1,799 research outputs found

    Remote sensing for three-dimensional modelling of hydromorphology

    Get PDF
    Successful management of rivers requires an understanding of the fluvial processes that govern them. This, in turn cannot be achieved without a means of quantifying their geomorphology and hydrology and the spatio-temporal interactions between them, that is, their hydromorphology. For a long time, it has been laborious and time-consuming to measure river topography, especially in the submerged part of the channel. The measurement of the flow field has been challenging as well, and hence, such measurements have long been sparse in natural environments. Technological advancements in the field of remote sensing in the recent years have opened up new possibilities for capturing synoptic information on river environments. This thesis presents new developments in fluvial remote sensing of both topography and water flow. A set of close-range remote sensing methods is employed to eventually construct a high-resolution unified empirical hydromorphological model, that is, river channel and floodplain topography and three-dimensional areal flow field. Empirical as well as hydraulic theory-based optical remote sensing methods are tested and evaluated using normal colour aerial photographs and sonar calibration and reference measurements on a rocky-bed sub-Arctic river. The empirical optical bathymetry model is developed further by the introduction of a deep-water radiance parameter estimation algorithm that extends the field of application of the model to shallow streams. The effect of this parameter on the model is also assessed in a study of a sandy-bed sub-Arctic river using close-range high-resolution aerial photography, presenting one of the first examples of fluvial bathymetry modelling from unmanned aerial vehicles (UAV). Further close-range remote sensing methods are added to complete the topography integrating the river bed with the floodplain to create a seamless high-resolution topography. Boat- cart- and backpack-based mobile laser scanning (MLS) are used to measure the topography of the dry part of the channel at a high resolution and accuracy. Multitemporal MLS is evaluated along with UAV-based photogrammetry against terrestrial laser scanning reference data and merged with UAV-based bathymetry to create a two-year series of seamless digital terrain models. These allow the evaluation of the methodology for conducting high-resolution change analysis of the entire channel. The remote sensing based model of hydromorphology is completed by a new methodology for mapping the flow field in 3D. An acoustic Doppler current profiler (ADCP) is deployed on a remote-controlled boat with a survey-grade global navigation satellite system (GNSS) receiver, allowing the positioning of the areally sampled 3D flow vectors in 3D space as a point cloud and its interpolation into a 3D matrix allows a quantitative volumetric flow analysis. Multitemporal areal 3D flow field data show the evolution of the flow field during a snow-melt flood event. The combination of the underwater and dry topography with the flow field yields a compete model of river hydromorphology at the reach scale.Jokien onnistunut hallinta edellyttää virtavesien prosessien ymmärtämistä. Tämä ei ole mahdollista ilman jokien geomorfologian ja hydrologian kvantifiointia sekä niiden spatiotemporaalisten suhteiden tutkimista, eli jokien hydromorfologiaa. Joen topografian mittaaminen, varsinkin uoman vedenalaisen osalle on pitkään ollut työlästä ja aikaa vievää. Virtauskentän kattava mittaaminen on myös ollut haastavaa, sillä seurauksella, että niitä on tehty harvakseltaan luonnollisessa ympäristössä. Viimeaikainen teknologinen kehitys kaukokartoituksessa on mahdollistanut synoptisen tiedon mittaamisen jokiympäristöissä. Tässä väitöstutkimuksessa on kehitetty virtavesien kaukokartoitusta sekä jokien topografian että virtausmittauksen alalla. Useita eri lähikaukokartoitusmenetelmiä yhdistämällä on tehty korkean resoluution yhtenäinen empiirinen malli joen hydromorfologiasta, eli joen uoman ja tulvatasangon topografiasta ja kolmiulotteisesta virtaamakentästä. Empiriaan ja hydrauliseen teoriaan perustuvat optisen kaukokartoituksen menetelmiä testattiin ja arvioitiin käyttämällä normaaliväri-ilmakuvia, kaikuluotain kalibrointia ja referenssimittauksia kivipohjaisessa subarktisessa joessa. Empiiristä optista syvyysmallia kehitettiin edelleen lisäämällä syvän veden säteilyparametrin arviointialgoritmi, joka mahdollisti mallin käytön myös matalavetisissä jokiuomissa. Parametrin vaikutus malliin arvioitiin korkean resoluution matalailmakuvista hiekkapohjaisessa subarktisessa joessa yhdessä ensimmäisistä syvyysmalleista, joka on tehty käyttäen kauko-ohjattua minihelikopteria (eng.UAV, Unmanned Aerial Vehicle). Lähietäisyyden kaukokartoitusmenetelmiä käytettiin edelleen topografisen mallin täydentämiseen, integroimalla joen uoma ja tulvatasanko yhtenäiseksi korkean resoluution topografiaksi. Mobiilia laserkeilausta käytettiin vedenpinnan yläpuolisen osan topografian mittaamiseen korkealla resoluutiolla vene- kärry- ja reppupohjaisten kartoitusalustojen avulla. Monen ajankohdan mobiilin laserkeilauksen ja UAVfotogrammetrian tarkkuutta arvioitiin maalaserikeilausaineiston avulla. Laserkeilattu ja fotogrammetrinen aineisto yhdistettiin, jolloin saatiin kahden vuoden ajalta saumaton digitaalinen maastomalli. Mallin avulla oli mahdollista arvioida koko joen uoman korkean resoluution muutosanalyysin metodologiaa. Kaukokartoitukseen perustuvaa hydromorfologista mallia täydennettiin uniikilla virtauskentän kolmiulotteisella kartoitusaineistolla. Kauko-ohjattavaan veneeseen asennettu akustinen virtausmittauslaite yhdessä tarkan satelliittipaikannusjärjestelmän kanssa mahdollistivat alueellisesti valikoitujen kolmiulotteisten virtausvektoreiden sijainnin määrittämisen kolmiulotteisessa avaruudessa pistepilvenä. Tämän aineiston kolmiulotteinen interpolaatio matriisiksi mahdollisti edelleen volymetrisen virtausanalyysin. Monen ajankohdan alueellinen kolmiulotteinen virtauskenttä osoitti virtausolosuhteiden evoluution kevättulvassa. Vedenalaisen ja kuivan maan topografia yhdessä jokiuoman virtauskenttien kanssa muodosti kattavan mallin joen hydromorfologiasta.Siirretty Doriast

    Detecting fish aggregations from reef habitats mapped with high resolution side scan sonar imagery

    Get PDF
    As part of a multibeam and side scan sonar (SSS) benthic survey of the Marine Conservation District (MCD) south of St. Thomas, USVI and the seasonal closed areas in St. Croix—Lang Bank (LB) for red hind (Epinephelus guttatus) and the Mutton Snapper (MS) (Lutjanus analis) area—we extracted signals from water column targets that represent individual and aggregated fish over various benthic habitats encountered in the SSS imagery. The survey covered a total of 18 km2 throughout the federal jurisdiction fishery management areas. The complementary set of 28 habitat classification digital maps covered a total of 5,462.3 ha; MCDW (West) accounted for 45% of that area, and MCDE (East) 26%, LB 17%, and MS the remaining 13%. With the exception of MS, corals and gorgonians on consolidated habitats were significantly more abundant than submerged aquatic vegetation (SAV) on unconsolidated sediments or unconsolidated sediments. Continuous coral habitat was the most abundant consolidated habitat for both MCDW and MCDE (41% and 43% respectively). Consolidated habitats in LB and MS predominantly consisted of gorgonian plain habitat with 95% and 83% respectively. Coral limestone habitat was more abundant than coral patch habitat; it was found near the shelf break in MS, MCDW, and MCDE. Coral limestone and coral patch habitats only covered LB minimally. The high spatial resolution (0.15 m) of the acquired imagery allowed the detection of differing fish aggregation (FA) types. The largest FA densities were located at MCDW and MCDE over coral communities that occupy up to 70% of the bottom cover. Counts of unidentified swimming objects (USOs), likely representing individual fish, were similar among locations and occurred primarily over sand and shelf edge areas. Fish aggregation school sizes were significantly smaller at MS than the other three locations (MCDW, MCDE, and LB). This study shows the advantages of utilizing SSS in determining fish distributions and density

    State of art of bathymetric surveys

    Get PDF
    Technological advances in bathymetric equipment, positioning capacity, data processing, as well as the development of new ways of obtaining depth and other ways of exploring the submerged bottom, have been noticed in recent years. It is known that acoustic remote sensing is the most widely used technique for depth measurement. Survey systems can be embedded on various platforms and also provide different accuracies. Coupled to these systems are also Global Navigation Satellite System (GNSS), auxiliary sensors and speed profilers, improving the accuracy of the data obtained. Alternatively to the use of echo sounders, optical sensing (active and passive sensors) or satellite radar altimetry can be used to estimate depth. Thus, this study aims to present an overview of bathymetric survey methodologies, as well as the evolution of the use of sounding platforms, systems and sensors and various existing technologies. In addition, the main uncertainties involved and the advantages and disadvantages of the available solutions are also evidenced, providing the reader the ability to choose the most appropriate technique

    The potential of LIDAR as an antisubmarine warfare sensor

    Get PDF
    Traditionally, antisubmarine warfare (ASW) has been dominated by acoustic sensors, active and passive. Ending the Cold War, the ASW forces have refocused towards a theatre of war in the littorals, and the traditional acoustic sensors do not perform very well in such an environment. The sensors are working much closer to the surface, and there is a lot more surface traffic to disturb the acoustic environment. Environmental and topographic factors also play a major role. Removing or significantly reducing the acoustic capability, one forces the ASW forces to look to other technologies and sensors to compliment or replace the acoustic ones. This is where the interest of LIDAR as an aerial ASW sensor comes into play. The aim of this thesis is to evaluate “the potential for using LIDAR technology for aerial ASW on Norwegian ASW platforms”. In addition to this main research question, the history of LIDAR has been researched, in order to find historical and existing LIDAR projects for ASW purposes. Antisubmarine warfare is a complicated business, but speed of reaction, flexibility to change operating areas quickly and efficiently, and the ability to deploy sophisticated buoys are all in the advantage to the aerial ASW platform. But as the submarines get quieter and quieter, new means of detection must be found to cover the complicated upper layers of the water column. The signal components of LIDAR and the increasing processing capability have made LIDAR technology somewhat mature, but limitations such as scattering and attenuation of light in water are severely hampering. After a decline in ASW focus after the Cold War, the Western world is finding itself in a littoral submarine threat scenario, and do not have the sensors to sufficiently meet this threat. Several LIDAR programs have been initiated and carried through, but most have been directed towards finding and neutralizing mines. Lately, a new interest of applying LIDAR-technology in the search for submarines has risen. But LIDAR itself does not seem to be able to cover the upper layers of the water column consistently enough, and other technologies might be able to compliment LIDAR in a multi-sensor solution. Synthetic Aperture Radar (SAR) and Hyperspectral Imagery seem to be the most applicable of these. A recommendation is given to military commanders to pursue a multi-sensor pod for several areas of use by Maritime Patrol Aircraft and military helicopters

    Table of Contents

    Get PDF
    Contains the table of contents

    The use of lasers for hydrographic studies

    Get PDF
    The utilization of remote laser sensors in water pollution detection and identification, coastal environmental monitoring, and bathymetric depth sounding, is discussed. q

    DRONE DELIVERY OF CBNRECy – DEW WEAPONS Emerging Threats of Mini-Weapons of Mass Destruction and Disruption (WMDD)

    Get PDF
    Drone Delivery of CBNRECy – DEW Weapons: Emerging Threats of Mini-Weapons of Mass Destruction and Disruption (WMDD) is our sixth textbook in a series covering the world of UASs and UUVs. Our textbook takes on a whole new purview for UAS / CUAS/ UUV (drones) – how they can be used to deploy Weapons of Mass Destruction and Deception against CBRNE and civilian targets of opportunity. We are concerned with the future use of these inexpensive devices and their availability to maleficent actors. Our work suggests that UASs in air and underwater UUVs will be the future of military and civilian terrorist operations. UAS / UUVs can deliver a huge punch for a low investment and minimize human casualties.https://newprairiepress.org/ebooks/1046/thumbnail.jp

    The Impact of Sea State Condition on Airborne Lidar Bathymetry Measurements

    Get PDF
    Due to a large number of available Airborne Lidar Bathymetry (ALB) survey datasets and scheduled future surveys, there is a growing need from coastal mapping communities to estimate the accuracy of ALB as a function of the survey system and environmental conditions. Knowledge of ALB accuracy can also be used to evaluate the quality of products derived from ALB surveying. This paper presents theoretical and experimental results focused on the relationship between sea surface conditions and the accuracy of ALB measurements. The simulated environmental conditions were defined according to the typical conditions under which successful ALB surveys can be conducted. The theoretical part of the research included simulations, where the ray-path geometry of the laser beam was monitored below the water surface. Wave-tank experiments were conducted to support the simulations. A cross section of the laser beam was monitored underwater using a green laser with and without wind-driven waves. The results of the study show that capillary waves and small gravity waves distort the laser footprint. Because sea-state condition is related to wind at a first-order approximation, it is possible to suggest wind speed thresholds for different ALB survey projects that vary in accuracy requirements. If wind or wave information were collected during an ALB survey, then it is possible to evaluate the change in accuracy of ALB survey due to different sea surface conditions

    Application of Remote Sensing to the Chesapeake Bay Region. Volume 2: Proceedings

    Get PDF
    A conference was held on the application of remote sensing to the Chesapeake Bay region. Copies of the papers, resource contributions, panel discussions, and reports of the working groups are presented

    Coral Remote Sensing Workshop: Proceedings and Recommendations, 17-18 September, Sheraton, Brickell Ave, Miami FL

    Get PDF
    Coral reefs exist in warm, clear, and relatively shallow marine waters worldwide. These complex assemblages of marine organisms are unique, in that they support highly diverse, luxuriant, and essentially self-sustaining ecosystems in otherwise nutrient-poor and unproductive waters. Coral reefs are highly valued for their great beauty and for their contribution to marine productivity. Coral reefs are favorite destinations for recreational diving and snorkeling, as well as commercial and recreational fishing activities. The Florida Keys reef tract draws an estimated 2 million tourists each year, contributing nearly $800 million to the economy. However, these reef systems represent a very delicate ecological balance, and can be easily damaged and degraded by direct or indirect human contact. Indirect impacts from human activity occurs in a number of different forms, including runoff of sediments, nutrients, and other pollutants associated with forest harvesting, agricultural practices, urbanization, coastal construction, and industrial activities. Direct impacts occur through overfishing and other destructive fishing practices, mining of corals, and overuse of many reef areas, including damage from souvenir collection, boat anchoring, and diver contact. In order to protect and manage coral reefs within U.S. territorial waters, the National Oceanic and Atmospheric Administration (NOAA) of the U.S. Department of Commerce has been directed to establish and maintain a system of national marine sanctuaries and reserves, and to monitor the condition of corals and other marine organisms within these areas. To help carry out this mandate the NOAA Coastal Services Center convened a workshop in September, 1996, to identify current and emerging sensor technologies, including satellite, airborne, and underwater systems with potential application for detecting and monitoring corals. For reef systems occurring within depths of 10 meters or less (Figure 1), mapping location and monitoring the condition of corals can be accomplished through use of aerial photography combined with diver surveys. However, corals can exist in depths greater than 90 meters (Figure 2), well below the limits of traditional optical imaging systems such as aerial or surface photography or videography. Although specialized scuba systems can allow diving to these depths, the thousands of square kilometers included within these management areas make diver surveys for deeper coral monitoring impractical. For these reasons, NOAA is investigating satellite and airborne sensor systems, as well as technologies which can facilitate the location, mapping, and monitoring of corals in deeper waters. The following systems were discussed as having potential application for detecting, mapping, and assessing the condition of corals. However, no single system is capable of accomplishing all three of these objectives under all depths and conditions within which corals exist. Systems were evaluated for their capabilities, including advantages and disadvantages, relative to their ability to detect and discriminate corals under a variety of conditions. (PDF contains 55 pages
    corecore