLE 20: DESCRIPTIVE STATISTICS AT MEASUREMENT POI NT II 

Descriptive Statistics  

 
N 

Percentiles 

25. 50. (Median) 75. 

C0 MPII 90 10.00 18.00 30.00 

C1 MPII 90 5.00 12.00 19.25 

C2 MPII 90 1.00 3.00 8.00 

 

 
There was a statistically significant difference in TOBT assignment accuracy 

depending on which information was provided to the participant whilst assigning the 

second TOBT update for the turn-rounds,  χ²(2) = 90,875, P = 0.003. 

F.Post-hoc Tests 

In order to examine the differences of |AIBT - TOBT| between the related information 

sharing conditions C0/C1/C2 that actually occur, a Wilcoxon Signed-Rank Test was 

used that is able to identify the differences without making assumptions about their 

distribution and the participants or repeated measurements can be from the same 

sample group.   
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     Table 21, 22 and 23 show the Rank Scores at Measurement Point I: 

TABLE 21: TEST 1 RANK SCORES BETWEEN C0 AND C 1 AT MEASUREMENT POINT I 

Ranks 

 N Mean Rank Sum of Ranks 

C1 MPI - C0 MPI Negative Ranks 73a 43.45 3171.50 

Positive Ranks 11b 36.23 398.50 

Ties 6c   

Total 90   

a. C1 MPI < C0 MPI 

b. C1 MPI > C0 MPI 

c. C1 MPI = C0 MPI 

 
 

TABLE 22: TEST 2 RANK SCORES BETWEEN C0 AND C 2 AT MEASUREMENT POINT I 

Ranks 

 N Mean Rank Sum of Ranks 

C2 MPI - C0 MPI Negative Ranks 72a 40.79 2937.00 

Positive Ranks 8b 37.88 303.00 

Ties 10c   

Total 90   

a. C2 MPI < C0 MPI 

b. C2 MPI > C0 MPI 

c. C2 MPI = C0 MPI 

 
 

TABLE 23: TEST 3 RANK SCORES BETWEEN C1 AND C 2 AT MEASUREMENT POINT I 

Ranks 

 N Mean Rank Sum of Ranks 

C2 MPI – C1 MPI Negative Ranks 40a 40.01 1600.50 

Positive Ranks 41b 41.96 1720.50 

Ties 9c   

Total 90   

a. C2 MPI < C1 MPI 

b. C2 MPI > C1 MPI 

c. C2 MPI = C1 MPI 
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Table 24, 25 and 26 show the Rank Scores at Measurement Point II: 

 

TABLE 24: TEST 4 RANK SCORES BETWEEN C0 AND C 1 AT MEASUREMENT POINT II 

Ranks 

 N Mean Rank Sum of Ranks 

C1 MPII - C0 MPII Negative Ranks 60a 45.28 2717.00 

Positive Ranks 23b 33.43 769.00 

Ties 7c   

Total 90   

a. C1 MPII <  C0 MPII 

b. C1 MPII  > C0 MPII 

c. C1 MPII = C0 MPII 
  

 

  TABLE 25:TEST 5 RANK SCORES BETWEEN C0 AND C 2 AT MEASUREMENT POINT II 

Ranks 

 N Mean Rank Sum of Ranks 

C2 MPII - C0 MPII Negative Ranks 80a 43.33 3466.00 

Positive Ranks 3b 6.67 20.00 

Ties 7c   

Total 90   

a. C2 MPII < C0 MPII 

b. C2 MPII  > C0 MPII 

c. C2 MPII = C0 MPII 

 

TABLE 26: TEST 6 RANK SCORES BETWEEN C1 AND C 2 AT MEASUREMENT POINT II 

Ranks 

 N Mean Rank Sum of Ranks 

C2 MPII – C1 MPII Negative Ranks 73a 49.35 3602.50 

Positive Ranks 16b 25.16 402.50 

Ties 1c   

Total 90   

a. C2 MPII < C1 MPII 

b. C2 MPII  > C1MPII 

c. C2 MPII =  C1 MPII 
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Test 7: The Games-Howell-Test identified only two significant differences among all 

data sets of the turn-round controllers (see Appendix VII). 

G.Test Statistics of Post Hoc Tests 1 – 7 

Post-hoc analysis with Wilcoxon Signed-Rank Tests and Bonferroni correction 

applied resulted in a significance level set at P < 0.017. Median (IQR) assigned 

differences in TOBT prediction accuracy for the C0, C1, and C2 information sharing 

condition were 18.0 minutes (10 to 35.25), 10.0 minutes (4 to 17) and 11.0 minutes 

(4.75 to 19), respectively.  

Test 1 (significant): At measurement point I, there were significant differences 

between C0 information sharing and C1 information sharing condition, if information 

was cooperatively shared between flight crews and turn-round controller. The 

Wilcoxon Signed Ranks Test showed that cooperative information shared between 

flight crews and turn-round controllers elicited a statistically significant change in 

TOBT prediction ten minutes prior estimated aircraft in-block time (Z = -6,188; P = 

0.003). The median between the different TOBT prediction scores was 8.00.  

Test 2 (significant): At measurement point I, there were significant differences 

between C0 information sharing and C1 information sharing condition, if information 

was additionally provided by ramp agent. The Wilcoxon Signed Ranks Test showed 

that cooperative information shared between flight crews/ramp agents and turn-round 

controllers elicited a statistically significant change in TOBT prediction ten minutes 

prior estimated aircraft in-block time (Z = -6,320; P = 0.003). The median between the 

different TOBT prediction scores was 7.00.  

Test 3 (not significant): At measurement point I, there was no significant 

difference between C1 and C2 information sharing condition despite the overall 

deviation from AOBT, if information is cooperatively shared between flight crews, 

ramp agents, and turn-round controllers. The Wilcoxon Signed Ranks Test showed 

that cooperative information shared only between flight crews and turn-round 

controllers compared to cooperative information sharing between flight crews/ramp 

agents and turn-round controllers did not elicit a statistically significant change in 

TOBT prediction ten minutes prior estimated aircraft in-block time (Z = -2,83; P = 

0.777). The median between the different TOBT prediction scores was 1.00.  
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Test 4 (significant): At measurement point II, there were also significant 

differences between C0 information sharing and C1 information sharing condition, if 

information were cooperatively shared between flight crews and turn-round 

controllers. The Wilcoxon Signed Ranks Test showed that cooperative information 

shared between flight crews and turn-round controllers elicited a statistically 

significant change in TOBT prediction five minutes actual aircraft in-block time (Z = -

4,426; P = 0.000). The median between the different TOBT prediction scores was 

6.00.  

Test 5 (significant): At measurement point II, there were also significant 

differences between C0 information sharing and C1 information sharing condition, if 

information were additionally provided by the ramp agent. The Wilcoxon Signed 

Ranks Test showed that cooperative information shared between flight crews/ramp 

agents and turn-round controllers elicited a statistically significant change in TOBT 

prediction five minutes actual aircraft in-block time (Z = -7,825; P = 0.000). The 

median between the different TOBT prediction scores was 15.00.  

Test 6 (significant): Comparing measurement point I and II, there were also 

significant differences, when comparing cooperative information sharing between 

flight crews and turn-round controllers or additional information provided by the ramp 

agent. The Wilcoxon Signed Ranks Test showed that cooperative information shared 

only between flight crews and turn-round controllers compared to flight crews/ramp 

agents and turn-round controllers elicited a statistically significant change in TOBT 

prediction five minutes actual aircraft in-block time (Z = -6,551; P = 0.000). The 

median between the different TOBT prediction scores was 9.00.  

Test 7 (significant): The Games-Howell Test showed that there was no significant 

difference between the turn-round controllers throughout all experimental conditions 

C0, C1, and C2; p < .05. Therefore it is statistically significant that the results of the 

controllers’ assessment are valid.    
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H. Distinctive Features of the Experiment Results 

• A total of 540 TOBT assignments were noted during the experiments (90 per 

participant) 

• Out of all 540 TOBTs which were assigned during the experiments, only 34 

TOBTs were assigned with Estimated TOBT (+/- 1 minute) > AOBT (6.30 %).  

• Out of all 540 TOBTs, only 65 TOBTs (12.0%)  were assigned using the 

TOBT that was proposed by the Turn-round Control Mock-up [-1; +1 minute].  

• Out of all 180 Scenarios where no cooperative information was provided, 25 

TOBT assignments were based on turn-round times short than MTTT (13.9%) 

• The second column of Table 26 shows the number of TOBT updates that 

participants inserted into the ‘change’ column on the TRCM in GUI 2. This 

was part of the experiment instructions; however, only one participant 

occasionally (12.0%) used the TOBT proposal from the TRCM, but denoted 

the information from the ACARS/HMI messages and calculated the TOBTs on 

the spreadsheet. Table 27 also shows the number of outgoing telephone calls, 

where the participants contacted the interlocutor during the experiments. 

Column three are the number of calls that were used by the participants to 

actively acquire information; whereas column four are the number of telephone 

calls without any specific information request by the controller.  

 

TABLE 27: DESCRIPTIVE STATISTICS FROM EXPERIMENTS 

 

Participant 

No of TOBT Updates 

during Experiment 

No I/II/III 

Telephone Call with 

Information Request 

Telephone Call without 

Information Request 

1 41/46/42 21 20 

2 57/56/59 9 11 

3 36/31/40 18 23 

4 56/48/52 6 12 

5 31/32/42 5 20 

6 4/5/4 3 11 

 

• Two Participants used the spreadsheet to calculate TOBT predictions. 
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• Three participants denoted the CTOT time that was provided for a number of 

flights next to the TOBT column. Then they used the CTOT to determine 

TOBT estimates.   

• All participants denoted the known major delays from technical aircraft status 

or crew delay next to the TOBT column.  

• Table 18/ Figure 41 show a significant decrease in TOBT deviation and 

decreasing range from actual turn-round time, when comparing the TOBT that 

was assigned at measurement point I with the different information sharing 

conditions C0, C1, and C2.  

• Table 18/ Figure 41 show also a significant decrease in TOBT deviation and 

decreasing range from actual turn-round time, when comparing the TOBT that 

was assigned at measurement point II with the different information sharing 

conditions C0, C1, and C2. 
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I. Distinctive Features from the Participants Feedback 

 
TABLE 28: QUALITATIVE DATA FROM EXPERIMENTS  

 

Statements  
Fully 

Agree 

Rather 

Agree 

Rather 

Disagree 

Fully 

Disagree 

Content of the experiments was relevant to my 

day-to-day work 
4* 2   

The workload during experiments was comparable 

to my day-to-day work 
2 4   

The cooperative information received was useful 

to increase Situational Awareness for the turn-

round control  

 4 2  

Generally I was satisfied with operation of the 

Turn-round Control Mock-up  
 4 2  

The cooperative information from cockpit were 

useful for TOBT prediction 
 5 1  

The cooperative information from ramp agent was 

useful for TOBT prediction 
 5 1  

Too much information was depicted 2 4   

Additional information is required  4 2  

If additional information is required, please give 

examples 

Crew Delays, Technical Info, TSAT, Transit 

Passengers (RDS), Ready for Boarding Messages 

*All units are No of participants 

7.8 Limitations, Control and Validity of the Experiments 

Two issues concerning the TRCM, in particular, require further discussion. First, 

there was a concern whether the TOBT assignment was based on the TRCM proposal 

or personal experience with turn-round control.  It would have been possible that the 

participants adopted a strategy of just ‘playing the game’ or devoted cognitive 

resources from their own experiences for turn-round monitoring. The high workload 

condition could be an indication that the participants had to prioritise tasks and 

therefore used a lower-level-effort strategy. Thus, it would not be surprising that the 

participants were too busy using their telephones to get required information from the 
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ramp or flight crew directly. However, a strong indication that the participants used 

their own strategy based on experience is the small number of TOBT predictions that 

were based on the TOBT proposed by the TRCM (See also Chapter 7.8).    

Second, a methodological limitation could have resulted from the design of the 

study: information provided via pre-recorded telephone calls or ACARS messages 

included also generic information related to Munich airport operation. Although 

participants were instructed to not use such information for TOBT updates, feedback 

after the study revealed that participants were somehow confused by some of this 

information. It is therefore not possible to assess the extent that such information 

influenced overall turn-round control.  

The scenarios included also a greater number of delayed and hence critical turn-

rounds than in reality. Therefore, the benefits of information sharing will not be 

quantitatively the same in reality.  

Control and Validity  

Control of experiments with human participants is difficult to achieve because of 

the different personalities, intelligence and experience level of the participants. The 

control for this study was therefore maximised by the nature of its design. Measures 

taken included avoiding non-equivalent control groups by using the participants as 

control group and counterbalancing the experimental scenarios. Effects resulting from 

history, maturation, instrumentation, mortality, and diffusion of treatment were 

neglected due to the design of the experiments. While a testing effect could not be 

observed, a possible experimenter effect was avoided by predefined instructions given 

to the participants before the experiments as well as a single –blind experimental 

design where the participants were not informed of the manipulation of the provided 

variable. The participant effect was avoided by signalising a different aim of the 

experiments than the manipulation. The participants thought that the focus of the 

experiments was on cooperation between interlocutors and participants rather than on 

TOBT accuracy. Only one participant could be observed using such imagined demand 

characteristics during the experiments: the participant used his telephone in order to 

share the information that he received via ACARS with the interlocutor instead of 

using the information from the interlocutor.  
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A number of measures was undertaken to keep the external validity high. This 

includes the selection of turn-round controllers as participants (See Chapter 7.3) and 

the design of the Turn-round control Mock-up (See Chapter 7.5). Therefore, the 

external validity of the experiments that allows a generalisation of the results is seen 

as very high. Despite the artificiality of the situation, the experiments can be applied to 

other A-CDM airports, assuming that the workload of the turn-round controllers, as 

well as their workplace scenarios remain comparable. A systematic replication of the 

experimental setting at other CDM airports is therefore recommended to further 

elaborate the findings of this study.  

7.9 Concluding Aspects  

By using non-parametric statistics it could be demonstrated that there was a 

statistically significant difference in TOBT assignment accuracy depending on which 

information was provided to the participant.  Interpretation of these results indicates 

that there is a strong indication (Test 1/2/4/5/6) that cooperative information provided 

from cockpit and ramp can significantly improve TOBT predictions. As indicated by 

measurement point I, not only can predictions be more accurate, they can also be 

available at an earlier stage of the flight/turn-round than today.  

Results from Test 3 are not surprising, because before measurement point I no 

cooperative information was provided from ramp agent that may have influenced the 

TOBT assignment.  

Even though the participants stated that the workload level was realistic compared 

to day-to-day business, they complained of information overload during the 

experiments. This could be an indication that the workload during adverse conditions 

exceeds the level acceptable to the participants. In these cases, there is an inherent risk 

of losing situational awareness at a level that is required for monitoring turn-rounds.   

The controllers almost always underestimated the duration of the turn-round (See 

Chapter 7.8). This indicates also the intentions of the controllers to keep the turn-

round delay short.  

Overall, during experimental studies with turn-round controllers as participants and 

airline flight crews as interlocutors, it was possible to influence TOBT decision 
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making positively to achieve more accurate predictions of the estimated turn-round 

end. As postulated in Hypothesis I and II, the cooperative information from the 

cockpit and ramp not only improved turn-round completion predictability, the 

cooperative aspect of the experimental setting also seemed to have influenced the 

cooperative attitude of the participants. As indicated in the questionnaire directly 

following the experiments, the participants welcomed the opportunity to cooperatively 

share information among the distributed participants of the turn-round and their 

workplace.  

Therefore Hypothesis I, Information required for TOBT updates which is 

cooperatively shared between flight crews and turn-round controller before |EIBT - 10 

Minutes| increases the accuracy of TOBT, and Hypothesis II Information required for 

TOBT updates (independent variable) which is cooperatively shared between flight 

crew, ramp agent and turn-round controller before |AIBT + 5 Minutes| increases the 

accuracy of TOBT, i.e. reduces |TOBT - AOBT|, could be validated.         

However, while the participants appreciated the cooperative attitude of the 

participating flight crews, they had to cope with an information overload condition 

comparable to their day-to-day working environment. All participants agreed that the 

information overload and workload in general during the experiments was similar to 

their actual working situations.  

7.10 Discussion  

The approach chosen requires asking about the validity of a laboratory approach for 

complementing field observations. The underlying question here was how the 

laboratory setting could be used to gain insights into or contribute to the design of 

field studies that would further increase the credibility of the field observations. 

Implicit in this approach is the assumption that more control can be gained in the 

laboratory than in the field studies. This approach also includes the assumption that the 

laboratory cannot substitute field investigations.  

It is argued however that a discussion about comparability of lab and field scenarios 

is not relevant for this research for several reasons. Firstly, all phases of the project 

were seeking practical significance and are therefore applied type research questions. 

Secondly, the first, second, and third phases of the research highlights the constraints 
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to TOBT assignment, while the last phase sought potential solutions. The research 

setting in this final phase was designed as closely as possible to reality which is, 

according to Skraaning (2003), the only possibility for combining laboratory and field 

studies. Such an approach entails conducting simulator studies in complex operational 

environments as they can be found during turn-round management. Thirdly, all phases 

of the research had their own objectives that were addressed at the relevant stages. 

Different aspects were centred in each study approach to grasp the specific aspects that 

were identified for the TOBT assignment problem, starting from a broad ecological 

perspective to a view focused on individual cognitive aspects towards TOBT 

prediction. As an analogy, this approach can be compared with the task of building the 

shortest, most suitable road from A to B in a fairly unknown terrain. This will not be 

possible, if the topological or surface factors remain unknown. As for the TOBT, it 

can only be determined successfully, if the factors influencing the adherence are 

known and then regarded.   

A key message for the still inherent constraints on cooperation revealed during the 

feedback from turn-round controllers after the experiments is the little amount of 

awareness that the airline company itself places on the need for reliable TOBT 

predictions: Instead of increasing mutual trust and understanding of other participating 

CDM partner’s operation, the reality is shaped by increasing pressure and high 

workload levels, also affecting available options for successful turn-round control and 

so also TOBT accuracy. One major issue here is the uncertainty about other partners’ 

behaviour, e.g. ‘what happens exactly if the CTOT or TSAT is lost?’ ‘Isn’t it better to 

first give the earlier departure a try?’ Such continuing mistrust among partners fosters 

the focus on the advantages of the airlines’ own operation instead of establishing a 

broader view onto the network benefits.  Additionally, given the high work load, 

adherent to turn-round controllers’ jobs, emphasis can barely be placed on establishing 

cooperation with other participants or information gathering for TOBT predictions, 

when focus has to be placed on minimising delay or keeping pace with the other duties 

on task. Such pressure also explains the reduction of turn-round time below MTTT 

that was surprisingly often applied by turn-round controllers instead of getting a 

realistic picture of the required turn-round duration. E.g. hardly any TOBT prediction 

exceeded the actual turn-round time (see Chapter 7.7).  
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An example was provided by the participants and the flight crews, which revealed 

to be useful in illustrating this chain of constraints during daily routine operations: 

Starting situation is any turn-round event with a confirmed duration of the estimated 

delay by a SME: either the still existing possibility that the delay could actually be 

also shorter than predicted or the option to compensate the delay by accelerating other 

turn-round processes, together with the underlying pressure to keep delays short, 

causes the turn-round controller to predict a TOBT that does not incorporate the full 

process duration of all turn-round processes. Experiences with such situations in the 

past have confirmed that for a certain amount of turn-rounds this strategy was 

successful and TOBT could be maintained. At the same time, the number of flight 

crews expressing dissatisfaction or declining to accelerated turn-round has to be put up 

with the advantage having minimised the delay at least for a certain number of turn-

rounds. In the majority, however, this strategy doesn’t work when comparing the cost 

of missing a CTOT versus cost of reassigning a later CTOT, thus resulting in network 

benefits from improved TOBT prediction accuracy.  
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8 SUMMARIES, CONCLUSIONS AND RECOMMENDATIONS 

8.1 Conclusion on the Methodological Framework Chosen  

The framework chosen as well as the methods used for the analyses revealed being 

able to account for the environmental constraints affecting TOBT prediction and the 

cognitive factors influencing the human-information interactions of the participants. A 

Cognitive Work Analysis (CWA) was used which was aimed at identifying the 

constraints shaping these interactions during turn-round, grasping the information 

behaviour of the actors at the various distributed locations, and also the reason for their 

actions. Tools proposed by the CWA and conceptual constructs provided the structure 

for the design of this human-information interaction analysis. The results were then 

applied to specific turn-round situations, and used as a guide for designing the 

experiments that simultaneously included facets from social, technological, and 

organisational aspects of the contemplated situations.    

A set of research activities was proposed to answer the research questions presented 

as outlined in Chapter 1. The Chapter here summarizes these methods and discusses 

the advantages and disadvantages of the applied research procedures. Generally, three 

research methods were used to investigate the problems of TOBT inaccuracy. First, a 

formative analysis was chosen based on document analysis, stakeholder discussions, 

and SME interviews. In contrast to a normative approach, this form provided a 

structure for analysing how things could rather than should be done. Second, a 

descriptive form of analysis was chosen with data collection via survey and field 

studies. Even though this form has reduced controllability, it offers high external and 

ecological validity. Finally, an explanatory method was used via experimental studies 

in a controlled setting with human-in-the-loop, allowing for a full control of the 

influencing variables and keeping the internal validity high.    

To control the advantages and disadvantages of each method, a combination of all 

approaches was chosen to arrive at a comprehensive description of the influencing 

factors and possible strategies to mitigate the current problem with TOBT prediction. 

This combination of methods not only allowed a logical and iterative zoom-in from 

the turn-round environment to the specific problem of TOBT assignment, but is also 

seen as a complementary approach to the problem. 
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8.2 Data Organization, Hypothesis Testing, and Statistical Analysis 

The first two phases of the project were aimed at identifying descriptive 

information. The qualitative data that was gained from these phases was organized in 

class interval frequency distributions. Descriptive data analysis was applied to obtain 

measures of central tendency via a Likert scale, e.g. from various critical turn-round 

situations or the dispersion of possible delay avoidance. Even with the restriction in 

mind that the survey with flight crews acquired qualitative data only, correlation 

analysis was carried out, e.g. between the turn-round process delay and the departure 

delay of the consecutive flight by using Spearman’s rho as a coefficient to measure 

two variables on an ordinal scale. As an alternate-forms reliability test, moderate to 

strong relationship could be demonstrated by using equivalent questions. Equivalency 

was assured by using the same difficulty level, instructions and format of test. 

The data gained during the third phase via field observations was organized in a 

qualitative cognitive model that could be used to analyse the mental models of the 

turn-round controllers and their data requirements. 

The basic issues from the final phase of the research are related to the specific 

experimental setting of a correlated groups design: originated from the rare existence 

of the participants, an experimental condition showed advantageous which allows 

serving the experimental as well as the control condition. Since all participants served 

all conditions, randomisation was not necessary. The greatest benefit however was 

gained from statistical power, because individual differences could be minimised 

under the applied conditions. Variability between the three conditions under analysis 

came from the manipulation of the independent variable ‘information sharing’ and 

according to Jackson (2008) has the potential to provide a purer measure of the true 

effects of this variable. 

The focus of the analysis was to validate the specific information distribution in the 

contemplated environment, but not the specific details of the information. Therefore, 

only a small number of hypotheses was used that account for the problems related to 

information distribution between the turn-round controllers and the flight crews/ramp 

agents. Inferential statistics were used to draw the conclusions about the participants 

under analysis based on the data collected through the experiments. The hypotheses 
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testing chosen was valid for the proposed one-tailed hypotheses with an alpha level of 

.05 statistical significance. Such a 5% risk of Type I error is common in social and 

behavioural scenarios and is so seen as also acceptable for the proposed experiments.   

Since the characteristics (µ) or deviation (ơ) of the analysed population revealed to 

be non-standard distributed, a non-parametric test was used that does not require m 

and s parameters. The Friedman Test, also called a two-way analysis on ranks, was 

suitable because it did not require a standard distribution of the analysed data. It was 

used to detect differences in treatments (condition 0, I, and II) across multiple test 

attempts (scenarios) by modelling the ratings of n rows representing the different turn-

rounds on k columns as the different turn-round sets under analysis.  

The repeated measures ANOVA test however could not be used because it requires 

a normal distribution of the data and compared to the Quade Test, Friedman showed 

stronger significance with given sample size. As a post-hoc test, the Wilcoxon Signed-

Ranks Test with Boferroni adjustments on the chosen alpha level was applied.   

8.3 Conclusion from Cognitive Work Analysis  

The Cognitive Work Analysis as the overall framework chosen for the project 

revealed to be useful for the analysis of the A-CDM work system. It aimed at 

identifying the constraints from environmental factors that have an influence on TOBT 

prediction accuracy. The large number of turn-round participants being at distributed 

locations and therefore inherent constraints on decision making called for an analysis 

with an ecological perspective that can handle both the intentional and physical 

constraints on the actions of all participating. Since this form of analysis is not based 

on quantitative measures, an early validation of the results from such form of analysis 

was pursued to verify that the analysis was on track. Results from the survey were 

used to provide an independent source of information for the validation of the 

Abstraction-Decomposition Space (ADS) of the A-CDM work system.  

 While the ADS could be validated using results from the flight crew survey, 

neither the decision ladder as the proposed tool for the control task analysis nor the 

strategies, social worker and cooperation analysis could usefully be applied to the A-

CDM work system because of their inherent limitations of these tools. Thus, they 
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were perceived as being detrimental to the aim pursued by this project. Further 

details on identified limitations can be found in Appendix VI.  

However, the largest benefit gained with the CWA resulted from the information 

requirement analysis and the application of the contextual activity templates. These 

forms of investigation were able to provide the basis for the subsequent studies. By 

analysing all of the turn-round processes, the turn-round constraints resulting from 

the parallel turn-round events could be depicted in form of a critical path. This 

critical path analysis could also identify the responsibilities for decision making and 

the control tasks at the various stages of the turn-round. Additionally, the critical path 

could be used to unveil information requirements for the various processes that may 

influence TOBT prediction accuracy. Furthermore, the critical path provided the 

foundation for selecting the critical events that were used for the scenarios that made 

up the experiments on TOBT prediction accuracy. It was therefore concluded that the 

CWA was able to provide a valuable framework for modelling the A-CDM work 

domain, even though some of the proposed tools could not be used. It was able to 

identify a number of fundamental constraints that are imposed on TOBT decision 

making and to show the specific environmental factors that influence TOBT decision 

making.  

8.4 Summary and Conclusion from the Flight Crew Survey 

The Participants  

The second step of this project was a survey with airline flight crews aimed at 

identifying and describing critical situations for TOBT adherence. This measure was 

applied in order to identify how frequently the turn-round problems occur, seen from 

the perspective of the user. Airline flight crews were chosen as participants for the 

survey, because although they are initially not regarded as A-CDM partners and 

normally do not assign the TOBT, but they use the Target Start-up Approval Time 

(TSAT) which depends on accurate TOBT predictions and hence influences the time 

available for their turn-round tasks. The second major reason for using flight crews as 

participants was because they are the only users who can compare A-CDM at various 

airports and usually do not have to expect negative consequences from delayed turn-

rounds; while other participants have to expect pay actions from delayed services. 
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Therefore, they are seen as the group with the lowest bias possible and the descriptions 

obtained from them were used to prioritise the most critical turn-round processes. This 

survey complements the CWA and provides a means of investigating the distinctive 

characteristics of the A-CDM turn-round process. 

Critical Situations for TOBT Adherence  

The most important result from the survey was captured by the high agreement 

among flight crews that information sharing is a root cause for failures during turn-

round as well as their remarkable consensus on the frequency of the reported events. 

Statistically noticeable results from the survey could be gained by comparing process 

delays and departure delays with the limitation that the data was acquired via 

qualitative assessment only: a significant relation was identified between the delay 

from a service or information provision failure and its’ effect on the departure 

punctuality of the following flight for all contemplated situations.  

Strikingly high results were reported from delays caused by failures to provide 

operational information to and from the cockpit. Such findings give an idea about the 

flight crew’s view of the problem of how the airlines manage operational turn-round 

processes. Contemplated operational problems included e.g. changes of equipment, 

parking position, or crew, re-booking or direct transfer of connecting passengers. 

Operational reliability for such events requires pre-planning with other airport partners 

in order not to jeopardise TOBT adherence. However, the initiative for such pre-

planning has usually to be taken by the airline company or their representatives.  

No correlation could be observed between the effect of providing information to the 

flight crew and therefore subsequently preventing ground handling delay. Several 

reasons are possible for this result: either the flight crews are not aware of the 

possibility of avoiding an arising problem by using the information provided in order 

to allow the flight crew to take appropriate actions (e.g. arranging alternative ways of 

ground handling). Alternatively, a real lack of resources, capabilities, aims, or other 

reasons yet to be identified can be responsible for service delays.  
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The TOBT Inaccuracy-Swing-Effect: Failing to Share Information during Turn-Round 

Additionally, it could be observed in almost all reported events that the departure 

delay after turn-round following the information provision failure shows higher values 

than the delay values caused by the service provision failure. A possible reason is the 

so-called phenomenon of a inaccuracy-swing-effect where the network of service 

providers can oscillate in very large swings as each organisation in the supply chain 

(critical path of turn-round events) seeks to solve the problem from its own 

perspective and so raising the outcome of the problem (here the outcome is the 

departure delay after passing the critical path of ground handling services). This is a 

very common problem in the supply chain management of production lines where 

many partners are involved and a typical phenomenon within complex systems. 

Although, the turn-round has characteristics of a supply chain, such a conclusion has 

to be validated via additional information because the delay following a service/ 

information provision failure could also be caused by other reasons not yet identified.  

Decision Making during Turn-Round 

In the context of the survey it was also analysed how the current approach to 

operational decision making is perceived by the flight crew, because it is unlikely that 

flight crews will forward operational information or accept operational decisions, if 

current approach to decision making is not satisfactory for flight crews. While the 

majority of flight crews is asking for more involvement in decision making (69,9%), 

because they see situational awareness for decision making is at higher level at the 

aircraft, the majority of flight crews who are against additional involvement by flight 

crews in operational decision making (30,1%) see situational awareness better 

established at places other than the aircraft cockpit. The high percentage of flight 

crews favouring increased involvement and the high number of reported delays can be 

seen as an indication of the high importance that flight crews attribute to the need of 

operational reliability. This was also recognized in the high number of free text 

answers where dissatisfaction with the current approach to ground handling was 

stated. Namely it was mentioned that ramp agents do not have the same training as 

they once did and only react to flight crew requests. Moreover, they are usually in 

charge of several turn-rounds at the same time and are not always directly accessible 
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to the cockpit crew. In cases of emerging problems, the flight crew has to forward the 

problem themselves or wait until the ramp agent comes back. Under these 

circumstances, discontent with the current approach is not surprising since it is often 

the air crew who has to manage turn-round problems directly. However, different 

approaches to ground handling are pursued at different airports and it was concluded 

that inside knowledge of the affected airport is required to identify best-practice 

solutions individually for each airport.  

Information Sharing and Cooperation 

In order to analyse cooperation during turn-round, the possible failure causes of 

turn-round processes were proposed to the flight crews analogous to Ferber (1995) 

who divides cooperation in the three components, competing aims, insufficient 

resources, or insufficient abilities. Ferber (1995) integrates these components in a 

cooperation model and argues that cooperative situations can be grouped either in 

indifferent, cooperative, or non-cooperative situations depending on the combination 

of these three components. Attention is required if a situation reveals itself to be 

structurally non-cooperative as it is the case, when actors have competing aims and 

either resources or abilities are not sufficient. Following Ferber’s theory, only one 

situation was reported by flight crews to be non-cooperative if following his theory: 

the assignment of parking stands. All other situations were reported to be cooperative 

and failure can be traced back to resource problems or inabilities of responsible 

function.  

In order to capture possible further causes responsible for turn-round problems also 

other reasons than outlined before were proposed as well as free text answers. In this 

context, 52,5 % of the flight crews view the short turn-round time, information 

overload (43,6 %) and sharing of responsibilities (45,5 %) as possible failure causes. 

Divergent aims, lack of competencies and resources were also seen as failure causes. 

Free text answers mentioned competency, motivation, and the decreasing availability 

of ground personnel as key issues for turn-round problems.  

Finally, it was concluded that the results of the survey could identify a number of 

situations that are critical for TOBT adherence and could so be used for the subsequent 
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studies. Additionally, the perspective of aircrews regarding cooperation of actors 

during turn-round could be captured.   

8.5 Summary and Conclusion from the Study via Field Observations 

After the survey, a qualitative study with field observations during turn-rounds at 

CDM airports was conducted which aimed at identifying the constraints to operational 

turn-round monitoring and the resulting influence on TOBT assignment. The critical 

situations identified in the first step of the analysis were also to be further investigated. 

The initial concept was to observe solely one operators’ approach to TOBT 

assignment. During this field research however the study concept changed from 

observing a single operators’ TOBT assignment to a comparison of five different 

operator’s approaches towards TOBT assignment because a comparison of different 

TOBT assignment processes would reveal a broader view of approaches currently 

applied to turn-round monitoring and TOBT assignment.     

The most important findings from observations of today’s turn-round management 

could be localized to two factors: (1) procedural differences between traditional local 

turn-round management monitoring and current approach towards remote turn-round 

management, and (2) the strategies of turn-round controllers for creating or extracting 

information.  

Procedural differences between traditional local turn-round monitoring and today’s 

remote turn-round monitoring are relatively straightforward: During traditional local 

turn-round monitoring, the turn-round controller identifies required information via a 

knowledge-driven form of monitoring turn-round events. Data is directly identified at 

the action level and used for developing a proactive strategy. Reliable TOBT 

prediction is based on the experience of the controller and only possible after the 

aircraft has arrived at the parking position and doors are opened. The turn-round 

controller enters the aircraft, visually assesses the time required for turn-round with 

confirmation from the flight crew and then initiates appropriate actions for 

coordinating the required turn-round processes. He continuously monitors current 

turn-round status and considers that updates are required to all actors involved. This 

was done by taking the given situation into account, e.g. number of passengers, 

baggage or specials. This approach is knowledge-driven because TOBT accuracy 
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depends on ability of turn-round controller to estimate process time required for all 

processes along the critical chain. It is also the most appreciated form of turn-round 

control for flight crew members, because all operational requirements are handled by 

the controller and crew members can focus on their own duties.   

During remote turn-round monitoring however, monitoring is more data-driven and 

depends on the information available via tools and telephone. Turn-round controllers 

have to rely on displayed information or updates via voice contacts in order to create 

situational awareness. The difficulty for the controller here is that he has to monitor 

several turn-round simultaneously and often the time available does not allow him to 

capture all information necessary to estimate a TOBT based on all given situational 

constraints.  As a result, simplified strategies were used for TOBT assignment instead 

of taking all available information into account. Updates to TOBT require interaction 

creation from participating actors with the turn-round controller or data received by 

actors. Therefore, this approach is data-driven, because it depends on data made 

available to the turn-round controller; any proactive strategy depends on this 

information. It is recommended to analyse how information available at the aircraft 

can be forwarded via automated procedures. During observations, only one operator of 

a major European airline was using a designated ramp person who precisely monitors 

turn-round process start/end of all processes during critical chain of turn-round and 

then transmits the data to the control room. All other airlines observed rely on 

automated systems or interactions received via phone, ACARS, or two-way radio 

communication. 

Overall it was concluded that an understanding could be captured of how the major 

European airlines actually assign the TOBT today and also how they deal with 

unexpected situations. 

8.6 Summary and Conclusion from the Experiments 

Since the previous phases of analysis allowed identifying the constraints imposed 

by the environment and cognition of all participating actors and operators, this step 

was now aimed at identifying countermeasures to those constraints. Therefore, small-

scale human-in-the-loop experiments were conducted to validate issues related to the 

specific constraints resulting from information sharing and cooperation. A within-
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participant experimental design was chosen and adapted to different turn-round 

situations having different information sharing conditions. The study design depicted 

situations experienced during turn-round operations under adverse conditions where a 

more standardised approach to information sharing was investigated. Order effects 

were counterbalanced with Latin squares and the extent of a possible carryover effects 

as well as demand characteristics were assessed by the analysis of the results.  

During the experimental studies with human-in-the-loop, the influence of 

cooperative information sharing from flight crews and ramp agents with the turn-

round controllers on TOBT prediction accuracy was analysed. Within three 

experimental scenarios in a Turn-round Control Mock-up, three different information 

sharing conditions were used to investigate the prediction of the turn-round controller 

on the duration of the turn-round. Starting point of the analysis was the assumption 

that cooperative information from cockpit and airport ramp could influence the turn-

round controllers’ TOBT decision making. Simulation with the TRCM allowed 

establishing such information sharing conditions.  

Hypotheses I and II could be validated via the statistical method of a Friedman Test 

together with post-hoc test of Wilcoxon Signed-Rank Test and application of 

Bonferroni Adjustments. The Friedman test was able to show that differences between 

groups of data exist because the dependent variable having been measured was 

ordinal. The median values for measurement point I and II were also provided at this 

stage. The Friedman test was only able to show that differences exist somewhere 

between the influence of the three information sharing categories C0, C1, and C2. 

However, in order to know exactly where those differences are, a post-hoc test was 

required. The Wilcoxon Signed Rank test could then show where the differences 

between information sharing condition C0 and C1, C0 and C2, and C1 and C2 actually 

occurred. Subsequent Bonferroni adjustments were required, because multiple 

comparisons were made and Type I error should be avoided where results are falsely 

declared to be significant. 

It could be concluded that there was a statistically significant difference in TOBT 

assignment accuracy depending on which information was provided to the participant 

whilst assigning the first TOBT update for the turn-rounds. Thereby, TOBT prediction 
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accuracy increased by a mean value of more than 8 minutes (See also Table 17). 

Applying post-hoc analysis with Wilcoxon Signed-Rank Tests and Bonferroni 

correction resulted in significant results: There were significant differences between 

C0 information sharing and C1 information sharing conditions, and between C1 and 

C2 information sharing conditions.  

There was no significant difference between C0 and C2 information sharing 

conditions despite the overall deviation from AOBT, but there was a statistically 

significant difference in TOBT assignment accuracy depending on which information 

was provided to the participant whilst assigning the second TOBT update for the turn-

rounds. Thereby, TOBT prediction accuracy increased by a mean value of more than 

15 minutes (see Table 17).  

It was concluded that the experiments were able to define countermeasures for dealing 

with unexpected situations and strategies for decision support that are able to increase 

TOBT prediction accuracy. The countermeasures and further recommendations for A-

CMD turn-round management are lined out in Chapter 8.7. 

8.7 Recommendations Resulting from this Project 

A number of measures were identified that are able to increase TOBT prediction 

accuracy. Recommendations and possible measures resulting from the descriptive 

analysis of this project include:  

1. Before changing established ways of turn-round monitoring, e.g. from direct turn-

round monitoring to remote turn-round monitoring, airline policy and decision 

makers should recognize the facilitating activities with the inherent predictive 

capabilities that are used by direct monitoring turn-round controllers. It is 

necessary to anticipate turn-round controllers’ monitoring needs comprehensively 

and create interfaces that systematically support such monitoring with reliable 

TOBT prediction rather than simply expecting controllers to adapt to a situation 

with poor data available.   

2. As a step towards designing monitoring and communication tools with 

functionalities required by controllers, valuable information can be collected by 

observing the facilitating activities that turn-round controllers are currently 
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engaged in during direct turn-round monitoring and remote turn-round monitoring 

under consideration of aspects from cognitive perspective.  

3. As a further step in this direction, the available tools for remote turn-round 

monitoring need to be better understood in order to allow facilitating activities 

with predictive behaviour being used for the design of new computer-based 

systems able to support decision making in such a complex and dynamic 

environment.   

4. This not only entails the need to analyse all  information required to estimate 

process time during all processes within the critical path, but also to establish 

functionalities allowing a mandatory assessment of Target Service Delivery Times 

(TSDT) for all partners and actors involved in service delivery during the critical 

path. As a result, the TOBT can be created based on predictive information from 

service providers, combined with the reference model, and the required 

adjustments to the reference model based on information provided by the crew.  

5. This also entails the need to take information from the flight crew emerging during 

flight into account or depending on flight progress and the information provided 

by actors on the ramp or terminal building. This recommendation could later be 

confirmed during an experimental study of turn-round situations.  

6. More attention should also be paid to basic human factors issues in the design of 

such supporting tools since control issues and responsibility sharing are involved, 

e.g. turn-round times shorter than MTTT should be in agreement with the flight 

crew; if flight crew does not favour using MTTT, not only may flight safety be 

affected, it is questionable whether MTTT can be performed without his or her 

consent.    

7. Examples for facilitating strategies of turn-round management should be compiled 

by innovative ATM network approaches to delay code management - namely away 

from assignment of the delay code onto a real-time situational analysis (reactive 

analysis) towards a delay code assignment based on non-adherent service 

prediction (proactive analysis). This gives a more realistic estimation of the 

responsible function without creating a blame culture. 
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Some further recommendations and measures resulting from the experimental results 

of this project are outlined next. 

1. Establishing realistic turn-round time predictions that are able not only to increase 

TOBT adherence, but also to improve pre-departure sequencing at the airport and 

thus allowing for reduced the buffer times for taxi.  

2. Increasing attention to accurate turn-round time planning is required, because 

service providers can so abide by the reference models established by the airlines. 

This allows them to execute their services within a coordinated chain of turn-round 

events, while reducing the pressure to omit necessary safety precautions due to 

time constraints.   

3. Further investigation is required for the ‘critical path’ processes of parallel turn-

round events. The critical path used during the experiments reflects the specific 

turn-round situation of the hub-and-spoke operation at Munich airport.  The 

TRCM that was developed for the experiments includes therefore additional 

functionalities that permit adding and removing processes depending on the 

specific turn-round situation of other airports. This functionality should be used to 

insert additional required processes and to investigate the given turn-round 

situation at other airports. 

8.8 Limitations of the Research Undertaken 

The work presented in this thesis is limited and cannot be generalised without 

considerations of its assumptions and shortcomings. 

With the introduction of the conceptual framework, there are assumptions underlying 

the analysis, and also a number of simplifications that had to be applied when 

compared to the real world. This allowed an investigation of the research objectives 

in a greater level of detail and so a greater contribution to knowledge. However, the 

limitations which should be kept in mind before applying the knowledge to the real 

world include:  

The survey undertaken only delivers the opinion and experience of one group 

among the numerous other participants. The advantage of using this group 
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specifically was outlined before; however a generalisation of the results is not 

possible. 

The data that produced the TOBT inaccuracy-swing effect originates from 

qualitative data. Using qualitative data with a correlational analysis method to 

describe behaviour is often questioned within the literature for not being able to 

deliver rigorous results. 

 The number of airports using A-CDM is still rather small and also size of airport 

varies. Comparison of turn-round monitoring in highly congested airports may differ 

significantly from airport to airport and also from turn-round duration that is used for 

planning. The presented results therefore only apply for turn-round operation at 

congested airports. The relevance increases, if a short turn-round time is a factor.  

8.9 Contributions to Knowledge 

Despite of its limitations the thesis aims to have contributed to the body of 

knowledge as follows:  

The relevance of this project for A-CDM could be recognized by the attention it 

received from both the industry and the A-CDM Coordination Team from 

EUROCONTROL Headquarters via repeated presentations and publications on this 

topic. (See also Chapter 9). An increased attention towards the importance of TOBT 

was realized by several stakeholders and industry partners based on paper 

presentations at EUROCONTROL Headquarters and various conferences (see 

Chapter 9.1) because it was realized that reliable TOBT predictions are crucial to 

successful airport operation.   

This is the first time that a CWA as an approach to Cognitive Engineering has 

been applied to turn-round management. It revealed some distinct characteristics and 

constraints in a work domain with characteristics of distributed decision making 

environment that have neither been identified nor investigated before.  

While within the framework of Cognitive Work Analysis, respectively during the 

phase II ‘Control Task Analysis’ and phase III ‘Social Organisation and Cooperation 

Analysis’, existing tools could not be used, other approaches to cooperation that have 

not been applied in such context so far were integrated into the CWA framework. 
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Finally, employing human-in-the-loop experiments to analyse cooperative 

information sharing is a novel approach to operational information sharing in the 

domain of turn-round management that has not been taken to date. Seeing the 

increasing complexity of turn-round management, such an approach revealed to be a 

viable option that can be used for analyses in environments or work domains with 

similar constraints.   

A concluding remark from the author referring to knowledge identified from the 

analysis that should be seen as a warning sign:  

Accurate turn-round time predictions also encompass concerns about flight safety: 

‘Caused by shortening of turn-round times below minimum process times as a 

procedure identified during field studies and experiments, flight safety could be at 

risk, if the time available especially for safety relevant procedures is getting 

increasingly constrained. This comprises the preparation of the flight crews for the 

next flight segment including document study, fuelling, de-icing, walk-around, cabin 

security checks, and loading’. If not sufficient time is available to thoroughly execute 

these duties because a pressure is placed from airline operation or inappropriate 

TOBT predictions, the risk of missing or neglecting relevant information can rise 

significantly.  
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8.10 Areas for Future Research 

This thesis could address only a few aspects of cognitive engineering and design 

criteria within the domain of turn-round management. The high relevance to 

operational day-to-day problems reveals opportunities for future research especially 

in:  

• Field studies about the practicability of the identified cooperative information 

sharing for operational application.  

• Investigations on how non-punitive elements during turn-round operation can 

enhance cooperative information sharing between partners without the mutual 

blaming which often stems from the current IATA Delay Code Assignment 

procedure.   

• Research on how additional measurement points for ground handling services 

can be introduced and monitored for more accurate service delivery time 

predictions.  

• Study on the accurate process times required for the turn-round services with 

focus on processes relevant to flight safety.  

Generally, the portion of research projects in turn-round management is relatively 

low compared to other ATM domains. A majority of research projects aimed at 

increasing airport throughput relate to investigations for the terminal side of the 

operation, although a number of problems can be attributed to the land-side 

operations. 
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APPENDICES 

APPENDIX I: Description of the A-CDM Milestones 
 

Milestone 1                                      ATC Flight Plan Activated  

Definition The ICAO flight plan is submitted to ATC. The Airport CDM 
Platform is initiated for this flight, and all available information is 
processed 

Origin and priority The ATC Flight Plan is submitted by the Aircraft Operator and 
distributed by the IFPS. All involved ATC units receive the flight 
plan, including departure and destination aerodromes. 

Timing Normally this takes place 3 hours before EOBT, however it may be 
later. In some cases a repetitive flight plan (RFPL) has been 
submitted, covering daily or weekly flights. 

Data Quality The ATC Flight Plan corresponds to the airport slot programme. 

Effect One aircraft turn-round normally includes an arriving and a 
departing flight, meaning that it will have two related flight plans. 
For coordinated airports, the outbound flight is already known. The 
flight plan may be used to update certain information such as type of 
aircraft. For long distance flights, the ELDT may differ from the 
airport slot. For non coordinated airports, the flight plan is used to 
initiate the outbound flight. The flight is ready not later than 15 
minutes after the planned EOBT. The DPI process commences the 
correct messaging with CFMU (if implemented - see attachment 2 
for details). 

Procedures To check consistency between ATC Flight Plan, Airport Slot and 
Airport flight data and then confirm the flight to the CFMU and 
allow further local processing of the flight. 

This check shall be performed to verify the consistency between 
the ATC Flight Plan, Airport Slot and Airport flight data before 
the first E-DPI is sent. The AO must provide correct information 
before this first E-DPI message, in order to feed CFMU with 
consistent SOBT, aircraft registration, and first destination data, 
as early in time as possible. The E-DPI message should not be 
sent if no or inconsistent information is provided. 

This process is triggered by: 

• The first activation of the ATC Flight Plan (earliest EOBT-3 hr), 
or 

• New or late submissions of the ATC Flight Plan, after 
cancellation or revised EOBT 

Operational Status SCHEDULED 

Action on CDM Operation 
(ACISP) 

ELDT and EIBT updated for an arrival 

EOBT and ETOT updated for a departure The DPI process 
commences (if implemented - see section 3.7.3 for details). 
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Milestone 2                                      EOBT – 2h  

Definition At EOBT-2 hr most flights will be known in the Airport CDM 
Platform including if they are regulated or not. All regulated flights 
receive a CTOT from CFMU. 

Origin and priority The CTOT is issued by the CFMU and is sent to relevant ATS units 
as well as the departure aerodrome. CTOT flights usually have a 
priority over unregulated flights. 

Timing If the flight is regulated, a CTOT is issued at EOBT-2h. 

Data Quality Not applicable. 

Effect For inbound flights, ELDT is updated based on information 
provided by the FUM messages, taking into account the actual 
progress of the flight. 

 

Procedures To check (before or TTo check (before or after takeoff from outstation) whether AO/GH 
flight estimates are consistent with the ATC Flight Plan and to 
inform CFMU about the updated take off time estimate, using a T-
DPI Message. 

This check shall be performed to verify feasibility of the ATC Flight 
Plan estimated off block time at EOBT-2 hrs. At EOBT-2 hrs 
CFMU is informed through the first T-DPI message. Calculation 
basis for the TTOT shall take into account EIBT+MTTT+EXOT, if 
later than EOBT+EXOT. In the case of manual input of TOBT, this 
estimate will override the E1BT+MTTT estimate, hence TTOT 
equals TOBT+EXOT. 

This procedure is triggered by  

• A time stamp, at EOBT - 2h. 

Operational Status  

(changes to) 

N.A. 

Action on CDM Operation 
(ACISP) 

ETOT/TTOT/CTOT Mark appropriate fields as REGULATED 
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Milestone 3                                      Take Off from Outstation 

Definition The ATOT from the outstation (ADEP) 

Origin and priority The outstation provides ATOT to the CFMU and Aircraft Operator. 

Timing The information is directly available after occurrence of the 
milestone. 

Data Quality The accuracy of ATOT is +/- 1 minute. 

 

Effect If the departure airport is more than 3hrs flying time from the 
destination airport the ATOT is received from either the CFMU 
FUM or via the Aircraft Operator / Ground Handler. Using the 
ATOT an ELDT can be calculated by using the Estimated Elapsed 
Time on the FPL. 

If the flight is within 3hrs flying time of the destination airport the 
CFMU monitors progress of the flight using the ETFMS and send a 
Flight Update Message (FUM) that provides updates of the flight's 
progress. 

 

Procedures To check whether the AO/GH estimated landing time after take off 
from outstation are consistent with the outbound ATC Flight Plan, 
and when needed inform the CFMU about the updated take off time 
estimates using a T-DPI-c Message. 

This check shall be performed to verify feasibility of the ATC Flight 
Plan at take off from outstation. A TTOT tolerance of 5 minutes is 
respected before CFMU is informed of the updated TTOT. 
Calculation basis for the TTOT shall take into account 
EIBT+MTTT+EXOT. In case EOBT is later than EIBT+MTTT, 
TTOT equals EOBT+EXOT. In the case where TOBT is available 
this prediction will overrule the EIBT+MTTT estimate, hence TTOT 
equals TOBT+EXOT. 

This process is 
triggered by • the 
take off from 
outstation. 

Operational Status 
(changes to) 

AIRBORNE 

 

Action on CDM Operation 
(ACISP) 

ELDT, EIBT, TOBT and TTOT updated 

 

 
 



 Appendices  
 

          Matthias Groppe                Influences on Aircraft TOBT Prediction Accuracy                    237                 

 

Milestone 4                                      Local Radar Update  

Definition The flight enters the FIR (Flight Information Region) or the local 
airspace of the destination airport. 

Origin and priority This information is normally available from the Area Control Centre 
(ACC) or Approach Control Unit that is associated with an airport. 
The radar system is able to detect a flight based upon the assigned 
SSR code when the flight crosses a defined FIR/ATC boundary. 

Timing Dependent upon the position of the airport in relation to the FIR 
boundary. 

Data Quality Must be equal to the accuracy of the ATC system. 

Effect Update of the ELDT Update of the ELDT can trigger a new TOBT to be entered by the 
AO/GH, or calculated automatically by the Airport CDM Platform. 
The accuracy of ELDT is particularly important at this stage since 
downstream decisions are taken, such as stand /gate / aircraft 
changes, preparation of arrival sequence, preparation of ground 
handling operations, decisions for connecting passengers. 

Uncertainty and ELDT non-accuracy at this stage significantly 
increase risks for bad and last minute decisions and internal 
disruptions. The objective to decrease the number of stand and gate 
changes in the last 30 minutes requires high accuracy regarding 
departure and arrival times. Therefore, taking into account the taxi-
in time (EXIT), any change to a stand or gate is not preferred after 
ELDT-30'. 

The update of TOBT for the related departing flight takes place 
following this milestone. Decisions such as the turn-round period, 
connecting passengers etc are taken and need to be sTable at this 
event. An estimated in-block time (EIBT) is computed using the 
ELDT and the estimated taxi-in time. 

Procedures To commence the TOBT process and check whether the AO/GH 
TOBT is consistent with the ATC Flight Plan. CFMU is informed 
when the TTOT changes by more than the agreed TTOT tolerance. 

This check shall be performed to verify feasibility of the ATC Flight 
Plan given the updated TOBT. The TTOT tolerance is respected 
before CFMU is informed of updated TTOT. 

This process is triggered by • the detection of the flight by radar 
in either FIR, TMA, or on Final Approach. 

Operational Status  

(changes to) 

FIR 

Action on CDM Operation 
(ACISP) 

ELDT, EIBT, TOBT and TTOT updated 
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Milestone 5                                     Final Approach 

Definition The flight enters the Final Approach phase at the destination airport. 

Origin and priority This information is normally available from ATC. The radar system 
detects a flight based upon the assigned SSR code and identifies 
when the flight crosses either a defined range / position or 
passes/leaves a predetermined level. 

Timing Dependent upon local parameters that are defined by ATC. 

Data Quality Must be equal to the accuracy of the ATC system. 

Effect Update of the ELDT to determine a new TOBT. When a flight 
reaches this stage it is usually between 2 and 5 minutes from landing 
(depending on the parameter set by ATC). This is often the prompt 
for many partners to start moving resources connected with the 
flight, such as positioning a parking marshal and ground handling 
services. 

 

Procedures To commence the TOBT process and check whether the AO/GH 
TOBT is consistent with the ATC Flight Plan. CFMU is informed 
when the TTOT changes by more than the agreed TTOT tolerance. 

This check shall be performed to verify feasibility of the ATC 
Flight Plan given the updated TOBT. The TTOT tolerance is 
respected before CFMU is informed of updated TTOT. 

This process is triggered by  

• The detection of the flight by radar in either FIR, TMA, or on 
Final Approach. 

 

Operational Status  

(changes to) 

FINAL 

 

Action on CDM Operation 
(ACISP) 

ELDT, EIBT, TOBT and TTOT updated 

EOBT and ETOT updated for a departure The DPI process 
commences (if implemented - see section 3.7.3 for details). 
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Milestone 6                                      Landed  

Definition ALDT - Actual Landing Time. This is the time that an aircraft 
touches down on a runway. (Equivalent to ATC ATA - Actual Time 
of Arrival landing, ACARS=ON). 

 

Origin and priority Provided by ATC system or by ACARS from equipped aircraft. 

Timing The information is directly available after occurrence of the 
milestone. 

Data Quality Data is available with an accuracy of +/-1 minute. 

Effect The occurrence of ALDT triggers an update of downstream 
estimates: TOBT and TTOT are updated automatically or inserted 
manually by the Aircraft Operator / Ground Handler, calculated on 
the basis of the defined turn-round period for the departing flight. 

The EIBT can be updated according to the ALDT +EXIT. 

 

Procedures To check whether the AO/GH TOBT is 
consistent with the ATC Flight Plan. CFMU is 
informed when the TTOT changes by more than 
the agreed TTOT tolerance. 

This check shall be performed to verify 
feasibility of the ATC Flight Plan given the up-
dated TOBT or ATC Flight Plan. A TTOT 
tolerance is respected before CFMU is informed 
on updated TTOT. 

This process is triggered by  

• Actual Landing Time: ALDT 

 

Operational Status 

(changes to) 

LANDED  

Action on CDM Operation 
(ACISP) 

ELDT changes to ALDT, EIBT, TOBT and TTOT updated 
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Milestone 7                                     In-Block  

Definition AIBT - Actual In-Block Time. This is the time that an aircraft 
arrives in-blocks. (Equivalent to Airline/Handler ATA - Actual 
Time of Arrival, ACARS = IN) 

Note: ACGT is considered to commence at AIBT 

Origin and priority ACARS equipped aircraft or automated docking systems or ATC 
systems (e.g. A-SMGCS) or by manual input. 

Timing The information is directly available after occurrence of the 
milestone. 

Data Quality Data is available with an accuracy of +/-1 minute. 

Effect The occurrence of AIBT should trigger an update of downstream 
estimates: TOBT and TTOT are updated automatically or inserted 
manually by the Aircraft Operator / Ground Handler, calculated on 
the basis of the estimated turn-round period for the departing flight. 

 

Procedures To check whether the AO/GH TOBT is consistent with the ATC 
Flight Plan. CFMU is informed when the TTOT changes by more 
than the agreed TTOT tolerance. 

This check shall be performed to verify feasibility of the ATC 
Flight Plan given the updated TOBT or ATC Flight Plan. A TTOT 
tolerance is respected before CFMU is informed on updated TTOT. 

This process is triggered by 

 • Actual In Blocks Time: AIBT 

 

Operational Status  

(changes to) 

IN-BLOCK 

Action on CDM Operation 
(ACISP) 

EIBT changes to AIBT  

TOBT and TTOT updated 
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Milestone 8                                      Ground Handling Started  

Definition Commence of Ground Handling Operations (ACGT). 

Note: this milestone is specific to flights that are the first operation 
of the day or that have been long term parked. For flights that are on 
a normal turn-round ACGT is considered to commence at AIBT. 

Origin and priority Aircraft Operator / Ground Handler will provide the information. 

 

Timing The information is directly available after occurrence of the 
milestone. 

 

Data Quality Data is available with an accuracy of +/-1 minute. 

 

Effect The occurrence of ACGT triggers an update of downstream 
estimates: 

TOBT is updated automatically or inserted manually by the Aircraft 
Operator / Ground Handler, calculated on the basis of the estimated 
turn-round period for the departing flight. 

 

Procedures To check whether the AO/GH TOBT is consistent 
with the ATC Flight Plan. CFMU is informed 
when the TTOT changes by more than the agreed 
TTOT tolerance. 

This check shall be performed to verify feasibility 
of the ATC Flight Plan given the updated TOBT or 
ATC Flight Plan. A TTOT tolerance is respected 
before CFMU is informed on updated TTOT. 

This process is triggered by  

• Actual Commence of Ground Handling: ACGT 

 

Operational Status  

(changes to) 

IN-BLOCK 

 

Action on CDM Operation 
(ACISP) 

ETTT/ TTOBT, TTOT updated 
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Milestone 9                                      Final Confirmation of the TOBT 

Definition The time at which the Aircraft Operator or Ground Handler provide 
their most accurate TOBT taking into account the operational 
situation. 

Origin and priority The Aircraft Operator / Ground Handler provides the information. 

Timing The information is provided t minutes before EOBT (t is a 
parameter time agreed locally). 

Data Quality Accuracy is agreed locally. 

Effect The aim of the final TOBT is to give a timely, accurate and reliable 
assessment of the off-block time. It is recognised that main benefits 
of sharing the TOBT are expected in case of disruptions (internal or 
external). In such cases, the difference between EOBT (shared by 
ATC, CFMU and Stand / Gate Management) and TOBT may be 
important. 

An accurate TOBT at [EOBT-t minutes] is a pre-requisite for ATC 
to establish a push back / pre-departure sequence. Emphasis is put 
on the need for the Aircraft Operator to integrate his own strategy to 
compute a TOBT related to the flight. Following the receipt of the 
TOBT, the ATC system will calculate and provide the Estimated 
Taxi-Out Time (EXOT) based on the predicted traffic load, gate / 
stand location, runway in use, and waiting period at the Holding 
Position, etc. 

The flight is introduced into the pre-departure sequence. The 
Aircraft Operator / Ground Handler, in coordination with the 
aircrew, can manage the turn-round process according toly. 

Procedures To check whether the AO/GH TOBT is consistent with the ATC 
Flight Plan. CFMU is informed when the TTOT changes by more 
than the agreed TTOT tolerance. 

This check should be performed at a predefined time (local 
parameter) to confirm TOBT prior to TSAT issue and verify 
feasibility of the ATC Flight Plan estimates given the updated 
TOBT. A TTOT tolerance is respected before CFMU is informed on 
updated TTOT. 

This Milestone Process is actually constantly applicable in the CDM 
Platform, as soon as a TOBT is available. However the confirmed 
TOBT prior to TSAT has special status, where AO/GH check the 
quality of TOBT before TSAT issue. 

This process is triggered by 

a new TOBT or TTOT update. No need to confirm an existing 
TOBT if it has been manually modified before. 

Operational Status SEQUENCED 

Action on CDM Operation  TTOT updated.  
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Milestone 10                                      TSAT Issued 

Definition The time ATC issues the Target Start Up Approval Time. 

Origin and priority ATC 

Timing The information is provided t-minutes before EOBT, where t is a 
parameter agreed locally. 

Data Quality Accuracy is agreed locally. 

Effect The flight is stabilised into the pre-departure sequence. The Aircraft 
Operator/ Ground Handler, in coordination with the aircrew, can 
manage the turn-round process according toly. 

 

Procedures First step: To inform all relevant partners of the TSAT that has been 
allocated to the flight. The CFMU is informed by a T-DPI-s for non 
regulated flights. 

Second step: To check whether the number of TOBT updates 
exceeds a tolerance defined locally, after TSAT has been issued. 

First: The TSAT will indicate to the partners the time when the start 
up approval can be expected. CFMU will be informed with a T-DPI-
s for non regulated flights. No check is performed. 

Second: A check shall be performed to see the number of TOBT 
updates after TSAT has been issued. In case the number of TOBT 
updates exceeds a threshold, then the TOBT input should be 
processed according to local procedure. 

This process is triggered by 

• A defined time (local parameter) before TOBT 

• TOBT update after TSAT issue 

 

Operational Status  

(changes to) 

N.A. 

 

Action on CDM Operation 
(ACISP) 

TTOT updated 
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Milestone 11                                      Boarding Starts 

Definition The gate is open for passengers to physically start boarding 
(independent of whether boarding takes place via an air-bridge/pier, 
aircraft steps or coaching to a stand). 

This is not to be confused with the time passengers are pre-called to 
the gate via flight information display systems (FIDS) or public 
address systems. 

 

Origin and priority Automatic from airport system or manual input by Aircraft 
Operator/ Ground Handler. 

Timing The information is directly available after occurrence of the 
milestone. 

Data Quality Data is available with an accuracy of +/-1 minute. 

Effect When boarding commences it gives the Airport CDM Partners a 
good indication of whether the TOBT/TSAT will be respected. 

 

Procedures First step: To inform all relevant Airport CDM Partners of Actual 
Start Boarding Time (ASBT).    . 

Second step: To check whether boarding starts in time to respect 
TOBT and inform the AO/GH in case TOBT needs to be updated. 

Inform of Actual Start Boarding Time (ASBT) when it occurs. At a 
certain time before TOBT (local variable e.g. corresponding to 
aircraft type) a check shall be performed to check the boarding 
status. 

This process is triggered by • a time 
variable <value> minutes before 
TOBT. 

 

Operational Status 
(changes to) 

BOARDING 

Action on CDM Operation 
(ACISP) 

N.A. 
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Milestone 12                                      Aircraft Ready  

Definition The time when all doors are closed, boarding bridge removed, push 

back vehicle connected, ready to taxi immediately upon reception of 

TWR instructions (ARDT). 

Origin and priority Provided by the Aircraft Operator/ Ground Handler. 

Timing The information is directly available after occurrence of the 
milestone. 

Data Quality Data is directly available with an accuracy of +/-1 minute. 

 

Effect ATC refines the pre-departure sequence. The flight crew requests 

start up just before TSAT, following coordination with the Ground 

Handler. (Dispatcher / Supervisor / Redcap). 

 

 

Procedures   First step: To inform all relevant Airport CDM Partners of Actual 

Ready Time (ARDT) in the Airport CDM Platform and that the 

aircraft is ready for start up / pushback. 

Second step: To inform the AO/GH that TOBT has passed and the 

Airport CDM Platform has not yet received ARDT or Ready Status 

(RDY). 

Inform of ARDT or RDY confirming that the flight follows the 

indicated TOBT. At TOBT + tolerance the AO/GH are informed 

that TOBT has passed and there has not been a ready status message 

yet. 

This procedure is triggered by  

• An input to the Airport CDM Platform. 

 

Operational Status  

(changes to) 

READY 

 

Action on CDM Operation 
(ACISP) 

N.A. 
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Milestone 13                                      Start Up Requested  

Definition The time that start up is requested (ASRT). 

Origin and priority ATC (based on flight crew request). 

Timing The information is directly available after occurrence of the 
milestone. 

 

Data Quality Data is available with an accuracy of +/-1 minute. 

 

Effect ATC confirms TSAT to the flight crew in order to maintain the 

aircraft in the pro-departure sequence. Provided the aircraft was 

ready on time (ARDT), it is now up to ATC to assure that a 

regulated flight can respect its CTOT. 

 

Procedures First step: To inform all relevant Airport CDM Partners of Actual 

Start up Request Time (ASRT) in the Airport CDM Platform. 

Second step: to alert all relevant Airport CDM Partners when no 

start up has been requested inside the locally agreed TSAT tolerance 

window. 

Inform of ASRT when it occurs. If the start up request is not made 

by TSAT + tolerance, the AO/GH is informed that no start up has 

been requested, and should update TOBT. 

Timestamp when the tolerance window has passed at TSAT. 

 

Operational Status 

 (changes to) 

N.A. 

 

Action on CDM Operation 
(ACISP) 

N.A. 

 

 
 
 



 Appendices  
 

          Matthias Groppe                Influences on Aircraft TOBT Prediction Accuracy                    247                 

 

Milestone 14                                      Start Up Approved 

Definition ASAT - Actual start up Approval Time. This is the time that an 

aircraft receives its start up approval. 

 

Origin and priority ATC 

Timing The information is directly available after occurrence of the 
milestone. 

Data Quality Data is available with an accuracy of +/-1 minute. 

Effect On receipt of ATC approval, the aircraft will start up, push back and 
start to taxi. 

 

Procedures   First Step: All relevant Airport CDM Partners are informed of 

Actual start up approval Time (ASAT) in the Airport CDM 

Platform and that the aircraft has received start up approval / 

pushback clearance. 

Second step: To check if ASAT is in accordance to TSAT and to 

alert all relevant Airport CDM Partners when no start up has been 

granted. 

Inform of ASAT when it occurs. In case the start up approval is not 

granted at TSAT + tolerance, all relevant partners should be 

informed. The flight will be re-sequenced. 

Start up request by flight crew (voice or DCL) or a locally defined 

time around TSAT if Milestone Process 13 is omitted. 

 

Operational Status  

(changes to) 

N.A. 

 

Action on CDM Operation 
(ACISP) 

N.A. 
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Milestone 15                                      Off-Block  

Definition AOBT - Actual Off-Block Time. The time the aircraft 

pushes back/vacates the parking position (Equivalent to 

Airline/Handler ATD - Actual Time of Departure 

ACARS=OUT). 

 

Origin and priority ACARS equipped aircraft or automated docking systems or ATC 

systems (e.g. A-SMGCS) or by manual input. 

 

Timing The information is directly available after occurrence of the 
milestone. 

 

Data Quality Data is available with an accuracy of +/-1 minute. 

Effect TTOT updated considering the EXOT. 

Procedures First step: To inform all relevant Airport CDM Partners of Actual 

Off-Block Time (AOBT) in the Airport CDM Platform and that the 

aircraft has commenced pushback / taxi from parking position. 

Second step: To check if TTOT changes by more than the agreed 

tolerance and inform CFMU. 

Inform of AOBT when it occurs. AOBT always triggers an A-DPI 

message to CFMU or in the case of remote holding at a defined time 

prior to TTOT. After a first A-DPI is sent this check shall be 

performed to check TTOT updates against the TTOT tolerance 

before CFMU is informed, with a new A-DPI, of the updated TTOT. 

This process is triggered by AOBT detection. 

 

Operational Status  

(changes to) 

OFF-BLOCK 

 

Action on CDM Operation 
(ACISP) 

AOBT recorded 
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Milestone 16                                      ATC Flight Plan Activated  

Definition ATOT - Actual Take Off Time. This is the time that 

an aircraft takes off from the runway. (Equivalent to 

ATC ATD-Actual Time of Departure, ACARS = 

OFF). 

 

Origin and priority Provided by ATC system or from ACARS equipped aircraft. 

 

Timing The information is directly available as soon as possible after 
occurrence of the milestone. 

 

Data Quality Data is available with an accuracy of +/-1 minute. 

 

Effect FSA and MVT messages are sent. 

 

Procedures To inform all relevant Airport CDM Partners about the actual take 
off. 

An airborne message is generated and the flight is removed from the 
departure sequence. 

 

This process is triggered by Tower FDPS, A-SMGCS / Radar 
detection or ACARS. 

 

Operational Status  

(changes to) 

DEPARTED / TAKE OFF  

Action on CDM Operation 
(ACISP) 

ATOT recorded  
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FLIGHT CREW SURVEY
 

 

Dear Colleagues, 

 

As part of an ongoing research project at CRANFIELD University, I would like to invite you, to 

take part in this survey sponsored by the EUROCONTROL Experimental Centre and FRAPORT 

Foundation ‘Eric Becker’. 

It is about SITUATIONS during your day

parties like ramp agents, ATC, airport, flight manager, etc is required for punctual dispatch. 

This survey intends to find 

other parties involved during various turn

 

Cooperation from all parties involved in flight operation is viewed as an essential part of a 

successful turn-round execution. Therefore, EUROCONTROL i

Collaborative Decision Making (A

airports by improved information sharing and situational awareness between all parties 

involved.  

 

This survey looks at the cockpit

assess the current level of cooperation during various turn

critical for punctuality.  

 

The survey contains five typical turn

identical. That means, if you familiarize yourself with one of the proposed SITUATIONS, it is 

straightforward to answer the questions in the following SITUATIONS. All SITUATIONS are just 

examples. Please feel free, to add SITUATIONS fro

critical for punctuality or skip SITUATIONS which you have not experienced. Answering all 

questions takes about 15 minutes time, but your experience is needed and highly appreciated! 

 

The results from this survey wil

find a more effective way of information sharing and common situational awareness. Therefore 

I would like to invite you, to share Your experience. Please bear in mind that all data is treated 

anonymously. 

 

Thank you very much in advance,

 

 

Matthias Groppe 

F/O Lufthansa CityLine 

Doctoral Researcher at EUROCONTROL Experimental Centre

This survey has been created with '2ask'
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SURVEY 

As part of an ongoing research project at CRANFIELD University, I would like to invite you, to 

take part in this survey sponsored by the EUROCONTROL Experimental Centre and FRAPORT 

It is about SITUATIONS during your day-to-day flight operations, where the cooperation of other 

parties like ramp agents, ATC, airport, flight manager, etc is required for punctual dispatch. 

This survey intends to find your perspective on cooperation between your cockpit and the 

other parties involved during various turn-round situations.  

Cooperation from all parties involved in flight operation is viewed as an essential part of a 

round execution. Therefore, EUROCONTROL initiated the project about 

Collaborative Decision Making (A-CDM) with the aim of increasing punctuality at congested 

airports by improved information sharing and situational awareness between all parties 

cockpit’s perspective on the Airport CDM project. You are asked to 

assess the current level of cooperation during various turn-round situations which are seen as 

five typical turn-round SITUATIONS. The questions for each SITUATION are 

identical. That means, if you familiarize yourself with one of the proposed SITUATIONS, it is 

straightforward to answer the questions in the following SITUATIONS. All SITUATIONS are just 

examples. Please feel free, to add SITUATIONS from your own experience which you see as 

critical for punctuality or skip SITUATIONS which you have not experienced. Answering all 

questions takes about 15 minutes time, but your experience is needed and highly appreciated! 

The results from this survey will be used to review current Airport CDM procedures in order to 

find a more effective way of information sharing and common situational awareness. Therefore 

I would like to invite you, to share Your experience. Please bear in mind that all data is treated 

Thank you very much in advance, 

Doctoral Researcher at EUROCONTROL Experimental Centre 

This survey has been created with '2ask'  

T Prediction Accuracy                    250                 

 

As part of an ongoing research project at CRANFIELD University, I would like to invite you, to 

take part in this survey sponsored by the EUROCONTROL Experimental Centre and FRAPORT 

day flight operations, where the cooperation of other 

parties like ramp agents, ATC, airport, flight manager, etc is required for punctual dispatch.  

cooperation between your cockpit and the 

Cooperation from all parties involved in flight operation is viewed as an essential part of a 

nitiated the project about Airport 

with the aim of increasing punctuality at congested 

airports by improved information sharing and situational awareness between all parties 

on the Airport CDM project. You are asked to 

round situations which are seen as 

each SITUATION are 

identical. That means, if you familiarize yourself with one of the proposed SITUATIONS, it is 

straightforward to answer the questions in the following SITUATIONS. All SITUATIONS are just 

m your own experience which you see as 

critical for punctuality or skip SITUATIONS which you have not experienced. Answering all 

questions takes about 15 minutes time, but your experience is needed and highly appreciated!  

l be used to review current Airport CDM procedures in order to 

find a more effective way of information sharing and common situational awareness. Therefore 

I would like to invite you, to share Your experience. Please bear in mind that all data is treated 
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FLIGHT CREW SURVEY  

SITUATION I: You have just landed at your destination and your parking stand is still 
occupied. Please recall any of your more recent flights: 

When were you notified of that your parking stand is not yet 
available?   

� After landing 

� During flight 

� 
I did not encounter 
a situation like this 
(please press -

How long did you have to wait for your parking stand? 

� 1-5 minutes 

� 6- 10 minutes 

� 11 - 15 minutes 

� 16- 20 minutes 

� More than 20 
minutes 

What was the impact on departure delay for the flight after the 
turn-round  

� 1-5 minutes 

� 6- 10 minutes 

� 11 - 15 minutes 

� 16- 20 minutes 

� More than 20 
minutes 

Do you think this delay would be avoidable through timely 
notification of 'parking stand problems'? (e.g. because it allows you to 
take an appropriate initiative) 

� Very unlikely 

� Unlikely 

� Likely 

� Very Likely 

How often does this happen 

� Daily 

� Weekly 

� Monthly 

� Irregularly 
 
What could be the 
reason(s) for this 
waiting time/ delay? 

Competing Interests among functions 
responsible for the allocation of the parking 
stand such as airport, airline, or ground 
handling  

� Very unlikely 

� Unlikely 

� Likely 

� Very likely 

Not enough parking stands available  

� Very unlikely 

� Unlikely 

� Likely 

� Very likely 

Competence of responsible function/ 
individual  

� Very unlikely 

� Unlikely 

� Likely 

� Very likely 
 
Any Comments? 
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SITUATION II: Delay of a Ground Handling Process: Please recall your last turn-round where you encountered such 
a delay: 

Please choose one event which you would like to refer to: 

� Baggage loading/ unloading � Airport Facilities 

� Ramp transfer bus (Crew or Passengers) � Wheelchair Boarding 

� Catering � UM Boarding 

� Cleaning � Special Loading (e.g. musical instrument) 

� Fuelling � VIP Boarding 

� Check-in � I cannot recall encountering a situation like this (please 
go to SITUATION III) � Security � Other Ground Handling event  
      (please name)  
 

� Boarding 

How were you notified of the delay? 
� You were duly informed about the problem 

� You learned about it yourself, having observed that the process 
was not executed or you received information too late 

How much delay resulted from this lack of 
information?  

� 1-5 minutes 

� 6- 10 minutes 

� 11 - 15 minutes 

� 16- 20 minutes 

� More than 20 minutes 

What was the impact on departure delay for the 
flight after the turn-round  

� 1-5 minutes 

� 6- 10 minutes 

� 11 - 15 minutes 

� 16- 20 minutes 

� More than 20 minutes 

Do you think this delay would be avoidable 
through timely notification of ‘ground handling 
problems' (e.g. through taking appropriate 
initiatives)? 

� Very unlikely 

� Unlikely 

� Likely 

� Very Likely 

How often does this happen 

� Daily 

� Weekly 

� Monthly 

� Irregularly 

 
What could be the 
reason(s) for this 
waiting time/ 
delay? 

Competing interests among 
responsible functions like 
airport, airline, or handling 
service provider   

� Very unlikely 

� Unlikely 

� Likely 

� Very likely 

Not enough resources 
available (e.g.personnel, 
vehicles, check-in desk...)  

� Very unlikely 

� Unlikely 

� Likely 

� Very likely 

Competence of responsible 
function/ individual  

� Very unlikely 

� Unlikely 

� Likely 

� Very likely 

 
Any Comments?  
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SITUATION III: You got operational changes at your destination (e.g. aircraft change, technical repair, crew duty 
changes….) Please consider your last turn-round where you encountered such situation: 

Please choose one event which you would like to refer to: 

� Aircraft Change � I cannot recall encountering a situation like this (please 
go to SITUATION V) � Technical Repair � Other Ground Handling event  
      (please name)  
 

� Crew Duty Change (new duty roster) 

� Crew Change (new crew member) 

How were you notified of the delay? 

� Before Departure 

� During Flight 

� After Arrival at Destination 

How much additional time did you need because 
of this? 

� 1-5 minutes 

� 6- 10 minutes 

� 11 - 15 minutes 

� 16- 20 minutes 

� More than 20 minutes 

Because of this, was there an impact on 
departure delay for the flight after the turn-
round? 

� 1-5 minutes 

� 6- 10 minutes 

� 11 - 15 minutes 

� 16- 20 minutes 

� More than 20 minutes 

Do you think this delay would be avoidable 
through timely notification of ‘operational 
changes? (e.g. because it allows you to take an 
appropriate initiative)  

� Very unlikely 

� Unlikely 

� Likely 

� Very Likely 

How often does this happen 

� Daily 

� Weekly 

� Monthly 

� Irregularly 

 
What could be the 
reason(s) for this 
waiting time/ 
delay? 

Competing interests among 
responsible functions like 
airport, airline, or handling 
service provider   

� Very unlikely 

� Unlikely 

� Likely 

� Very likely 

Not enough resources 
available (e.g.personnel, 
vehicles, check-in desk...)  

� Very unlikely 

� Unlikely 

� Likely 

� Very likely 

Competence of responsible 
function/ individual  

� Very unlikely 

� Unlikely 

� Likely 

� Very likely 

 
Any Comments?  
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SITUATION IV: You have yourself proposed operational changes (e.g. via ACARS, telephone, radio…). Please recall 
your last flight or turn-round where you encountered such a situation 

Your proposal was about: (please choose one situation) 

� Necessary technical repair during turnaround � I cannot recall encountering a situation like this (Please 
go to GENERAL:DECISION MAKING) to SITUATION � Connecting passenger � Other Ground Handling event  
      (please name)  
 

� Avoidance of an unnecessary Aircraft Change 

Consequences from your proposal: 
� Your proposal was considered (you got an answer on your 

proposal) 

� 
Your proposal was not considered (no reaction on your 
proposal) 

How much extra time did you spend because 
your proposal was not considered? 

� 1-5 minutes 

� 6- 10 minutes 

� 11 - 15 minutes 

� 16- 20 minutes 

� More than 20 minutes 

Because of this, was there an impact on 
departure delay for the flight after the turn-
round? 

� 1-5 minutes 

� 6- 10 minutes 

� 11 - 15 minutes 

� 16- 20 minutes 

� More than 20 minutes 

Do you think this delay (if relevant) would be 
avoidable through ‘timely reaction on your 
proposal’? (e.g. because it allows you to take an 
appropriate initiative)  

� Very unlikely 

� Unlikely 

� Likely 

� Very Likely 

How often does this happen 

� Daily 

� Weekly 

� Monthly 

� Irregularly 

 
What could be the 
reason(s) for this 
waiting time/ 
delay? 

Competing interests among 
responsible functions like 
airport, airline, or handling 
service provider   

� Very unlikely 

� Unlikely 

� Likely 

� Very likely 

Not enough resources 
available (e.g.personnel, 
vehicles, check-in desk...)  

� Very unlikely 

� Unlikely 

� Likely 

� Very likely 

Competence of responsible 
function/ individual  

� Very unlikely 

� Unlikely 

� Likely 

� Very likely 

 
Any Comments?  
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GENERAL: DECISION MAKING  

Do you think it would be an advantage if the flight crew is more involved in decision making for operational issues in 
flight or during the turn-round? 

� Yes, please give reason 
 

 

� No, please give reason 
 

GENERAL: PROBLEMS DURING TURN-ROUND  

If problems arise during turn-round: what do you think could be the reasons? (please rate): 

Turn-Round Time too short? 
� Very unlikely 

� Unlikely 

� Likely 

� Very Likely 

Delays result from information overload: more 
important information is hidden among less 
important information?  

� Very unlikely 

� Unlikely 

� Likely 

� Very Likely 

Inappropriate distribution of responsibilities 
(e.g. decision making…)? 

� Very unlikely 

� Unlikely 

� Likely 

� Very Likely 

Inappropriate or insufficient communication 
facilities (radio, intercom…)? 

� Very unlikely 

� Unlikely 

� Likely 

 
Other Reason? 
(please name) 

 

 

 

GENERAL INFORMATION  

Please name the company you are working for:  

How many years of experience do you have 
as Captain First Officer 

I would like to remind you that all information is treated completely anonymously. Many thanks for your 
participation!  
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APPENDIX III: IATA Commonly Used Airline Delay and Diversion Codes  
  

Numeric Alphabetic Description 

Airline Internal Codes 

00  IATA has recommended that these codes are used by individual airline to 
develop code definition that meet their specific requirements: e.g. 03 ‘Three-
class-System’ moving curtain 
 
Note: At time of writing the IATA Recommendation AHM 730 does NOT 
suggest any Alphabetic Equivalents fro these codes 
 

01  

02  

03  

04  

05  

Others 

06 OA NO STAND/GATE AVAILABILITY DUE TO OWN AIRLINE ACTIVITY 

Schedules 

09 
 

SG 
 

 SCHEDULED GROUND TIME LESS THAN DECLARED MINIMUM  

 
Passenger and Baggage 

11 PD LATE CHECK-IN; acceptance after deadline 

12 PL LATE CHECK-IN; congestion in check-in area 

13 PE CHECK-IN ERROR;  passenger and baggage 

14 PO OVERSALES; booking errors 

15 PH BOARDING; discrepancies and paging, missing checked-in passenger 

16 PS COMMERCIAL PUBLICITY; PASSENGER CONVENIENCE, VIP, press, 
ground meals and missing items 

17 PC CATERING ORDER; late or incorrect order given to supplier 

18 PB BAGGAGE PROCESSING;  sorting, etc.  

Cargo and Mail 
If delays caused by Mail handling can be identified use the Mail specific codes in the next section (27-29), 
otherwise use the codes detailed below (21-26) 
 21 CD DOCUMENTATION; errors, etc. 

22 CP LATEPOSITIONING 

23 CC LATE ACCEPTANCE 

24 CI INADEQUATE PACKING 

25 CO OVERSALES; booking errors 

26 CU LATE PREPARATION IN WAREHOUSE 

Mail Only 

27 CE DOCUMENTATION; PACKING; etc. 

28 CL LATE POSITIONING 

29 CA LATE ACCEPTANCE 

Aircraft and Ramp Handling 

31 GD 
AIRCRAFT DOCUMENTATION/INACCURATE; weight and balance, general 
declaration, pax manifest, etc. 

32 GL LOADING/UNLOADING; bulky, special load, lack of loading staff 

33 GE 
LODADING EQUIPMENT; lack of or breakdown, e.g. container pallet loader, 
lack of staff 

34 GS SERVICING EQUIPMENT; lack or breakdown, lack of staff, e.g.steps 
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35 GC AIRCRAFT CLEANING 

36 GF FUELLING/ DEFUELLING;  fuel supplier 

37 GB CATERING;  late delivery or loading 

38 GU ULD, lack or serviceability 

39 GT TECHNICAL EQUIPMENT; lack or breakdown, lack of staff, e.g. push-back 

 
 

Numeric Alphabetic Description 

Technical and Aircraft Equipment 

41 TD AIRCRAFT DEFECTS 

42 TM SCHEDULED MAINTENANCE; late release 

43 TN 
NON-SCHEDULED MAINENTANCE, special checks and/or additional works 
beyond normal maintenance schedule 

44 TS SPARES AND MAINTENANCE EQUIPMENT; lack of or breakdown 

45 TA AOG SPARES, to be carried to another station 

46 TC AIRCRAFT CHANGE, for technical reasons 

47 TL STANDBY AIRCRAFT, lack of planned standby aircraft for technical reasons 

48 TV SCHEDULED CABIN CONFIGURATION VERSION ADJUSTMENTS 

Damage to Aircraft 

51 DF 
DAMAGE DURING FLIGHT OPERATIONS, bird or lightning strike, 
turbulence, heavy or overweight landing, collision during taxing  

52 DG 
DAMAGE DURING GROUND OPERATIONS, collisions (other than during 
taxiing), loading/off-loading damage, contamination, towing, extreme weather 
conditions 

Automated Equipment Failure/ EDP (Computer System) 

55 ED DEPARTURE CONTROL 

56 EC CARGO PREPARATION/ DOCUMENTATION 

57 EF FLIGHTPLANS 

Flight Operations and Crewing 

61 FP FLIGHT PLAN, late completion or change of flight documentation  

62 FF OPERATIONAL REQUIREMENTS, fuel, load alteration 

63 FT 
LATE CREW BOARDING OR DEPARTURE PROCEDURES, other than 
connection and standby (flight deck or entire crew) 

64 FS 
FLIGHT DECK CREW SHORTAGE; sickness, awaiting standby, flight time 
limitations, crew meals, valid visa, health documentations, etc. 

65 FR 
FLIGHT DECK CREW SPECIAL REQUEST, not within operational 
requirements 

66 FL 
LATE CABIN CREW BOARDING OR DEPARTURE PROCEDURES, other 
than connection and standby 

67 FC 
CABIN CREW SHORTAGE, sickness, awaiting standby, flighttime limitations, 
crew meals, valid visa, health documents, etc. 

68 FA 
CABIN CREW ERROR OR SPECIAL REQUEST, not within operational 
requirements 

69 FB CAPTAINS REQUEST FOR SECURITY CHECK, extraordinary 

Weather 

71 WO WEATHER AT DEPARTURE STATION 
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72 WT WEATHER AT DESTINATION STATION 

73 WR WEATHER EN ROUTE OR ALTERNATE 

75 WI 
DE-ICING OF AIRCRAFT, removal of ice and/or snow, frost prevention 
excluding unserviceable equipment 

76 WS REMOVAL OF SNOW, ICE, WATER AND SAND FROM AIRPORT 

77 WG GROUND HANDLING IMPARED BY ADVERSE WEATHER CONDITIONS 

 
Numeric Alphabetic Description 
Air Traffic Flow Management Restrictions 
81 AT ATFM DUE TO ATC EN-ROUTE DEMAND/CAPACITY, standard 

demand/capacity problems 
82 AX ATFM DUE TO ATC STAFF/EQUIPMENT EN-ROUTE, reduced capacity 

caused by industrial action or staff shortage or equipment failure, extraordinary 
demand due to capacity reduction in neighbouring area 

83 AE ATFM DUE TO RESTRICTION AIRPORT, airport and/or runway closed due to 
obstruction, industrial action, staff shortage, political unrest, noise abatement, 
night curfew, special flights 

84 AW ATFM DUE TO WEATHER AT DESTINATION 

Airport and Governmental Authorities 
85 AS MANDATORY SECURITY 
86 AG IMMIGRATION, CUSTOMS, HEALTH 

87 AF 
AIRPORT FACILITIES, parking stands, ramp congestion, lighting, buildings, 
gate limitations, etc. 

88 AD 
RESTRICTIONS AT AIRPORT OF DESTINATION, airport and/or runway 
closed due to obstruction, industrial action, staff shortage, political unrest, noise 
abatement, night curfew, special flights 

89 AM RESTRICTIONS AT AIRPORT OF DEPARTURE WITH OR WITHOUT 
ATFM FESTRICTIONS; including Air Traffic Services, start-up and push-back, 
airport and/or runway closed due to obstruction or weather (restriction due to 
weather in case of AFTM regulation only, else refer to code 71) 

Reactionary 
91 RL LOAD CONNECTION, awaiting load from another flight 

92 RT THROUGH CHECK-IN-ERROR, passenger and baggage 

93 RA AIRCRAFT ROTATION, late arrival from another flight or previous sector 
94 RS CABIN CREW ROTATION, awaiting cabin crew from another flight 

95 RC 
CREW ROTATION, awaiting crew from another flight (flight deck or entire 
crew) 

96 RO 
OPERATIONS CONTROL, rerouting, diversion, consolidation, aircraft change 
for reasons other than technical 

Miscellaneous 

97 MI INDUSTRIAL ACTION WITHIN OWN AIRLINE 

98 MO INDUSTRIAL ACTION OUTSIDE OWN AIRLINE, excluding ATS 

99 MX NOT COVERED BY ANY OTH OTHER DEFINED CODES 
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APPENDIX IV: Currently Used Turn-round Monitoring T ools 

A number of tools with real-time turn-round process monitoring capabilities are 

currently available. However, none of the tools have predictive functionalities 

allowing TOBT predictions. 

1 GroundStar HubControl as process monitoring tool by INFORM GmbH, 

Aachen 

GroundStar HubControl claims itself as a process-monitoring tool able to identify 

factors that may negatively affect a seamless turn-round and to evaluate their impact 

on the turn-round operation. Characteristics of HubControl are: 

• provision of operational transparency via significant pre-warning times;  

• identification and prevention of bottlenecks for aircraft, passenger, and 

baggage handling. 

According to company information, between 100 million and 170 million Euro of 

cost is attributed to delay with one fourth that can be attributed to ground handling. 

HubStar describes itself as a generic product able to adapt to any turn-round operation.  

GroundStar HubControl also claims being able to monitor the concatenation of 

correlated handling tasks for turn-round flights, arrivals and departures, to identify the 

critical path and in doing so, supplying all decision-support information required. It 

detects actual delays and their reasons; delay durations are calculated automatically. It 

is able to produce warnings for predictable irregularities in handling processes and to 

offer various resolution options at the same time. 

Figure 42 shows a possible depiction of HubControl where all processes during turn-

round are displayed with a colour-code indicating the allocation of the process 

according to airlines’ requirements. The right half of the display shows the timeline 

indicating the temporal sequence and duration of the ground handling processes. 

Processes can be added or removed analogous the requirements of the airline. Real-

time tracking as well as process start/completion are colour-coded. 
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FIGURE 42: GUI FOR TURN-ROUND PROCESSES (SOURCE: INFORM, 2009) 

 
 
 

2 ALLEGRO as a process monitoring tool by Lufthansa German Airlines 

Until launch of this tool, no time-oriented information was available for ground 

handling processes. The target of ALLEGRO was to gather information with focus on 

timeliness of turn-round processes between in-block and off-block time. Landside and 

airside processes were analysed in order to identify required measurement points 

where timestamps can be set (Figure 43). The measurement points are indicated by the 

little triangles.  
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FIGURE 43: DEFINED TURN-ROUND MEASUREMENT POINTS (S OURCE: LUFTHANSA, 2004) 

 

Defined target times are flexible and include buffer times in order to incorporate 

delays of preceding processes. The underlying objective for development of this tool 

was to identify the root causes of delays.  

The tool should also provide: 

• a better ground handling transparency; 

• the base for debriefings with operational staff; 
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• the base for performance agreements with internal and external service 

partners; 

• the base for analyses by A/C type, by gate, by A/C position, by day of week, 

etc; 

• the reduction of spot checks and thereby cost of surveys; 

• the validation of target times; and 

• the base for inductive definition of minimum ground times. 
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APPENDIX V: Further Results from Literature Study 

1 Factors influencing Cooperation 

1.1 Organisational Structure 

Artman (1999) describes cooperative situations as ‘team-think’ and analyses 

cooperation and situation awareness within different teams. He demonstrated that 

serial teams engage more in cooperating activities than parallel teams which can 

result in problems for coordination. This is in line with findings from Brehmer and 

Svenmarck (1995) who claim that a hierarchical organisation of information 

distribution results in a better performance than an organisation where all 

participants can talk to everybody else. As a possible reason for this differences in 

performance levels he identifies that a central unit does not only collect and 

organize information, but understands the overall situation and plans for 

appropriate actions.  

1.2 Information Sharing and Conceptual Design 

Within the Computer Supported Cooperative Work (CSCW) research initiative, 

Davis (2000) studied information flows as the basis for creating shared information 

spaces on a web-based repository system that can be used to support asynchronous 

distributed collaborative work. He claims that a systematic approach uses a global 

perspective of information flows in the organisation with continuous participation 

of the end users. This allows him to uncover the complex technical and 

organisational requirements for effective acceptance and use of IT tools.  

Shouqian et al (2003) studied models and techniques of computer supported 

cooperative conceptual design for motorcycles. Hoc et al (2002) analysed the 

demands of task and function’ allocation on human-machine cooperation design 

from a psychological perspective; Rogalski (1996) analysed the cooperation 

process and how cooperation can evolve during training.  
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1.3 Generative Models for Cooperation among Operators  

When conflict resolution in terms of operators’ preferences and values is not 

possible during face-to-face or synchronous communication, a representation of 

operators’ proposition in form of a generative model was introduced by Jameson et 

al (2003). The underlying idea thereby is that, during asynchronous 

communication, operators have a poor awareness of how other operators’ tackle the 

problems that they jointly face because of the inherent difficulties of the media 

typically available during asynchronous communication. During such situations, a 

computational model of operators’ relevant beliefs, preferences, motivations, and 

other relevant properties as operators’ representative should be used (Figure 44).   

 

 

 

FIGURE 44: GENERATIVE PREFERENCES MODEL (SOURCE: JA MESON ET AL, 2003)    

1.4 Influence of Explanation on Cooperation 

Karsenty et al (1995) emphasized the role of explanation for the study of 

cooperation where little consideration has been placed so far and studied 

explanation in cooperation via human-human cooperative dialogues. Gregor (2000) 

catches up with explanations for the analysis of the role of explanation when 

knowledge-based systems are used for cooperative problem solving. Both argue in 

favour of an increased need for explanation. 

1.5 Human-Computer Interaction and Cooperation  

Focus of the Computer Supported Cooperative Work (CSCW) research has been 

placed on the interaction design and decision support. It was recognized that 

cooperation theories and models are an important aid for CSCW systems. Most 
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central there are the Activity Theory, Action/Interaction Theory, Coordination 

Theory, the Task Manager Model, and the Object-Oriented Activity Support Model 

(De Farias et al, 1999). De Farias denotes that these different models and theories 

have a set of common concepts and uses these commonalities for developing a new 

model based on these similarities and strengths. The identified generic concepts 

among all models include activities, actors, services, and information which should 

be used to develop cooperative systems.  

1.6. The Role of Performance Metrics for Cooperation 

Performance metrics can be useful for favouring cooperation and driving operators’ 

behaviour. E.g., during turn-round management, the IATA delay codes are used as 

performance metrics. These however, do not show appropriate characteristics to 

foster cooperation across participating functions. For ROI (2004) it is crucial that 

performance measures should be horizontally and not vertically integrated and be 

linked with the company's mission, vision, and value proposition. They should also 

be actionable and within that manager's span of control. Hence, if vertical 

integration of metrics prevails, all the measures of success for a supplier are only 

aligned along traditional functional lines. However, if horizontal integration of 

metrics is present the measures of success for an area look across functional 

boundaries to search for the effect on a process as a whole. Usage of horizontally 

integrated metrics can prevent sub-optimization by seeking to measure the success 

of a function by its impact on the process as a whole. But this raises the question of 

what to measure during process management. E.g. how can suppliers be aware what 

their contribution is to accomplishing the objectives of the company?  

1.7 Cooperation via Cascading Key Performance Indicators 

ROI (2004) propose the implementation of a technique called ‘KPI cascade’. 

This should ensure that measures which are required to accomplish the mission, 

vision, and value proposition of the organisation, are in place at all levels allowing 

a company to eliminate metrics that no longer have value. ROI identifies a number 

of advantages resulting from suitable performance metrics: 

• avoidance of sub-optimization; 
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• alignment within and between functional areas; 

• understanding of what is and what is not important to achieve the company 

objectives; 

• a "holographic" set of measures describing the health of a process; and 

• measures that are actionable and assigned at the appropriate level. 

Cascading KPIs have been proposed by ROI (2004) that are able to link the 

performance management strategies of the company to these KPIs. In such way, 

they create a process that is suitable for the overall outcome and not just the 

outcome of a single supporting process. E.g. the A-CDM key performance 

indicators could be cascaded into particularized KPIs, thus set the latter KPIs and 

target them to the processes and procedures that contribute to the overall success. 

Such form of cultural change with KPIs primarily for the whole company will 

require compensation processes for the supplying companies and also requires 

performance levels allowing the supplying companies to meet their own objectives. 

Miller (1996) proposes to use causal relationships in order to make supplying 

companies comprehend the overall goal and the meaning behind the importance of 

the key performance indicators.      

1.8 Influence of the Goal Structure on Cooperation 

Nezamirad et al. (2005) proposed a model that includes all individual actors’ and 

operators’ goals, tasks, and resources towards the establishment of group goals and 

group tasks. Figure 46 shows a possible application of this model to A-CDM and 

TOBT prediction. This representation allows an analysis of goal structures as an 

iterative refinement process: first, all participating operators’ local goals towards 

the collaborative goal have to be identified (Figure 45). The results should then be 

used to analyse how these local goals influence the overall goals and the global 

goal. The local goals should be continuously re-defined using the underlying sub-

goals of each participating operator. This allows getting a more realistic view on the 

individual operators’ goals which in turn influence the group goals. Using this form 

of analysis helps to identify the sub-goals which have negative or positive impact 

on the global goal or group goals.   
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Furthermore, this approach combined with the cascading performance indicators 

as proposed in Sub-Chapter 1.7 may allow identifying how the local operators’ 

goals can look like and how the global goal can be achieved: 

 

 
FIGURE 45: COOPERATION MODEL ANALOGOUS NEZAMIRAD (2 005) APPLIED TO A-CDM 

 

As cooperation continues, operators identify group goals based on their 

individual goals and group knowledge. As the management of a process is 

dynamically entwined with the elaboration and maintenance of group knowledge, 

the goal structures are dynamic, e.g. focus of sub-goal C1 shifts the importance of 

sub-goal C2 which again may change the outcome of the global goal. Also the 

relationship between the group and individual goal structures is a recursive and 

cooperative process, e.g. as global goal changes, the individual goals may be 

amended or revised.  

Operators work together at different levels and forms of work. When looking at 

different levels of abstraction towards a process, goal structures and therefore 

cooperative activities are different for each situation which again has consequences 

on the overall global goal. Nezamirad et al (2005) emphasizes the importance that 

operators are aware of goals of other participants in order to allow them to 

anticipate events or to plan resources.  
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1.9 The Different Levels of Cooperation 

Ferber (1995) discusses cooperation as only one possible category of human-

human interaction situation (micro-level analysis). However, focus can also be 

applied on the social-organisational and cross-functional organisational aspects 

during interaction situations (macro-level analysis). Typical characteristics here are 

e.g. the cognitive factors related to common goals, influencing operators’ goals by 

other operators, control issues, types- and models of communication, influence of 

knowledge based behaviour on other operators, or the role of incentives. A macro-

level situation results from combinations of micro-level situations with emergent 

characteristics (Figure 46) where again the macro-situation imposes social 

constraints on the micro-level situation (Ferber, 1995).  

 
FIGURE 46: RELATION BETWEEN COOPERATION SITUATIONS (SOURCE: FERBER, 1995) 

 

1.10 Further Aspects on Cooperation  

Most theories about cooperation have looked at the interest of actors to 

cooperate with other actors (e.g. Axelrod, 1984) or communication in groups or 

teams (Stoetzel, 1978; Hoc, 2004). Research within multi-agent systems however 

looks to cognitive aspects and behavioural aspects required for implementation of 

cooperative acting (Demazeau and Mueller, 1991; Durfee et al, 1987; Galliers, 

1991; Castelfranchi and Conte, 1991; Bouron, 1992).  

The notion of cross-organisational cooperation emphasizes a holistic aspect of 

cooperation. While at task execution or human-human interaction level cooperation 

emerges from goal, motive, and the instrumental condition (Leontyev, 1959), the 

holistic perspective of cross-organisational cooperation includes also other 

influences. According to ROI (2004), three components are required for successful 

management across functions and organisations, including appropriate management 
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performance metrics, periodic cross-functional management meetings, and inter-

organisational communication channels. Thereby, a cross-functional system is 

defined as a ‘coalitional structure whose member groups maintain their separate 

identities and, if relevant, different goals, yet employ either some formal 

organisation or informal collaboration for joint decision making or problem 

solving’ (Cummings, 1984). Such a coalitional structure can be found during turn-

round management decision making.   

Studies by Winograd and Flores (1986), and Suchman (1987) started to provide 

radically different orientations for HCI with the introduction of new ideas of how to 

think about the design of computer systems. Frameworks like the activity theory, 

originating in Soviet psychology, have also been applied for interface design. With 

the emergence of the Computer Supported Cooperative Work (CSCW) as a new 

field in the mid 80’s, the HCI community realized the need to support groups of 

people communicating and working together, but did not take cognitive perspectives 

into account. Inspired by Suchman’s work, scientists started to conduct ethnographic 

studies of technology-mediated collaborative work (e.g. studies of Suchman and 

Trigg, 1991). The main findings of these studies showed how important informal 

working practices can be for the coordinating work and managing of unanticipated 

events.  

Piaget (1965) distinguishes between cooperation seen from a structural (e.g. 

network organisation) and functional point of view and looks at cooperation as 

activities performed by individuals within a team in real time. Two minimal 

conditions must be met in cooperative situations: (1) each of the actors strives 

towards goals and can interfere with other actors on goals, resources, and 

procedures. (2) Each actor tries to manage interferences to facilitate individual 

activities or common tasks. Both conditions are not necessarily symmetric, because 

goal orientation or interference management depend on individual behaviour or 

time constraints. 

In the context of Air Traffic Management (ATM) Hoc (2001) argues that current 

ATM is more concerned with operators’ plans, goals, or role allocation than with 

common situational awareness. Lee (2005) determines situational awareness, 

responsibilities and control, time, workload, and safety constraints as key factors 
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driving collaborative behaviour in air traffic control operation: To have proper 

awareness of the situation, a controller and/or flight crew needs to initiate or be 

informed of actions taken by other operators. Nevertheless, time pressure and 

safety issues have negative effect on communication behaviour and therefore also 

on cooperation or common situational awareness.  

Collaborative Decision Making means applying principles of individual decision 

making on groups, whereby groups are established with the aim to show 

collectively a specific behaviour (Jennings et al, 2001). This implies that 

cooperation of participating individuals should be beneficial for CDM operation, 

also in air transport management.  How does a cooperative working environment 

look like on a day-to-day basis? Cooperation has a wide variety of connotations in 

everyday usage (Schmidt, 1994). Do people only cooperate, if they are mutually 

dependant in their work? Is mutual dependency sufficient for cooperation to 

emerge? In context of CDM operation, confrontation and the combination of 

different perspectives of cooperation is an issue: how is the flight crew’s 

perspective embedded in the current CDM approach? For Schmidt (1994), the 

multifarious nature of a task can be matched by the application of multiple 

perspectives on a given problem via articulation of these perspectives and 

transforming/ translating information from different domains.  
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2 Aspects of Distributed Cognition and Distributed Decision Making  

2.1 Introduction  

The Distributed Cognition theory was used to model the A-CDM work system (See 

Chapter 4). This approach showed potential not only to analyse, how coordination and 

cooperation of the various subsystems during interdependent work practices are 

established or how information is currently shared within the system, but also allowed 

to include the environment as a factor influencing the individuals when executing their 

tasks.  

Another prevailing advantage of distributed cognition is that the theory can 

accommodate the rich variety of systems and media inherent in organisations’ or 

groups’ cognitive processes like within A-CDM. Since the unit of analysis is not 

committed to a fixed value, the entire system can be decomposed into the smaller, 

functional groups. However, Nardi (2002) and Rogers (2000) argue that analysis 

towards distributed cognition approach cannot generally be used: a low-level 

distributed cognition analysis will not enhance engineering practices for building 

design applications. Also the theoretical perspective is committed to ethnographical 

data collection: a substantial investment is required to actually apply the theory to any 

specific issue (Hutchins, 1994; Hollan et al, 2000).  

2.2 The Distributed Cognition Theory  

Distributed Cognition is a hybrid approach to studying all aspects of cognition, from 

a cognitive, social, and organisational perspective. It attempts to understand how 

cognitive phenomena are distributed across individuals and artefacts (e.g. how tools 

like computers can be used for solving problems). It emphasizes the fact that cognition 

does not lie strictly within the individual, but instead is an emergent, distributed 

activity, performed by people with tools, within the context of a team or organisation, 

in an evolved cultural context. Because of its focus on the whole environment, it gives 

the theory a special role in understanding interactions between people and technology. 

This includes what people do and how they coordinate activities in their environment, 

and so provides a radical reorientation about the design and support of human-

computer interactions.    
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2.3 Background of Distributed Cognition  

Distributed cognition was developed in the mid 1980s by Edwin Hutchins at the 

University of California, San Diego as a theoretical and methodological framework. 

While the traditional view saw cognition as a localized phenomenon that is best 

explained in terms of information processing at the level of the individual interacting 

with applications derived from decomposition of work activities into individual tasks, 

Hutchins argues that cognition does not strictly lie within the individual. Distributed 

cognition tends to reach of what is considered cognitive beyond the individual to 

encompass interactions between people with resources and materials in the 

environment.  

The theoretical and methodological approaches to distributed cognition derive from 

cognitive sciences, cognitive anthropology, and the social sciences. Traditional 

frameworks however were developed separately from respective disciplines (cognitive, 

social, and organisational). Therefore, they do not provide an adequate means of 

studying dynamics of collaborative activities in situ. As a consequence, distributed 

cognition emerged from this need to better understand the dynamics of human-

computer interaction within a complex networked world of information and computer-

mediated interactions (Hollan et al, 2000).  

After the theory was established, the challenge was to integrate concepts from social 

and organisational sciences with the cognitive analysis of micro-level descriptions from 

individuals’ interactions. Even with the distributed cognition approach has been able to 

provide analysis for problems experienced by individual users of awkward-to-use 

interfaces, the lack of consideration on those problems has led to a HCI design that is 

unable to support people using computer-based interaction systems. For Hollan et al 

(2000) this new approach is a radical reorientation of how to think about designing and 

supporting HCIs during complex tasks, and how to ensure human-centred focus. Such 

support should be achieved by extending the scope of the cognitive perspective beyond 

the individual to comprise human-human interactions with resources in such an 

environment in which people pursue their goals in collaboration with elements of the 

social and material world. 
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The distributed cognition approach can also be distinguished from others by its 

commitment to two principles: it looks for cognitive processes on the basis of the 

functional relationships of elements (e.g. a process is not cognitive simply because it 

happens in a brain, nor is a process non-cognitive simply because it happens in the 

interaction among many brains). Second principle concerns the range: distributed 

cognition does not limit cognitive events to reside at an individual only, but also the 

physical environment of thinking or material world can reorganize the distributed 

cognitive system.  

Hollan et al (2000) describe three kinds of distribution of the cognitive process: 

� Cognitive processes may be distributed across the members of a social 

group. 

� Cognitive processes may involve coordination between internal and external 

(material or environmental) structure. 

� Processes may be distributed through time in such a way that the products of 

earlier events can transform the nature of later events. 

The first tenet of socially distributed cognition was already determined in the 1970s 

by Roberts (Hollan et al, 2000) and studied by anthropologists, sociologists, and 

artificial intelligence researchers. This approach studied a social organisation itself as a 

cognitive architecture with the consequence that cognition of an individual is also 

distributed. According to Hollan et al (2000), the new approach to distributed cognition 

however integrates phenomena that emerge in social interactions with interactions of 

people and structure in their environment. He highlights three fundamental questions in 

this context: (1) how are the cognitive processes that we normally associate with an 

individual mind implemented in a group of individuals, and (2) how are the cognitive 

properties of groups differing from the cognitive properties of the people who act in 

those groups, and (3) how are the cognitive properties of individuals minds affected by 

participation in group activities.  

The second tenet is the approach that cognition is an embodied phenomenon and not 

an incidental matter. This approach is increasingly supported by Brooks (1991), Kirsh 

(1991), and Lakoff (1999) who emphasize the relations between internal and external 

processes. Such relations involve coordination at many different time scales between 
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internal resources like memory, attention, and external resources like objects or 

artefacts.       

The third tenet is that studies of culture cannot be separated from studies of 

cognition. While on one hand culture emerges out of human activities in their 

historical context, on the other hand culture shapes cognitive processes through the 

history of material artefacts and social practices (Hutchins, 1994). As a result, culture 

cannot be isolated or separated from cognition and so shapes the cognitive processes 

of systems that transcend the boundaries of individuals (Hutchins, 1994). This 

includes the notion that the environment constitutes as a reservoir of resources for 

learning, problem solving, and reasoning.  

2.4 Distributed Cognition as Integrated Framework for Research 

For the research in cognitive science and the design of new forms of human-

computer interactions, Hollan et al (2000) proposes an integrated research framework 

which puts together the core principles of the theory with classes of phenomena that 

serve the relations with these principles as an assemble of an completed integrated 

research system (Figure 47). 

 

FIGURE 47: INTEGRATED RESEARCH ACTIVITY MAP (SOURCE : HOLLAN ET AL, 2000) 

 
Core principles of an integrated framework include e.g.: 

• people which establish and coordinate different types of structure in their 

environment; 

• maintaining coordination requires an effort; and 

• social organisations hold improved dynamics of cognitive load-balancing 

available. 

These principles are used to identify classes of phenomena via cognitive 

ethnography e.g. (1) information flow or cognitive properties, to make experiments, or 
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(2) for demonstrating the impact of changes, where the distributed cognition principles, 

the ethnographic data, and the experiments mutually constrain each other.  

2.5 Methods used by the Framework of Distributed Cognition 

An analysis using the Distributed Cognition Framework comprises a number of 

different methods ranging from detailed analysis via video or audio recordings of real 

life events to neural network simulations and laboratory experiments. The method used 

for analysis depends on the unit of analysis and the level at which a cognitive system is 

being explained.  

A proper analysis requires focus on the relations and interactions between the 

individual and the artefacts, and a profound knowledge of analysed system domain. 

This entails going to the workplace and spending time determining and analysing the 

problems with the existing technology and work practices (Rogers, 1994). The central 

unit of analysis is the functional system which essentially is a collection of individuals 

and artefacts as well as their relations to each other in a particular work practice 

(Rogers et al, 1994). However, it is possible to adopt different units of analysis to 

describe a range of cognitive systems; whereby some subsume others (Hutchins, 1995). 

Focus is on the nature of distributed activities: how is information propagated through 

and across artefacts, and how is knowledge transmitted between individual members of 

a team or group.  

A distributed cognition analysis requires also an increased attention on the abstract 

functional relations in order to develop a framework for modelling and design 

(Rasmussen et al, 1994). Traditionally work systems are analysed by using a structural 

perspective which focuses on a causal interaction among parts. That means elements of 

analysis are arranged in cause-and-effect chains and the characteristics are determined 

by their output. This way may be true for machines, however human actors do not have 

such stable input-output characteristics because humans may change their 

characteristics or behaviour, and modelling human-machine systems cannot be 

accomplished in isolation. This means, in order to understand system behaviour where 

humans are involved, the entire system has to be contemplated and structural elements 

of the system have to be abstracted at a purely functional level in order to identify 

functional relations. Additionally, in order to make the functional relation more 
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effective, the actor should not be assigned to specific behaviour, but a space bounded 

by the goal and resource constraints (Rasmussen et al, 1994).  

Other issues which constitute important properties of distributed cognition are the 

access to information and dynamic aspects of activities: shared access together with 

shared knowledge is the basis for coordinated actions. Thereby the means of knowledge 

propagation is focusing on dynamic aspects of the activities rather than static entities. 

Rogers (1994) emphasizes the need to describe in increasing detail the seemingly trivial 

and usually taken for granted aspects of interactions (micro-level analysis) since they 

often play a crucial role in coordination of work activities. Additionally there are 

always situations emerging during day-to-day working activities where the members of 

the group are required to carry out additional tasks. This results in new coordination 

procedures giving additional aspects on the carried out interactions.  

2.6 Related Research Using the Distributed Cognition Framework 

A wide spectrum of approaches to apply distributed cognition can be found having 

analysed cognitive phenomena. Most of the attention has focused on cognitive systems 

of work practices, e.g. engineering, cockpits, ship navigation, software development in 

order to design interfaces between humans and/or humans and computers (e.g. Burns, 

2000; Burns, Bryant and Chalmers, 2000; Dinadis and Vicente, 1999; Gualtieri, Elm, 

Potter and Roth, 2001).  

2.7 Summary and Discussion 

A general advantage of the distributed cognition approach is that it provides a 

framework and analytic method for examining the interactions between people and 

artefacts which is not possible with traditional approaches to cognitive task analyses 

(Roger, 1994). Prevailing thereby is the advantage that the theory can accommodate the 

rich variety of systems and media inherent in an organisation’s or groups cognitive 

processes. Complex interdependencies between people and people and artefacts in their 

collaborative activities can be highlighted, and since the unit of analysis is not 

committed to a fixed value, the entire system can be decomposed into the smaller, 

functional groups that make it up. As a result, seemingly trivial communication failures 
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or interaction problems can be detected having significant and sometimes dramatic 

consequences for the operation of a system.  
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APPENDIX VI: The CWA and Critical Aspects for Appli cation to A-CDM 

1 Characteristics of the CWA 

Cognitive Work Analysis has a number of characteristics which distinguish CWA 

from other forms of analysis. These include: 

• Formative Approach: a formative analysis intends to identify the technological and 

organisational requirements that need to be satisfied, in order to create interfaces 

able to support work effectively. It focuses on modelling work constraints instead 

of design of devices. This means, it looks on the way thinks could be done, rather 

than should be done like the normative approach, or on the way how things are like 

the descriptive approach. “Understanding the structure of work leads to supporting 

work at the level of structure, which rarely changes, and suggests structural 

changes that radically improve the work” (Vicente, 1999). A formative approach is 

also model based which means it allows for flexibility and continuing evolution of 

work practices, rather than building in a fixed and narrow work flow. As a 

consequence, interface device structure supports worker’s natural movement 

through his work and is flexible enough to allow the invention of new ways of 

working (Beyer and Holtzblatt, 1998 in Vicente). 

• Flexible Adaptive Action: Due to the demands of a complex socio-technical system, 

unexpected situations occur, where workers must respond with adaptive, problem 

solving behaviour tailored to the local context. E.g. during turn-round management, 

actors are faced with such situations and do not have appropriate support from 

computer-based information systems. CWA emphasizes an interface design which 

is able to support actors during such unpredictable contingencies. 

• Ecological Perspective: CWA is based on an ecological approach which gives 

primary importance to the constraints imposed by the environment on workers’ 

actions. This is in contrast to the more popular approach where focus is applied on 

the constraints of the human cognitive system. Even those constraints are relevant 

as well, the design process for CWA starts with consideration of the ecological 

constraints (Flach, 1990; Hancock et.a., 1988). 
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• Activity independent: The first phase of the CWA is the Work Domain Analysis as 

an activity independent form of analysis which focuses on the functional structure 

of the work domain rather than the activities within the domain. This is achieved by 

mapping out the functional, but activity independent properties of the work domain 

at five levels of abstraction and multiple levels of decomposition.  

• Revolutionary Design: Since evolutionary design is based on the analysis of current 

practices leading to a design that supports that practice, revolutionary design 

however creates opportunities for the development of new and more efficient work 

practices.  

• Practicality for unanticipated situations: CWA incorporates an analysis approach 

which is able to handle unpredictable events, because it is able to reveal the 

intentional as well as the physical constraints on actions. 
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2 The CWA – Control Task Analysis and Decision Ladder  

A. Description of the Decision Ladder  

Rasmussen et al (1994) proposes the decision ladder (Figure 48) as a modelling 

template for control tasks. He has developed the decision ladder based on his field 

studies on operators from nuclear industry.  

 
FIGURE 48: RASSMUSSEN’S DECISION LADDER (SOURCE: NAIKAR, 2006)       

 
The decision ladder is able to identify the control tasks. The boxes represent 

information-processing activities; the ovals represent the states of knowledge that are 

the results or outputs of these activities. The arrows in the centre of the decision ladder 
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allow shortcuts from one part of the decision ladder to another. While shunts connect 

an information-processing activity to a state of knowledge, leaps connect two states of 

knowledge. This indicates that two states of knowledge can be directly associated with 

each other. Rasmussen (1994) and Vicente (1999) describe a variety of other shortcuts. 

The decision ladder can be divided in three parts: Understanding the system state with 

related control tasks (left side), goal evaluation with related control tasks (top), and 

achieving the goals with related control tasks (right side). Observations of the 

information or data present in the environment are necessary in order to achieve the 

required knowledge about the system state. While some system states may allow to 

shortcut to directly execute procedures or tasks, other occasions require evaluation of 

the target state against the different options available. 

The advantages of the decision ladder compared to traditional information 

processing for decision support include: 

• Shortcuts which allow following the decision ladder directly to the knowledge 

states which are suitable to the specific situation instead of fixed decision 

nodes. 

•  The decision ladder accommodates various start and end points, and  

• The decision ladder allows choosing the sequence of following the ladder 

where information processing paths can be established in all directions.  

Traditional approaches however require following all steps in a linear sequence, but 

the order is not always necessary to be followed in the particular situation. E.g. experts 

are able to recognize situations and as a consequence, take efficient shortcuts or even 

move from right to left after task definition is completed.“Expertise is the ability to 

compose a process needed for a specific task as a sequence of familiar subroutines 

that are useful in different contexts” (Rasmussen, 1976). This means by using their 

‘subroutines’ as a ‘collection of tricks’, experts actively generate a contextually 

tailored sequence of cognitive activities which is appropriate for the present situation 

(Dreyfus and Dreyfus, 1988).  

The decision ladder can then be used for each work function in order to find the 

associated control task. As applied to the contextual activity template (Figure 49), it 
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shows the qualitatively different sets of cognitive demands on actors which are 

imposed during the different situations: 
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FIGURE 49: CONTEXTUAL ACTIVITY TEMPLATE WITH CONTRO L TASKS 

 

B. Critical Aspects of the Decision Ladder when applied to Turn-round Control 

Even with all steps identified where decisions are required during turn-round it still 

has to be questioned whether the decision ladder is useful for decisions as they have to 

be made during turn-round control. Initially the model was developed for describing 

problem solving of operators in nuclear power plant control rooms (Rasmussen, 1985). 

It has now to be demonstrated that the model can be applied as a formal tool for the 

specification of control structures prevailing during turn-round decision making. E.g. 

Lind (1986) argues that Rasmussen’s decision model can also be used for decision 
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support when designing Advanced Knowledge Based System architectures. He shows 

how the decision model integrates rule-based problem solving support for planning 

and decision making, as well as knowledge-based support corresponding to the deeper 

knowledge corresponding to Rasmussen’s theory of how to make distinctions among 

human performance. This makes the model useful for planning the use of different 

types of knowledge in problem solving. He argues that the model can also be used 

either in a normative way via specifying the tasks involved and the relation between 

tasks, or in a formalized way via representing knowledge to be used for control of the 

system. However, the strategy used for decision making depends on the knowledge 

owned by the decision maker. This in turn defines the information requirements for 

analysis of the situation.  

However, Lind (1986) also argues that the decision ladder does not specify all 

aspects required in order to use it as a formalized decision aid: Instead of fully 

describing the information flow during decision making, the model only describes the 

flow of control from task to task. This is also true for the diagnostic process: if the 

overall target state is not known, it is not possible to determine the proper level of 

system state that would allow taking the proposed shunt or leap. Another problem is 

that the knowledge as the basis for decision making changes over time and so the 

decisions made. Therefore a formalized way of decision making where each decision 

task corresponds to an information process which applies for the knowledge presently 

available should be considered. Furthermore, the decision making based on rules or 

knowledge is not entirely represented in the model: different decisions require 

different level of knowledge that must be represented in the flow of data to support 

decision making. But what if the decision cannot be made due to lack of sufficient 

information?  

Since turn-round management has characteristics of decision making as described 

by Lind with often unknown target states, changing knowledge, and lack of 

information, the decision ladder was not used to model the control task as they were 

identified in the critical path of turn-round events.  

 



 Appendices  
 

          Matthias Groppe                Influences on Aircraft TOBT Prediction Accuracy                    284                 

3 The CWA - Strategies Analysis 

A. Introduction 

The third stage of the CWA identifies how the different tasks can be conducted 

involving the identification of strategies that workers might employ when performing 

the control tasks. During this phase of analysis, the focus is applied on the ways of 

performing the control tasks. The analysis can be done, e.g. by using information flow 

maps to identify different cognitive procedures that are possible during control tasks 

execution.  

The strategies adopted by actors under a specific situation may vary significantly 

depending on the actor’s work demand level. This means that different agents may 

perform work in different ways depending on the situation and strategies depend on 

variables like knowledge level, experience, training, work load, and familiarity with 

the given situation. As a consequence, actors might even use different strategies at 

different occasions.  

While during CTA it has been identified what decisions have to be made, it is the 

scope of the Strategies Analysis to describe how these decisions can be made and what 

alternatives courses of actions are available. Luce (1995) describes the difference 

between these two phases of analysis (Figure 50):  

 

 
FIGURE 50: COMPARISON OF CONTROL TASK AND STRATEGIE S ANALYSES (SOURCE: LUCE, 1995)  
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If the decision ladder is applied to the CTA, it represents the information processing 

activities which result in the outputs by using the different strategies, because there are 

often multiple ways of solving a task. The strategies analysis tries now to identify each 

of the possible strategies that can be used to provide tailored support to each strategy 

(Vicente, 1999).   

B. Methods of Strategy Analysis  

Vicente (1999) compares two contrasting approaches to define strategy. While 

Payne et al (1993) defines strategy as application of knowledge transformation onto a 

particular decision problem, Rasmussen (1981) views the knowledge transformation as 

a category of cognitive task procedures. The fundamental difference with Rasmussen’s 

approach is that he sees strategy as a category of procedures (Rasmussen), compared 

to an instance of a procedure (Payne et al). The underlying reason for Rasmussen’s 

definition is the inherent variability across different situations and therefore the 

idiosyncratic characteristics of cognitive procedures and behaviours used by actors. 

Therefore, a detailed strategy description may result in a normative way of work 

analysis only with the limitations of the ‘one right way’ rather than context-

conditioned variability required during complex and unexpected decision making 

situations. The definition of ‘categories’ of cognitive procedures with action sequences 

as instantiation of a category should help to solve such problems, because a detailed 

level of description is not very useful for design. The definition of categories however 

offer a bounded, but infinite number of action sequences. 

Rasmussen (1981) proposes information flow maps to describe such categories of 

cognitive task procedures. Vicente (1999) distinguishes topographic and symptomatic 

search strategies, where topographic strategies are idealized process representations 

from which particular instances of action sequences can be generated. Symptomatic 

problem solving strategies can be ‘pattern recognition’ driven where actor recognizes a 

pattern of familiar data, ‘decision table’ driven where actor relies on a number of state 

models that are used to associate a particular data pattern with a particular state, or 

‘hypothesis-and-test’ driven where actor uses a hypothesis about the particular state 

derived from earlier applications or other search strategies.   
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Vicente (1999) points out that information flow maps are not yet exist as a 

modelling tool like the decision ladder, but as a generic and context-specific tool to 

model strategies. Information required to conduct a strategy analysis should be derived 

from descriptive field studies, an a priori analysis of actions required by study of the 

work domain, and then identify the degree of freedom associated with particular 

classes of situations using a control task analysis. Finally, Vicente (1999, p.234) 

proposes also operational research models for identification of strategies.   

C. Critical Review of the Strategies Analysis for Application to Turn-Round 

Managment 

A review of the degree of freedom as proposed by Vicente (1999) reveals that each 

decision of one function within the critical turn-round path can have significant 

influence on other functions within the sequential turn-round processes. As a result, 

the outcome of an individual decision from one function propagates to other functions 

and so influences decision makers who have to build on the outcomes of other 

decisions. However, performing a Strategies Analysis does not incorporate 

interdependencies between strategies as they are applied during turn-round 

management. Even if a strategy analysis shows how activities may be executed by 

using the various options, it does not automatically link the neighbouring tasks or 

strategies from other participating decision makers to a global activity of an overall 

optimum turn-round management strategy. Therefore, seen from such an overall turn-

round operation perspective, the advantage of a service delivery for one service 

provider could be a disadvantage for another service provider. For example, the 

catering trolleys can block the working space for cleaning personnel when moved 

through aircraft cabin and vice versa. As a consequence, only local optimum strategies 

can be identified, if the strategies analysis is conducted separately for an individual 

participating decision maker using the decision ladder.      

Also, even consistently taking into account the constraints from other participants 

does not automatically result in a global optimum turn-round strategy. Since actors 

have the tendency to switch strategies depending on their cognitive load it is also 

difficult to predict shifts in their strategies (Vicente, 1999). As a consequence, 

coordination of a very large number of possible strategies is necessary to provide an 
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intelligent decision support for such situations. This suggests that a strategy analysis 

for the purpose here should first identify the information requirements associated with 

each of the strategies so that a conceptualized support of information can be offered 

allowing a centralized decision making of turn-round operation and TOBT predictions. 

Such approach is able to provide formalized information support in a tailored manner 

for all participating decision makers.  

D. Possible Application of a Strategies Analysis to the A-CDM work system 

As outlined before, a number of decision makers are involved in TOBT decision 

making with each participant having its own strategy for tackling problems as they 

arise within their local environment.  As a consequence, even with information flow 

maps as proposed by Vicente (1999), participating actors only receive support for 

possible local strategies. It is therefore proposed to use an approach where a single 

turn-round manager is responsible for the overall turn-round strategy and 

communicates this strategy to all actors involved. As a consequence, actors’ task 

definitions are based on the turn-round managers’ strategy. However, it has also to be 

considered that actors may switch their individual strategies for task execution based 

on their cognitive load, performance levels, conflicting interests, or sudden shifts in 

the environment. 

 For achieving the specific task goals, tailored information support should be 

provided to all involved. Therefore the primary aim of a step towards an application to 

the A-CDM system should be to develop a systematic approach of the information 

requirements of each participating actors which allows him to execute his task, but 

also allows the decision maker to chose and pursue a strategy based on the given 

situation and existing constraints. This goes along with the design implications 

identified by Vicente (1999) that strategies can in principle be actor-independent and 

can be distributed across workers and automation.  

Such a significant prerequisite for decision making should be achieved via information 

sharing by providing synchronous information support to all participating actors for 

turn-round tasks execution or required negotiation between actors and turn-round 

controller. The research in Computer Supported Collaborative Work (CSCW) has 

already drawn attention to developing comprehensive understanding of such 



 Appendices  
 

          Matthias Groppe                Influences on Aircraft TOBT Prediction Accuracy                    288                 

complexities in collaborative working environments. The CSCW approach builds on a 

search for an in-depth understanding of the practical contingencies of today’s work 

practices including social and organisational context (Davis et.al, 2000). Divergent 

perspectives have emerged as ‘shared information spaces that provide contextual 

guidance and support’ and ‘automated work flow systems with the ability to deal with 

contingencies’ (Schmidt, 1997). Davis et al (2000) proposes a structure of information 

sharing using a personal and group perspective. As a novel aspect he also proposes 

that the participants are organized as a cooperative ensemble whether derived from a 

project or functional structure, but operating with own coordination and interaction 

patterns among the participants. Such study should be able not only to identify the 

different modes of coordination and information exchange required, but also 

information sharing breakdowns and functional system design specifications. As a 

method of data collection for such information flow analysis David (2000) uses a 

questionnaire with questions like:  

• Which tasks do you perform in relation to the product development process?  

• For each of the tasks: which documents or other information do you need/ use? 

(e.g. specifications, contracts, orders, invoices, procedures, standards, etc.) 

• For each of the above: where /who do you get this information from 

(Customers, colleagues, other departments, databases, archives etc….)? 

• What format is the information in? (Text/letters, spreadsheets, drawings, 

photos. Database-data, sound recording, video, etc.) 

• How is the information transferred to you? (Collected, post, fax, mail, oral, 

phone, fileserver etc.) 

• How do you sort and store this information? 

• What kind of results do you produce? (Different kinds of documents, 

approvals, controls, physical products etc…) 

• Who uses the results of your work? (customer, subcontractor, supplier, 

colleagues, archives, etc.) 

• How are the results passed on? (automatically or on request) 

• Who checks the results/ what kind of feedback do you get? 

• Which tools do you use for your tasks?(computer assisted or /and manual ones) 

• Which of your tasks seem most time-consuming or in-efficient? 
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4 The CWA - Organisation and Co-operation Analysis 

During this stage of the CWA, the distribution of activities and associated strategies 

amongst the workers and artefacts within the system should be identified. The CWA 

uses the modelling tools from previous phases of the framework in order to identify 

how the actors may be organized in groups or teams, how they communicate, and how 

the authority relationships govern their cooperation. However, modelling tools from 

the CWA do not reflect how the individual goal structures have influence on the 

cooperative activities towards a global goal. As the CWA constitutes using modelling 

tools building on the constraints identified from previous phases of analysis with 

conclusions of how cooperative interactions should be designed, the CWA was not 

applied for this project. 

E.g. during turn-round, the operators from the different domains not necessarily 

work together cooperatively, increasing the need for identification of the group goals, 

the cooperative processes supporting the group goals and the underlying group tasks. 

The overall aim should be pursued in a way that all work is coordinated towards the 

common goals and establishing a global goal, while each operator attempts to satisfy 

its’ own organisational sub-goal. Goal complexity even further increases with dynamic 

aspects of operators’ goal scenarios: for goal achievement, subordinate goals are 

identified during task execution and operators act on their immediate goals in order to 

achieve the higher level goal (Hacker, 1994). Goal creation can also follow the other 

direction, where operators first become aware of the problem, then make the highest 

level of their own goal structure and construct lower level subordinate goals during 

action in order to achieve the higher level goal (see Figure 51).  

 

 

 
FIGURE 51: THE OPERATORS’ GOAL STRUCTURE (SOURCE: H ACKER, 1994) 
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APPENDIX VII: The Results from Games-Howell Test 

The data presented in this appendix results from a Games-Howell test that was used to 
demonstrate the homogeneity among the experiment participants.  
 

Dependent 

Variable 

(I) 

Control (J) Control 

Mean 

Difference 

(I-J) Std Error Significance 

95%-Confidence Interval 

Lower Bound Upper Bound 

D_T01 1 2 -13,20000 7,01739 ,435 -34,7239 8,3239 

3 -7,33333 5,83117 ,803 -25,9359 11,2693 

4 -6,33333 6,94829 ,940 -27,6631 14,9965 

5 -5,46667 7,02287 ,969 -27,0060 16,0727 

6 -8,26667 5,93654 ,731 -27,0799 10,5466 

2 1 13,20000 7,01739 ,435 -8,3239 34,7239 

3 5,86667 4,76422 ,816 -9,1625 20,8958 

4 6,86667 6,08062 ,865 -11,7159 25,4492 

5 7,73333 6,16570 ,806 -11,1083 26,5750 

6 4,93333 4,89262 ,910 -10,3827 20,2494 

3 1 7,33333 5,83117 ,803 -11,2693 25,9359 

2 -5,86667 4,76422 ,816 -20,8958 9,1625 

4 1,00000 4,66183 1,000 -13,6860 15,6860 

5 1,86667 4,77227 ,999 -13,1895 16,9228 

6 -,93333 2,94898 1,000 -9,9580 8,0913 

4 1 6,33333 6,94829 ,940 -14,9965 27,6631 

2 -6,86667 6,08062 ,865 -25,4492 11,7159 

3 -1,00000 4,66183 1,000 -15,6860 13,6860 

5 ,86667 6,08694 1,000 -17,7353 19,4686 

6 -1,93333 4,79298 ,998 -16,9162 13,0495 

5 1 5,46667 7,02287 ,969 -16,0727 27,0060 

2 -7,73333 6,16570 ,806 -26,5750 11,1083 

3 -1,86667 4,77227 ,999 -16,9228 13,1895 

4 -,86667 6,08694 1,000 -19,4686 17,7353 

6 -2,80000 4,90047 ,992 -18,1423 12,5423 

6 1 8,26667 5,93654 ,731 -10,5466 27,0799 

2 -4,93333 4,89262 ,910 -20,2494 10,3827 

3 ,93333 2,94898 1,000 -8,0913 9,9580 

4 1,93333 4,79298 ,998 -13,0495 16,9162 

5 2,80000 4,90047 ,992 -12,5423 18,1423 
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D_T02 1 2 -15,46667 7,29092 ,309 -37,9166 6,9833 

3 -13,93333 6,54978 ,314 -34,5466 6,6799 

4 -15,73333 7,38755 ,304 -38,4465 6,9798 

5 -11,93333 7,78733 ,647 -35,7758 11,9092 

6 -13,53333 6,73079 ,369 -34,5593 7,4927 

2 1 15,46667 7,29092 ,309 -6,9833 37,9166 

3 1,53333 5,04330 1,000 -14,0558 17,1225 

4 -,26667 6,09189 1,000 -18,8846 18,3513 

5 3,53333 6,57098 ,994 -16,5892 23,6559 

6 1,93333 5,27624 ,999 -14,2807 18,1474 

3 1 13,93333 6,54978 ,314 -6,6799 34,5466 

2 -1,53333 5,04330 1,000 -17,1225 14,0558 

4 -1,80000 5,18202 ,999 -17,8478 14,2478 

5 2,00000 5,73760 ,999 -15,8958 19,8958 

6 ,40000 4,19296 1,000 -12,4300 13,2300 

4 1 15,73333 7,38755 ,304 -6,9798 38,4465 

2 ,26667 6,09189 1,000 -18,3513 18,8846 

3 1,80000 5,18202 ,999 -14,2478 17,8478 

5 3,80000 6,67804 ,992 -16,6338 24,2338 

6 2,20000 5,40899 ,998 -14,4464 18,8464 

5 1 11,93333 7,78733 ,647 -11,9092 35,7758 

2 -3,53333 6,57098 ,994 -23,6559 16,5892 

3 -2,00000 5,73760 ,999 -19,8958 15,8958 

4 -3,80000 6,67804 ,992 -24,2338 16,6338 

6 -1,60000 5,94338 1,000 -20,0049 16,8049 

6 1 13,53333 6,73079 ,369 -7,4927 34,5593 

2 -1,93333 5,27624 ,999 -18,1474 14,2807 

3 -,40000 4,19296 1,000 -13,2300 12,4300 

4 -2,20000 5,40899 ,998 -18,8464 14,4464 

5 1,60000 5,94338 1,000 -16,8049 20,0049 
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D_T11 1 2 -4,00000 2,28397 ,515 -11,1168 3,1168 

3 -3,66667 1,82244 ,363 -9,2614 1,9280 

4 -3,80000 1,96719 ,408 -9,8668 2,2668 

5 -,06667 1,90171 1,000 -5,9190 5,7857 

6 -,53333 1,49560 ,999 -5,1073 4,0406 

2 1 4,00000 2,28397 ,515 -3,1168 11,1168 

3 ,33333 2,46254 1,000 -7,2438 7,9105 

4 ,20000 2,57152 1,000 -7,6812 8,0812 

5 3,93333 2,52178 ,631 -3,8073 11,6740 

6 3,46667 2,23152 ,636 -3,5268 10,4601 

3 1 3,66667 1,82244 ,363 -1,9280 9,2614 

2 -,33333 2,46254 1,000 -7,9105 7,2438 

4 -,13333 2,17197 1,000 -6,7769 6,5103 

5 3,60000 2,11285 ,541 -2,8586 10,0586 

6 3,13333 1,75626 ,493 -2,2805 8,5471 

4 1 3,80000 1,96719 ,408 -2,2668 9,8668 

2 -,20000 2,57152 1,000 -8,0812 7,6812 

3 ,13333 2,17197 1,000 -6,5103 6,7769 

5 3,73333 2,23891 ,563 -3,1097 10,5764 

6 3,26667 1,90605 ,537 -2,6414 9,1747 

5 1 ,06667 1,90171 1,000 -5,7857 5,9190 

2 -3,93333 2,52178 ,631 -11,6740 3,8073 

3 -3,60000 2,11285 ,541 -10,0586 2,8586 

4 -3,73333 2,23891 ,563 -10,5764 3,1097 

6 -,46667 1,83839 1,000 -6,1508 5,2175 

6 1 ,53333 1,49560 ,999 -4,0406 5,1073 

2 -3,46667 2,23152 ,636 -10,4601 3,5268 

3 -3,13333 1,75626 ,493 -8,5471 2,2805 

4 -3,26667 1,90605 ,537 -9,1747 2,6414 

5 ,46667 1,83839 1,000 -5,2175 6,1508 
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D_T12 1 2 -3,26667 5,70185 ,992 -20,6958 14,1625 

3 -7,06667 4,99759 ,719 -22,4984 8,3651 

4 -11,53333 5,23116 ,269 -27,5975 4,5308 

5 -5,53333 6,18318 ,945 -24,4405 13,3738 

6 -4,53333 4,97741 ,940 -19,9123 10,8456 

2 1 3,26667 5,70185 ,992 -14,1625 20,6958 

3 -3,80000 4,78609 ,966 -18,5375 10,9375 

4 -8,26667 5,02950 ,578 -23,6810 7,1477 

5 -2,26667 6,01353 ,999 -20,6756 16,1423 

6 -1,26667 4,76502 1,000 -15,9474 13,4141 

3 1 7,06667 4,99759 ,719 -8,3651 22,4984 

2 3,80000 4,78609 ,966 -10,9375 18,5375 

4 -4,46667 4,21434 ,893 -17,3616 8,4282 

5 1,53333 5,35045 1,000 -15,0656 18,1323 

6 2,53333 3,89489 ,986 -9,3691 14,4358 

4 1 11,53333 5,23116 ,269 -4,5308 27,5975 

2 8,26667 5,02950 ,578 -7,1477 23,6810 

3 4,46667 4,21434 ,893 -8,4282 17,3616 

5 6,00000 5,56925 ,886 -11,1665 23,1665 

6 7,00000 4,19039 ,562 -5,8249 19,8249 

5 1 5,53333 6,18318 ,945 -13,3738 24,4405 

2 2,26667 6,01353 ,999 -16,1423 20,6756 

3 -1,53333 5,35045 1,000 -18,1323 15,0656 

4 -6,00000 5,56925 ,886 -23,1665 11,1665 

6 1,00000 5,33161 1,000 -15,5518 17,5518 

6 1 4,53333 4,97741 ,940 -10,8456 19,9123 

2 1,26667 4,76502 1,000 -13,4141 15,9474 

3 -2,53333 3,89489 ,986 -14,4358 9,3691 

4 -7,00000 4,19039 ,562 -19,8249 5,8249 

5 -1,00000 5,33161 1,000 -17,5518 15,5518 
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D_T21 1 2 -4,60000 2,95361 ,634 -13,8952 4,6952 

3 -,06667 1,58284 1,000 -4,9222 4,7888 

4 1,00000 1,61068 ,988 -3,9347 5,9347 

5 3,26667 1,33832 ,193 -,9775 7,5109 

6 ,46667 1,54262 1,000 -4,2770 5,2103 

2 1 4,60000 2,95361 ,634 -4,6952 13,8952 

3 4,53333 2,85301 ,616 -4,5517 13,6184 

4 5,60000 2,86855 ,405 -3,5159 14,7159 

5 7,86667 2,72496 ,096 -,9898 16,7231 

6 5,06667 2,83090 ,497 -3,9755 14,1088 

3 1 ,06667 1,58284 1,000 -4,7888 4,9222 

2 -4,53333 2,85301 ,616 -13,6184 4,5517 

4 1,06667 1,41780 ,973 -3,2666 5,3999 

5 3,33333 1,09863 ,061 -,1078 6,7745 

6 ,53333 1,33998 ,999 -3,5629 4,6296 

4 1 -1,00000 1,61068 ,988 -5,9347 3,9347 

2 -5,60000 2,86855 ,405 -14,7159 3,5159 

3 -1,06667 1,41780 ,973 -5,3999 3,2666 

5 2,26667 1,13836 ,381 -1,3075 5,8408 

6 -,53333 1,37275 ,999 -4,7321 3,6655 

5 1 -3,26667 1,33832 ,193 -7,5109 ,9775 

2 -7,86667 2,72496 ,096 -16,7231 ,9898 

3 -3,33333 1,09863 ,061 -6,7745 ,1078 

4 -2,26667 1,13836 ,381 -5,8408 1,3075 

6 -2,80000 1,03984 ,118 -6,0446 ,4446 

6 1 -,46667 1,54262 1,000 -5,2103 4,2770 

2 -5,06667 2,83090 ,497 -14,1088 3,9755 

3 -,53333 1,33998 ,999 -4,6296 3,5629 

4 ,53333 1,37275 ,999 -3,6655 4,7321 

5 2,80000 1,03984 ,118 -,4446 6,0446 
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D_T22 1 2 -1,80000 2,34866 ,970 -9,1266 5,5266 

3 1,00000 1,45406 ,982 -3,4557 5,4557 

4 -3,26667 2,08958 ,629 -9,7319 3,1985 

5 3,40000 1,22202 ,105 -,4643 7,2643 

6 2,13333 1,47637 ,700 -2,3866 6,6533 

2 1 1,80000 2,34866 ,970 -5,5266 9,1266 

3 2,80000 2,25769 ,812 -4,3193 9,9193 

4 -1,46667 2,71094 ,994 -9,7652 6,8319 

5 5,20000 2,11570 ,196 -1,6451 12,0451 

6 3,93333 2,27212 ,529 -3,2175 11,0841 

3 1 -1,00000 1,45406 ,982 -5,4557 3,4557 

2 -2,80000 2,25769 ,812 -9,9193 4,3193 

4 -4,26667 1,98678 ,302 -10,4789 1,9455 

5 2,40000 1,03648 ,232 -,8428 5,6428 

6 1,13333 1,32689 ,954 -2,9219 5,1885 

4 1 3,26667 2,08958 ,629 -3,1985 9,7319 

2 1,46667 2,71094 ,994 -6,8319 9,7652 

3 4,26667 1,98678 ,302 -1,9455 10,4789 

5 6,66667* 1,82383 ,022 ,7917 12,5416 

6 5,40000 2,00317 ,117 -,8508 11,6508 

5 1 -3,40000 1,22202 ,105 -7,2643 ,4643 

2 -5,20000 2,11570 ,196 -12,0451 1,6451 

3 -2,40000 1,03648 ,232 -5,6428 ,8428 

4 -6,66667* 1,82383 ,022 -12,5416 -,7917 

6 -1,26667 1,06756 ,838 -4,6134 2,0801 

6 1 -2,13333 1,47637 ,700 -6,6533 2,3866 

2 -3,93333 2,27212 ,529 -11,0841 3,2175 

3 -1,13333 1,32689 ,954 -5,1885 2,9219 

4 -5,40000 2,00317 ,117 -11,6508 ,8508 

5 1,26667 1,06756 ,838 -2,0801 4,6134 

*. The difference of the means  is on the level 0.05 significant  

 


