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FOREWORD

Recent progress in laser technology has opened new and important possibilities for
applications in hydrospheric measurements. These applications have yet to be studied
and developed. Yet, a hastily called conference on the theme of ''The Use of Lasers for
Hydrographic Studies" at NASA-Wallops Station, September 12, 1973, drew more than one
hundred experts from all over the United States and Canada. During the one-day meeting,
twenty-one papers were presented on topics ranging from surface wavelet study to
underwater Raman spectroscopy. The interest and expertise shared by all participants
ensured a most worthwhile symposium.

The meeting was divided into two sessions; the moming sessions was chaired by'me,
Hongsuk H. Kim of NASA-Wallops Station, Virginia. Dr. George D. Hickman of Sparcom
Incorporated, Alexandria, Virginia chaired the afternoon session. The advisory panel
for the conference included Dr. Theodore Chamberlain, Chesapeake Research Consortium;
Dr. Murray Felsher, Environmental Protection Agency; Dr. Charles Yentsch, University of
Massachusetts; and Dr. V. Klemas, University of Delaware.

I particularly would like to thank Mr. Maurice Ringenbach, National Ocean Survey,
and Dr. James Bailey, Office of Naval Research, who encouraged us to pursue the idea of
the meeting.

Some of the papers herein have been derived primarily from oral presentations made
during the symposium. Because of this, and in order to achieve a uniform format, a con-
siderable amount of editing was performed. Although contributors were afforded an
opportunity to revise their oral transcripts, the time alloted them for this purpose
was short in order to expedite the timely publication of this document. Therefore,
while care was exercised not to alter a contributor's context, this may have happened
inadvertently; in which case, the editors assume full responsibility.

A goal of the meeting was to bring laser and oceanographic technology together,

I hope this report will further contribute to this goal.

Hongsuk H. Kim
Morning Session Chairman
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WELCOMING REMARKS

Abraham D. Spinak, Associate Director
NASA, Wallops Station

Wallops has, during recent years, participated in NASA's efforts to find practical applica-
tions for its capabilities. We have a small SRET program which is centered on finding
ways that remote sensing can be used to help solve some of the problems of the Chesapeake
Bay Region. Additionally, there are activities with interests in oceanography and the at-
mosphere. We have an aircraft, helicopter and some laboratories which support these acti-

vities and give us the capability of carrying out experiments and demonstrations.

Mr. Kim's work in developing and finding uses for laser technology has been very exciting
to all of us here at Wallops. We feel that it holds much promise and we encourage it very
much. Obvicusly, the turnout today and the interesting agenda for this conference shows
that there are many with similar interests who have been doing much work in this field and
are now ready to share the results. Your achievements complement each other and will con-

tribute to the application of aeronautics and space technology to earthly problems.

It is a pleasure for Wallops to host this meeting. I hope that it is very productive.
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NOAA'S LIDAR PROGRAM

Maurice E. Ringenbach
National Oceanic and Atmospheric Administration

I would like to acquaint you with the National Oceanic and Atmospheric Administration's
(NOAA) Lidar program, the reason we're in this program, and why we feel this program is im-
portant to increasing the effectiveness of our work in near-shore nautical charting.

Anyone who has conducted near-shore depth soundings i§ familiar with the reduced effective-
ness of the operation due to surf conditions and the safety hazards occasioned by land out-

croppings.

Therefore, it is our opinion that increased survey effectiveness can be realized in these
areas with a remote sensing technique operated from a non-displacement platfomm, such as .
surface effect ship or helicopter. :

In a meeting with personnel of the Navy we learned of experimental laser depth soundings
conducted from a helicopter. As a result of the apparent success of these experiments, a
contract with Sparcom, Inc., was jointly funded by the Office of Naval Research (ONR)} and
ourselves. The purpose of this contract was to establish quantitatively, the propagation
characteristics of a laser beam and determine if through physical measurement of water and
bottom samples of an area the feasibility of conducting bathymetry in that area could be
established.

Dr. Dan Hickman will discuss the results of this work later.

In addition to lasers, we are also investigating the possibility of using air-coupled acous-
tic transducers. Preliminary analysis, on paper, shows that while attenuation due to the
air-water interface is high, the signal-to-noise level of the returned signal is adequate.

There may be corollary benefits if LIDAR is used. Based on experimental work it appears
reasonable to measure water quality parameters such as hydrocarbons and algae, as well as
physical parameters such as turbidity, salinity, and water currents.

In short, we are not committed to the use of lasers. Within the next two years, when the
overall capability of the laser and air-coupled acoustic transducers are known, a systems
engineering analysis will be conducted to determine the most effective approach.






ONR'S LIDAR PROGRAM

Dr. James S. Bailey
Office of Naval Research

This talk is restricted in general to ONR Code 414 activity; however, other research pro-
jects are in effect in our Physical Sciences Division. Projects concerned with xtals, de-
signators, range finders, and high powered and dye lasers constitute the bulk of this re-
search--much of which is directed toward improving the efficiency of the laser. Other
Navy interests in laser applications, particularly to hydrographic studies, will be covered
in part by Mr. Avery who follows me and later by Mr. Ott.

The ONR coastal remote sensing program recognizes the unique attributes of both aircraft and
spacecraft for the applications of remote sensing to the total enviromment in which the
Navy operates. The total coastal environment encompasses nearshore, deltaic, and estuarine
zones. Nearshore, coastal, and estuarine envirommental analyses are essentially studies of
the behavior, variability, and mechanisms of change of conditions in this dynamic zone. A
need arises, from the military problems inherent in this zone, for a capability to recon-
struct the conditions and follow the sequential changes in the environment, determine the
mechanisms of these changes (the driving forces) and, in some cases, determlne complex cause
and effect chains to determine how certain condltlons are developed and what will happen

if certain characteristics are changed. The availability of combinations of remote sensors
and platforms now provides the capability to obtain synoptic and repetitive data from any
prospective survey area. The synoptic, time series attributes of remote sensing are the
critical factors since the extreme areal and temporal variability of the coastal environ-
mental characteristics successfully defy adequate coverage by conventional survey methods
and analyses techniques.

Present electromagnetic sensing technology and the ability to operate from platforms above
the earth has permitted the development of systems having a greatly increased ability to
sense the meaningful characteristics of the earth and its enviromment. Increased informa-
tion can be obtained through the use of combinations of sensors, with each individual sensor
exploiting a different portion of the electromagnetic spectrum. Laser infrared, active and
passive radar, and other radio frequency sensor systems show great promise in providing sur-
face and subsurface information. Much of this information is also needed in target-back-
ground, and signature-characterization efforts. Regardless of the application, when used
in aircraft or spacecraft vehicles, these devices provide a means of acquiring repetitive
synoptic data on coastal zones otherwise inaccessible because of physical limitations or
political restraint. In some instances, remote sensors may be the only means of acquiring
certain data; in others, they may be the most economical means, but certainly they are the
only means of acquiring data from space.

The purpose of this research program is to provide the Navy and Marine Corps with an added
and needed capability for cbtaining timely envirommental data. By enviromment is meant the
complex and intricately related ocean-nearshore, deltaic and estuarine enviromments. The
data referred to are measurements of dimensions, temperatures, concentrations, emissivities,
reflectances, times-rates, and velocities, etc. They are measurements of parameters that
are peculiar to specific enviromments and that will inform us of the actions within these
environments.



The primary objective of the program is to define and demonstrate the ways in which remote
sensors can be applied to Navy problem areas such as arctic and coastal envirommental pre-
dictions, amphibious and other inshore warfare planning, and certain aspects of ASW,

The most difficult problem in establishing the laser as a practical reconnaissance/surveil-
lance tool is in developing the capability to extract particular information from the total
data recorded by the sensor. Two basic approaches are open to solving this type of problem.
The first is to study the data output from remote sensors and determine those characteris-
tics that are immediately obvious such as observing that water appears hot in the 8-14 mi-
cron region of the electromagnetic spectrum and cold to a microwave radiometer when the
measurements are made at night. Using this approach, little attempt is made to understand
why this is true but only that it is. This is the empirical technique of the application
scientist. : -

The ONR program has contimually been dedicated to conducting rigorous scientific studies in-
to the basic physics producing and affecting the energy field measured by the sensor and to
deriving the analytical formulations which describe the various elements of this natural
field. This is the analytical approach of the basic research scientist.

ONR Code 414 laser research efforts have been to define the critical parameters of the
coastal enviromment imposing limitations on the laser capabilities.

Additionally, the temporal and spatial aspects of the measured parameters have been consid-
ered so that data sampling rates and resolution capabilities could be accurately engineered
into the sensor and recording system.

The effectiveness of military plamning is frequently measured by the ability of forces to
successfully move across a coastal zone in obtaining an assigned objective. The coastal
environment imposes constraints and can largely influence system composition and function;
i.e., the choice of weapons and vehicles, the deployment of forces and selection of methods
of operation. Similarly, present state of the art in amphibious technology limits the range
of candidate landing sites. Knowledge of the coastal enviromment and ability to predict its
variations are necessary to the selection processes.

Amphibious operations may employ any of a wide variety of methods and techniques but the pur-
pose is basically the transportation of men and material from ocean-going ships offshore to
secure positions onshore.

Decision making and model selection are today largely based on intelligence gained from maps,
charts, photographs, tabulations and texts which describe separately certain aspects of the
envirorment as they existed at a point in time, or in the case of highly variable elements,
statistically.

Amphibious and inshore warfare are perhaps the most complicated and sophisticated forms of
warfare, combining mobility and flexibility with the element of surprise, It is quite pro-
bable that no other military operation.is as concerned with and as vulnerable to its com-
plex and rapidly changing environment.

The principal parameters of beaches and the nearshore zone--length of usable beach, beach
width, beach gradient, beach approach, surf and tidal range, beach material, nearshore cur-
rent, waves, offshore bars, etc., are subject to changes of wind, water, and land interac-
tions. The result is that beaches and the nearshore zone are the most dynamically complex
of all land forms.



Mohility and flexibility of operation are critically impaired unless adequate and timely da-
ta collection is conducted. Surprise is lost if data collection is too apparent. Perhaps
the most complicating factor is the political turmoil of the mid-twentieth century that de-
mands U.S. military forces be prepared to operate on and over a variety of widely dispersed
beaches within a very narrow time frame.

The requirements, therefore, exist for properly maintaining current general coastal and es-
tuarine data and having the capability to rapidly update and incorporate data of specific
parameters that are subject to rapid change and to acquire these data over coastal areas
that may be inaccessible because of physical limitations or political restraint.

An area of concern to Navy-Marine Corps planning and operations is coastal bathymetry. Na-
val inshore warfare requirements include a need for relatively detailed knowledge of the
sea floor topography of the world's coastal enviromment including beaches, wetlands, and
other fringing land forms.

Bathymetric data are also an indispensible input to all coastal environmental predictive
models and in most instances must be obtained on a recurring basis to validate the model
output.

Clearly, then, means of obtaining this information synoptically, rapidly, and under vary-
ing environmental conditions are required. The laser is one instrument that can be applied
to this task. The feasibility of applying the laser to coastal bathymetry/topography Eas
been proved by the research of Dr. Hickman while at the University of Syracuse, the Electro-
Science Laboratory of Ohio State University, and later work by the Naval Air Development
Center and NAVOCEANO conclusively determined the utility of the laser for this work.

The laser research program in Code 414 has been directed toward obtaining definitive, qual-
itative data (measurements) on the coastal ocean parameters affecting the laser energy
field. By defining the significant parameters and subjecting the laser beam to variations
of these parameters, a set of criteria have been developed from which an optimally efficient
and portable coastal laser bathymetry system can now be built, :

This work and some of the salient results presumably will be discussed later by Dr. Hickman.,






NAVOCEANO'S LIDAR PROGRAM

Duane Bright
U. S. Naval Oceanographic Office

NAVOCEANO (U.S. Naval Oceanographic Office) has a continuous requirement to conduct hydro-
graphic surveys along coastlines throughout the world. These surveys are now, of course,
conducted using sound boats equipped with acoustic transponders (echo sounders). Problems
such as flow noise and cavitation limit the speed of these boats to 20 or 30 knots at best,
even if the sound boats could go that fast in near shore waters. The development of the
laser has provided a new medium-light- for depth sounding to perhaps five fathoms in most
coastal areas. Light pulses can be transmitted through the air-sea interface, reflected
from the bottom, and detected by the airborne receiver to provide both the water depth

and the height of the aircraft.” With such an airborne system, there is no speed limita-
tion, either in sounding or obstacle avoidance.

During the early part of 1966, the need for more and better charts of the rivers and shal-
low coastal waters in and around South Vietnam required surveying hundreds of miles of
survey lines using sound boats that were within range of enemy controlled territory. The
danger involved, plus the slow rate of data collection in these high priority areas, caused
NAVOCEANO to take a new look at the equipment being used. As a result, a decision was
made to investigate the practicability of using the laser as an airborne depth sounder.

Our program was called the PLADS, an acronym for Pulsed Light Airborne Depth Sounder. The
objective of PLADS was to develop enough test data to write a procurement specification for
operational equipment. An RED contract was made with the Raytheon Company for a prototype
system with the objectives listed in the first column of TABLE 1. The system characteris-
tics that we deemed necessary to meet the objectives of the first column are listed in
column two and three.

TABLE 1. - PULSED LIGHT AIRBORNE DEPTH SOUNDER OBJECTIVES AND CHARACTERISTICS

SYSTEM TRANSMITTER RECEIVER
Altitude 62-310m PK Power 2-3Mw Aperture 6 an
Alt. Accuracy .3048m Pulse Width 4-7ns F/# f/8
Depth Penetration 30m Pulse Fall 2-3ns F.0.V. 5° MAX
Depth Accuracy .465m Wavelength 0.58 Bandwidth SOR
Atten. Length 1-10m Divergence 1/2=14mr Video B.W. 400 MHz
Target Reflect. 0% PRF 1-30pps P./C. S-20
Vertical Stability =1 1/2° Spatial Filters. A/R
4ns AT S/N=1
Sensitivity 400nw AT S/N=10

The PLADS is composed of four main components as show in Figure 1. The electronic control
console, the transceiver, which is the transmitter and receiver cf the laser, water cooler
for the laser head, and the laser power supply. The rest of the equipment is for readout

and recording. )



A beam divergency system was included to control the area illuminated by the laser on the
sea surface. The spot size, on the surface of the water, has to be sufficiently large to
illuminate a large number of small wind wavelets. The laser that we used transmitted about
500 kilowatts per pulse. Of this amount of power, the water surface was expected to re-
flect from 2.5 to 90 watts. About 10°6 watts, one microwatt was expected to be the small-
est detectable return. This detection range of 90 watts to one microwatt placed a very
stringent requirement on the dynamic range capability of the receiver. Spatial filters and
linear polerizers were used in the receiver to allow this wide range.

The PLADS was tested at the Naval Air Test Center on the Patuxent River in Maryland, at the
Naval Ship R&D Lab. in Panama City, Flordia, and from the Chesapeake Bay Bridge. Two pre-
liminary test reports were written. The system was delivered by the contractor in Septem-
ber of 1969, and required less than three hours to install in a helicopter. The flight
test at Patuxent showed the system feasibility. Accurate depths to about 5% meters (18
feet) were measured in the muddy Potomac River.

The Panama City tests in 1970 included both flight tests and static tests from a Texas to-
wer type platform. The flight tests measured water depths up to 30.48m in the relevantly
clear waters off of Panama City. For both the platform and flight tests, the change in the
mumber of small capillary wavelets on the water surface, due to wind conditions, had a very
marked effect on the signal returns. When the wind was less than five knots, the water sur-
face was relatively smooth and the return signals were very erratic. Good returns were ob-
tained when the winds were above five knots. The Bay Bridge tests helped to further validate
our working design concept; however, little data was collected due to hardware failures.

To conclude, although the hardware was unreliable, the PLADS system did demonstrate the fea-
sibility of sounding in this manner. It appears that all design and equipment deficiencies
can be corrected, at least to the extent necessary to produce a good operational mode. The
polarizer and the spatial filters did indeed enable a single photomultiplier tube to handle
both the very strong surface return and the very weak bottom return. Our office has also been
deeﬁly involved in the use of color-aerial photography for near-shore hydrographic survey
work. Because of the relative success we have had with both the color photography program
and the PLADS -program, we have begun an effort, under IMA (Defense Mapping Agency) sponsor-
ship, to develop a Coastal Aerial Photo Laser Survey System, called "CAPS", which will marry
a laser system with a color photo system, This will provide a total system capability for
nearshore hydrographic survey, amphibious reconnaissance, beach gradients, and a number of
other things. CAPS will use the laser to control the photographic system without the need
for expensive control surveys. Our first step will be to develop a new and reliable depth
sounder. We are pursuing this at present with NASA. Later, the integration with the photo-
grammetric system will bhe made.
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Figure 1. Pulsed light airborne depth sounder
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NASA'S LIDAR PROGRAM

Bernard Rubin
NASA Headquarters

Let me extend to all of you a hearty welcome on behalf of NASA Headquarters, the Office of
Aeronautics and Space Technology, and particularly Mr. Frank J, Sullivan, the Director of
the Guidance, Control and Information Systems Division, which sponsors most of the NASA
effort that you will hear about today. It is gratifying to me to be here to participate
in this cooperative program in which representatives from different U.S. and Canadian gov-
ernment agencies, universities and industrial organizations convene and exchange informa-
tion. The subject of this Conference is a relatively new one, but one which you will hear
more about with time because LIDAR Systems represent an extensively applicable technology
for envirormental studies. They provide a rapid, highly sensitive, broad-coverage, multi-
mode, high-resolution method for studying not only the planet on which we live, but other
planets as well.

NASA has always had both of these interests...it has sent up such spacecraft as the Mariner
to probe the planet Mars; and on July 23, 1972, it launched ERTS-1, the first Earth Resour-
ces Technology Satellite. On that occasion, Dr. Fletcher, the NASA Administrator wrote:
"...it demonstrates how we have begun to turn the space program of the U.S. around, how

we are returning to the home seas of space after 12 years of strenuous and highly success-
ful effort to explore the moon. It symbolizes our determination to concentrate in this
decade on winning more practical benefits from spacecraft in earth orbit at much less
cost."

LIDAR will enhance NASA's ability to obtain more accurate information about this planet and
to respond to society's interest and concern about its ecology. In 1969, NASA developed

" its first successful LIDAR system consisting of a pulsed ruby laser, a collecting 30.5 cm
(12 in.) telescope for day use and a detector for the purpose of looking at latitudinal
variation of aerosols in the atmosphere. This system which was designed and fabricated at
the Langley Research Center, was used successfully in the Barbados Qceanographic and Meteor-
ological Experiment in the summer of that year. Figure 1 shows the working system as a

shipboard instrument.

- R VO W— mo— ! P >
LaRC instrumentation " Installation on Fantail - SS Advance II
Figure 1. Laser system for atmospheric measurement used in Bomex.
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In the following year, the LIDAR System was placed on board a van, and sent to the Willa-
mette Valley in Oregon, and in conjunction with the University of Oregon, assisted the
farmers in deciding when to burn their fields. This practice takes place annually after
the harvest, and was carried out haphazardly, often to the dismay of the farmers. If an in-
version layer settled over a valley and its altitude was below the height of the surround-
ing mountain tops, then the smoke from the burning would rise to the height of the in-
version layer and would become entrapped. In Figure 2, such a phenomenon is observed.

Note the horizontal flow of the smoke and its failure to rise and become dissipated at

higher altitudes. The NASA system was used to probe the area above the valley for the
presence or absence of inversion layers. That year, the farmers were grateful to the
NASA/University of Oregon team for its assistance in deciding the proper time to burn the
fields.

Figure 2. Atmospheric pollution measurements

The next generation of this LIDAR was completed in 1972 and is shown in Figure 3. Thls is

a 60.96 an (24 in.) system, and has been recently used in smokestack effluent investigations.
Figure 4 shows the same system in position for measurement. This LIDAR was also used in

a Raman backscattering mode to detect SO; and, in Figure 5, results of the experiment are
shown for sulfur dioxide. Similar results are given in Figure 6 for nitric oxide.
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Figure 4.

60.96 cm laser radar system for stack plume measurements
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The success of the application of NASA's LIDAR System with particulates prompted the initia-
tion of a new LIDAR program, aimed at investigating some of the properties of the oceans.

In 1970, contact was made with Mr. Kim of Wallops Station and was the beginning of a joint
Wallops/Langley program in LIDAR hydrography. Langley's strength in designing and fabrica-
ting tuned lasers was coupled with Wallops background in the receiver end of the LIDAR Sys-
tem. The program was an ambitious one and its many applications are shown in Figure 7. Our
plan was to approach the detection and measurement of each of the variables, depth, turbidi-
ty, oil pollution, and phytoplankton in the laser mode that was optimum for each.

ToPLARKION _ kY
AT EwNY

NASA RE72-1149

Figure 7. Laser radar sensing technology

The first choice was phytoplankton and, in particular, the chlorophyll a that was a major
constituent. The fluorescence mode was chosen because it was specific to chlorophyll a, a
relatively strong return signal could be expected, and a dye laser could be fabricated for
the excitation. The specificity of the system is shown in Figure 8. Notice the different-
iation that could be made from plant foliage that might be in the surrounding area if an
excitation wave length of 590 nanometers were used. Figure 9 shows how the system works,
both for o0il spills and phytoplankton. In the case of oil, an excitation of 430 nanometers
would yield a return signal at 530 nanometers. The plankton is also shown with a Rhodamine
- 6G dye laser as the radiation source.
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Figure 9. Laser radar technology

Once the system was designed and built, it was tested for practicality and calibrated. Fig-
ure 10 shows the calibration of NASA's first laser fluorescence LIDAR. The system was

mounted on a pier, 8 meters above the water's surface, and a sufficiently strong return sig- -
nal at the proper wave length indicated that the system did respond to phytoplankton.
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Figure 10, Calibration from a fixed height platform

The next step was to package the LIDAR for flight use. The finished flightworthy system is
shown in Figure 11. Here may be seen the dye laser, the receiver telescope, and the power
supply and controls as they were positioned in the helicopter.

1;1gure 11. LIDAR prepared for fl@ght use.
LIDAR system platform (left), control cabinet (right)



The results of the first airborne experiment are shown in Figure 12, carried out about six _
months after the program was given the go-ahead. This shows the concentration of phytoplank-
ton in the Chesapeake Bay over a 24-hour period. NASA's results are given by the upper
broken line in units of millivolts response of the detector. EPA carried out simultaneous
measurements by taking bottled water samples from a boat in the same area as the helicopter
fly-by and carrying the samples back to the Annapolis laboratory for analysis. The agree-
ment in the diurnal variation is striking and, at levels of milligrams per cubic meters,

the difference in the results is good. It should be mentioned that NASA's results were not

calibrated at that time so that gdbd agreement was still possible.
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Figure 12. Concentration of phytoplankton
in the Chesapeake Bay

The dissemination of these results to the scientific community evoked considerable interest
in the method. Amongst them was an invitation by the Canadian govermment to participate in
the International Year of the Great Lakes. Mr. Kim took his airborne system to the Ro-
chester, New York area of Lake Ontario to make measurements. Results are shown in Figure 1S.
Ten-mile long transects, one-half miles apart were flown and phytoplankton concentrations
were plotted as shown. Variations in concentrations are apparent, and what is significant,
although not shown, is that the United States side of the Lake is more polluted than the

Canadian.

Continued interest in phytoplankton prompted Dr. Mumola of the Langley Research Center this
gast year to extend the previous fluorescence work to the various types of algae, He has
uilt a four dye laser system, concentrically placed around an excitation flash lamp shown
in Figure 14. The working system and its application to the four different colored algae
are shown in Figure 15. The upper right corner shows the multicolor laser and the upper
left shows the complete package of telescope, laser and detector.

NASA's other activities at the Langley Research Center include a Raman absorption LIDAR Sys-
tem development for the study of soluble constituents of the oceans. The first anion of in-
terest is sulfate, and the flight system for its detection is shown in Figure 16. This sys-
tem is excited by a 5300 A°1 joule 10 nanosecond pulsed laser and the return signal is re-

ceived by a 30.5 an(12 in.) diameter telescope. Initial results from laboratory studies on
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sea water indicate the feasibility of sulfate ion detection as shown in Figure 17. Our plan
of operation is shown in Figure 18, and it is expected that flight tests using this tech- -
nique will be completed in Fiscal Year 1977.

Another hydrographic application of LIDAR in a backscattering mode is the measurement of
depths of bays and estuaries. Figure 19* is a representation of this application of LIDAR
hydrography. In Figures 20, a and b*, an oscilloscope trace shows the surface and bottom
return signals from a LIDAR, indicating the feasibility of the approach.

Many other applications of LIDAR suggest themselves. Current flow, rescue of downed pilots,
the presence of schools of fish, and oil spills are all possibilities, some of which are
currently under NASA consideration and investigation.

NASA is also looking upward in an attempt to measure the background constituents in the at-
mosphere, as well as airplane emission exhausts and pollutants . Figure 21 shows the first
breadboard model of an infrared LIDAR system that can operate in the absorption mode using
tunable diode lasers. We have already detected in the laboratory, using a lead selenide
laser, the presence of ammonia and sulfur dioxide. We are planning to cover the 2 to 12
micrometer region of the spectrum with several lasers to detect at least six major con-
stituents of interest to our program.

It is obvious from what I have said that NASA has a major stake in LIDAR technology; from
the need to provide information as a back-up to our Earth observations, to monitor the ex-
haust emissions from aircraft, to study our seas and oceans, and to provide sensors for fu-
ture planetary missions. NASA is prepared to cooperate with interested agencies, universi-
ties, and industry in this area to provide more and better information for all mankind.

*Figures 19 and 20 a and b were provided by courtesy of Sparcom Inc.
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Figure 13. Measurements of phytoplankton levels in Lake Ontario

19



20

7

DYE CELLS

POLISHED
ELLIPTICAL
CYLINDER

COMMON
LINEAR
FLASHLAMP

///

11111

Figure 14.

Multicolor dye laser

- Figure 15.

Fluorescence laser techniques applied to algae.

’ MULTI-COLOR
& LASER OUTPUT




fe— DETECTOR

FILTERS
MONOCHROMATOR
PHOTOMULTI PLIERS

=

Figure 16. Flight system for remote sensing of salinity
by laser Raman spectroscopy of the S0,=ion

NASA HQ RE74-15137 {1}
10-7

.1 WATT CW ARGON LASER LINE 4579 A ¥

2

[

Q

S
fed
a
=
§ -~
<3
=

o
5 w o
BENDING MOOE 4
Wo
’umnon I
AND
TRANSLATION
NASA HG NET4-15138 (1)
810-7
495.1 9.6 519
| 1 |

~ WAVELENGTH (nm)

Figure 17. Raman spectrum-water sample
from Hampton Roads area



TRANSMITTER

T. Nd:YAG
2. DYE
3. NEON

PLATFORM TESTS
(CHESAPEAKE LIGHT TOWER)

RECEIVER

1. MONOCHROMATOR
2. FILTER SYSTEM

SPECIFY & PROCURE
FLIGHT SYSTEM

UPWELLING
AND PLANKTON
MEASUREMENTS

| FY 73 | Fy 74 | FY 75 | FY 76 | v |
NASA HQ RE74-15136 (1)
8-10-73

Figure 18. Remote measurement of salinity
by laser Raman scattering from SO3

N AIRBORNE
a6 LASER
- BATHYMETRY

Figure 19. Airborne laser bathymetry

22



20 mv/cm by 20 nsec/cm
Approximate Depth 9 ft.

Figure 20a. Oscilloscope trace showing surface and bottom returns

Figure 20b.

Cut away view showing laser illumination (dotted)
and receiver field of view (solid)
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Figure 21.



EPA'S LIDAR PROGRAM

John D. Koutsandreas
Envirommental Protection Agency

(Paper not available at time of publication)
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LIDAR PROGRAMS IN CANADA

Dr. Raymond M. Measures
University of Toronto

Canada is a vast country and within her borders lies the largest supply of fresh water in
the world. It is therefore natural for airborne hydrographic probing to be regarded as

a vital part of her resource surveillance program. Indeed, some three years ago, the Can-
ada Centre for Remote Sensing was created to coordinate the data collection from both air-
craft and satellite sensors. Fven before the Canada Centre for Remote Sensing was created,
Dr. L.W. Morely, the first Director of the Centre, initiated an exploratory program to
stimulate new sensor development. This farsighted approach has been reasonably successful;
for within this short space of time, three hydrographic LIDAR groups have emerged within
Canada.

I shall attempt to present a survey of the hydrographic LIDAR programs in Canada, but will
make this a rather brief review as each of the groups are present and we will be discussing
their results in detail this afternoon. Figure 1 attempts to illustrate the various ways
lasers can be used in envirommental sensing to monitor both the atmosphere and the ground.
Indeed, a laser may be used to study the atmosphere itself, or probe its contaminants.
Lasers may also be used in sampling techniques or they may be mounted on airborne of ship-
borne platforms.

LASERS IN ENVIRONMENTAL

SENSING
ATMOSPHERIC MONITORING SROUND MONITORING
REMOTE ‘
b e
SAMPLING AND
ON SITE TECHNIQUES Tﬁéﬁﬁ?gﬁﬁs

Figure 1. Lasers and envirommental sensing
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A schematic block diagram for a typical LIDAR system is illustrated in Figure 2. We have,
of course, a laser to illuminate the target, some form of output optics, and normally some
form of output sampler to maintain a check on the laser output and to provide a zero time
reference pulse. The target may then scatter and/or reflect some fraction of the laser
beam, or it may be induced to fluoresce. The returned radiation is focused by a telescope
onto some form of spectrum analyzer and then detected by a photomultiplier tube arrangement.
Both laser induced fluorescence and Raman scattering are techniques that are capable of
extracting a great deal of information relating to the target under investigation. In
Canada, .we have programs which include both of these approaches to remote sensing.

oy

Detector
Trigger Unit
Quartz
Beam
Splitters
—-—

Newtonian
Telescope

Ng Loser

Diverger Lens
Lcser Power Monitor

&

_OAA- B

Target Area

Oscilloscope

\—— Deloy Line

7 Figure 2. Schematic of typical LIDAR system

Before 1 go any further, I would like to ensure that the rather diverse audience that we
have at this meeting is familiar with these two temms. In both laser induced fluorescence
and laser Raman scattering, the radiation field interacts with a specific molecule in such
a way that an emission is observed at a frequency that is different from the exciting beam.
Here, however, the similarity ends. In the case of fluorescence, the molecule absorbs a
quantum of radiation and is raised to an excited state from which it may decay by one of sev-
eral mechanisms. The decay process of interest arises from the emission of radiation and
this we term, fluorescence. In the case of Raman scattering, the laser radiation can be
thought to suffer inelastic scattering from the molecules in question. This scattering
process changes both the frequency and the direction of the incident radiation. In the
case of laser induced fluorescence, the cross-section may be large but due to a number

of alternative decay modes, the net emission can sometimes be small and spread over a
large spectral interval. On the other hand, in the case of Raman scattering, the cross-
section is normally very small (many orders of magnitude smaller than that corresponding
to the absorption process) but the radiation is confined to a very narrow spectral inter-
val. This spectral difference between the two techniques leads to a significant difference
in the kind of monitoring technique employed. In general, laser induced fluorescence will
yield a much larger signal than obtained with Raman scattering, although the difference
will not simply reflect the difference in the effective cross-section if the fluorescing
molecule is strongly quenched. Moreover, the Raman cross-section may be greatly enhanced
if the frequency of the laser is tuned to closely coincide with an allowed transition with-
in the scattering molecules. '
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In Figure 3, I have attempted to indicate some of the potential applications that are con-
ceived for the laser induced fluorescence approach.
ymetry, although listed, does not involve laser induced fluorescence, but can be underta-
ken with the same system with but minor modification.
spective program of the three major hydrographic LIDAR groups in Canada, is represented

in Table 1.

I should, however, mention that bath-

The facilities and phase of the re-
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DEVELOPMENT PROGRAMME
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/ /
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AIR POLLUTION
DISTRIBUTION MONITORING

"IN SITU DETERMINATION

OF CHLOROPHYLL

BATHYMETRIC MEASUREMENT
OF LAKESHORE AND COASTAL

MORPHOLOGY

Figure 3.

Potential applications for laser fluorosensor

TABLE 1.-CANADIAN HYDROGRAPHIC LIDAR PROGRAMS

UTIAS
and
CCRS

(LIF PROGRAM)

Q-switched ruby laser
with second harmonic
generator
(3472%, 300kW, 17ns,

1ppm)

ADVANCED
LABORATORY PRELIMINARY AIRBORNE TECHNOLOGY
TESTS FIELD TESTS TESTS DEVELOPMENT
UTIAS UTIAS CCRS UTIAS

Large nitrogen laser
and 8 inch telescope
Range = 304.8 m
(3371&, 100kW, 10ns,
100pps)

Tunable Dye Laser
UTIAS laser fluoro- | (4400-4800 &, 10xW,
sensor, modified & 15ns, 1ppm)
mounted in DC-3 and

Small Nitrogen Laser
(1kW, 4ns, 20pps)

ENVIRONMENT
CANADA

(LIF PROGRAM)

Helium-Cad mium
Laser & Telescope

Helium- Cadmium
Laser & Telescope

(44168, 15mW o,
500Hz)

Helium-Cadmium
Laser & Telescope
Range 2 152.4 m

YORK
UNIVERSITY

(RAMAN PROGRAM)

Argon Laser

1/2 W av.power cw
(single line)

Cavity Dumped
Argon Laser
100 W p.power DC-5M,

1/2 W av.power cw-10ns]
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The University of Toronto Institute for Aerospace Studies (UTIAS) has been working in
collaboration with the Canada Centre for Remote Sensing (CCRS). The initial UTIAS labor-
atory work involved a ruby laser with a second harmonic generator; the characteristics of
this system are shown in TABLE 1. The preliminary laboratory work using this system was
sufficiently encouraging that we developed a prototype version of this instrument, named a
"Laser Fluorosensor', to be used initially in field work and eventually in flight trials.
This prototype laser fluorosensor uses a nitrogen laser with a 20.3cm Newtonian telescope
and was operated during the field trials at a range of close to 304.8 meters (1000 ft).
The wavelength of the nitrogen laser was in the near ultraviolet part of the spectrum
(3371°A) and the output was 100 kw in a pulse of 10 nsec's duration. The repetition rate
could be adjusted to a maximum of 100 pulses per second.

This system has now been taken to the Canada Centre for Remote Sensing where it is being
installed in a DC-3 for flight testing. The current UTIAS activity is centered on what
we call "advanced technology development' and involves two advances that could lead to a
wider range of application for the laser fluorosensor. In the first place, we have demon-
strated that the use of an exciting source that can operate at several wavelengths (for
example, a dye laser) can improve the specificity of the approach over and above that ob-
tained by studying only the emission profile. Second, we are using a miniature laser
fluorosensor of short response that we developed explicitly to study the fluorescent life-
times of a variety of materials. This system employs a small nitrogen laser which has

an output of close to one kw and a duration of about four nsecs. With this facility we
have discovered that spectral variations in the temporal profiles of fluorescence repre-
sents another parameter, in many ways superior to that of the normal emission and excita-
tion profiles, that one might use for the identification of various target species.

At Environment Canada some initial work has been done with a CW helium-cadmium laser po-
sessing the characteristics indicated in TABLE 1 and shown in Figure 4. In preliminary
studies using this system, night observation of the fluorescence of a number of materials,
such as crude oils and fish oils, has been demonstrated. Recent low-level aircraft tests
have confirmed these results and we will hear more about them this afternoon.

o

Wi

=

Figure 4. Department of Enviromment's C.W. Laser fluorosensor
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At York University, Dr. Carswell and his group have used lasers to study both the atmos-
phere and the aquatic environment. The characteristics of his argon laser used for the
hydrographic work is presented in TABLE 1. The initial laboratory work was directed at
studying the laser beam extinction properties for various samples of water and was under-
taken in collaboration with the Canada Centre of Inland Waters. These water scattering
measurements have now been extended with the introduction of a cavity dumped argon laser
which can produce a high repetition rate output with pulses of 10 nsec duration. This
technique also increases the power to about 100 watts which then makes possible ranging
measurements. Presently, this system in undergoing field work from a ship on Lake Ontario.

The next figure represents a matrix of measured parameters and targets under study. I have
attempted, in TABLE 2, to present an overview of the field and indicate the area of en-
deavor that each group has undertaken and the stage reached. As you can see, the program
can be divided into laser induced fluorescence and Raman scattering. I should, however,
reiterate that Dr. Carswell at York is also engaged in work concerning turbidity measure-
ments but this has not been specifically included in this table. For laser induced fluo-
rescence, the major parameters under consideration are: fluorescence intensity against

* emission wavelength, fluorescence emission as a function of excitation wavelength, fluo-

rescence lifetime and polarization effects. In the case of Raman scattering, the Raman
shift may be used for identification, while the relative intensity of a Raman line of a
substance of interest to that of, say, water, might be capable of giving directly the con-
centration of the specific contaminant. Each approach is seen to have a different applica-
tion and I have selected here three obvious ones: '"oil pollution', which includes crude
o0ils and refined petroleum products; '‘natural resources', which includes fish oils, algae
and dye tracing; lastly, I have chosen the heading of "water pollution", which is taken to
include both general water quality measurements and identification of specific contami-
nants of the water.

Measurements of fluorescence intensity as a function of wavelength of emission, for exci-
tation at a fixed laser frequency, have been undertaken at UTIAS, CCRS and DOE. The rel-
ative phase of the respective programs is indicated in TABLE 2, The asterisk is intended’
to represent the advanced technology development that is currently underway at UTIAS and
involves the use of a tunable dye laser to excite fluorescence at more than one frequency
and also a careful study of the fluorescent lifetimes of a number of materials of interest.
This laboratory study at UTIAS has been able to show that a combination of two wavelength
excitation and lifetime observation should increase considerably the identification poten-
tial of laser induced fluorescence-

TABLE 2.-MATRIX OF MEASURED PARAMETERS VS. TARGETS STUDIED

OIL POLLUTION | NATURAL RESOURCES WATER POLLUTION
CRUDE PETROL, | FISH ALGAE DYE WATER SPECIFIC
OILS PRODUCTS| OILS TRACING JQUALITY CONTAM.
13} : -
Y |EmmsioN |UTIAS # UTIAS + |UTIAS * UTIAS B UTIAS A|UTIAS ;B UTIAS |A
@ |WAVE- ars C CCRS 'C CCRS |cC
(o] LENGTH | DXE 'lc DCE A|DCE A DCE c DOm® . C XE . C
g EXCITN, jUTIAS =»
S |WAVE-
g LENGTH
8 | FLUOR. |UTIAS * UTIAS *|UTIAS +*
Y  |LIFETIME
a
E - — —_— —_—— - - — ——
« |FLUOR, |UTIAS A UTIAS A
W I POLARIZ-
2 ATION
Z | RAMAN YORK B YORK B
§ SHIFT XE A e A
& | BAMAN YORK B YORK B
g {INTENSITY] DCE A DE A
I {ratio)
L= . A

KEY: Development phase attained A

»Ow

Laboratory Testing

Field Testing

Flight Testing

Advanced Technology Development
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The initial laser fluorosensor developed at UTIAS and used for the field work is shown in

Figure 5 and is How at CCRS where it will be flight tested shortly. The preliminary field
observations of crude oil fluorescence was made from a site on the cliffs overloocking Lake
Ontario and were conducted from a range of close to 304.8 meters (1000 ft.). An overview

of the mobile facility is shown in Figure 6. The laboratory work at UTIAS has so far in-

dicated that polarization effects are unlikely to be useful in environment studies of oil

pollution,

Figuré 5. d}iASA— laser fiuorosensor
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Figure 6. UTIAS - laser fluorosensor field site facility

The Department of Enviromnment is shown here to have conducted some preliminary airborme
flight trials for crude oil, pulp and paper waste products, dye tracers and algae, and they
have also undertaken some laboratory work in comnection with petroleum products and fish
oils. However, the work at DOE has so far been restricted to relatively straightforward
emission profile evaluation. The Raman work is relatively new with the group at York Uni-
versity having only recently undertaken field tests for both water quality and specific
contaminants, while Dr. A. R. Davis at the Department of Environment is concentrating on
laboratory Raman studies. However, both groups seem well aware of the possibility of mak-
ing contaminant concentration determinations by the direct comparison of the relative
magnitude of Raman signals due to the OH stretch band of water and that of any given con-

taminant.

Figure 7 shows the York University hydrographic LIDAR system being used at the Canada Cen-
tre for Inland Waters to make observations of extinction and turbidity in a large water tank.

To summarize then, in Canada there are three hydrographic LIDAR groups and their current
activities can be classified along three main lines of attack; laser induced fluorescence,
Raman scattering, and laser extinction measurements. In several areas, both field and
flight trials are either underway or currently planned and the results so far obtained have
been encouraging and are likely to stimulate further work in the future, depending on user

requirements.
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igue 7. York University hydrographic LIDAR at a Canada
Centre for inland waters test tank
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REQUIREMENTS FOR AIRBORNE LASER SYSTEMS
USED IN COASTAL STUDIES

V. Klemas
University of Delaware

Introduction

One of our investigations in the Delaware Bay region, sponsored by the Office of Naval Re-
search Geography Programs, requires the use of airborne lasers for wave profiling. Sev-
eral other studies could definitely be enhanced by introduction of active remote sensors,
such as lasers. In this paper, I intend to review the requirements for airborne laser
systems to be used for the following applications:

a. Photo-optical determination of shallow water wave spectra.

b. Bathymetry in highly turbid waters.

c. Chlorophyll concentration monitoring.

d. 0il dispersion mapping.
As will be shown in the following sections, each of these applications would proyide solu-

tions to envirommental and ecological problems eagerly sought by national and regional
agencies.

Photo-Optical Determination of Directional Shallow Water Wave Spectra

The single most important parameter in Coastal Dynamics is the shallow water wave charact-
eristics concisely described in terms of a directional spectrum for which there is no sim-
ple forecasting method. The information about the near-shore wave field can therefore be
obtained either through direct measurements of a long term nature, or indirectly through

a spatial transformation from the deep water wave field. The latter has more practical po-
tential and is simpler, since there exist some convenient wind-wave forecasting techniques
for a deep water wave field, such as the Pierson-Moskowitz (ref. 1) method, and a wealth
of wind records already available which are the only required input data for such an anal-
ysis. The deep water wave characteristics can subsequently be transformed to the near-
shore conditions using a spatial transformation (ref. 2) that is, in general, a function
of directional characteristics, depth profile and bottom characteristics. For a given
geographical location such as the Delaware Coast, a spatial transformation of deep water
characteristics to the shallow water can be obtained via the particular features of the
location. High altitude photography can be used as a major tool in correlating and check-
ing the particular transformation as follows: a sequence of aerial photographs taken with-
in a short time period from deep water to one near-shore provides the information on the

-directiocnal spectrum of the waves, and its spatial change as the waves progress into the

shallow water. This is directly used to check the spatial transformation based on the lo-
cal characteristics in terms of depth profile, bottom characteristics and boundaries.

A similar but limited type of information can be obtained by studying a profile of the sea

surface with an airborne laser (ref. 3). A profile taken along the direction from deep to
shallow water provides the surface characteristics and their spatial medifications in that
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particular direction. The inhomogeneous wave characteristics in that direction are analyzed
in a fashion analogous to that of the non-stationary wave spectrum of wave records collected
as a function of time at a fixed reference (ref. 4 and 5). The concepts are exactly the
same if the time variable is replaced with the spatial variable.

One additional significance of a laser profile is that it may provide additional information
as to how to choose the optimal size of the area to be photographed from high altitude.

This can be explained as follows: the directional spectral estimates from aerial photo-
graphs involve statistical errors due to three principle sources; i.e., statistical varia-
bility, resolution in wave number, and bias due to spatial inhomogeneity. An optimal choice
of the area size must be uniquely determined by minimizing the error due to all three of
these sources of error. An inhomogeneous wave field is also characterized by measures of
bandwidth in wave mumber and space domains. These respectively measure how the direction-
al spectrum changes as a function of wave numbers and space. For instance, a small band-
width in space implies a highly inhomogeneous sea surface with respect to space.

A test on Delaware's Atlantic coastline, 3.2 kilometers north of Indian River Inlet, was
selected for reasons of convenient access and suitable bottom profile. Two wave towers
were erected in 5.49 meters (18-feet) depth, well outside the surf zone. Cables from 1.82
meters capacitive wave probes, mounted on the tower, carried calibration and wave signals
to tape and strip chart recorders located in a trailer in an enclosed state compound.

Tri-X acetate-base film was selected for its speed, resolution and optical processing pro-
perties. Since the image of the sea bottom shows up as background noise in the wave trans-
forms, a Kodak Wratten 25A filter was used to eliminate the water penetration of the blue
and green bands. Also the sun angle was selected so as to minimize shadowing.

The Fourier transforms of wave patterns in aerial photographs were produced by illumina-
ting the photograph with a laser beam and focusing the transmitted beam with a spherical
lens (Figure 1). The transform pattern shows the dominant wave pattern as a circular dot
of finite size at the appropriate wave length and angles (Figures 2 and 3). The distance
of the dot from the center of the pattern is inversely proportional to the wave length
(ref. 6, 7, and 8). The finite size and irregular elongation of the spot is used to iden-
tify higher and lower frequency components in the wave spectrum. Microdensitometer scans
across photographs of the optical Fourier transform in Figure 3 are shown in Figure 4.
Since the image of the sea bottom shows up as background noise in the wave transforms,
spectral bands such as the red and near infrared were used to minimize water penetration.
Also sun-camera angles were selected so as to decrease the relative visibility of under-
water features.
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Figure 1. Schematic of optical bench for processing of sea photographs
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During the summer and fall of 1973, flights of aircraft equipped with cameras and a laser
profiler were flown along a 161 kilometer long transects into shore, monitoring waves go-
ing from deep water to near-shore conditions. The laser profiler was provided by the
Naval Oceanographic Office and is mounted on a NASA aircraft stationed at Wallops Island,
Virginia. The ranging technique utilized consisted of amplitude modulation of a con-
tinuous wave helium-neon laser of red light at 0.6328 microns. The laser beam can be 100%
amplitude modulated at frequencies of 1, 5 and 25 MHz with a maximum altitude resolution
of + .06] meters (0.2) ft. The resolution and accuracy of the laser system appears suf-
ficTent for this study, but the biggest problem seems to be unfavorable weather conditions
and availability of aircraft.

Bathymetry in Highly Turbid Waters

In Figure 5a is shown an MSS band 5 image of Delaware Bay obtained from NASA's FRTS-1 sat-
ellite on January 26, 1973. (I.D. No. 1187-15140). The cross-section monitored in the up-
per portion of the bay shown in Figure 6 exhibits a Secchi depth variation from 19 to 51
centimeters only. Such studies of turbidy, circulation and water boundaries from aircraft,
satellites and boats (ref. 9) have shown that Secchi depths in Delaware Bay vary from about
2.5 to 0.1 meters with corresponding sediment concentrations from 2 to 40 mg/liter. The
equivalent attenuation coefficients (oC) for these conditions are 1.3 and 30, respectively.
A 30 Kw pulsed neon laser system operating at 0.5401 microns as described by Hickman, Hogg
and Ghavanlon (ref. 10) would from 500 meters altitude be able to penetrate to depths from
about 12.5 to 0.5 meters, respectively. The deeper penetration depth will occur over the
less turbid central portion of the bay, where the water depth in many places exceeds 12.5
meters. As a result bathymetry of turbid coastal waters will be difficult indeed.
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Figure 6. Secchi depth variations in Delaware Bay

Mapping 0il Dispersion and Predicting 0il Slick Movement

Approximately 70 percent of all the oil that is delivered to the east coast of the United
States moves by water up the Delaware Bay and River. Much of this oil is transferred sev-
eral miles off the coast or inside the Bay mouth from large deep draft tankers to barges
(lighters) or to small tankers to reduce the draft of the large tankers and allow navi-
gation up the Bay and River for unloading at docks. 1In 1971, over 45 million short-tons
of crude petroleum was transported through the Bay. Over 200 tankers and 330 barges used
the Big Stone Beach Anchorage Area within the Bay that year (ref. 11). In over ten years
of lightering operations in the lower Bay, no major oil spills attributable to this trans-
fer operation have occurred. However, the heavy shipping traffic within the Bay and large
transfer operations in the lower Bay indicate a finite probability for the occurrence of
either collision and grounding of tankers or lighter barges or spills due to transfer op-
erations.

Due in part to the nation's energy shortage, studies (ref. 11) indicate that oil transport
through Delaware Bay and transfer activities in the Bay will increase markedly in the fu-
ture. The accelerated growth of these activities is inevitable whether a superport is
developed in the Bay or adjacent waters or whether oil is extracted from the Continental
Shelf. The national and regional concerns over such development focus in large measure
on the environmental vulnerability due to oil spills, Regional concern over the potential
hazard of present transfer operations has increased recently. Central to all facility de-
velopment, 0il transfer operations, and clean-up operations is information regarding the
physical movement and distribution of an oil spill. Site selection, envirommental impact
assessments and prevention and clean-up strategies for the Bay region all require informa-
tion about potential o0il spills. Moreover, planning and management agencies require a
model of oil slick movement in Delaware Bay which has predictive or forecasting ability.
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The model being developed is expected to perform two functions at two different levels.

The first function is to provide technical information for tracing oil spills as they oc-
curred; wheréas, the second function is to furnish strategic information about oil spill
potential at various regions in the lower Delaware Bay. The former is aimed at assisting
users engaged in operation and control such as oil transshipment companies, U.S. Coast
Guard and the like. The latter, in addition to aid operation and control agencies, is ex-
pected to provide information for planning and management agencies in the Delaware Bay area
including Delaware State Planning Office and Delaware River Basin Commission, etc.

As a result, there is a need to map oil dispersion and movement in Delaware Bay in several
different ways. First, ultraviolet and infrared photography are being employed to track
0il slicks to determine their movement as a function of tide, current, wind and location
with the intent to calibrate and verify the models. Second, biologists need to know the
average concentration of oil and related products down to about 10 ppm throughout the Bay
in order to assess its effect on bay ecology. The airborne laser fluorosensor for the
detection of oil derivatives on water successfully tested by NASA (Kim and Hickman, ref.
12) seems capable of meeting most oil monitoring requirements. The system transmits 337
m U.V. radiations at the rate of 100 pulses per second and monitors flourescent emission
at 540 nm. Daylight flight tests were made over the areas of controlled oil spills and
additional reconnaissance flights were made over a 50 km stretch of the Delaware River to
establish ambient oil baseline in the river. The results show that the the system is ca-
pable of monitoring low concentrations of oil which camnot be identified by ordinary photo-
graphic flights while water samples are taken from boats along the same transsect. The
correlation of actual oil content in the water samples with the laser detector output trace
would produce a calibration of the system and give an indication of its accuracy.

Marsh Productivity and Chlorophyll Concentration Monitoring

The tidal marsh is considered to be one of the most dynamic natural units. It is an eco-
system where there is a continual interaction between the various biotic and abiotic com-
ponents. We can see some of the obvious results of these interactions, plant and animal
distributions, sediment accumulation and erosion, feeding, resting and breeding of various
animals, the ebb and flood of the tide. The tidal marsh can also be considered to be an
ecotone, the boundary area between two major ecosystems, yet has its own unique features.
The tidal marsh has plants and animals found in the adjoining uplands and in the sea.
These marsh acres receive water from upland drainage and from the sea. The results of
these interactions produce something unique - a tidal marsh.

It is most important to evaluate the potential contribution of a salt marsh ecosystem to
the marine envirormment and how man's activity can alter this contribution. The salt marsh,
one of the most productive regions of the temperature zone, has received only moderate
attention in terms of quantitative evaluation of its importance as a natural resource.

The biogeochemical cycles of salt marsh are intimately associated with the estuarine en-
viromment in terms of conservation, fisheries, industrial developments, and aesthetics.
Quantitative evaluation of Delaware salt marshes, would delimit the parameters to allow
more effective utilization of this valuable natural source. This study would provide the
knowledge needed to properly assess the value of the wetlands to the estuary and coastal
waters.

Remote Sensing techniques, including color infrared photography, thermal infrared photo-
graphy and airborne laser techniques can be employed in conjunction with ground measure-
ments to map the primary productivity of tidal marshes (ref. 13). Initial steps towards
mapping marsh productivity and relative value have already been taken. Overlay maps of
Delaware's wetlands have been prepared, showing the dominant species or group of species
of vegetation present (ref. 14 and 15).
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Five such categories of vegetation were used indicating marshes dominated by (1) salt
marsh cord grass (Spartina alterniflora), (2) salt marsh hay and spike grass (Spartina
patens and Distichilis spicata), (3) reed grass (Phragmites commmis), (4) high tide bush
and sea myrtle (Iva species and Baccharus halimifolia% and (5) a group of fresh water
species found in Impounded areas built to attract waterfowl. In addition, major secondary
species were indicated where appropriate. As shown in the two sample maps of the Bombay
Hook and Taylor's Bridge marshes small representative areas of each of the major marsh re-
gions were analyzed and enhanced to show detailed growth patterns not shown on the large
scale maps. Photo-interpretation of NASA RB-57 and other aerial photographs were checﬁed
out by field teams and low altitude aircraft. As shown in Figures 7 and 8, the overlay
maps have a scale of 1:24,000 and can be superimposed on USGS Topographic or Soil maps.
Fifteen such maps cover Delaware's wetlands from the Pemnsylvania to Maryland borders.
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Figure 7. Wetlands map of Bombay Hook, Delaware
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Figure 8. Wetlands map of Taylor's Bridge, Delaware

The mapping technique employed utilizes the General Electric Multi-spectral Data Process-
ing System (GEMSDPS). The GEMSDPS is a hybrid analogue-digital system designed as an anal-

gsis tool to be used by an operator whose own judgment and knowledge of ground truth can

e incorporated at any time into
ledge of the scene gained in the
graphs with electronic analysis:
region of any size in the scene;

the analyzing process. The operator can combine his know-

field and by visual interpretation of the aerial photo-
(1) measure the spectral characteristics of any chosen

(2) search the scene for regions with similar character-

istics and once they are identified, enhance and store them; (3) modify the stored image
if necessary to make it compatible with his knowledge of the area; and (4) read out the
percentage of the total scene occupied by regions with the specified spectral signature.
By repeating the procedure for other regions in the scene, the operator can quickly pro-
duce a composite photo map, enhancing all of the spectrally classified objects or regions
of interest. The result is a high speed, cost-effective method for producing enhanced
photo maps showing a number of spectral classes -- each enhanced spectral class being rep-
resentative of a vegetative species or group of species.
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A laser fluorosensor can be used to map the chlorophyll concentration in the water and
quantify it in teyms of plankton and detritus. This, approach may enable us to assess the
amount of detritus and plankton transferred from the marshes into the bay. The chlorophyll
concentration determined with the laser fluorosensor could be used to extend on-boat fluor- -
ometer readings to large areas. The final concentration maps can be compared to predic-
tions derived from a dynamic model of the bay.

The airborne laser fluorosensor for the remote measurement of algae (phytoplankton) and
chlorophyll in the sea has been successfully operated over the test areas of Lake Ontario
where the U.S. Chemical and Biological Programs for the International Field Year for the
Great Lakes (IFYGL) were conducted during the summer and fall of 1972 (ref. 16).

The NASA prototype unit works on the principle of monitoring laser induced fluorescence
from chlorophyll a pigment bearing algae. An organic dye laser and a 18 cm diameter New-
tonian telescopic receiver mounted on a helicopter are salient features. Laser pulses at
590 nm (Rhodamine 6G) were transmitted downward and the induced fluorescence due to the
presence of algae was monitored at 685 nm. Previous laboratory measurements 3ndicate that
the conversion efficiency for fluorescent signal is in the order of 1.0 x 107°. A com-
bination of 5 nm bandwidth optical filter, and fast measurement time of the detector en-
ables us to discern the faint signal from other background ncises. The gystem is capable
of measuring the chlorophyll a concentration from 0.5 mgs/m3 to 30 mgs/m® in 256 scales
from aivrvaft altitudes of about 100 meters (ref. 17).

The state of the art of laser development is such that it now seems possible to measure
chlorophyll concentrations near the surface of the water. This is important since chlor-
ophyll is a major factor in the ability of plants to utilize light for energy by photo-
synthesis. But we would like to go a step further. First of all, we would like to ex-
cite not only the chlorophyll line but we would like to obtain ratios of chlorophyll a to
other pigments. The multiwavelength LIDAR described by Mumola, Jarett and Brown (ref. 18)
at this conference, would be ideally suited for this task. Such ratios could provide an
indication of the actual nutritional status of the material. For instance, as the caro-
tenoid to chlorophyll a ratio increases, the culture is getting older and its nutritional
capability is being depleted. Also it would be ideal if the laser monitoring system would
integrate optically over the entire euphotic zone.
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USE OF LIDAR SYSTEMS IN MEASURING
CERTAIN PHYSICAL OCEANOGRAPHIC PARAMETERS

Davidson T. Chen
NASA, Wallops Station

ABSTRACT

Remote sensing techniques, such as LIDAR, are the only observation methods which are cap-
able of fast scanning over a vast area to produce synoptic views which are necessary for
time and space study of the ocean. However, due to the very nature of the way data are
collected, all the information thus obtained is confined, to or in the immediate neigh-
borhood of, the surface. Nevertheless, all the physical processes in the ocean are con-
trolled mainly by both surface and subsurface parameters; they act and interact among them-
selves and produce the phenomena we actually observe in time and space. Remote sensing
techniques are very effective for those phenomena controlled by surface parameters which

account for most of the crucial problems in physical oceanography.
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INTRODUCTION

Oceanography is an old science. Until recently, the methods of study were limited to the
standard shipbound tools. By comparing the area that can be covered by a ship in a reason-
able amount of time to the total ocean, it is obvious that trying to understand the whole
ocean by using the standard method is a big undertaking in both manpower and time. This
does not say that the traditional methods are useless, rather they are actually indispensa-
ble in some particular aspects of our understanding of the ocean. However, as far as the
global ocean model or large scale phenomenon is concerned, the traditional methods are not
effective enough to produce a synoptic view. This shortcoming can be compensated to a
large extent by the newly developed remote sensing techniques of which LIDAR is a part.

Remote sensing techniques are the only observation methods that are capable of fast scan-
ning over a large area. With this unique capability, they will become the most important
tools in large scale physical oceanographic research. However, due to the very nature of
the way data are collected, all the information thus obtained is confined to or in the
immediate neighborhood of the surface. But the ocean's enviromment is a complicate one;
all the physical processes in the ocean are contrclled mainly by both surface and subsur-
face parameters. These parameters act and interact and finally produce the phenomena we
actually observe. Remote sensing techniques are only effective for those phenomena con-
trolled by surface parameters - fortunately such phenomena include most, if not all, of
the crucial problems in physical oceanography.

What I am going to cover today does not aim at the present capabilities of LIDAR techniques.
Instead, I am going to point out several important physical parameters that are important
to the community of physical oceanographers. In this way I hope that I will have left
ample room for the experts in the fleld of LIDAR to decide for themselves what is best for
them to do at present and in the future.

PHYSICAL PARAMETERS

Since remote sensing techniques are capable of rapidly scanning large areas, they can be
used to obtain continuous data on a large scale., Such data are essential to the predic-
tive models for weather and sea state. Nevertheless, it is to our advantage to c?assify
the physical parameters into several groups.

Air-Sea Interactions:

Surface Temperature Field.-The earth is actually a big heat engine; the energy source. is
primarily the heat of the sun. The energy from the sun reaches the earth by radiation and
then it is transported by large scale convection motions (the oceanic and the atmospheric
circulations), evaporation and reflection. In order to improve our understanding of the
ocean, a global heat budget is indispensible. For this kind of large scale problem the
remote sensing technique is the only solution. In addition, a surface temperature reading
can help to delineate the boundary of large scale motions such as the Gulf Stream or river
effluents because water from different sources usually have different temperatures.

Ocean Surface Wind Fields.-Most currents and ocean waves are generated by ocean surtace wind.
Since wind itself is random in both direction and magnitude the presentation in the form

of wind spectrum will be desirable. Presently, the measurement of wind in the field has
been standardized to be located at 10 meters above the sea surface and the data are further
reduced to wind stresses through some empirical formula. The percentage of white cap area
of the ocean surface has been proposed as a way to measure wind magnitude by virtue of re-
mote sensing techniques. It is also possible to get wind field information from the statis-
tical measures of the wave field, but since the basic problem of wind-wave relation is still
undetermined, the result will be empirical and crude at best.
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Sea State.-SinCe most ocean waves are generated by wind, the sea state is closely related
to weather conditions. Unfortunately, a definite knowledge of the relationship between a
given wind and the resulting sea state is still wanting, and the progress is hampered both
by difficulties in theoretical analysis and the lack of reliable field data.

Available data collected by traditional methods up to now are limited to shallow water or
calm sea cases. But the central problem here is how to relate sea state with severe wea-
ther conditions in the open ocean; it will supply a boundary condition to the problem of
predicting storm surge at a given coastal area. Since the sea surface is always random,
the meaningful specification of the sea state is always the various statistical measures.

Empirically, there are data showing that: the mean energy density of the waves is propor-
tional to wind speed squared; the mean surface slope of the surface is proportional to the
local wind speed under low wind condition; the skewness of the probability distribution of
the surface slope is also related to wind field. Theoretically, we can show that: for a
given wind condition, the sea state will change if there are local current changes; the
sea state will change if the depth hecomes shallow and changes appreciably.

Sea state date cuntains a lot of information, but in order to interpret them correctly,
data are required to be as detailed as possible.

Radiation Input.-This parameter indicates the energy received from the sun. Due to dif-
ferent values of reflection and refraction at different location, this parameter, again,
is actively measured.

Density Distribution:

The density of sea water depends on the temperature and salinity of the sea water and also,
as a result of the slight compressibility of water, on the sea pressure. The horizontal
and vertical density distributions are as essential to the circulation field as temperature
fields are to the circulation field.

The Mean Sea Level:

The mean sea level is controlled by many parameters; the principal ones are gravity anomalies
surface pressure changes, density structure of the water column, surface wind field, cur-
rent, and astronomical forces. A single reading of sea level can hardly mean anything.
However, since most of the parameters are acting on different time scales, a proper aver-
aging can lead to meaningful interpretations. If we average our data over a long time, we
can filter out the influences of the transient events except the quasi-permanent features
along the major ocean current systems. Thus, we get a reference state. In most cases,
currents and the ocean density structure can be related by the geostrophic assumption,
This, of course, requires in situ measurement to determine it uniquely. But if we further
assume barostropic motion, then the current can be related directly to the mean sea level
slope. Once the reference state is established, the instantaneous reading can be used to
deduce tidal waves and other transient phenomena as tsunami, storm surges, etc.

Tides:

Tides on the earth are caused by the gravitation attraction between the sun and the earth
and the moon and the earth. The effects of tides are important for the coastal and estu-
ry regions.

Currents:
Currents in the ocean are generated primarily by wind stress, temperature and density dif-

ferences and pressure gradient. The motions are modified by the rotation of the earth,
friction forces and astronomical forces. The heat transported by the currents has a tre-
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mendous effect on our global weather. The nutrients carried by the currents have sustained
the biological life in the ocean. All of these and the problems of pollution and naviga-
tion require us to study the currents intensively. NASA Wallops has pursued continuously
the recognition of currents using remote sensing devices. At a region of high velocity
gradient, such as at the boundary of the Gulf Stream, the depth of the water is still

large and the ratio of wind speed to phase speed of the wave will not change appreciably
over the length scale, then the current can be detemmined by the changes in wave character-
istics.

Sea-Earth Interactions:

Storm Surges.-The piling up of water against coasts under the action of wind becomes very

Jangerous if wind is in the magnitude of hurricane. The change in sea level and such par-
ameters as air pressure distribution, wind speed, fetch, duration of wind action and bot-

tom topography are all involved.

Wave Refraction.-Wave refraction is caused by the change in bottom topography as wave pro-
Pagates into the coast. Wave refraction can cause the change in shore lines by eroding the
beach away and depositing the material somewhere else.

Shallow Water Charting and Topography.-It has been proposed that, from long waves observa-
Tion, we can deduce some information on bottom topography; since the waves propagate from
the open ocean to the coastal region, the sea state will be controlled by the parameter
which is the result of the multiplication of wave number and water depth.

Sediment Transport.-The wave and longshore current can erode and deposit materials along
The Coastiine. This problem becomes acute at the inlets.

Eddy Diffusion Coefficients, Eddy Heat Conductivity Coefficient and Eddy Viscosity Coeffi-
cient:

These are the exchange coefficients for salt content or any other property, for heat and
momentum, respectively. They are, generally, functions of space and time, and they depend
on the scale of the turbulent eddy motion.

CONCLUSION

The ocean is a large complicated environment controlled mostly by surface parameters; there-
fore, it is well suited to remote sensing observation. Only by remote sensing can we get
global information without worrying about time scale. Only by these techniques can we es-
fablish a global reference without going through the painful pace of in situ measurements.
By careful processing and interpretation of the data, and coupled with well planned in

situ checks, remote sensing techniques will become the single most important tool in phy-
sical oceanography.
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EXPERIMENTAL RESULTS OF A CONTINUOUS WAVE LASER RADAR SYSTEM

Kermeth J. Petri and Robert F. Starry
Department of the Navy
Naval Air Development Center

ABSTRACT

A 1.06 micron CW laser radar system was used to establish the feasibility of remotely
measuring sea surface wind magnitude and direction. Experiments were conducted from the
NRL (Naval Research Laboratory) Chesapeake Bay Bridge Facility, Annapolis, Maryland. Simul-
taneous correlation of the collected laser data with the enviromment was established using
meteorological instruments. The experimental system and methods of analysis are summarized.
Results of the experiments including wind magnitude and direction correlation are reported.

Results are compared with theoretical predictions.
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- INTRODUCTION

Various controlled envirommental studiesl,2 and theoretical research3:% have suggested that
ocean surface wind magnitude and direction could Le remotely measured from an airborne
platform by utilizing a laser radar system. These studies and the present cumbersome meth-
ods of measuring winds at sea served to initiate the first real enviromment feasibility
experiments. The experiments were conducted by the Naval Air Development Center* from the
NRL Chesapeake Bay Bridge Facility. This paper describes the equipment used, the tests
conducted, the results obtained, and compares the results with theoretical predictions.

MEASUREMENT CONCEPT

The establishment of the feasibility of remotely measuring sea surface wind velocity re-
quired the line scanning of an area of the water surface with a continuous wave laser and
optical receiver. The reflected intensity was recorded as a function of angle of obser-
vation with respect to the normal to the water surface. The process was repeated for 18
equally spaced azimuth positions, creating a three-dimensional model of the reflected in-
tensity pattern. The shape of the recorded intensity pattern had characteristic features
for various imposed wind fields. By processing and examining these patterns, inference
to the wind magnitude and direction were made by comparison with ground truth.

BQUIPMENT DESCRIPTION

The experimental system used was a continuous wave laser radar (Figure 1). The transmitter
'was a cw Neodymium-YAG laser operating at 1.06 microns. The output radiation was modulated
by an electro-optic modulator at a frequency of 45 kKHz. A dichroic beam splitter directed
1% of the exit energy through a fiber optic bundle which directed the energy to a photo-
diode detector. The output of the photodiode provided continuous power measurements avail-
able for real time display and magnetic tape recording. The main laser beam was directed
onto an octagonal scanning mirror, which served to vertically scan the laser beam #37.5°.
The return energy from the water surface was collected via the same octagonal scanning
mirror. Two surfaces of the octagon were used when receiving. The return energy was then
directed by fixed mirrors to a cassegrain optical receiver which focused the energy on a
photodiode detector. Field of view was selectable and neutral density filters could be
inserted in the return beam path. Major transmitter/receiver parameters are listed in TA-
BLE 1. The output of the photodiode detector was passed through a tuned preamplifier

(45 kHz). This allowed the receiver to discriminate against background noise. The re-
turn signal and monitor signal were both rectified by ideal rectifiers before being re-
corded on an Ampex (FR-1300) 14-channel instrumentation recorder. The resolution bandwidth
of the system was limited by the recorder to 2.5 kHz at a tape speed of 7.5 ips.

Laboratory equipment used to prepare data for processing by the Naval Air Development. Cen-
ter CDC 6600 computer facility included a Varian 620/1 minicomputer/analog-to-digital con-
verter and a PEC 6860 digital tape recorder. The Varian 620/i was used to convert the
return signal and other parameters to a digital format compatible with the CDC 6600. The
PEC 6860 was used to record the digital information on magnetic tape.

#*This work is sponsored by the Naval Air Systems Command, Mr. M. Schefer, Code 370C.
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Figure 1. Block diagram of experimental laser remote wind measuring system

TABLE 1.-TRANSMITTER AND RECEIVER PARAMETERS

Transmitter

Laser Type:
Wavelength:
Modulation:
Modulated Output Power:
Output Beam Divergence:

Spot Size at 18,3 meters
(60 ft,):

Laser Scan Angle:
Scanner Speed;

Receiver

Collector:

Clear Aperture
Effective Focal Length:
Detector:

Field of View;

Neutral Density Filters:
Sensitivity:

Receiver Scan Angle:

CW ND;YAG

1.06 micron

Sine wave (45 KHz)
0.2to 1 watt

9 milliradtans

15.2 cm (6 in.)
+37.5°
8, 16, 32, 64, or 128 scans/sec

Reflective Cassegrain
30.5 8q. cm (12 in.)
50.8 cm (20 in.)

Pin 10 ailicon photodiode
4-24 milliradians
Selectable 0, 1, 2 and 3
10-9 watts

+37.59
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EXPERIMENTAL TEST FACILITY

The NRL Chesapeake Bay Bridge Facility was selected as a test site because of its suita-
bility as a water enviromment test platfomm. It is physically a 15 x 3.7 meter (50 x 12
foot) gondola (Figure 2) located 18.3 meters (60 feet) above the water underneath the east-
ern end of the William Preston Lane, Jr. Memorial Bridge near Annapolis, Maryland. The wa-
ter area directly under the gondola is clear of obstructions (necessary for scanning the
laser beam +37.5° from the normal to the water surface), and is 1.6-.8 km (1-1/2 miles)
from the nearest shoreline.

EXPERIMENTAL TEST PROCEDURE

In a normal data run, an area of water surface was line scanned, +37.5° with respect to the
normal to the water surface, with the cw laser and optical receiver at a preset system
azimuth position. After a selected mumber of scans, the system azimuth position was auto-
matically moved 10°. Once locked in position, the data were collected during the identi-
cal number of selected scans before moving another 10° in azimuth position. The process
was repeated for a total of 18 azimuth positions. Thus, a full 360° was covered (Figure 3).
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Q——{:—- Laser/Receiver Point of Origin

37-1/2° 37-1/2° Vertical Scan Angle

""710° Azimuth Rotation

Figure 3. Laser system scanning geometry

The collected data recorded on the Ampex instrumentation recorder included the return sig-
nal power, laser monitor power, necessary synchronizing pulses from thg optical scanner
and the azimuth positioner, voice comments, and various system check signals.

Additional data recorded on data sheets included the date of recording, assigned data run
number, time of day, initial system orientation with respect to true north, receiver field
of view, system gain, number of scans per azimuth position, laser/receiver scanning rate,
neutral density filters used and general envirommental conditions (including photographs).

SUPPORT DATA

To provide simultaneous correlation of the experimental system data with actual environ-
mental conditions, ground truth support data was collected and submittedS to the Naval
Air Development Center by C.W. Thornthwaite Associates, Laboratory of Climatology. The
measurements included vertical profiles of mean wind speed at 2.1, 4.3, 8.5, and 12.8
meters (7, 14, 28, and 42-foot) elevations; air temperature at a 4.3 meter (14-foot) ele-
vation; wind direction at a 4.3 meter (14-foot) elevation; water temperature at .464 m

below mean sea level; and air temperature difference between the 2.1 and 8.5 meter (7 and
28-foot) levels (Figure 4).

DATA PROCESSING

Processing was accomplished on the CDC 6600. For each laser/receiver scan (137.50) , 356
evenly spaced samples of return power were taken. Approximately 486 scans were processed
for each azimuth position. An average value of return power was then calculated for each
azimuth position at each of the 356 sample points. Using a Calcom plotter, the averaged
return power was plotted as a function of laser/receiver scan angle for each azimuth po-
sition. Both the individual data points and the plotted curves were then compared with
the collected support data for individual azimuth positions. Most of the wind magnitude
support data collected, however, were the average wind magnitude for an entire run of all
azimuth positions. Therefore, the average return power for all azimuth positions at each

of the 356 sample points was also calculated and plotted as a function of laser/receiver
scan angle. :
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EXPERIMENTAL RESULTS

The experimental equipment, installed in the NRL Bridge Facility on 30 May 1972 yielded ex-
perimental data on nine days over the period 31 May through 5 October 1972. The most defini-
tive results were obtained in relating wind magnitude to averaged return power at normal in-
cidence. Over the range of surface wind speeds from 3 to 17 mph, the averaged return power
{(normal incidence) decreased with increasing wind speed (TABLE 2). The averaged power return
at 3 mph was six times as great as that at 17 mph. TABLE 2 indicates the average return po-
wer can be used to predict the actuai wind magnitude to within +1 mph. The same results are
repeated in Figure 5, which plots the averaged return power over the entire +37.5° scan for
all azimuth p051t10ns In addition, it can be observed that averaged return power falls off
sharply from normal incidence at the lowest wind magnitude. The results presented in TABLE 2
and Figure 5 are normalized and represent the average of 486 scans per azimuth position for
all 18 azimuth positions. Corresponding wind speeds and air/water temperature differences
were averaged at l-minute intervals over the same time interval. Reducing the averaging time
by a factor of 18 also gives reliable results (TABLE 3). TABLE 3 represents the averaged re-
turn power (normal incidence) collected in just one azimuth position (28 seconds). The cor-
responding wind speed represents a l-minute average. Limited fetch was encountered on many
data runs but did not appear to have any effect. Results of this nature support the sugges-
tions of Pierson and Stacy® that high frequency waves (i.e., capillaries) are the indicators
of the local wind velocity because they are independent of fetch (greater than five meters)
and are almost in instantaneous equilibrium with the wind.

TABLE 2.-COMPARISON OF NORMALIZED AVERAGED RETURN SIGNAL
(ALL 18 AZIMUTH POSITIONS) AT NORMAL INCIDENCE WITH SITPPORT DATA

Date Run No. Wind Speed T -T (Deg) Relative Averaged
(mph) Air  Water Return Power
27 Jun, 1 3 (Estimated) - 700
28 Jun, 5 6.4 4.6 490
28 Jun, 1 7.4 7.2 480
29 Jun. 3 8.8 3.7 325
4 Oct. 1 9.6 1.3 282
29 Jun. 2 9.6 3.8 320
4 Oct. 2 10.3 0.4 274
29 Jun. 1 10.4 3.5 275
4 Oct. 5 10.8 -1.5 244
29 Jun, 4 10.8 3.7 245
5 Oct. 3 13.7 0}3 162
5 Oct. 1 15.0 0.7 134
5 Oct. 2 16.9 0.9 116
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TABLE 3.-COMPARISON OF NORMALIZED AVERAGED RETURN SIGNAL
(ONE AZIMUTH POSITION) AT INCIDENCE WITH SUPPORT DATA

Date Run No. Wind Speed Relative Averaged*
4 Oct. 5 7.7 429
4 Oct. 2 10,0 378
5 Oct. 3 12.9 301
5 Oct. 2 16.7 215
5 Oct. 1 16.8 179

¥ AI1 data collected with a scanner speed of 16 scans/sec and a field view of 24 milliradians.

NOTE: Each normalize. curve
0.7 I represents the average of all
18 azimuth positions 27 Jun - 3 mph (estimated)

[ *Exceptions (5 minute averages

in one azimuth position)
0.6 A1l data was collected with a
. scanner speed of 16 scans/sec
and a field of view of 24
L milliradians
005 -
§ 28 Jun - 7.4 mph
-9 b
£
=
B 04}
H
-3 *29 Jun - 9.6 mph
0.3 -
: 03 4 Oct - 9.6 mph
5 *29 Jun - 10.4 mph
-

[ / \ 29 Jun - 10.8 mph

§ Oct - 13.7 mph

— 27 \\

_— - l 1 1 i 1 ~
-24.00 -16,00 -8.00 0.0 +8.00 +16.00 +24.00

Degrees from the vertical (0°)

Figure 5. Normalized average return signal vs.
laser/receiver scan angle

58



In addition to magnitude, it seems clear that wind direction can be inferred by examining
the averaged return power versus scan angle curves for the various azimuth positions. Fig-
ures 6a, 6b, 7, and 8 are presented as examples. The averaged curves shown represent a to-
tal collection time of 28 seconds. The wind direction support data used for comparison were
simply the averaged wind direction at a height of 4.3 meters (14 feet) above mean sea level
for all azimuth positions. Thus, the average wind direction for the entire run, for any
given azimuth position, would therefore not be correlatable. In general, it was noted that
the width of the crosswind curve was the narrowest while that of the upwind/downwind curve
was the widest. On a few occasions due to apparent wind direction changes, the averaging
time interval (28 seconds) was too short to establish the phenomenon. Special arrangements
that were made on 29 June 1972 allowed the laser system to stay in the crosswind and up-
wind/downwind azimuth positions for a period of 5 minutes in each position immediately
after a normal azimuth sequence. The wind direction support data was also measured for

5 minutes. Figure 9 shows the normal azimuth sequence (28 seconds average time per azimuth
position) where it is difficult to establish the phenomenon, and Figure 10 shows the
special 5-minute average run where the phenomenon is clearly visible. It seems reasonable
to state, from this kind of data, that high accuracies in determining upwind/downwind di-
rection will require a greater time to acquire sufficient samples of laser return power.

Downwind Upwind

8
2

§ October 1972
Start Time: 12 AN,

Run 1

Mind Speed: 15 wph

Collection Time: 28 sec/curve
Scan Rate: 16 scans/sec

.

~n

-3
L)

Wind Direction

L Intermpdfate

-

p

o
T

Crosswind

Relative Avgraged Retury, Fouer

1 1 1 1 1 1 1
-24.00 -16,00 -8.00 0.0 +8.00 +16,00 +24,00

Degraes form the vertical (0°)

Figure 6a. Averaged return signal vs. laser/receiver scan angle for
three individual azimuth positions at 12 a.m. on 5 Oct. 1972
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Upwind
§ October 1972
Start Time: 1:30 PN,

Run 2

Wind Speed: 16.7 mph
Collection Time: 28 sec/curve
Scan Rate: 16 scans/sec

Wind Direction

Intermed{ate

Crosswind

Ralative Averaged Return Power
=]
‘ S
T T

1

T

i 1 1 i
-16.00 -8,00 0.0 +8,00
Degress from the vertical {0°)

Figure 6b. Averaged return signal vs. laser/receiver scan angle for
three individual azimuth positions at 12 a.m. on 5 Oct. 1972
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Downwind Upwind

5 October 1972

Run 3

Start Time: 4 P,M,

Wind Speed: 13.7 mph
Collection Time: 20 sec/curve
Scan Rate: 16 scans/sec

Wind Direction
Intermediate
Crosswind

i i l | ] ]
-24.00 -16.00 -8.00 0.0 +8.00 +16.00

+24.00
Degrees from the vertical (0°)

Figure 7. Averaged return signal vs. laser/receiver scan angle for
three individual azimuth positions at 4 p.m, on § Oct. 1972

Downwind Upwind
3 August 1972
Run 1
Start Time: 3 P.M,
Wind Speed: ~8 mph
Lollection Time: 28 sec/curve
- Scan Rate: 16 scans/sec
Wind Direction
Intermediate
u Crosswind
-24,00 -16.00 -8.00 0.0 +8.00 +16.00 +24.00

Degrees from the vertical (0°)

Figure 8. Averaged return signal vs. laser/receiver scan angle for
three individual azimuth positions at 3 p.m. on 3 Aug. 1972
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29 Jun 1972

Run 1

Start Time: 11:45 A.M.

Wind Speed: 10.4 mph
Collection Time: 28 sec/curve
Scan Rate: 16 scans/sec

Upwind Downwind

Wind Direction

Wind Direction Intermediate

- Crosswind
Intermediate

Crosswind

-24,00 -16.00 -8.00 0.0 +8.00 +16.00 +24,00

Degrees from the vertical (0°)

Figure 9. Averaged return signal vs. laser/receiver scan angle for
three individual azimuth positions at 11:45 a.m. on 29 Jun. 1972
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Figure 10. Averaged return signal vs. laser/receiver scan angle for
two individual azimuth positions at 12:10 and 12:20 p.m. on 29 Jun, 1972
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On 3 August 1972, with relatively constant winds, the curve width relationship between
crosswind and upwind/downwind azimuth positions existed for the normal run (28 seconds/
curve). In addition, by filtering and smoothing the actual data, it was revealed that
additional information existed on the downwind side of the curve. The averaged return power
over the scan angle of approximately 4-8° increased in value, in perfect order, as the *
azimuth position was rotated from the crosswind position to the wind direction position.
The same effect was not nearly as well defined, for the same sampling interval, on the up-
wind side of the curve. Figure 11 shows the effect on the downwind side of the curve. On
some other days (more variable wind conditions), the effect was still detectable but not
as obviously as the case presented. Once the upwind/downwind azimuth position is located
via the curve width phenomenon, this effect can be used to determine wind direction. Ob-
servation of the slope of the curve from its peak to approximately 8° on both the upwind
and downwind side revealed a sharper. slope always existed on the downward side. Figures
7, 8, 9, 10, and 11 all indicate this result. Thus another way of establishing the wind
direction exists.

Considering all the results presented, it is estimated that wind direction should be meas-
urable within +10°.

Downwind o ————mmmeer

0.9 =

3 August 1972
B Run

Start Time: 3:20 P.M,
Nind : 3 wph

0.80 - Collection Time: 28 sec/curve
Scan Rate: 16 scans/sec

0.70 -

0,60 -

e
&
T

Azimuth Position

0° - Wind Direction
30° - Intermediate
40° - Intermediate
60° - Intermediste
70° - Intermadiste
90° - Crosswind

Relative Averaged Raturn Power
-4
-~
(-3

0,30

0.20

0,10

L L 1 | -

Figure 11. Filtered averaged return power vs. laser/receiver scan angle
for six individual azimuth positions at 3:20 p.m. on 3 Aug. 1972
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THEORETICAL PREDICTION COMPARISON

The Poseidon Scientific Corporation under contract to the Naval Air Development Center per-
formed a literature search’/ to determine what existing theories were available that could
be used as wind predictors. Two theories, limited by the basic assumption that the sea
surface is a linear,_stationary, Gaussian process, were extracted and modified; (1) Jack-
son* and (2) Swennend.

The Jackson theory was limited to upwind/downwind traverses but could be and was modified
to all azimuth positions. The modification of Jackson's theory required the expansion of
his geometric optics term. The mathematical assumptions used were (1) the co-variance func-
tion of the surface can be represented by a Taylor series truncated at second degree; (2)
the surface is a stationary Gaussian random process of zero mean; and (3) the horizontal
illumination area is large compared to thg roughness scale of the surface. The incorpora-
tion of the spectrum of Pierson and Stacy? into the Jackson theory yielded the NILCS (Norm-
alized Isotropic Laser Cross Section) 0110, which could be evaluated as a function of scan
angle for all azimuth positions. The NILCS varies linearly with received laser power and
can be considered equivalent to it in this paper. In addition, the slope statistics of

Cox and Munk8 were used as empirical inputs into the modified Jackson theory. This allowed
the prediction of the NILCS 0220, which could be evaluated at a function of scan angle for
the upwind/downwind azimuth position only.

The modified Swennen theory, limited to predicted power return at vertical incidence, was
not used because of geometric incompatibility with the experimental system,

A range of real envirorment wind magnitudes and their corresponding air/sea temperature
difference were used as inputs to the Jackson predictors. o;,0 and o 0 were then calcu-
lated using the CDC 6600 computer. ¢ 10 is plotted in Figuré 12 as a function of scan an-
gle for the crosswind, upwind/downwind direction, and two intermediate azimuth positions.
The results indicate clear general agreement with actual collected data. The magnitude of
the curves reduce with increasing wind speeds and the width of the curves increase as the
azimuth position is varied from crosswind to upwind/downwind direction. A relative com-
parison of theoretical predictions (o) 0) with experimental average laser received power
data for the highest wind speed encounters is plotted in Figure 13. Correlation is good
over the scan angle range 0 to #12°. A considerably larger spread between azimuth posi-
tions than was experimentally observed is predicted at scan angles >10°. A relative com-
parison of o110 and o,,0 with the actual laser power received at normal incidence to the
sea surface 15 listed in Table 4. Better correlation was obtainSd between the experiment-
al data 0220 than 091", Over the wind speed range used, cj;- increased by a factor of
2,16, 037" by a factor o% 2,58, and the experimental data by a %actor of 4.14,

TABLE 4.-COMPARISON OF THEORETICAL RETURN SIGNALS VS, EXPERIMENTAL
RETURN AT NORMAL INCIDENCE TO THE SEA SURFACE _

Wind 0 0 Avg. laser Scan T -T

Date Run Speed °11 922 Power Reed Angle  Air  Water

, . {deg)

5 Oct 2 16.9 .106 211 .166 0 .9
5 Oct 3 13.7 .195 254 .162 0 .3
4 Oct 4 10.5 .169 .310 244 0 -.9
4 Oct 2 10.3 .160 334 274 0 .4
29 Jun 3 8.8 134 .414 .325 0 3.7
28 Jun 1 7.4 .229 .545 .480 0 7.2

0110 - NILCS (Using theoretical statistics of Pierson and Stacy)

auO - NILCS (Using empirical statistics of Cox and Munk)
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Figure 12. Predicted normalized isotropic cross section (0110)
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CONCLUSIONS

The completed experimental and analytical efforts described have established the feasibility
of remotely measuring wind magnitude and directior in a real enviromment.

For the surface wind conditions encountered during these tests, 3-17 mph, the wind magnitude
was measured to within +1 mph accuracy. In addition, the experimental results predict that
+10° accuracies in wind direction can be obtained.

The experimental results obtained support the suggestion of Pierson and Stacy6 that high
frequency waves are the indicators of the local wind velocity because they are independent
of each fetch and are almost in instantaneous equilibrium with the wind.

A comparison of experimental data with two wind predictors developed from theoretical work
by Jackson® shows very good correlation considering the theory assumes that the sea surface
is a linear, stationary Gaussian process.
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AN OPTICAL RADAR FOR AIRBORNE USE OVER NATURAL WATERS*

C. A. Levis, W. G. Swarner, C. Prettyman**, and G. W, Reinhardt***
The Ohio State University-Electro Science Laboratory

ABSTRACT
An optical radar for detecting targets in natural waters was built and tested in the Gulf
of Mexico. The transmitter consists of a Q-switched neodymium-glass laser, with output am-
plified and doubled in KDP to 0.53 micrometer wavelength. The receiver incorporates a noval
‘optical spatial filter to reduce the dynamic range required of the photodetector to a rea-

sonable value.

Detection of targets to a depth of 26 meters (84 feet) was achieved with a considerable
sensitivity margin. The sensitivity of the radar is highly dependent on the optical atten-
uation coefficient. In general, measured returns fell between the values predicted on the

basis of monopath and multipath attenuation,

By means of simple physical arguments, a radar equation for the system was derived. To
validate this theoretical model, measurements of optical attenuation and of water surface

behavior were also instrumented, and some of these results are given,

Volumetric backscatter was measurable over the entire depth range; such radars should there-
fore be useful for monitoring natural water quality. Airborne bottom-profiling is another

application.

*This work was supported by the Air Force Avionics Laboratory, Wright-Patterson Air Force
Base, Ohio under Contracts AF 33(657)-11198 and AF 33(615)-3667.

**Now with the Firestone Tire and Rubber Company, Akron, Ohio.

***Now with Air Force Avionics Laboratory,Wright-Patterson Air Force Base, Ohio.
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INTRODUCTION

Water is highly absorbent of electromagnetic energy except at very-low-frequency (VLF) and
in the blue-green region of the optical spectrum. VLF has found commmications uses, but
the large wavelength does not allow the resolution needed for a radar. Optical wavelengths
do not have this limitation, and the advent of lasers has made the use of radars below the
ocean surface quite practicable. This paper discusses experiments designed to demonstrate
this feasibility in the field. A system model was developed, verified with the field meas-
urements, and used to show under what conditions such a system can operate, by calculating
the maximm range for various water conditions. Certain water parameters, especially ex-
tinction coefficient and surface slope distribution, were also measured in order to esti-
mate their effect on radar performance.

SYSTEM MODEL

A model of the radar system is shown pictorially in Figure 1, and a system equation derived
from this picture is given in Equation (1), which can best be understood by reference to
the figure and noting the processes by which the transmitted power P, causes a power P_ to
be detected in the receiver. T

p = -t1 2 p ()

Figure 1. Airborne subsurface radar.
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The laser beam first must be transmitted through the surface, The transmission coefficient
represents the fraction of the incident energy which is transmitted in the direction of
the target. The energy is attenuated on its way to the target; this attenuation follows a
well-known exponential law (ref. 1) with extinction coefficient « . We assume the trans-
mitted beam to be sufficiently narrow so that the target intercept§ essentially all the
energy transmitted to its depth, and that it scatters this energy back toward the receiver
with the same intensity as an isotropic upward scatterer of reflectivity o . The energy
now again is attenuated on its way toward the surface, resulting in another exponential;
the reason for using a different coefficient a, is discussed below. At the surface another
transmission coefficient T, is used to account®for loss of energy due to reflection and a
change in power density due to change in beam direction. Above the surface, the beam ap-
pears to come from an apparent source at 0' (Figure 2) instead of the target at 0. By
geometry the distance 0'P is given by

0'P = R, sine,/sine,, (2)
and Snell's law gives
0'P = Rwyh, where n is the index of refraction. (3)

The power density in the air is therefore given in terms of an apparent source of strength
S' at 0* as
P = ___"_§L___7Z
R 4

W
21rRa+n—

The apparent source strength S' can be evaluated from the fact that at the surface, R =0,
it must produce the same intensity as the true target-scattered return,

-a,R -a,R
1w 2w

, (ijz ) 2 &f (%)
m n—— .

Solving for S', substituting in Equation (4), and multiplying by the receiving aperture
A, yields Equation (1).

Several approximations were made in deriving this model., First, the extinction coefficient
was assumed constant along the downward and upward paths. In practlce, optical opacity
varies as a function of depth; depending on locality, the variations can be very significant
and quite complex. The extinction coefficient also is a function of the beam collimation,
which changes along the path due to scattering by particles as the beam progresses. Thus,

to be precise, the exponentials should be replaced with attenuation functions Aj, A; of the
form

R

A, =exp |- J a; (4) d2 | » €6)
0

where the o, are functions of the water at the location specified by & and also of the beam
collimation'at that point of the path. Since this collimation is not easy to predict or
measure and complete profiles of water properties are seldom available, calculations were
based on the simplified model of Equation (1).
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Figure 2. Upward path geometry.

The collimation enters into the extinction because it determines what portion of the energy
scattered from the beam is permanently lost. On one extreme, one may have a very tightly
collimated beam pointed toward a detector with very small acceptance angle. In this case,
essentially all energy scattered from the beam is lost and the resulting attenuation is
relatively high--this is termed monopath attenuation. On the other extreme, we may have

a plane wave directed toward a detector with hemispherical acceptance. In this case, all
forward-scattered energy is still available--this is termed multipath attenuation. A re-
lation between the extinction coefficient for these two cases has been derived by Battelle,
Gillette and Honey (ref. 2) for typical ocean waters. Two parameters, oj and ap, are re-
tained in Equation (1) in order to allow use of monopath on the downward path and the mul-
tipath coefficient on the upward path.

The transmission coefficients Ty and T, must take into account the roughness of the sea
surface. Depending on the diameter of“the beam at the surface, an integration over a few
or many facets may be needed. This is the reason for two coefficients since the beam di-
ameter is much larger on the upward than on the downward path. Calculations pertaining to
the time-averaged transmission on the downward path were performed by Swemnen as part of
this project (ref. 3), and those for the upward path by Upp (ref. 4), both based on the
sea-slope probability data of Cox and Munk (ref. 5). The effect of surface roughness is
to lower the transmission by a few decibels in the direction in which it is maximum (the
angle corresponding to Snell's law) and to allow transmission for a narrow range of angles
about this maximum. A rough sea would thus be expected to give some reduction in range
and loss of angular resolution.

The maximum range predicted on the basis of Equation (1) for various transmitted power

levels and extinction coefficients are given for black and white targets in Figures 3a and
3b. respectively. The values of attenuation length (reciprocal of extinction coefficient)
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given in these figures corresponds to the monopath value. The dashed curves use these
monopath values directly on both down and upward paths. The solid curves use the monopath
value for downward and multipath for upward, the latter value being obtained from the
monopath coefficient by the curve of Battelle et al (ref. 2). Vertical incidence and
smooth seas are assumed in these calculations.
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Figure 3a. Predicted maximum range - black target.
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"THE RADAR

A glock diagram of the optical radar is shown in Figure 4. The transmitter consists of a
Nd f laser oscillator and amplifier, frequency-doubled to the desired wavelength. The
oscillator is a rotating-prism, Q-switched laser which uses a .95 am (3/8-inch) diameter
15.2 cm (6-inch) long glass laser rod with a 2% doping of Nd3+, three linear flash lamps,
and a cyllndrical cavity. The oscillator output drives a laser amplifier which uses a ’
1.%7 cm (1/2-inch) diameter, 30.5 cm (12-inch) long glass laser rod with a 3% doping of
Nd>*, one linear flash lamp and cylindrical cavity. The second harmonic of the infrared
laser amplifier output is generated by means of a phase-matched KDP crystal, protected
from moisture in mineral oil, If a steep trailing edge on the outgoing radar pulse is re-
quired, a gas breakdown cell is added to the system. A photodetector and a photodiode are
used to trigger the oscilloscope and to provide a time and magnitude reference pulse for
the transmitted signal.

SIGHTING
SCOPE
CAMERA | DUAL BEAM : RIS
100 MHz PHOTO- NARROW|VARIABLE| |OIAPHRAGM | ooneven RECEIVED
0SC!LLOSCOPE MULTIPLIER | BAND | N.D. OR <<%__——
FILTER| FILTER SPATIAL | TELESCOPE SIGNAL
FILTER
RECEIVED
SIGNAL RECEIVER
TRANSMITTER REFERENCE PULSE
SWEEP TRIGGER
BI-PLANAR
INITIAL TRIGGER PHOTO- DIODE
' TRANSMITTER ]”
LASER CONTROL AND CuSO,
POWER SUPPLY FILTER
—-[ PHOTO DETECTOR cf
r -
GAS
o S VT VT S e R = S R
L CELL FILTER v
Q-SWITCH (OPTIONAL) \\\ SIGNAL

BEAM SPLITTERS

Figure 4. Optical radar block diagram

The receiver consists mainly of a receiving telescope and photomultiplier. An iris diaphragm
or spatial filter may be added at the focal plane of the objective lens. Variable neutral
density filters and a narrow-band filter centered on the wavelength of the transmitted radar
signal are incorporated in the receiver. A sighting scope is provided to facilitate aiming
the radar. The output of the photomultiplier is displayed on a dual-beam 100 Miz oscillo-
scope, which also displays the transmitter reference signal., Characteristics of the final
optical radar system are given in TABLE 1. A photograph of an earlier version, which did
not employ the laser amplifier, is shown in Figure 5. In this picture, the radar is equipped
with periscopes (shown with extension tubes removed) for transmitting the beam horizontally
for preliminary testing in a swimming pool. Dry-nitrogen pressurization prevents water
condensation on optical components. For field testing, the periscopes were removed and the
radar transmitter and receiver were mounted on an electrically-controlled gun mount which
provided a means for aiming the radar at any desired location.
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TABLE 1.-CHARACTERISTICS OF OPTICAL RADAR SYSTEM

Output wavelength
Peak pulse power

Pulse rate

Pulse width

Minimm detectable signal
Frequency response
Receiver aperture

Field of view

Range resolution

Narrow band filter
Center wavelength
Bandwidth (3 dB)
Transmission

530.8nm
variable over
30 kw to 2 mw
range

1 per min

25 ns

5x 108w
100 MHz

12.7 cm
variable 0.5°
to 4.5°

< 3 meters

530.8 nm
1.25 im
70%

SIGHTING

R

KDP
DOUBLER

-

W CAPACITOR I
BANK

Figure 5.
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The optional focal-plane spatial filter (ref. 6) effectively varies the system gain as a
function of the depth from which the signal is received. It takes advantage of the fact
that, for a rough sea, the signal from a deep target is capable of being refracted to the
receiver over a much larger surface area than the signal from a shallow target. By using a
focal-plane filter with low transmittance in the center, the returns from shallow targets are
deemphasized. Figure 6a shows the A-scope traces without the filter for a white target at
25.6 cm (84 feet). The sweep speed is 100 ns/division and the incidence angle was 18°. Note
that the system is saturated for shorter ranges. Figure 6b shows the trace for identical
condition, but with the filter in use and the receiver gain increased by approximately 3 dB;
there is no saturation at any range although the target return is the same as before.

mdsrhtdmnscm 1)

SEA SYRFACE REFLECTION AND TARGET RETUAN
ACKSCATTER l 7

™ IRANSMITTER REF RENGE PulsE

Figure 6a. A-scope presentation: white target at 26-meter depth,
incidence angle 18° from vertical - spatial filter not used.

[ 1\ AYoLVMETRIC BAGKSCATTER

awospupme | | [ |\

musﬁmb‘ ]\ e ] RETORN

J

Y

‘W‘ IEFET!ICE "lif

Figure 6b. A-scope presentation: white target at 26-meter depth,
incidence angle 18° from vertical - with spatial filter

Since the purpose of the experiment was only to determine feasibility and limitations, no
attempt was made to make the equipment flyable; all tests were conducted from fixed plaf-
forms above the water. Nor would the repetition rate have been adequate for a flying ra-
dar--almost one minute was required to charge the flash-tube capacitor bank. A system
based in part on our design, but capable of being flown and having the required higher re-
petition rate, has since been developed (ref. 7).
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PERFORMANCE TESTS

After preliminary horizontal radar ranging tests in a swimming pool and at Wakulla Springs,
Florida, the system was evaluated at the Stage I tower of the U.S. Navy Mine Defense Lab-
oratory . The tower is located in the Gulf of Mexico approximately 16 Km (10 miles) off-
shore, near Panama City, Florida. The water depth is approximately 32 meters (105 feet)
and the system was located 14 meters (55 feet) above the surface.

The targets were flat, square aluminum sheets, 158 square-decimeters in area, coated with
paints having reflectivities (measured submerged) ranging from approximately 1% to 96%.
The targets were attached, one at a time, to a positively buoyant frame which was lowered
by means of a winch along guide cables toward lead-weighted sea anchors. Radar ranging
was performed at depths of 0 to 25.6 meters (0 to 84 feet) at incidence angles from 5° to
60° with respect to the sea surface normal. For near-vertical incidence, all targets were
detected in each case. Ambient light presented no problem; even with the radar aimed di-
rectly into the specular reflection of the sun from the ocean surface on a slightly hazy
day, no deterioration of radar performance was evident. Figures 7 through 9 show the ra-
tios of received to transmitted power from a white, gray, and black target, respectively.
In Figure 7 the ranging is horizontal; in Figures 8 and 9, the beam has an incidence angle
of 5° from the vertical. The calculated curves (for monopath attenuation in both directions
monopath down and multipath up, and multipath in both directions) show that the very rough
approximation of constant extinction coefficient is useful for estimating approximate sig-
nal returns, but that the integrated form of the attenuation function is likely to be need-
ed for more precise estimates. The value of o used in these calculations was measured
(see next paragraph); the corresponding ap comes from Battelle, Gillette, and Honey (see
ref. 2); the values of T; and T, are calculated for a smooth surface. The scatter of ex-
perimental points for a given depth is due to surface roughness.
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Figure 7. Received-to-transmitted power ratio,
Wakulla Springs, white target.
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MEASUREMENTS OF EXTINCTION, SCATTERING, AND SURFACE STRUCTURE

In support of the systems measurements, extinction, scattering, and surface structure meas-
urements were also instrumented. Extinction measurements were made over the wavelength
range 400-700 nm by means of absorption cells taken to the site and filled with water from
the depth to be sampled, and also in the blue-green spectral region (538 nm with 60 rm band-
width at 10 dB) with an in-situ transmissometer which could be lowered to the desired depth.
Typical measurements at the Mine Defense Laboratory tower often show, as a function of time,
considerable correlation with tides, but also considerable randommess (Figure 10). As a
function of depth, extinction was relatively constant near the surface and generally in-
creased rather abruptly by a factor of two near the bottom (Figure 11).
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The extinction coefficient is the sum of an absorption coefficient and a scattering coeffi-
cient; only the latter has an effect on beam collimation. The scattering coefficient is
the integral with respect to scatter angle of the volume scattering function (ref. 8). In-
struments were built for measuring this function both by means of a laboratory cell filled
with sampled water and by means of an in-situ scatter meter utilizing a fixed argon laser
source and movable detector (Figure 12). Typical data are shown in Figure 13. Integration
of the volume scattering function showed that the scattering coefficient under relatively
clear conditions (a = 0.226 meters'l) at the Mine Defense Laboratory might contribute 1/4
to 1/3 of the total extinction, with absorption accounting for the rest.

In-situ scatter meter.

Figure 12.
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The calculations of upward and downward transmission through the sea surface mentioned
above were based on time-averaged sea-slope probabilities measured by Cox and Munk (ref, 5);
while useful for predicting average beam intensities, they do not allow calculation of the
expected temporal behavior of the beam. An experiment to explore this temporal behavior
was instrumented; since it is reported elsewhere (ref. 9), the results are not given here.
Unfortunately available time did not allow as much data to be taken or processed as would
be desirable for the prediction of such time-related radar parameters as optimm scan rate.

CONCLUSIONS

The detection of targets in coastal waters was demonstrated experimentally up to a depth
of 25.6 meters (84 feet), this limit corresponding to the depth at which targets could be
conveniently anchored, not the sensitivity limit of the system. The measurements have been
used to validate a theoretical model on the basis of which performance of the radar under
various water conditions can be estimated. Curves of expected maximum range are given as
function of water clarity and transmitter power. These ranges would be decreased somewhat
for rough surface conditions, but the principal effect of surface roughness is on angular
resolution, not range. A spatial optical filter can be used to vary the system gain as a
function of target depth, greatly reducing the dynamic range requirement of the receiver.
In moderately clear coastal water, volumetric backscatter returns were observed at all
depths; this suggests that such radars might be useful for estimating water quality and ob-
serving changes over a considerable range of depths synoptically from the air.
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RECENT ADVANCES IN THE APPLICATIONS
OF PULSED LASERS IN THE HYDROSPHERE

George D. Hickman
Sparcom, Inc.

ABSTRACT

Laboratory and field measurements have been performed on the transmission/scattering char-
acteristics of a pulsed neon laser as a function of water turbidity. These results have
been used to establish the criteria for an airborne laser bathymetry system. Extensive
measurements have been made of laser induced fluorescence using a pulsed tunable dye laser.
Feasibility has been demonstrated for remote detection and possible identification of var-
ious types of algae and oils. Similar measurements made on a wide variety of organic dyes
have shown this technique to have applications in remote measurements of subsurface currents,

temperature and salinity,
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LASER BATHYMETRY

During the past two years, Sparcom, Inc. has been investigating through a series of labor-
atory measurements the transmission of a blue-green laser as a function of water turbidi-
ty. The results of these measurements have been used to estimate the capability and 1imi-
tations of an airborne laser bathymetry system {ref. 3).

The laser used for these measurements was a pulsed neon gas laser at 540 nm. Tunability in
wavelength (400-700 nm) is obtained with this laser using nitrogen in the laser cavity to
pump various organic dyes. This tunability in wavelength was used in various laser in-
duced fluorescence measurements.

The short pulse width (3-10 nsec) of the laser combined with its high pulse repetition rate
(100-1000 pps), make this laser the best transmitter for a high resolution, shallow water
and reconnaissance system.

The strength of the signal received by an airborne laser/detector system depends on two
different categories of parameters:

a. Environmental parameters; such as depth of water (h), the attenuation (o) and
absorption (a) coefficients of the water, bottom reflectivity and the distri-
bution of power at the water/sediment interface.

b. Controllable parameters; such as aircraft altitude, input power of the laser,
field of view ot detector, etc.

The laboratory measurements were designed to determine the effect of each of the environ-
mental parameters on the detected laser signal. The results have been used to set the
criteria for the controllable parameters.
In the laboratory, the turbidity of the water was changed in small increments by addition
of various marine sediments to the water in Sparcom's enviromnmental water tank facility.
These sediments were collected from selected shallow water sites along the east coast of
the United States. (omparison was made between these simulated waters and actual water
samples which were obtained at each site.
The following measurements were made for all samples:

a. attenuation coefficient and sediment loading for each wa*ter sample,

b. attenuation and absorption coefficients and sediment loading for simulated
turbid water,

c. sediment reflectivity, and
d. beam spreading in the water at a given distance (h) as a function of turbidity.
In addition to the natural sediment measurements, quartz (Si0,) and marl Cal3) were also

used to change the turbidity conditions in the tank.

Optical Properties of Turbid Waters

The measured quantity describing the optical properties of light transmission in turbid wa-
ter is the normalized integrated power distribution N _(h,@). This distribution ex-
presses the total power which is contained in a cone gﬁgle (half angle(®) at a distance h
in water as shown in Figure 1.
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LASER BEAM

BOTTOM

Figure 1. Schematic diagram showing the geometry used for
obtaining the integrated power distribution.

To construct the integrated power distributions, one of the bottom sediments was mixed in

~the environmental simulation tank. The amount of sediment was adjusted iT each case to
generate turbidities corresponding to a values in the range 0.07 - 2.0 m_ ~ in steps, Aa, of
approximately 0.5 m"l., For each turbidity, the angular power distribution was measured for
water paths of 4, 6 and 8 meters by scanning the laser beam (from 0-200 mrad) past an under-
water photomultiplier tube (PMI). The PMI was aligned with the original direction of the
incident beam (zero angle). The resulting angular power distribution was plotted as a func-
tion of the spherical polar angle (6). The integrated power distribution was derived by num-
erically integrating the angular power distribution over the appropriate solid angle. For
each distance, the integrated power distribution was normalized to the total power avail-
able at that distance in clear water.

The data for the integrated power distributions [Nya(h,0)] (refs. 1 § 2) at various dis-
tances, for each sediment, have been used to construct composite distribution curves as a
function of attenuation length (ah). Figure 2 is a typical curve that was constructed for
quartz. Curves similar to those shown in Figure 2 have been obtained for the various simu-
lated waters. The distribution curves generated in this way have been used to analyze the
optical properties of turbid water and to predict the limitations of an airborne laser
bathymetry system,

System Considerations

A number of the salient parameters have been determined either measured or calculated, which
define the capability and system requirements for an airborne laser/receiver bathymetry sys-
tem in turbid waters. The following is a list of these critical items:

The optimum wavelength for the bathymetry of turbid waters is between 540 and 580
mm. The maximm depth measuring capability (ah)pax of such a system is approxi-
mately 15 for waters characterized by an a/s ratio of between 0.1 and 0.2 and a
sediment reflectivity of » 10%. This was determined for a laser having a peak
pulse power of 30 kw operating from an altitude of 500 m.

While the effective value of the attenuation coefficient of the water (ceff) for

an airborne laser/receiver system is a < a off < o , it is closer to the value of
a than a.
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Polarization techniques are essential in depressing the backscattering from the
water.

A factor of 10 increase in laser power increases (eh)pax by 2.5.

A factor of 10 increase in aircraft altitude decreases (ah)pax by 2.5.

The optical scanner should be restricted to scanning angles of approximately 20°.
For maximum laser pulse rate of 100 pps, a scanner period of approximately 1 sec-

ond is optimum in terms of area coverage and spatial resolution.

LASER STIMULATED FLUORESCENCE

A number of programs have been initiated in the laboratory concerning laser stimulated
fluorescence. FEluorescence is the phenomenon whereby radiation is absorbed at one wave-
length and re-emitted at a shifted (normally longer) wavelength. The uniqueness of the
fluorescent spectrum for a particular molecular structure can be used to identify a sub-
stance. The fluorescent technique can be used to measure quantitatively small concentrations
since in this region the fluorescent intensity is proportional to the concentration. Ex-
tensive fluorescent measurements have been made on algae, organic dyes and oils.
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Algae

Each of the specific pigments in algae has a different excitation and fluorescence spectrum.
In the case of Chlorophyll a, maximumm fluorescence is obtained when excitation is made at
either of the absorption peaks; i.e., 400 or 670 nm. From other considerations, (ref. 4)

it has been shown that for remote detection of the Chlorophyll a, the optimm wavelength
for excitation is at 670 nm. However, since the absorption and fluorescence peaks are
relatively close in wavelength, receiver consideration dictate that the excitation should
be made at a wavelength shorter than the maximum absorption wavelength. Calculations and
laboratory results show that a 100 kw laser/receiver system operating at a wavelength of
600 nm and an altitude of 500 meters should be able to detect Chlorophyll a concentrations

as low as 5 mg/m3.

Identification of various species of algae is a much more difficult problem. One possible
technique for detecting and identifying algae is to excite the algae at multiple wavelengths
and analyze the ratio of the fluorescent signals at several discrete wavelengths. A pro-
totype based on this principle is currently being investigated (ref. 5).

Dyes

Several organic dyes were investigated that exhibit fluorescence in the 480 to 600 nm re-
gion of the spectrum. The absolute value of the fluorescent intensity of the dyes depends
on such parameters as temperature, pH, salinity and exposure to ambient light. The effects
of the various parameters on fluorescence have been made in Sparcom's laboratory. In
addition, the optical density and quantum efficiency of the dyes were determined since
these parameters quantify the conversion of absorbed energy into fluorescence. The quantum
efficiencies were measured in a spectro-fluorometer on a relative basis similar to that

of Parker and Rees (ref. 6). The optical densities were determined as a function of wave-
length on a dual beam spectrometer using water as the solvent. The product of the quan-
tum efficiency and the optical density (QEOD) is a good relative parameter for comparing
the absorption/fluorescence conversion factor. TABLE 1 lists the measured values of op-
tical density at 540 nm and the measured quantum efficiency for some of the dyes.

TABLE 1.-OPTICAL DENSITY AT 54C NM, QUANTUM EFFICIENCY AND THE
RELATIVE PARAMETER QEOD FOR SEVEN ORGANIC DYES THAT
EXHIBIT FLUORESCENCE

Optical Density Quantum

DYE @ 540 nm Efficiency QEOD
Acridine Red 0.190+0.005 0.71 135
3,6 Dichlorofluorescein 0.015%0,002 0.98 15
Disodium Fluorescein 0.00420.001 0.54 2
Eosin Y 0.015+0.003 0.32 5
Magdala Red 0.09420.0086 0.22 20
Rhodamine B 0.135+0.004 0.90 122
Rhodamine 6G 0.082+0.006 0.50 42

The two dyes exhibiting the largest values for QEOD are Acridine Red and Rhodamine B, One
application where these dyes could be used is in detecting the boundary of a dye cloud,
either surface or subsurface. For applications where it is desired to derive information
from within the dye cloud, it might prove advantageous to deploy dyes other than those
with high QEOD values.
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Another application involving the use of these dyes is that of measuring surface or sub-
surface temperatures. The possibility exists that this could be accomplished by dispens-
ing a dye cloud composed of two dyes which have widely different fluorescent temperature
coefficients. The ratio of the two fluorescent signals which is proportional to the temp-
erature would than be monitored. A detector system, based on this technique, could be cal-
ibrated to yield absolute temperature. One pair of dyes which might be used for this ap-
plication is Rhodamine B and Eosin Y. The dependence of the fluorescent signal on temper-
ature for these dyes is shown in Figure 3. It has been determined that the temperature

of the water can be determined to +0.5°C if the ratio of the two fluorescent signals is
measured to within 2%.
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0ils

A variety of fuel and lubrication oils have been investigated for their fluorescence char-
acteristics. The excitation and emission spectra are relatively Broad when compared to
either the algae or the dyes while the maximum wavelength for excitation occurs below 400
mm. The quantum efficiencies for these oils ranged from 1 to 10%.

In June 1973, airborne laser detection of an oil spill was made by Sparcom in conjunction
with NASA (Wallops Island, Virginia) (ref. 1). The pulsed nitrogen laser, which has its
emission at 337 nm, was used in this experiment to excite the oil fluorescence. Although
the results of the tests are considered preliminary, they represent the first results that
have been obtained by an airborne laser fluorometer for detection of surface oils.

LASER TURBIDITY METER

The turbidity of the water is characterized by an attenuation coefficient (o) that quantizes
the amount of absorption and scattering a light beam undergoes as it is transmitted through
the water. The present method for measuring the attenuation coefficient uses a transmis-
someter which must be lowered into the water. This procedure is slow and severely limits
the quantity of data that can be obtained in a reasonable time frame.

A technique is currently under investigation at Sparcom that uses the amplitude and shape
of the laser backscattered signal from the water as a direct measurement of the water tur-
bidity. The backscattered laser signal was measured in a series of water tank experiments
as a function of both the water turbidity and laser wavelength. The tunable dye laser was
used to obtain the desired wavelengths in the range of 420 to 640 nm. The turbidity of the
water in the environmental test tank was changed by the addition of quartz_and Chesapeake
Bay sediment. The turbidity of the water ranged from equal to 0.5 to 6.0°1, While the
magnitude of the laser backscatter increased, at all wavelengths,as the turbidity increased,
the percentage increase was greatest at 440 nm. A laser operating at this wavelength would
be most sensitive to changes in o, thereby making it the best o detector. The results of
these preliminary measurements therefore indicate that it may be feasible to use the back-
scatter from an airborne laser transmitter/receiver system as a direct reading of a. The
sensitivity of this technique for measuring a, at 440 nm has been estimated from our re-
sults to be approximately 5-10%. A laser operating at still a lower wavelength may yield
better sensitivity.

CONCLUSIONS

Many of the salient parameters have been determined which define the capability and system
requirements for an airborne laser/receiver shallow water bathymetric system for surveil-
lance of turbid waters. The maximum depth measuring capability [(oh)pax] of such a sys-
tem has been determined to be approximately 15 attenuation lengths for waters examined in
this study. These waters were characterized by an a/s ratio and bottom sediment reflectiv-
ity of approximately 0.2 and 0.1, respectively.

It has also been concluded that in situ measurements of a and a are sufficient to predict
the transmission properties of a laser beam in water and therefore the performance of a la-
ser bathymetry system in a specific body of water.

The o1l flight measurement was a joint effort of Mr. H. H. Kim of NASA Wallops Island and
Sparcom.
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The fluorescent studies have shown that it is feasible to develop an airborne laser/re-
ceiver system for the detection and possible classification of a variety of algae and
oils. It has been determined that Chlorophyll a should be detectable in concentrations
as low as 5 mg/m3 using a 100 kw laser/receiver system operating at 600 nm from an alti-
tude of 500 meters.

Preliminary measurcments have shown that it may be feasible to use a laser/receiver system
operating from a remote platform to determine a number of other parameters of the water
environment. These include the measurement of surface/subsurface current, temperature,
salinity and turbidity.
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UNDERWATER PROBING WITH LASER RADAR

A. I. Carswell and Sebastian Sizgoric
York University, Toronto, Canada

ABSTRACT

Recent advances in laser and electro-optics technology have greatly enhanced the feasibil-
ity of active optical probing techniques aimed at the remote sensing of water parameters.
This paper describes a LIDAR (laser radar) that has been designed and constructed for under-
water probing. The influence of the optical properties of water on the general design par-
ameters of a LIDAR system is considered. Discussion of the specific details in the choice
of the constructed LIDAR is given. This system utilizes a cavity-dumped argon-ion laser
transmitter capable of 50-watt peak powers, 10 nanosecond pulses and megahertz pulse repe-
tition rates at 10 different wavelengths in the blue-green (450-520 nm) region of the
spectrum. The performance of the system, in proving various types of water, is demonstrat-

ed by summarizing the results of initjial laboratory and field experiments.
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INTRODUCTION

In recent years there has been an increasing interest in the use of LIDAR (laser radar) as
an active optical remote sensor. Improved lasers with high powers, short pulses and ever-
increasing range of wavelength selection and tunability provide suitable transmitter sour-
ces for LIDAR systems. However, to date, the LIDAR work has been almost exclusively con-
cerned with investigations of atmospheric phenomena such as aerosol scattering, cloud stud-
ies, and smoke plume tracking (refs. 1, 2, 3).

LIDAR probing underwater is also quite feasible but so far only a few such studies have been
reported in the literature (refs. 4, 5, 6, 7) and the true potential of underwater LIDAR
systems is not yet clearly established. This paper reports on a newly developed marine
LIDAR unit that has been designed and constructed to undertake an evaluation of LIDAR
systems for underwater remote sensing purposes (ref. 8).

Although an underwater LIDAR involves the same basic design principles employed in the at-
mospheric LIDAR, there are a number of very important additional considerations. It is
well known that because of the optical absorption properties of water (ref. 9), the avail-
able wavelength region for operation of an underwater LIDAR system is limited to the blue-
green portion of the spectrum. Even within this relatively clear optical window the absorp-
tion is such that LIDAR operation would almost always be at ranges less than about 100 me-
ters. This fact necessitates the use of very short transmitter pulses and rather wide-
band electronic detection systems since the total time of useful LIDAR return will only be
a few hundred nanoseconds. In addition, the very rapid decrease in signal intensity with
depth requires a very wide dynamic range for both the optical and electronic components of
the LIDAR receiver.

The water, because of the very large amount of scattering, also degrades the well collimat-
ed beam, spreading the illumination and decreasing the light flux per unit area very rapid-
ly with increasing penetration depth (ref. 10). Thus, two of the best features of atmos-
pheric LIDAR operation, i.e., high intensity compared to background (solar) light and good
space and time resolution, are very severely restricted in the underwater application. In
addition to the beam degradation caused by the volumetric scattering in natural water sys-
tems, the surface wave structure will further broaden the beam and decrease the obtainable
signal (ref. 11). Thus there is a need for more experimental data to obtain information
on the practical utilization of LIDAR systems for measuring underwater parameters of
interest.

LIDAR DESIGN CONSIDERATIONS

In designing a LIDAR system, there are two basic configurations of interest. These are
schematically illustrated in Figure 1. The first is the morostatic or backscatter LIDAR
sketched in Figure la in which the transmitter and receiver are located at the same posi-
tion and are collinearly directed along a single line of sight. The second is the so-
called bistatic LIDAR , Figure 1b, in which the source and receiver are spatially separated.
With the monostatic configuration, the transmitter must be pulsed to provide spatial in-
formation using the time of flight of the backscattered signal. With the bistatic configura-
tion the transmitter can be either pulsed or continuous since the spatial location of the
scattering volume is determined by the intersection of the transmitter and receiver beams
as illustrated. In atmospheric work, the monostatic LIDAR is most commonly used because

of its convenience and relative ease of alignment, although bistatic systems have been used
on several occasions (ref. 12).
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Figure la. Possible backscatter LIDAR configuration for underwater studies.

fransmitter rece/ver

Figure 1b. Possible bistatic LIDAR configuration for underwater studies.
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For underwater applications the substantial amount of beam spreading and the very large near
field return may make the bistatic system a more attractive configuration than the back-
scatter system although for any airborne LIDAR instrument the bistatic configuration would
be ruled out. For ship based systems, either configuration would be suitable and, in fact,
the recent work of Ivanov et al (ref. 6) utilized a bistatic configuration in which the
entire laser assembly was lowered to a depth of 5 meters below the sea surface. The back-
scatter arrangement of Figure la is still the most convenient and the most readily analyzed
and is the one initially being employed in the present program. In this configuration the
received power, Py, can be expressed approximately as:

PcameRpetfy

(R1+R)?
n

Py 1)

where Py is the transmitted power, A the area of the receiver and C a constant including
numerical factors and the optical efficiency of the system. R! is the distance (in air)
from the transmitter to the water surface and R is the distance from the surface to the sub-
surface scattering location of interest. T, is the transmission coefficient of the water
surface for the incident beam and o) is the average extinction coefficient of the downward
traveling beam. For volumetric scatter%gg is the volume backscattering coefficient aver-
aged over a scattering volume of length F— in the direction of beam travel where c¢ is the
velocity of light, s is the pulse length and n is the index of refraction of water. For
scattering from a submerged surface (e.g. the lake bottom), 8 would represent the average
surface reflectivity assuming that the surface fully intercepted the transmitted beam.

a, and T, are the attenuation and transmission coefficients for the upward traveling beam.

The values for the downward and upward attenuation coefficients, o, and oy, will in general
be different because of the effects of beam spreading. The downward traveling beam will
initially be rather well collimated and the value to be used is the so-called "monopath'
attenuation coefficient (refs. 10, 13). However, as the beam spreads and diffuses, the
forward scattering tends to replenish the beam and reduce the rate of attenuation. In this
case the "multipath' attenuation coefficient is appropriate. In addition, it is also ob-
vious that in any real situation the attenuations (up and down) would not ever be constant
and in reality we would have to write the attenuation as:

exp[ :[Ra (1) dr] (2)

<]

where the integrals are over the total two-way path distance and the point values of a(r)
would include beam spread effects and any spatial variations of the water properties.

The transmission coefficients, T; and T, would include the ordinary reflective losses at
the airwater interface and the loss of intensity because of surface roughness arising from
wave structure. These surface effects would be values averaged over the diameter of the
beam and would thus depend on the beam size and water roughness, and would in general differ
for the downward and upward paths. As well as altering the values of the transmission co-
efficients, the surface roughness would also add to the broadening of the beam as it pass-
es through this interface (ref. 11). For some applications, however, such as with ship-
borne equipment, it is possible to optically couple the transmitter and receiver to the
water using emersion optics and in this way these surface complications can be greatly
minimized.
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From equation (1) it is apparent that the scattered laser signal contains information on
the attenuation coefficient and the volume scattering coefficient of the water albeit in

a rather complicated form. Thus, this signal should be utilizable to derive measurements
of these quantities and their variation with distance along the propagation path as is done
with atmospheric LIDAR systems, )

It should also be pointed out that in the simple form of equation (1) we are considering
only the intensity of the backscattered signal. The signal will also contain a consider-
able amount of polarization information which can also be used to measure the water pro-
perties (ref. 14). Such measurements of the polarization are already demonstrating their
usefulness with atmospheric LIDAR measurements (refs. 15, 16).

It should also be noted that g8 includes both elastic and inelastic scattering processes.
For Raman scattering the appropriate Raman scattering cross section would be employed and,
by measuring at the appropriate wavelength shift from the incident radiation, this scatter-
ing can be used to identify selectively and monitor specific Raman active chemical species
in the water in a fashion similar to that already demonstrated with atmospheric LIDARS
(refs. 17, 18). The practical problem here, of course, is that the Raman signals are sev-
eral orders of magnitude below those for the Mie and Rayleigh scattering.

When considering subsurface Raman measurements, it is also necessary to include in equation
(1) the wavelength dependence of the water absorption since the transmitted and scattered
beams will be at different wavelengths. Figure 2 is a sketch of the absorption coefficient
as the function of wavelength in the optical "window" of several water samples. As already
noted above, distilled water has minimum absorption in the blue-green, centered at about
500 mm. In natural waters, the overall absorption increases and the center of the window
moves towards the yellow portion of the spectrum (ref. 9). Included in Figure 2 are solid
lines representing the two strongest emissions of the Argon laser at 488 mm and 514.5 nm.
The dotted lines represent the approximate central positions of the Raman shifted Stokes
bands of the OH stretch (3450 cm-1) in liquid water arising from these two laser frequen-
cies. These Raman shifts are quite substantial and show that it is necessary to have the
primary transmitted wavelength well towards the blue end of the window to ensure that the
Raman lines are not too heavily attenuated.
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Figure 2. Absorption in the visible "window for several water samples. The solid lines
‘indicate the major Argon laser emissions at 488 nm and 514.5 nm, The_dashed lines in-.
dicate the approximate positions of the band centres for the 3450 cm L HZO Raman
scattering obtained using the Argon lines.
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There are, at present, relatively few commercially available lasers which will meet the
necessary requirement$ for subsurface probing. The three best systems are the frequency
doubled neodymium laser operating at 530 mm (refs. 6, 7), the neon laser at 540.1 mm (ref.
4), and the Arﬁon jon laser which operates at a number of wavelen ths between about 460 nm
and 515 nm with its two most intense emissions at 488 mm and 514.5 nm as shown in Figure 2.

The typical operating parameters of these lasers are sumarized in TABLE 1. The neody-
mium laser is flash lamp pumped and operated in the Q-switched mode. The neon laser is
excited by electrically pulsing the low pressure gas inside a discharge tube, and the Argon
laser is a continuous gas discharge with the laser output pulse being controlled by means
of an intra-cavity acousto-optic diffraction cell (ref. 19) to operate in the so-called
"cavity dumped'' mode.

TABLE 1. Typical Operating Parameters of Lasers
Suitable for Underwater LIDAR Systems

Laser A T PRF Peak Power Avg. Power
m n sec Hz Watts Watts
. 6 A7
Neodymium 530 15 .1-100 107-10 0.05-0.2
(doubled)
Ne 540 5 100 104 005
0.2 7 2
Aaron-Iron 460-515 10-1000 0-10 10 0.5

THE MARINE LIDAR SYSTEM

Our system design has been based on the use of the Argon laser operating in this cavity
dumped mode. This unit, although it has lower peak powers than either the neodymium or neon
lasers, has high average power and was chosen because of its greater all round versatility
for underwater studies. The laser employed for the transmitter is a Spectra Physics Model
164 Argon laser with a Model 365 acousto-optic output coupler. This unit at 488 mm deliv-
ers peak powers of up to 75 watts, pulse repetition frequencies variable from cw to 107 Hz
and pulse widths variable from about 10-8 to 10-6 seconds. Average power in the cavity
dumped mode of up to 0.4 watts at these wavelengths is available. The unit will operate

on seven other Argon lines in the blue-green spectral range at lower power outputs.

Figure 3 shows a schematic diagram of the overall system and Figure 4 shows a photograph
of the apparatus as mounted on its mobile carriage. The laser transmitter is mounted hori-
zontally and the output beam (approximately 1.5 mm diameter) is expanded to a diameter of
about 2 cm by an adjustable collimator. The LIDAR can be operated in either a parallel-
bean configuration (labelled (1) in Figure 3) or a coaxial-beam configuration (labelled (2)
in Figure 3) for the transmitter-receiver geometry. The choice of the geometry is dictated
by the specific requirements of the experiment. The parallel geometry provides a very
strong suppression of the near field backscattering when the water surface is close to the
LIDAR unit. This is achieved by adjusting the aligmment so that the receiver does not see
the laser beam impingement spot on the surface nor the first few meters of subsurface scat-

tering.

94



EXTENDED

—__ = Fy— = =0

PROCESSING  OPTICS
(FILTER , LENS, POLARIZER etc...)

TRIGGER AND PULSE

E—_——] DELAY CONTROLS
POLAROID

CAMERA Hu 8 RANGE GATING
—1 ELECTRONICS
L

SCOPE

WIDEBAND PREAMP.

[:j (LINEAR OR LOG)
RECORDING & STORAGE

L] -

A/D CONVERTER

]

SIGNAL
AVERAGER

Figure 3. LIDAR system arrangement. (1) and (2) indicate alternative
arrangements for the transmitter beam geometry.

The receiver is a 20 cm diameter Newtonian telescope with variable field stop and process-
ing optics which include a 1.0 nm bandpass filter and a quarter wave plate and linear po-
larizer for analysis of the scattered signal. A very high-speed 5 stage photomultiplier
(RCA type C31024) is used as the detector. The output is fed through a preamplifier to
either a 250 MHz oscilloscope or to a ''boxcar" signal averager. Triggering signals and
pulse delays are provided by the associated electronics with the primary synchronization
being from the output laser pulse itself which is detected by a fast silicon photodiode
mounted in the transmitter section.

The major limitation in the present system is in the frequency response of the boxcar aver-
ager which cannot clearly resolve pulses which are shorter than about 30 nsec. This limits
the range resolution of the present system to about 4 or 5 meters in water. A new signal
averager to be installed shortly will have subnanosecond time resolution and will provide
LIDAR operation limited only by the resolution of the optical pulse (1 to 2 meters).

As shown in Figure 4, the LIDAR is mounted on a mobile carriage complete with its electron-
ics and beam steering optics. Seen in this photograph (left foreground) are the 45-degree
mounted mirrors for downward direction of the transmitter and receiver beams. These are
mounted on an extendable mount which protrudes over the side of the tank (for lab use) or
the vessel (for shipborne measurements). The vertical bars shown in this assembly are to
support a subsurface mirror-periscope assembly to permit horizontal propagation of the
LIDAR beam at depths ranging from zero to about 2 meters when working in the tanks of the
Canada Centre for Inland Waters (CCIW) at Burlington where the depth is only about 3 meters.
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Figure 4. Mobile LIDAR system.

MEASUREMENTS

Some initial measurements with this LIDAR system have been conducted at the large indoor
CCIW tanks. In addition, in August 1973 the system was taken aboard the CCIW research
vessel Limnos and measurements were made over a four-day period in Lake Erie at a position
about 10 miles south of Port Stanley, Ontario.

In the indoor tank trails, the main aim was to investigate LIDAR signals from the volumetric
backscattering of relatively stable and homogeneous water samples and from diffusely scat-
tering surfaces positioned at known underwater distances to ascertain the useful operating
range of the LIDAR system. The targets used were 1.22 meters (4 ft.) square plywood sheets
painted either black or white.
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Figure 5 shows a schematic trace of a typical signal return from a submerged target. As
shown in this figure, the return contains an initial broad peak from the volumetric scat-
tering of water itself followed by a nargow pulse from the target. The volumetric return
initially increases with range as the receiver field of view encompasses the transmitted
beam. After full overlap of the beams at point P, the volumetric signal falls off accord-
ing to equation (1). The target return will have a range dependent amplitude, h, as also
calculated from equation(l) using the reflectivity of the surface in place of the volume
backscattering coefficient. The width, w, of the target return is dependent upon the time
resolution of the system and is a direct indication of the spatial resolution capability
of the system.

If one assumes in equation (1) that a; = ap; = a constant, then a plot of
In[ (R!+R/n)? Py] vs R 3
should produce a straight line whose slope is twice the attenuation coefficient. This plot

can be obtained in two ways: once from the volumetric scattering itself and again from the
target pulse amplitude, h, as a function of depth. ,

-
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Figure 5. Schematic diagram of a typical LIDAR return from a submerged surface. P is
the point at which the receiver beam fully overlaps the transmitter
beam, W and h are the measured width and height of the
target return.
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Figure 6 shows sample results obtained with the LIDAR operating at 514 mm for ranges up to
about 17 meters with the white target. The curves shown are a superposition of the scat-
tered signals obtained from the water itself with no target (lowest trace), and from the
target when located at several different ranges. These traces are averaged outputs over
approximately a one-second averaging time when using a pulse rate of 105 Hz. In all cases,
the initial pulse of the volumetric scattering is seen to be identical. (The top two
traces have gain reductions of 10 and 20 to keep the target return on scale and in these
the volumetric return thus appears greatly reduced.)

The target return is seen to drop off very rapidly with increasing range, with the maximum
detectable range being about 20 meters. It is apparent from the figure that the width of
the target return pulses corresponds to a range of about 4 meters, and, as already men-
tioned, this width is at present limited by the resolving time of the boxcar averager.
Since the target return is, in fact, considerably narrower than this, this electronic limi-
tation is reducing the measured penetration range considerably; i.e., narrow, small signals
at greater ranges would not be detectable. Although the width of the target returns cor-
responds to about 4 meters, it is possible to locate the position of the target to a bet-
ter accuracy as can be seen from the shapes of the target return peaks.

) ¢ ] FE3 20
UNDERWATER RANGE -m

Figure 6. Sample backscattered signal plots as a function of range for white targets at
different underwater distances. Note that the top two traces have ordinate scales
compressed by the factors shown,
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The data shown in Figure 6 were obtained for the receiver without any polarization optics.
If a polarizer is inserted in the receiver and aligned either parallel or perpendicular to
the polarization direction of the linearly polarized transmitter signal, a considerable
variation in the volumetric scattering intensity is observed. Figure 7 shows sample re-
sults with a target located at a range of about 7 meters. The perpendicular to parallel
ratio (I,/I;) for the volumetric scattering is found to be about 0.2 indicating that this
scatteri%g &trongly retains the polarization of the incident beam. The corresponding ratio
(I4/13) for the target, however, is about 0.9 indicating an almost complete depolarization
of 'the signal scattered by the target surface. Such measurements are qualitatively in
agreement with polarization studies made by transmission measurements underwater.

The possibility of employing polarization to suppress the volumetric return as already
utilized for some underwater photographic application is apparent from such results. The
polarization measurements also appear to indicate an increase of depolarization with pene-
tration depth, an effect consistent with the multiple scattering process and recently ob-
served in atmospheric cloud studies (ref. 16). However, the exact magnitude of this in-
crease cannot be obtained until the higher resolution electronic system is available.
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Figure 7. Returns from a target at seven meters as observed with receiver
containing a linear polarizing element.
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Taking the data shown in Figure 6 and range correcting it as described above, it is possible
to evaluate the attenuation coefficient. This has been done in Figure 8 for both the target
echoes and the volumetric scattering. For the targets, it is seen that a fairly good
straight line is obtained and from this a value of o« = 0.25 m-! is derived. Simultaneous
transmissometer measurements over a one meter path length using a wavelength of 490 nm gave
values in reasonable agreement with the LIDAR measurement. The volumetric returns in Fig-
ure 8 show a nonlinear plot which appears to approach the slope of the target returns with
increasing penetration depth. It js believed that this effect is caused by the relatively
poor spatial resolution of the system which would tend to reduce the intensity of the near

field returns of the volumetric scattering. This feature will be examined more closely with
the improved detection system.
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Figure 8. Semilog. plot of the range corrected intensity of returns from
both the targets and the volumetric water scattering.
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The trials on Lake Erie were conducted to test the system under real field conditions. Meas-
urements were made at 488 and 514 nm and for both receiver polarizations; i.e., parallel and
perpendicular to the transmitted polarization. Targets of the same geometry were lowered
from the ship and returns were recorded for various depths. As yet, the data have not been
fully analyzed but in general the results reflect those found in the tank measurements.
Maximum penetration depths obtained in Lake Erie were only about 10 meters. This was caused
by the greater turbidity of the lake water (the value of o was generally measured by trans-
missometer to lie between about 0.5 and 1.0 m-1) and by the signal degradation caused by
surface wave structure.

During the trials the lake surface was quite choppy with swells reaching several feet. This
introduced additional variability into the signal and degraded the signal-to-noise ratio as
anticipated. However, the degradation was not as large as originally feared even consider-
ing the rather small beam sizes used in this experiment which would aggravate the beam
distortion problem. The LIDAR was directed into the water at an angle of 15 or 20 degrees
from the vertical to ensure that the specular surface returns did not enter the receiver.

If this was not done, the noise in the return was unacceptably high.

The system performed well for both day and night operation in spite of the rigors of the
trip. A large number of profiles similar to those of Figures 6 and 7 were obtained at

both wavelengths. Again the data was limited by the bandwidth of the receiving electronics.
It had been hoped when planning the trip, that the LIDAR would be able to observe the
thermocline in the lake where a substantial discontinuity in the turbidity occurs. How-
ever, during the measurement period, the thermocline was at depths of the order of 15 to 16
meters which were beyond the present detection capabilities of the LIDAR,

One other preliminary series of tests has been undertaken with this system as well. In the
laboratory, a simple monocromator has been used on the receiver and the Raman backscattered
signals from several water samples have been observed. It has been found that, using the
488 nm wavelength, rather good signals from the 3450 cm-1 H,0 band are observable at ranges
of several meters in these initial tests. One difficulty a%ready encountered, however, is
the stray light arising at the Raman frequency from fluorescence in the water. This fluo-
rescence signal is virtually negligible in distilled water but is observable in tap water
and is very large in some natural water samples such that the Raman return is markedly
obscured. This work is continuing and an effort will be made to ascertain the potential

of subsurface diagnostics of natural waters by Raman LIDAR scattering.

CONCLUSION

Although our experience with the marine LIDAR unit is still rather limited, the system has
already demonstrated a useful potential. The present system is capable of providing meas-
urable signal returns at depths up to 25 or 30 meters depending on the attenuation. The
most direct application of this capability would be for depth sounding and bottom profiling,
and accuracies to within a fraction of a meter should be obtainable.

Some spatial "'structure" on the volumetric return has already been detected in the Lake
Erie data and such variations should provide information on the scattering and attenuation
as a function of depth. Also, since the magnitude of the volumetric scattering depends on
the optical quality of the water, the relative intensity of this signal may serve as a
useful indication of water quality which could be obtained remotely and rapidly.
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The polarization of the backscattered signal is also of considerable importance. There

is already evidence that the depolarization arises from multiple scattering processes and
depends strongly on the turbidity of the water (ref. 14). Since polarization is a readily
measurable quantity, it should prove to be another very useful monitor of water conditions.
So far, only two components (parallel and perpendicular) of the polarization have been
monitored. The complete polarization information of the signal is contained in the four
components of the Stokes vector and measurements of these should be even more informative.
Such measurements are already being made with our atmospheric LIDAR and should present no
difficulty for the marine system.

Finally, the potential usefulness of the Raman return is obvious. The signal is not large
but it is definitely quite measurable, particularly near the water surface. This signal,
as already indicated by other workers (refs. 17, 18, 20, 21), could be potentially useful
for a variety of measurements including pollutant identification and temperature measure-
ment. Such measurements will not be easy in view of the many problems associated with

the weak Raman signals and the perturbing effects of fluorescence and the stray background
light. It may be that they will only become viable by using tuned lasers to obtain the

enhancement ot resonant scactering. However, at this stage pertinent experimental field
data is still lacking and the need for further measurements of this type is clear.
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REMOTE MEASUREMENT OF OCEAN TEMPERATURE
FROM DEPOLARIZATION IN RAMAN SCATTERING

Chin H. Chang and Lee A. Young
Avco Everett Research Laboratory, Inc.

ABSTRACT

Ocean temperatures may be mapped in three dimensions from an aircraft down to depths of 2
to 4 attenuation lengths by monitoring Raman radiation backscattered from a laser beam.
This paper describes laboratory experiments on the temperature dependence of Raman spectra

of saline solutions and calculations of the expected performance of a field system.

The Raman spectrum of liquid water shifts toward the red with increasing temperature. Con-
sequently temperature could be measured by a radiometer having two spectral channels which
cover two halves of the Raman band. Such a two-color scheme is impractical for ocean sens-
ing, however, because of variability of the relative transmission of seawater at the two
wavelengths. Instead, we propose to polarize the laser emission and use a radiometer

with two channels which sense two different modes of polarization of the Raman radiation.
Laboratory experiments show that the ratio of the two signals changes by about one per
cent for each degree centigrade of temperature change. Circular polarization appears
preferable to linear polarization because the former affords higher statistical accuracy

in the cross-polarized channel.

The Raman technique is of greatest potential utility in coastal and estuarine waters
where gradients are relatively high. We estimate that seawater temperature may be measured
to a statistical precision of 0.5°C at depths to four attenuation lengths in two-meter wa-

ter, using one joule of transmitted laser energy.
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INTRODUCTION

Remote sensing methods from aircraft allow the possibility of obtaining a synoptic view

of the oceanographic properties of estuarine or coastal waters during a given phase of a
tidal or meteorological cycle which would be impossible with conventional boat-based
measurement methods. In this paper we describe the possibility of using an airborne laser
and a two-channel radiometer to measure the temperature and transparency of seawater by
monitoring backscattered Raman radiation. Laboratory results will be presented along with
calculations of expected field performance.

The Raman spectrum of liquid water is shown schematically in Figure 1. The Raman radiation
appears at a longer wavelength than the exciting laser radiation; the energy difference
corresponds to one quantum of the stretching modes of vibration of Hy0. If a laser beam

is directed downwind into seawater as in Figure 2, the backscattered Raman radiation from

a given depth may be detected by a gated receiver.

RAMAN SCATTERING SPECTRUM
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LINE RAMAN BAND
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Figure 1. Raman spectrum of water-schematic
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Figure 2. Remote sensing of the ocean using a laser
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TWO-COLOR VS CROSS-POLARIZED MEASUREMENTS

Changes in temperature of 1liquid water affect its structure, which, in turn, modifies its
Raman spectrum. The total spectrum is shifted towards longer wavelengths with increasing
temperature. Also, if the exciting light is polarized, the two polarization components
of the Raman radiation are affected differently by changes in temperature.

The temperature of water could be measured by a two-color radiometer if the spectral trans-
mission of the medium is precisely controlled. The ratio of Raman intensities at two
wavelengths, 21 and A, is (apart from geometrical factors)

1(:) -[KOy) - K0T x

R =i =f(T,S) e
A2

where f(T,S) is a function of the temperature and salinity of the water at depth x, and
K(x) 1is the spectral transmission of the water. To minimize the effect of differential
attenuation in the water, we choose A; and A, such that K{x;)  K(};), so the exponential
may be expanded as

R=1(T,5) {1- [K(x) -KO2] x+ ...}
The sensitivity of the ratio R to temperature (ref. 1) is about one percent per degree

centigrade, i.e., AR/R = AT/100. The temperature error due to mistuning (i.e., to the
inequality of K(i;) and K(};) is then

AT = 100 AR/R

100[K(x)) - K(x2)] x.

If we wish to measure temperature to an accuracy of 0.3°C at a depth of 3 meters, for ex-
ample, then K(X1) and K(X,) must be equal within 1073 m-1, But K(x) has typical values

in the coastal water of the order 0.1 - 0.3 m-1, and shows considerable spatial and tempor-
al variation. Thus, the two-color Raman technique would be impractical in natural sea-
water. To overcome spectral transmission variationis, we employ a radiometer in which both
channels monitor the same wavelength interval but different modes of polarization of the
Raman radiation. Laboratory tests show that the relative transmission of these two modes
is about equal (ref. 2).

CIRCULARLY POLARIZED RAMAN SPECTRA

The temperature of liquid water may be measured via the depolarization ratio ([L/Il) for
either linearly or circularly polarized exciting light. In the linear case thé depolariz-
ation ratio is small (~.1-.2). This means that the Raman component whose polarization is
perpendicular to that of the laser beam is of weak intensity (ref. 2) and the statistical
accuracy of its measurement would be low, The depolarization ratio is larger (~.2-.6) for
circularly polarized excitation, so that the weaker component may be measured with greater
precision. Also, the depolarization ratio is more temperature-sensitive for circularly
than linearly polarized light (ref. 2).

Figures 3 and 4 show the left- and right-handed components of the Raman spectrum back-
scattered from 1iquid water. Figure 5 shows a schematic diagram of the laboratory apparat-
us. The excitakion source is a right-handed circularly polarized laser beam at a wave-
length of 4600 A. The stronger (left-handed) component of the spectrum is not depolarized;
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like the laser beam, it represents clock-wise rotation as viewed from the source. The de-
polarization ratio, p =I;/Ip, is shown in Figure 6. It can be seen that the depolariza-
tion ratio decreases witk temperature over the spectral interval from 5400 to 5500 A. In
a field system, this range would be selected by an interference filter. The effective de-
polarization ratio over this interval peff =5 I (A)dx/sIg(r)dx , 1s plotted against
temperature in Figure 7. It can be seen that the temperature sensitivity of the depolar-
ization ratio is about one percent per degree centigrade. To measure temperature to a
precision of one degree centigrade or better using a Raman system, one must achieve the
necessary photoelectron statistical accuracy and maintain the relative stability and cali-
bration of the two radiometer channels.
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Figure 3. Raman spectrum of 40°/oo aqueous solution of NaCl
lefthand circularly polarized component
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RAMAN MEASUREMENT SYSTEM

Figure 8 shows schematically the design of a system for measuring two components of Raman
radiation backscattered from the ocean. The laser output passes through an interference
filter to block stray radiation at UV and Raman wavelengths, and is then right-hand circu-
larly polarized by a linear polarizer and quarter-wave plate. The left- and right-handed
backscattered Raman returns are converted by another quarter-wave plate to two linearly
polarized components which are separated by a polarizing beamsplitting cube. A second
interference filter biocks stray scattered light of the laser wavelength. Gated integrat-
ors are used to select the portion of the outputs of the photomultiplier tubes correspond-

ing to a given depth interval.
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Figure 8. Optical system for Raman measurements in the field
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Typical parameters of the Raman system are listed in TABLE 1. The average and peak power
values listed represent reasonable design objectives for flashlamp-pumped dye lasers. The
10-nsec pulse duration, needed to permit range gating with a depth resolution of one meter
would be achieved using an output coupling device. The field of view of the receiver is
chosen fairly small to reduce the amount of ambient daylight detected.

Table . _Raman System Parameters - Coastal Use

’

Laser
Type: Flashlamp pumped dye with output coupler.
Pulse
length; 10 ns

Wavelength: 4600 A

Average
power: = 10 waits

Peak ’
power: ~ 10" watts

Receiver

Aperture
diameter: 0.3m

Field of
view: 4 10 mrad

Altitude
100 m

TABLE 1.-RAMAN SYSTEM PARAMETERS - COASTAL USE

FIELD PERFORMANCE OF RAMAN SYSTEM

For temperature precision of one degree centigrade, we require Raman ratio measurement
statistical precision of one percent and thus 104 photoelectrons in the weaker (depolarized)
Raman component. The yield depends upon the total laser energy utilized in a given measure-
ment. In Figure 9 we show the photoelectron return in the weaker component for the Raman
system described in TABLE 1 at an altitude of 100 meters. The attenuation length of the
seawater has been chosen as two meters, which is typical of coastal waters in which the
Raman technique appears to have the greatest utility. A one-watt laser could give a sta-
tistical temperature precision of 0.5°C at a depth of eight meters (four attenuation lengths)
in one second.

It is desirable to be able to make Raman measurements during daylight hours for convenience
of aircraft operation and correlation with other remote sensing and sea truth observations.
Daylight radiance is compared with the peak Raman signal received in Figgre 10. The
significant parameter here is the peak laser power transmitted. With 10° watts peak power,
a signal/background ratio of unity could be achieved at a depth of about 5 meters. Precise
measurements can still be made with signal/background = 1 provided that (1) the statistical
fluctuations of the signal and background are averaged for a period three times longer

than that required without background, and (2) the ambient background intensity does not
vary sggnificantly from pulse to laser pulse. Evidently a higher peak laser power - say,

3 x 10" watts - would be highly desirable for daylight use, together with an average power
of the order of 1 watt,
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MEASUREMENT OF RAMAN SPECTRA OF H,0 AND SOz IN SEAWATER

William M. Houghton
NASA-Langley Research Center

ABSTRACT

A study of applying laser Raman spectroscopy to remote sensing of the sulfate ion (503) in
seawater is in the progress at NASA-Langley. The SOE Raman spectrum has been obtained from
true seawater samples in the laboratory using a CW laser Raman Spectrometric System. Radio-
metric calculations indicate the feasibility of obtaining usable SOz Raman signals in a field

experiment. One of serious difficulties expected in the field experiment would be from

fluorescence of phytoplankton and organics.
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This paper describes an on-going research program at the Langley Research Center (LRC)
which has as its ultimate goal the remote sensing of salinity. It is a cooperative effort
between LRC and Old Dominion University (ODU). Dr. Allen Bandy of ODU has been, through
a NASA Grant, conducting a laboratory investigation of the Raman spectroscopy of seawater.

Certain polyatomic ions, such as SOz, NOz, POj, and HCOZ, exhibit Raman spectra but, at sea-
water concentrations, only that of SOf is feasible to detect. Although the capability of
remotely sensing SO would be of general interest in chemical and biological oceanography,
the most exciting pay-off would be for remote determination of salinity. The well tested
principle of constancy of composition says that the ratio of SOy to chlorine is a constant
regardless of salinity. This holds well in the open ocean wheré good mixing occurs, but
must be used with caution in nearshore environments where effects of land may add or sub-
tract SOf. A graduate student of Dr. Bandy, A. V. Zimmermarm, has conducted a study of the
SO chemistry in the lower Chesapeake Bay and has observed the principle to be generally
valid.

Radiometric calculations were performed by Stewart Ocheltree at LRC which show the amount
of signal to be expected for the Raman line of SOz. Figure 1 shows a typical LIDAR system
and the "radar equation' which describes the returned Raman signal. The symbols not
defined by the figure are: N, the SOj concentration; ¢, the SO Raman cross section; A,
the area of the collecting lens; a, the total absorption coefficient; and n, the index of
refraction of seawater. Figure 2 shows the results obtained from this equation for the
LIDAR system parameters listed. The distance, D, is the position of the leading edge of
the pulse (assumed rectangular). The absorption coefficients correspond to clear ocean
water (.05 M-1) and Murky Bay water (1.0 M-1) (note the receiver heights are small, indi-
cating we plan to be working relatively near the water surface). The return signals are
encouraging--the 10-7 watt level corresponds to about 5000 photons during a counting time
of 20 nanoseconds. Figure 3 shows the Raman spectrum for distilled water. The features
due to translation, libration, bending, and stretching are indicated by v,, v , vy, and v,
respectively. SOz indicates the position of its Raman line with respect to the other fea-
tures. Roughly speaking, the peak intensity of the SO0z line is about the same as that of
the v, water line.
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Figure 1. Computation of Raman return
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Figures 4 and 5 are Raman spectra of real seawater made in Dr. Bandy's laboratory at ODU.
The excitation source was a one-watt Argon ion laser and the detector a one-meter double
monochromator. (Note how well the SO line stands out, even with a high background level.)
Figure 4 was for an untreated water sample; whereas that of Figure 5 was filtered with
charcoal. The background has been tacitly assumed due to fluorescence from organic material

in the sample.

The scheme for standardizing the SOz signal is to record the water Raman signal also and

thus use water as an internal standard of the two water lines, vg and y, the may be the
more desirable for several reasons; i.e., it is nearer in streng%h and wavelength than the

vs and chlorophyll fluorescence is more likely to interfere with vg than vg.
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From these laboratory specira, two points should be noted. The SOz Raman line is fairly
narrow, cm1, or about 12 A for 500 R excitation. This implies that the laser line must
be narrow, with a width less than 1 R. Secondly, fluorescence can be strong, and, with
the wide range of emission spectra from photoplankton and assorted organics, poses a ser-
ious drawback to SO detection. It would be desirable for the detector to display a spec-
trogram to evaluate the background.

For field measurements a pulsed laser is desired to allow depth resolution. Figure 7 is a
diagram of the equipment being assembled and tested in the laboratory and which will be

used in preliminary field studies. Since a laser with the performance parameters required
for SOg detection is not available to us at present and will represent a considerable ex-
pense, the Figure 7 equipment will be used to obtain the strong water line, vg, and to

study fluorescence and environmental problems which may interfere or prohibit SO detection.
Figure 8 shows a Raman spectrum obtained in the laboratory with this system. A '1/4-meter
monochromator with a laser line rejection filter was used as the detector in the preliminary
laboratory studies. Interference filter detectors are also being evaluated for detection.

1osp 5300 k
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F/4 Monochromalor

20& Interferema Filters

Figure 7. The equipment undergoing
testing for use in field studies
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Figure 8. H,0 Raman with pulsed Nd:glass

SUMMARY

The SO3 Raman spectrum has been obtained from true seawater samples in the laboratory using
a CW laser Raman spectrometric system. Radiometric calculations indicate the feasibility
of obtaining usable SOs Raman signals in a field experiment. The most serious difficulty
expected is from fluoréscence of phytoplankton and other organics.
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DEVELOPMENT OF A LASER FLUOROSENSOR FOR AIRBORNE
SURVEYING OF THE AQUATIC ENVIRONMENT

Michael P. F; Bristow
Canada Centre for Remote Sensing
Wayne R. Houston and Raymond M. Measures
University of Toronto

ABSTRACT

A field based laser fluorosensor, employing a pulsed nitrogen laser and telescope-photo-
multiplier detector system, has been successfully tested at night from a cliff top site
overlooking Lake Ontario providing target ranges greater than 274 meters (900 feet). Re-
motely sensed spectra and amplitude changes in the fluorescence emission of natural waters
have shown potential as a water quality indicator. In this connection, a convenient in-
ternal reference standard with which to gauge the amplitude of the fluorescence signal is
realized in the form of the concurrent water Raman emission. Remote measurements of oil
fluorescence emission spectra suggest that airborne laser fluorosensors are capable of
detecting and characterizing the oil in a given slick and that environmental aging of these
slicks does not significantly alter their fluorescence emission signature. This system
has now been modified for airborne operations witi. a view to the eventual development of a

compact lightweight emission scanning laser fluorosensor.
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INTRODUCTION

Feasibility studies (refs. 1, 2, 3) have demonstrated the ability of laser fluorosensors to
remotely monitor the environment. Potential applications of this technique are oil spill
detection and characterization, water pollution monitoring, algae distribution surveying
and water movement studies. The present work, conducted at the University of Toronto's
Institute for Aerospace Studies, has been directed principally at developing a system cap-
able of remotely detecting and monitoring the signatures of environmental pollutants.
Fluorescence excitation and emission spectra can be characterized by a number of parameters,
viz. band centre and peak wavelengths, bandwidth, shape, structure and amplitude (in rela-
tion to some reference level). In addition, a pulsed laser excitation source provides a
means for obtaining fluorescence lifetime values. Utilization of these properties thereby
allows for detecting and monitoring the concentration of a specific pollutant or for char-
acterizing the unknown pollutant in an unambiguous manner. In the latter case, the remote-
1y sensed fluorescence data would be compared to laboratory measurements made on material
obtained from the suspected source with the purpose of providing evidence suitable for use
in prosecution proceedings.

An ideal fluorescence excitation source might be a continuously and dynamically tunable
(dye) laser capable of being programmed to generate both excitation and emission spectra

in conjunction with a real time spectrally scanned receiver system. However, as an interim
step in the development of such a device, a field laser fluorosensor has been constructed
using a fixed ultraviolet wavelength laser source cojoined to a single fluorescence recei-
ver capable of being spectrally scanned by sequential use of a series of interference fil-
ters. The latter expedient is acceptable in the static target situations encountered in
ground-based field operations but is not suitable for airborne operations where ground
resolution requirements, in relation to the aircraft ground speed, dictate the need for a
real time spectral scanning capability.

FIELD LASER FLUOROSENSOR

The field unit shown schematically in Figure 1 consists of a commercially available pulsed
ultraviolet laser as the excitation source joined to a telescope-detector with the tele-
scope field of view adjusted so as to overlap the laser excitation field of view for any
desired range down to 24 meters (80 feet). The non-coaxial configuration was chosen because
of the large diameter and divergence of the laser beam (see TABLE 1). The AVCO C950 laser
whose characteristics are given in TABLE 1, provides pulses of relatively high peak power
but of low brightness due to the high beam divergence inherent in the superadiant nature
of the lasing process. A doubling of beam brightness was achieved using a sphero-cylindri-
cal spectacle lens but at the expense of enhancing the far field mode structure shown in
Figure 2. This improvement in brightness was not sufficient to provide for adequate sig-
nal discrimination against the solar background shot noise for all but the most efficient
fluorescent targets such as low viscosity crude oils. By careful spatial filtering of the
returned fluorescence image corresponding to the laser beam modes shown in Figure 2, a 10X
reduction in background signai Eould be achieved with a resultant signal to background
noise ratio improvement of 10 /Z, However, as this was found to be insufficient to facili-
tate daytime fluorescence measurements, the present experiments were conducted under dusk
or nighttime conditions. In order to monitor the laser output power, a quartz beam split-
ter was arranged to deflect a small percentage of the laser output beam onto a PIN photo-
diode whose peak output had been calibrated to give a direct measure of the peak laser
power. This power monitor unit is located over the output aperture of the laser unit as
shown in Figure 1. The receiver-detector system consists of a Criterion CD-8, 20 cm dia-
meter, f/8 Newtonian telescope with a two-channel photomultiplier detector package in
place of the usual eyepiece (see Figure 1). The principal detector monitors the fluor-
escence return signal via a series of interference filters in conjunction with an ulgra-
violet blocking filter; this series of sixteen 100 R wide filters ranging from 4000 A to
7000 R are placed sequentially in front of the detector via a side access port so as to
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build up a fluorescence emission spectrum of the target. The peak amplitude of the returned
fluorescence pulse as recorded on an oscilloscope is then corrected for detector and filter
spectral effects and plotted as a function of emission wavelength to provide a fluorescence
emission spectrum of the target under investigation. The second photomultiplier monitors
the backscattered laser pulse via a quartz beamsplitter and an interference filter centered
at 3371 R. The backscattered laser pulse, when displayed on the other time base of a two-
channel oscilloscope, together with the laser output pulse from the PIN photodiode, pro-
vides information regarding the laser output power and the target range. A typical oscillo-
gram is shown in Figure 7. The upper trace shows the laser power output pulse at zero time
on the left-hand side, together with the backscattered pulse indicating a target range of
approximately 121.9 meters (400 feet). The intervening noise signal is due to the atmos-
pheric aerosol which in this case is a barely visible evening mist. Arriving in coincidence
with the laser backscatter, the fluorescence emission from an oil covered target, is shown
on the lower trace. For operation in the field, the laser fluorosensor was supported in
the universal mount shown in Figures 3 and 4. This mount is readily panned and tilted al-
lowing the laser and telescope to be pointed at any desired target. The two axes of rota-
tion are then locked by means of pneumatically operated clamps. Control and operation of -
the laser and receiver unit together with the electronic monitoring function were conducted
from the field van shown in Figure 3. Power for the experiment was supplied by a 5 kw gen-
erator carried in a two-wheel trailer together with the laser gas supplies and cooling and
vacuum pumps.
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Figure 1. Schematic diagram of laser fluorosensor system
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TABLE 1.-CHARACTERISTICS OF THE AVCO C-950 NITROGEN/NEON LASER

NITROGEN LASER NEON LASER
Centre Wavelength 3371.1 & 5400.56 A
Bandwidth 1R 10-2 &
Pulse Width (FWHM) 9 nsec 3 nsec
Maximum Pulse
Peak Power 140 kw 20 kw
Pulse Repetition Rate 1 to 100 pps  (continuously
variable) or single shot.
Polarization Unpolarized
Output Beam Dimensions 5amx .3cm
Full Angle Far Field
Beam Divergence 26.2 mrad x 4.5 mrad
(unmodified)
Full Angle Far Field
Beam Divergence with 13.5 mrad x 3.6 mrad
Sphero-cylindrical lens
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Figure 2. Far field spatial mode structure of nitrogen/neon laser
as modified by sphero-cylindrical spectacle lens
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Figure 3. Mobile laser fluorosensor system at field site
overlooking Lake Ontario near Toronto

Figure 4. Field laser fluorosensor unit
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FIELD SITE

The clifftop field site overlooking Lake Ontario, is located on the Scarborough Bluffs, east
of Toronto. The geometry of the location, shown in Figure 5, provides a minimum laser-to-
water surface range of about 274.3 meters (900 feet) at an angle of incidence of 73 degrees,
When corrections are made for surface and Lambert cosine law effects, this range becomes
equivalent to a normal incidence flying altitude of 487.7 meters (1600 feet).

LASERFLUOROSENSOR

@MO

TN

LAKE ONTARIO

Figure 5. Schematic showing geometry of field test site

As a check on the operation of the laser fluorosensor, a series of water fluorescence emis-
sion measurements were made for different ranges and corresponding angles of incidence.

The experimental measurements are shown in Figure 6, with the data point for the minimum
range of 271.9 meters (892 feet) normalized to unity. The intensity of the water fluor-
escence signal is seen to fall off with increasing range in accordance with the theoreti-
cal relationship

cos § (1 - R®
r’

I (r,p) <<

where ¢ is the angle of incidence, r is the target range and R(@) is the specular reflect-
ance for Ehe water surface at angle #. Cos § represents the Lambert cosine law dependence
of I, 1/r“ represents the inverse square 1aw variation of I with range and (1 - R(@#) pre-
dicts the reduction in the fluorescence emission due to surface reflection losses of the
incident laser beam. The fall in amplitude in the fluorescence return at ranges beyond
223.1 meters (1060 feet) was observed to coincide with a marked reduction in water turbid-
ity suggesting that the suspended material responsible for the turbidity is in some way re-

lated to or responsible for the increased water fluorescence.
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Figure 6. Variation of water fluorescence with range
OIL FLUORESCENCE MEASUREMENTS

With the purpose of remotely sensing fluorescence emission spectra of oil spills, a 6.1 m
x 4.6 m (20 ft. x 15 ft.) oil containment boom was constructed and anchored in a spot di-
rectly under the cliff top location of the laser fluorosensor. Unfortunately, under the
action of even light winds or water currents, the typically 37.9 leter (10 gallon) quanti-
ties of crude oil placed within the boom, were rapidly swept under the boom sides and lost
from the target area. Apparently o0il boom technology requires that the boom skirts be sev-
eral meters deep in order to prevent loss of oil in this manner, Tracking the movement of
an oil slick even during dusk conditions proved to be difficult in spite of the increased
surface reflectivity of the oil in relation to the water background, although this pro-
blem could have been avoided by use of a low light level TV camera. In addition, record-
ing of meaningful fluorescence spectra requires that a wniformly thick oil slick be pre-
sented to the laser beam. This unfortunately was not possible due to the rapid and ir-
regular manner in which oil slicks tend to disperse. The oscillogram shown in Figure 7
was obtained during one of these attempted experiments. The lower trace shows the fluor-
escence emission from the o0il slick at 4600 A together with the corresponding background
water fluorescence signal. The water fluorescence was obtained by panning the laser fluor-
osensor unit off the oil slick onto a region of uncontaminated water having the same

range as the oil target. The oil fluorescence signal, originally about 20X larger than
that of the water background, has a value about 6X larger after a 30-minute dispersal. The
double pulse shape of the return signal is due to the difference in the return path lengths
of the upper and lower far field laser beam modes striking the lake surface at 73° angle
of incidence. The backscattered laser pulse seen on the right-hand side of the upper trace
is somewhat smaller than that normally seen from lake water, as most of the laser radiation
is either absorbed in the oil slick or lost to specular reflection. In fact, a backscat-
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tered laser signal was not observed for the initially opaque oil slick. As a result of
the above mentioned oil slick problems, a field experiment was performed in which the oil
slick was simulated by smearing a thin film of crude oil onto a 1.2mx 2.4m (4 ft. x 8
ft.) steel sheet. This target was situated at a Trange of about 121.9 meters (400 ft.) from
the laser fluorosensor with the sheet oriented for normal incidence of the laser beam. A
typical result for this target is shown in the oscillogram of Figure 8. The resultant
emission spectra obtained from these measurements is shown in Figure 9, together with a
laboratory spectrofluorometer emission scan on a sample of the same crude oil. The in-
strument used was an AMINCO SPF 125-S Scanning Spectrofluorometer employing a xenon lamp/
grating monochromator excitation source in conjunction with a grating emission monochroma-
for with a Hamamatsu R446S photomultiplier having a modified S-20 spectral response. The
0il fluorescence emission measurements were facilitated using an opaque sample accessory.
For purposes of comparison, the field results shown in Figure 9, obtained with a photomul-
tiplier having an S-20 spectral response, have been normalized to the modified response
of the R446S detector. The two spectra appear to be in agreement on the short wavelength
side of the peak but the bandwidth of the spectrofluorometer curve is somewhat narrower
than that for the laser fluorosensor data. An explanation for this discrepancy.has not

Range: 272 meters

Angle of Incidence: 73°

0il Sample: Leduc Crude, API, 39.8°
Exposure: 20 pulses

Upper Trace: Horizontal scale: 200 nsec/cm

Vertical scale: 200 mV/cm

Lower Trace: Horizontal scale: 20 nsec/cm
Vertical scale: 100 mV/cm

Time increasing to the right.
Figure 7.  Lower trace shows fluorescence emission (4600 R) from oil
slick (large pulse) and water background (small pulse) on Lake

Ontario off Scarborough Bluffs. Upper trace shows laser
output and backscattered pulses.
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Range: 120 meters

Angle of Incidence 0°

0il Sample: Leduc Crude, API, 39.8°
Exposure: 20 pulses
Upper Trace: Horizontal Scale: 100 nsec/cm

Vertical Scale: 100 mV/cm

Lower Trace: Horizontal Scale: 10 nsec/cm
Vertical Scale: 500 mV/cm

Time increasing to the right.
Figure 8. Lower trace shows fluorescence emission (4400 R)

from an oil film on a steel sheet. Upper trace shows
laser output and backscattered pulses.

FIELD :- .
LASER FLUOROSENSOR

OIL : LEDUC CRUDE, APl GRAVITY 39.8 STEEL SHEET AT 122 m RANGE
EMISSION FILTER BANDWIDTH 100 X
DETECTOR SENSITIVITY 5-20

LABORATORY :-
SPECTROFLUOROMETER
BFr
EXCITATION 337 &
EANTWIDTH 220 %
el EMISSION  SCANNED
BANDWITTTH 110 R
DETECTOR SENSITIVITY MODIFIED S-20
4 =
SPECTROFLUORO -
2r METER

LASER FLUOROSENSOR
{MODIFIED §-20) .

1 L I ]
3000 4000 5000 6000 7000

EMISSION WAVELENGTH A (X)

Figure 9. Fluorescence emission of crude oil film using
laser fluorosensor compared to laboratory measurement.
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been found but several possibilities exist. First, it is possible that certain volatile
fluorescent hydrocarbons have evaporated from the sample on the steel sheet thereby broad-
ening and displacing the emission spectra to longer wavelengths. However, it cannot be
ruled out that the spectrofluorometer contributes its own artefact to the data. The emis-
sion monochromator uses a_grating blazed for peak efficiency at 5000 R but typical effi-
ciency curves for a 5000 X blaze grating supplied by Bausch and Lomb, do not significantly
change the spectrofluorometer curve. This discrepancy was also encountered in the water
fluorescence measurements and is further discussed later. Ultimately, good agreement be-
tween laborafory and remotely sensed data must be obtained, particularly in the case of
0il pollution, where close correlation between airborne and laboratory measurements is

essential if this type of data is to be used as evidence in the prosecution of those re-
sponsible for the pollution.

A question frequently asked is: 'What effect does prolonged environmental exposure have on
the fluorescence spectra of crude oil and refined 0il products?" Again, in the absence of
a controlled oil spill, a thin layer of crude 0il was applied to a steel sheet target and
exposed to the effects of sun, wind, rain, and atmospheric oxidation. Field measured spec-
tra obtained immediately after application of the oil film and also after a 48-hour exposure
period are shown in Figure 10. Aging reduces the fluorescerce signal to about half that

of its initial value but does not induce any significant change in shape or position of the
spectral curve. No explanation is yet available for the reduction in the amplitude of the
fluorescence signal with time or atmospheric exposure. It is possible that some of the
more highly fluorescent aromatic hydrocarbons located in the surface layers of the oil film
are lost to the atmosphere leaving an asphaltic matrix layer which acts as an optical bar-
rier. Clearly this type of situation is less likely to occur in the non-static situation
encountered in a real oil spill. Laboratory fluorescence studies performed by Parker at
the Admiralty Materials Laboratory in the UK (ref. 4) confirm the general conclusion of the
present aging measurements. In addition, the effects of prolonged exposure of crude oil

to a marine environment has been studied by a group at the Woods Hole Oceanographic Insti-
tution (ref. 5) who have shown that crude oils stranded at sea can maintain their composi-
tional integrity for periods of many months.

2 RESH
LOCATION UTIAS FIELD SITE, RANGE 121 m ¢/ —o— FRESH OIL FIIM
TARGET  THIN FILM OF LEDUC CRUDE —0— ﬁ“&g" (48 hr)
10— SMEARED ON .9 mx 2.4 m
STEEL SHEET FILTER BANDWIDIH 100 &
DETECTOR SENSITIVITY S-20
a -
t
B
<
- 8}
£
(1}
>
g4
W
[ 4
2
ol— L | |
3000 4000 5000 6000 7000

EMISSION WAVELENGTH, A (A)

Figure 10. Effect of environmental exposure on fluorescence emission
of crude oil film using laser fluorosensor.
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WATER FLUORESCENCE MEASUREMENTS

Water fluorescence, or more specifically the fluorescence of the dissolved material in nat-
ural waters, is generally regarded as an annoying background signal level against which
either laboratory or field fluorescence measurements are made. However, preliminary meas-
urements have shown that this water fluorescence, although small in relation to typical
0il, dye or chlorophyll signals, is also amenable to spectral analysis particularly when
using a high power ultraviolet laser as the excitation source. Unpublished results ob-
tained at the University of Toronto's Institute for Aerospace Studies (ref. 6) have demon-
strated a number of interesting trends. Laboratory spectrofluorometer measurements on a
wide range of river an% lake water samples have indicated excitation spectra peaking be-
tween 3400 & and 3500 A for the majority of samples. The emission fluorescence spectra,
however, could be differentiated according to whether the sample location was considered
polluted or relatively clean. Samples obtained from relatively unpolluted northern rivers
and lakes had emission spectra peaking between 4100 R and 4325 X whereas samples obtaineg
from sitei close to dense population centers tended to have emission peaks between 3900
and 4150 A. Unexpectedly, the samples from the uninhabited regions tended to exhibit strong-
er fluorescence signals than those from the unpopulated regions although a coarse correla-
tion between pollution level and fluorescence signal was observed for the latter group of
samples.

The nature of this blue water fluorescence is not well understood, but is thought to be due
to the aqueous solutions of large complex organic molecules, particularly of the aromatic

type. For natural unpolluted waters, some of the materials thought to contribute to this
fluorescence signal are:

a. Airborne dust, pollens and bacteria,

b. aqueous extracts and decay products of wood and vegetation,
c. aqueous extracts of soil material, and
d. algae, bacteria, molds and fungi.

In addition to the material described above, polluted river and lake waters will contain
dissolved organic material from a number of possible sources; viz.

a. pulp and paper mill effluents,

b. sewer effluents,
c. 1industrial effluents other than those in group (a) and
d. leaked crude and refined mineral oil constituents from watercraft, shipping and

industrial sources.

It has been suggested that this characteristic blue water fluorescence might be used as a
water quality indicator possibly as a measure of total organic carbon. However, in view
of the relatively low intensity of this water fluorescence being close to the shot noise
limit of the fluorescence detector, a series of experiments was conducted at the field site
to determine the ability of the laser fluorosensor to produce water fluorescence spectra.
Figure 7 indicates the amplitude relationship between the fluoresgence of a slick of crude
oil and, in this case, the background water fluorescence at 4600 A. This measurement was
made approximately 30 minutes after the formation of the slick at which point the oil fluor-
escence signal had fallen to one-third of its original value under the dispersive action
of wind and wave action. Figure 11 shows the fluorescence emission spectra for Lake On-
tario water obtained at the Scarborough Bluffs field site on three different occasions but
for otherwise similar conditions. A number of interesting features are apparent from these
three spectra. The day-to-day variation in overall amplitude of the fluorescence signal
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indicates a significant change in the concentration of the substances responsible for this
fluorescence. The center wavelength for the fluorescence band lies at about 4350 A which
is more consistent with the fluorescence of unpolluted lake water than that of the rela-
tively polluted water to be expected close to a population center such as Toronto (ref.
6). In addition to thg principal fluorescence band, there appears to be a secondary peak
in the region of 5100 A. The band located at 6850 X is due to chlorophyll a, probably
in the form of algae. The reason for the inverse relationship between the chlorophyll a
peak at 6850 A and the blue water fluorescence band is not clear. Possibly the presence
of a specific pollutant responsible for the blue water fluorescence has an adverse effect
on the surface algae population or, alternatively, the substances causing or associated
with the water fluorescence are blocking the chlorophyll excitation or emission radiation.
The final feature of interest in these spectra concerns the apparent rise in the fluores-
cence signal below 4000 A. In the absence of an interference filter for this region, a
sample of the same lake water was obtained and a simulated field measurement conducted in
the laboratory. The water fluorescence spectra of Figure 12 was obtained by using the
pulsed nitrogen laser as the excitation source together with a scanning type monochromator
(Heath EU-700/E) operated in a 90° configuration with the sample cell located immediately
adjacent to the monochromator entrance slit. The photormultiplier detector was of the side-
Rn type (EMI 9781B) with a modified 5-5 spectral response. The spectral feature at 3810
in Figure 12 is clearly identified as the band for the OH vibrational stretching
mode of water. The large amplitude of this 60 A wide Raman band in relation to the water
fluorescence signal was a little surprising. This arises because the Raman emission is
characterized by a given vibrational frequency shift in relation to the exciting frequency
whereas the fluorescence emission is characterized by a fixed electronic transition which
is independent of the exciting frequency. Consequently the ratio of the peak amplitude
of the Raman emission band to that of the corresponding fluorescence emission will bear
an inverse relationship to the bandwidth of the exciting laser radiatign. Laboratory
spectro-fluorometers employ excjtation bandwidths of the order of 100 A whereas the nitro-
gen laser has a bandwidth of 1 A resulting in a corresponding enhancement of the water
Raman band in relation to the water fluorescence emission. However, the ratio of the
peaks of the Raman band to that of the fluorescence band was initially somewhat smaller,
having a value of 7 rather than the value of 17 for the spectra in Figure 12. This is
due to the effect of the intense ultraviolet laser radiation in producing photolytic de-
composition of the large complex organic molecules responsible for the water fluorescence
which are probably present in concentrations below the parts per billion range. The prin-
cipal reason for interest in this water Raman band lies in its possible use as a built-in
standard with which to compare the water fluorescence signal in much the same manner as
the molecular nitrogen Raman band is used in atmospheric Raman LIDAR pollution studies.
However, in contrast to the atmospheric case, careful consideration must be given to differ-
ential absorption and scattering effects on the fluorescence and Raman emissions particular-
ly with regard to operation over polluted or turbid waters.

It is the essence of remote sensing that the monitoring device be able to record the exper-
imental data without having recourse to direct immersion sensing or laboratory analysis to
provide a complete and detailed picture of the substances being observed. Clearly any laser-
fluorosensor must faithfully reproduce the required fluorescence spectra without incurring
any unknown environmental or instrumental effects. In Figure 13, the water fluorescence
emission spectra obtained using the laser fluorosensor, is compared to that obtained using
the spectrofluorometer for the same water samples. As in the case of the oil fluorescence
comparison, the spectral profile obtained on the spectrofluorometer is narrower and located
at shorter wavelengths than that obtained using the laser fluorosensor. As a check on the
validity of these two measurements, the water fluorescence spectra of Figure 12, also for the
same sample, is displayed in Figure 13. The agreement between the field measurements and
those from the laser-monochromator appears to confirm the earlier suggestion that the spec-
trofluorometer data contains some instrumental artefact. This suggests that care must be
exercised when comparing fluorescence spectra obtained using different instrumental methods.
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Figure 13. Water fluorescence emission excitea at 3371 A using
laser fluorosensor compared to laboratory measurements

A complete understanding of this water fluorescence phenomenom will only come when it is
possible to unravel the chemistry of the specific substances involved. However, the possi-
bility that the fluorescence of natural waters might be used as a water quality or pollution
indicator would seem to demand further investigation.

ATRBORNE LASER FLUOROSENSOR

As the logical development in the evolution of this sensing device, the laser fluorosensor
is now being prepared for airborne testing and operations in a DC3 aircraft at the Canada
Centre for Remote Sensing in Ottawa. A schematic of the modified field laser fluorosensor
unit is shown in Figure 14. Rather than aim the system directly downward or use individual
output and return beam folding mirrors, a single high quality UV reflecting mirror was used
to fold both beams. Apart from this mirror and the antivibration shock mounts, the system

is identical to that employed in the field trials as described above. However, the electron-
ic monitoring and recording system has been improved with a view to recording the continuous-
ly changing fluorescence target information on a real time basis (see Figure 15). A wave-
form digitizer (Lecroy WD2000) provides for real time analog-to-digital conversion of the
individual returned fluorescence pulses which are then processed by an airborne data acqui-
sition system (ADAS) and stored on magnetic tape. Real time capability is also provided by
the two chamnel sampling oscilloscope (Philips PM3400) which outputs DC voltages to an os-
cillographic chart recorder (Honeywell 1858) corresponding to the peak laser and fluorescence
return pulses. A nanosecond resolution time interval counter (Hewlett-Packard 5360) which

is gated by the laser output and returned pulses, provides a value for the target range.
Photographs of the airborne laser fluorosensor and the complete airborne system including

the laser support package and electronics are shown in Figures 16 and 17, respectively.

As an assistance to both nighttime aircraft navigation and target location, the laser fluo-
rosensor is used in conjunction with a wide angle low light level TV camera (Cohu 2856).
Crude and refined oils have optical refractive indices in the region of 3/2 whereas that for
water is closer to 4/3 so that the normal incidence reflection from an oil slick will be
approximately 4% as against 2% for water. The higher visible region reflectivity of the
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oil slick in effect contrasts the oil slick against the water background thereby facilitat-
ing nighttime observation of o0il spills with the low light level TV camera.
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Figure 14. Schematic of field laser fluorosensor
as modified for airborne operations

DISCUSSION

Testing of the laser fluorosensor device in a fixed field site location has provided much
experience and information ultimately needed in the design of a light and compact produc-
tion type airborne laser fluorosensor.

Promising results have been obtained, suggesting that the laser fluorosensor has the abili-
ty to remotely detect and record the spectral fluorescence characteristics of natural and
polluted waters. However, much analytical work must be done if the laser fluorosensor is
to become a useful airborne water quality monitor.

To date, the laser fluorosensor is the only remote sensing device which has demonstrated an
ability to detect and characterize an oil spill. This ability becomes all the more impor-
tant when it is realized that there exists no easy method for taking samples from an oil
slick after the slick has been located by an aircraft whether it be a spotter plane or a
sophisticated sensing platform,

a. Direct sampling of the spill from the aircraft is hazardous to both aircraft and
shipping alike.

b. Hovercraft and helicopters produce strong side and down-drafts which tend to dis-
perse the oil slick.

c. Patrol boats generally arrive 1 to 2 hours after the first sighting of the spill
by which time the slick has either dispersed or drifted to another location.

d. It is almost impossible to sight an oil slick from the bridge or deck of a ship
until the vessel is directly over the slick due to the poor oil-water contrast
encountered when the slick is viewed in near grazing incidence illumination.

133



Seaplanes encounter the same difficulties as given in sub-paragraphs b. and d.,
above.

€.

It is essential that an oil spill be characterized in such a manner that its identity can
be directly related to that of a sample removed from the suspect ship. This information
would then be used as evidence in legal proceedings against those responsible for the slick.
Remotely sensed fluorescence excitation or emission spectra appear to provide the informa-
tion needed to constitute a characteristic signature suitable for use as prosecution evi-

dence.
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Figure 15. Schematic of airborne laser fluorosensor
monitoring and recording system
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Figure 16. Airborne laser fluorosensor unit

Figure 17. View of complete airborne system including
laser support package and electronics
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MULTIWAVELENGTH LIDAR FOR REMOTE SENSING OF
CHLOROPHYLL a IN ALGAE AND PHYTOPLANKTON

Peter B. Mumola, Olin Jarrett, Jr., § Clarence A. Brown, Jr.
NASA, Langley Research Center

ABSTRACT

A theoretical and experimental analysis of laser induced fluorescence for remote detection
of chlorophyll a in living algae and phytoplankton is presented. The fluorescent proper-
ties of various species of algae representative of the different color groups are described.
Laboratory measurements of fluorescent scattering cross sections is discussed and quantita-
tive data presented. A '"scattering matrix" model is developed to demonstrate the essential
requirement of multiwavelength laser excitation in order to make accurate quantitative meas-
urements of chlorophyll a concentration when more than one color group of algae is present
in the water (the typical case). A practical airborne laser fluorosensor design is consid-
ered and analysis of field data discussed. Successful operation of the Langley ALOPE (Air-
borne LIDAR Oceanographic Probing Experiment) system is described and field measurements
presented. Accurate knowledge of o, the optical attenuation coefficient of the water, is
shown to be essential for quantitative analysis of chlorophyll a concentration, The feasi-

bility of remotely measuring o by laser radar is discussed.
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INTRODUCTION

The application of laser radar (LIDAR) techmology to the remote detection of fluorescent
materials, notably oil and chlorophyll a, in natural waters has been actively pursued by
several groups in the United States and Canada. 'Thus, a common appreciation for the value
of remote sensing to the oceanographic community and to those responsible for water quality
management is assumed. NASA Langley Research Center (LaRC) has initiated a program to
develop an airborne fluorosensor with a multiwavelength laser for detection of chlorophyll
a in living algae where more than one color group may be present.

LABORATORY SPECTRAL STUDIES

Since chlorophyll a is insoluble in water, this molecule is found in a host material, name-
ly, algae and phytoplankton. The optical properties of the host material alter the fluores
cence excitation and emission spectra of the chlorophyll a molecule. Therefore, knowledge
of the optical properties of the algae as it is found in nature, rather than in acetone ex-
tract solution, is required for remote detection application.

During the past year, 1aRC personnel have measured the fluorescence excitation and emis-
sion spectra of over 45 different species of algae representative of the four major color
groups (blue-green, green, golden-brown, and red). Using Rhodamine B as the fluorescence
standard, the effective fluorescence cross section has been computed as a function of ex-
citation wavelength for cach species. The apparatus used in these studies is shown in Fig-
ure 1. A fluorescence spectrophotometer, Hitachi Perkin-Elmer Model MPF-2A, was modified
to improve its red sensitivity. The spectra were recorded on both a strip chart and mag-
netic tape, the latter being used for input to computer programs for cross-section computa-
tion. Excitation spectra were measured by setting the emission monochromator to 685 nm,
the chlorophyll a fluorescence peak, and scanning the excitation wavelength from 360 nm up-
ward through the visible spectrum. Both monochromators were set to 5 nm slit widths to ob-
tain usable signal levels without destroying the spectral resolution. Emission spectra
were then recorded by setting the excitation monochromator to the optimum excitation wave-
length (determined above) and scanning the emission monochromator from that wavelength up-
ward to 800 n. Similar spectra were measured using a 10-7 molar solution of Rhodamine B

in ethanol. Cross sections were then computed using these spectra and accounting for in-
strumental effects such as monochromator transmittance and lamp spectral intensity. Figure
2 shows typical results for algae of each color group. Note in the emission spectra that
each color group emits strongly at 685 nm due to the presence of chlorophyll a, though other
fluorescent components may also be present, The excitation spectra differ from one color
group to another, each having a unique region for optimum excitation. Spectra within any
given color group are, however, remarkably similar as shown in Figure 3 for golden-brown
algae. Therefore, one can characterize the fluorescent excitation properties of any algae
by the color group to which it belongs. Note that these cross sections were computed for
single molecules of chlorophyll a and a spectral resolution of 5 nm. This will be impor-
tant in the analysis which follows.

It should be noted that no single excitation wavelength can be chosen to uniformly stimulate
chlorophyll a fluorescence in all algae. Spectral overlap also precludes selective excita-
tion of any one color group of algae. One method of measuring the concentration of chlor-
ophyll a can be shown in the LIDAR equation:

ax_ 82 o (A)nP () For single fluorescent
EA D T f o scatterer
———2 AX 01 ((X + 0.1)
ZR f f
or
prec 2 4
£A fig_iz_ Ufj(xl)fj Po()‘l) For four different
T2 AN.®e 2 .C a. ¥ a fluorescent scatters
2R f 17 =1 £ 1
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where
£ = optical efficiency of receiver

A = effective area of telescope primary mirror (m2)

8ip = detector bandwidth (nm)
Mg = fluorescence bandwidth (20 nm)
8, = receiver field of view (rad)

01 = laser beam divergence (rad)
" n = density of chlorophyll 3_(molecules/m3)

effective fluorescence cross section (mz)

9f

Po

1}

laser output power (W)
k‘= laser wavelength (nm)
a = attenuation coefficient of water (m'l)

Prec = fluorescent power received (W)

and subscripts f and 2 refer to fluorescence and laser wavelengths, respectively. If all
algae were equally excited at a given wavelength, then the upper form of the equation (for
single o f) would be appropriate. As previously shown, algae of each color group possess
different cross sections and therefore the bottom form of the LIDAR equation is required.
Since the algae color groups have different fluorescence excitation spectra, the use of four
wavelengths yields four equations. These equations can thus be solved simultaneously to
yield the unknown chlorophyll a concentration contained in each color algae. In matrix form

this can be expressed as

P.(ry) o1
rec ag +q1 0 . s 0 cfl()‘l) . . .Gf4()\l) np
PO(AZ)
= Cl (!_-T—- - . O v .
£ 7%
Prec(M4) 0o 0 2ol '( ) .( ) .
4 . e o A + « GO A n
L.rec - L.. af +a4—/\—ﬂ 4 f4 4—4\-— 4,J
or
Prec:()\lﬂ)T Pﬁ]
= Cl X
P (},) n
~“rec {J __5
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Therefore

r— =

nl preco‘la
- ¢kl “-1ﬁ . >

y Prec(A4)

_ L J

The elements contained in the x matrix are obtained from the cross-section measurements pre-
viously described. The laser gower at each wavelength can be measured and controlled. Ac-
curate knowledge of o at all the appropriate wavelengths is essential for quantitative de-
temmination of chlorophyll a concentration. Since af > ap for all laser wavelengths under
consideration (450 nm-650rm), and the optical window of water decreases with increased wave-
length, at least og must be known to yield quantitative measurements. In open waters, data
are available indicating that o does not vary rapidly in time or space. In estuarine and
coastal waters, changes are more rapid and frequent measurements of a must be obtained.

Assuming o is known or measurable, the above matrix technique can be used to determine the

concentration of chlorophyll a in the algae present in a body of water and the distribution
of chlorophyll a in different color groups.

EMISSION MONOCHROMATOR EXCITATION MONOCHROMATOR
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Figure 1. Laboratory apparatus used in fluorescence
and emission studies
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MULTIWAVELENGTH LIDAR INSTRUMENT

Figure 4 shows a schematic of the airborne LIDAR system which has been designed and fabri-
cated at Langley Research Center to demonstrate the multiwavelength concept of chlorophyll
a detection. The laser used in the system is a unique four-color dye laser pumped by a
single linear xenon flashlamp. Figure 5 shows a cross-sectional view of the laser head.
The head consists of four elliptical cylinders spaced 90° apart with a common focal axis.
The linear flashlamp is placed along this axis and its radiant emission is equally divided
and focused into the dye cuvettes located on the surrounding focal axes.

form the active medium for the four separate dye

permits only one color at a time to be transmitted downward to the water.
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Figure 4. Schematic of the airborne multi-wavelength LIDAR system
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Figure 5. Cross-sectional view of the four-color dye laser

used for fluorescence excitation
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The resulting fluorescence from the chlorophyll a is collected by a 25.4-cm diameter Dall-
Kirkham type telescope. The signal is then passed through a narrow bandpass filter centered
at 685 nm and on to the photomultiplier (PMI) tube. The PMT signal is digitized by a wave-
form digitizer and stored on magnetic tape for later analysis. The dyes and the water for
the flashlamp are kept at a uniformly cool temperature by the refrigerator. The high volt-
age supply, charging network, coaxial capacitor, trigger generator, and a spark gap along
with a central control system complete the package. Figure 6 shows the completed system
prior to installation in a helicopter for flight evaluation.

Figure 6. Complete LIDAR package prior to helicopter installation

Field tests have been performed to demonstrate the capabilities of this new technique. Ex-
periments have been conducted from a fixed height platform (George P. Coleman Bridge, York-
town, Virginia) 30 meters over the York River. This site was selected because it was con-
venient to both Langley Research Center and the Virginia Institute of Marine Science (VIMS).
Ground truth data (chlorophyll a concentration, salinity, and algae species iuentification)
were supplied by VIMS using standard water sampling techniques. The attenuation coefficient
(at 632.8 nm) and temperature of the water were measured on site by Langley personnel.

Measurements were made every half-hour on the evening of July 9, 1973, and data are shown
in Figure 7 along with ground truth data supplied by VIMS. Chlorophyll a concentrations
shown represent the total chlorophyll contribution of all color groups. ~A bioassay per-
formed by VIMS indicated a dominance of golden-brown (dinoflagellates) and green algae,
The ratio of golden-brown to green algae varied over the course of these measurements and
was in general agreement with observations obtained with the LIDAR system.
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Figure 7. Field data acquired from a fixed height platform
over the York River near Yorktown, Virginia

On July 25, 1973, the LIDAR system was successfully flight-tested over the James River be-
tween Hampton Roads and the Chickahominy River. Flight altitude was 100 meters and the
speed was 120 km/hr. The flight path is shown in Figure 8 along with the chlorophyll a
concentration measured over the 138-kilometer roundtrip flight. During each flight leg,
the laser was fired at a rate of 0.5 pps. The data plotted in Figure 8 represent average
chlorophyll a concentration over each leg. For example, leg No. 16 data represent an aver-
age of 63 laser firings of each color or 252 shots total. There is sufficient data, how-
ever, from each four-color cycle to determine chlorophyll a content without averaging. In
fact, the data collected over the entire flight (approximately 75 minutes long) represent
nearly 500 separate chlorophyll a measurements.

START 1045 EDT
|_FiNSH 1200 EDT

CHLOROPHYLL. g (ug/1)
O—NUWbhOO~N

FLIGHT LEG
Figure 8. Flight data acquired over the lower James River
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SUMMARY AND CONCLUSIONS

A multiwavelength laser fluorosensor has been developed to remotely measure chlorophyll a
concentration in living algae in natural waters. Preliminary field operation of the instru-
ment and technique has been demonstrated from both fixed height and airborne platforms.

The maximum operational altitude of the present system is approximately 300 meters (esti-
mate based on data acquired at 100 meters). Laser energies varied with color from 0.6 mJ
(454.4 nm) to 7.15 mJ (598.7 nm). These values are well within the eye safe limits at the
operational altitude of 100 meters. Greater energies could be employed to accommodate high-
er altitude operation., System stability appears to be excellent as evidenced by the fact
that laser alignment has remained constant for over six months.

The major disadvantage of all optical remote sensors of water constituents is their depend-
ence on foreknowledge of o (or its components "a" and "s" due to absorption and scattering,
respectively) to make quantitative measurements. This is true for the multiwavelength

LIDAR technique as well. Data can only be analyzed quantitatively when o is known. Studies
are now underway to determine the feasibility of remote « measurements by LIDAR techniques.

It may be possible, with slight instrument modifications, to monitor o simultaneously with the
chlorophyll a concentration.
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THE FLUORESCENCE OF CHLOROPHYLL AND YELLOW SUBSTANCES IN NATURAL WATERS:
A NOTE ON THE PROBLEMS OF MEASUREMENT AND THE
IMPORTANCE OF THEIR REMOTE SENSING

Charles S. Yentsch
University of Massachusetts

In other publications, I have emphasized that there are two chromophylls which, if sensed
remotely from high altitude, would revolutionize our ability to survey large areas of the
world's oceans. The chromophylls of importance are: the photosynthetic pigments of plank-
ton algae and a group of organic materials frequently termed "dissolved yellow substances'.
These are derived from plants and carried into the ocean by fresh water inflow.

Using water color as an index when attempting to estimate the concentration of these chrom-
ophylls, an immediate problem is that the attenuation characteristics of each overlap (Fig-
ure 1). The attenuation of light by phytoplankton (P) is characterized by two distinctive
bands (450, 675 nm) which represent absorption by chloroplastic pigments. Yellow substances
(Y) are characterized by a strong ultraviolet absorption which "tails" over into the visible
region. In combination with the chromatic characteristics of pure water, these two chromo-
phylls characterize the color of natural waters. The problem is that the specific influence
by either substances is not easily distinguished. Because of this “competitive absorption'
one might suggest that chlorophyll should be remotely sensed at long wavelengths (i.e.,675
nm) - where yellow substance absorption is minimal. The difficulty with this approach is
that a very weak backscattered signal occurs at these wavelengths, primarily because of in-
tense absorption of light at long wavelengths by water alone.

-
L/ . P ] TN/ ¥
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Figure 1. The attentuation of light by phytoplankton (P) and dissolved

ellow substances .
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One might also think that competitive absorption would not be much of a problem in the open
ocean.

Here waters of high salinity would be relatively free of yellow substance; hence,
chlorophyll detection (

via color change) would not be complicated by the presence of yellow
substance. Unfortunately,

this is not the case. The attenuation characteristics of particu-
late matter from the open ocean show that in a

ddition to phytoplankton (Figure 2, note peak
at 675 nm), there are particles which strongly attenuate at short wavelengths which is again
the characteristic of yellow substances.

IPSWICH BAY
9/w0/73

-

Figure 2. The attenuation of light by particulate matter (NP) from
coastal water, and phytoplankton (P). (In the former, note
the high attenuation at short wave length).

A means of minimizing competitive absorption is by the use of fluorescence.

: Fortunately,
the chloroplastic pigments and yellow substances are fluorophores, and their excitation and
emission characteristics are different.

For example, the fluorescence characteristics for
naturally occurring particulate matter is shown in Figure 3. It should be noted that this
is the same sample whose attenuation characteristics are shown in Figure 2.

The fluorescence
analysis (excitation spectra) resolves the difference between light absorption by phytoplank-
ton as opposed to the other particulate organics.

Furthermore, Figure 4 shows excitation
and emission characteristics of dissolved yellow substances are different from chloroplastic
fluorescence.

One can distinguish between the two chromophylls by exciting at 350 nm and
measuring fluorescence at 500 nm, to measure yellow substance, and by exciting at 450 nm and
measuring fluorescence at 675 nm, to measure chlorophyll.
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Figure 3. Fluorescence excitation and emission characteristics of
particulate matter from coastal water. (Curves are uncorrected
for phototube response.)
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Figure 4. Fluorescence excitation ane emission characteristics
dissolved yellow substances from coastal waters.
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Many of you sitting in the audience are probably thinking: OK, we can distinguish between
the two. Of what use is this? The answer can only be completed by emphasizing the impor-

tance of each measurement. The relationship between ocean productivity (chlorophyll) and

the distribution of pelagic fishes has been emphasized as a means of scouting fields for

commercial catch. In coastal water, it has also been emphasized that chlorophyll determina-

tion (via water color) would be a unique technique for the estimation of the extent of eu-
trophication.

: I should like to emphasize the importance of the latter, which when armed
with the ability to sense the amount of fresh water in the coastal zone, offers the means of
assessment of the source of the problem., This is where sensing yellow substance becomes of
importance. In a sense, one can think of the amounts of yellow substances as a colorimetric
or rluorometric indicator* of fresh water...or to put it simply, the source of the organics
is largely through fresh water run-off situations. Figure 5 is an example of how chloro-
phyll and yellow substances are used as environmental indicators. The section of stations
runs from the mouth of the Merrimack River out some 35 miles to sea. The influence of the
river in coastal waters is shown by low salinities and high yellow substances near the
coast. The reasons for the high productivity (high chlorophyll) is that the river is heav-
ily polluted. Thus, the source of eutrophication of the coastal waters is traced either by
salinity or yellow substance to the Merrimack River.
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Figure 5. A section of observations of chlorophyll and yellow substance
extending from the mouth of the Merrimack River into the Gulf of Maine.

=Light absorption at 350 nm and fluorescence at 500 nm are directly related.

150



You might ask, can organic compounds such as yellow substances truly serve as a conservative
indicator of salinity? To put it another way, why is it not decomposed? The answer to this
lies in the unknown organic structure of these compounds and their biochemical relationships.
However, for the sake of this discussion, a comparison between yellow substances and salinity
shows a surprisingly close correlation (Figure 6), one which could be used to estimate the
percentage of fresh water (Merrimack) throughout this section.

Merrimack to sea - s A
A. temperature and salinity

B. continuous chlorophyll fluorescence (solid line).

Black dots, extracted chlorophyll; dotted line, dissolved
yellow substance.

wr il
% T 350 am

NAUTICAL MILES

Figure 6. Comparison of salinity and dissolved yellow substance.

In conclusion, the high altitude observer equipped with temperature, chlorophyll and yellow
substance sensors has the possibility of detecting the magnitude of eutrophication and its
sources in coastal waters. The laser induced fluorescent devices are likely the technical
means, and as they become available, I predict they will become a major tool in coastal
zone management,
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LIFES: LASER INDUCED FLUORESCENCE AND
ENVIRONMENTAL SENSING

Wayne R. Houston, D. G. Stephenson, and Raymond M. Measures
University of Toronto - Institute for Aerospace Studies

ABSTRACT

A laboratory investigation has been conducted to evaluate the detection and identification
capabilities of "laser induced fluorescence" as a remote sensing technique for the marine

environment. The relative merits of fluorescence parameters including emission and excita-
tion profiles, intensity and lifetime measurements are discussed in relation to the identi-
fication of specific targets of the marine enviromment including crude oils, refined petro-
leum products, fish oils and algae. Temporal profiles displaying the variation of lifetime
with emission wavelength have proven to add a new dimension of specificity and simplicity

to the technique.
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INTRODUCTION

Laser induced fluorescence represents a powerful new tool for investigating the envircnment.
A number of groups in the last year or so have indicated that this technique may be employed
for the remote detection of several broad classes of targets (Ref. 1, Z, 3, 4). In an earl-
ier paper at this meeting, Dr. Bristow described the field results obtained with the proto-
type laser fluorosensor developed at the University of Toronto Institute for Aerospace
Studies (UTIAS). Our recent activity has concentrated upon exploring the identification
potential of this new kind of remote sensor. We have been able to demonstrate that a tunable
laser fluorosensor may enable the API gravity of a sample of crude oil to be determined
fairly directly. A study of the variation in the fluorescence lifetime with emission wave-
length has revealed a new kind of spectral signature that could have significant ramifica-
tions in the field of remote sensing.

LASER INDUCED FLUORESCENCE PARAMETERS

Several features of laser induced fluorescence possess potential information relating to the
target under excitation. However, in order that a measured parameter be specific to a con-
stituent of interest, the fluorescence observed must be either solely from that constituent,
or easily discriminated from background fluorescence. This condition can be satisfied in
any one of the four sets of circumstances described below.

(1) The target has no background medium (e.g. an optically thick oil spill on water).

(2) The quantum yield of the background medium is extremely small compared to the
component of interest.

(3) The laser wavelength, AE, is tuned so as to only excite the constituent under
observation.

(4) The fluorescence wavelength, i, is selected so as to arise only from the component
of interest.

The amplitude of the fluorescence within a given spectral interval is the simplest parameter
to monitor; however, its usefulness is very limited since its interpretation 1s both complex
(requiring a thorough knowledge of the instrumental calibration, geometrical situation and
the medium under investigation) and in many instances ambiguous. The emission spectrum
represents some improvement, for although the spectral response function of the photodetec-
tion system has to be known, it is possible with this approach to detect the presence of
broad classes of targets under limited conditions. A further improvement in specificity
can be attained from a study of the excitation profiles. These spectral signatures can be
generated using a tunable dye laser to Sweep the exciting frequency through the absorption
band of the target under consideration.®

In many ways measurement of the fluorescence lifetime of the medium under study represents
both a simple and informative parameter. Such an approach can only be used when the optical
depth of the medium is small enough that the lifetime is much larger than the double transit
time through the medium. In order to be able to ascertain the lifetime associated with the
returned radiation, allowance has to be made for the finite response time of the system.

¥TT the target is optically thick to the laser radiation and the attenuation is absorption
dominated (as opposed to scatter dominated), saturation prevents the emission amplitude
from reflecting the true excitation profile (see Ref. 3, p.5 and Ref. 5, p. 226).
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The laser backscattered radiation as observed through the photodetection system was used to
evaluate the instrumental response function. A best fit to this curve was then obtained
and a series of profiles generated to simulate the convolution of this response function
with a number of exponential decay curves of the form:

£(t) = 1 e-t/r

T
where 1 is the fluorescence lifetime of the constituent of interest. The full width at

half maximum, t¥’ for this set of synthesized waveforms was then plotted against t to yield
the simple relation

T=1.26t, - 6.75 (nsec).

Figure 1 illustrates the experimental fit to both the synthesized response function and a
fluorescence decay curve with a lifetime of 6.5 nsec.
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Figure 1. Instrumental response and typical convoluted fluorescence signal shape

INSTRUMENTATION

Spectrofluorometer.-- Profiles of fluorescence emission were recorded using an Aminco SPF-
125S ‘spectrofTuorometer. This instrument utilized a 150 W xenon high pressure DC arc lamp
as the source of excitation. For analysis of optically thick samples, a modified sample
compartment provided for normal incidence of the excitation beam and near normal angle of
view of the fluorescence emission. The excitation and emission monochromator gratings were
blazed at 300 nm and 500 rm respectively, and the photomultiplier was a Hamamatsu (HTV)
R446S having modified S-20 response.
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Tunable Laser Fluorosensor.-- The tunable laser fluorosensor is illustrated in Figure 2.

e main distinguishing feature of this fluorosensor was that it provided a selection of

two wavelengths of excitation, 347 nm and 460 nm. These particular wavelengths were chosen
in order to accommodate that range of crude oil absorption wavelengths expected. The 347
nm excitation was provided by a TRG-104A second harmonic ruby laser. Typical output pulses
had peak powers from 150 to 450 kw and full width at half maximm of 17 nsec. Approximately
8% of the above power was actually used for fluorescence excitation, while the main portion
was used to optically pump an organic dye laser, which in turn, furnished the 460 nm radia-
tion. The dye laser, shown in the schematic of Figure 2, had an approximate conversion
efficiency of 6%, a range of tunability from 440 nm to 480 mm, and spectral bandwidth of
about 1.5 nm. The detection of fluorescence was accomplished using an optical glass objec-
tive lens (14.5 cm DIA., 33 cm F.L.), and an EMI-9781B photomultiplier, together with appro-
priate filters. The ruby laser power was monitored by an E.G. § G. SD-100 photodiode. The
photomultiplier and photodiode signals were displayed on the upper and lower beams, respec-
tively, of a Tektronix Type 556 oscilloscope.

The targets studied using this instrumentation included several types of crude oil spills on
a 91.5 cm depth of water, located 1.5 metre from the fluorosensor. The water tank used a 50
cm DIA. stainless steel lining for low fluorescence yield, and was outfitted with an over-
head mirror placed at 45° to the horizontal plane.

(DO-97810)

Figure 2. Photograph and schematic of the
tunable laser fluorosensor
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Short Pulse Laser Fluorosensor.-- The short pulse laser fluorosensor, which was used in

luorescence Ii1fetime eterminations, is illustrated in Figure 3. The source of excitation
was a modified Phase-R model N250 nitrogen laser having 337.1 mm output pulses of 1 kw peak
power, 4,0 nsec full width at half maximm, and repetition rate up to 20 pps, shown in Fig-
ure 4. The fluorescence from the target was collected by a quartz lens and focused on the
entrance slit of a Spex 1700 II monochromator. A Schott KV-370 filter was used to block
stray scattered laser radiation. The monochromator bandwidth was about 3.0 mm. The mono-
chromated light was then detected using an EMI-9781R photomultiplier, and the resultant
pulse was displayed on a Tektronix 7704 oscilloscope having 150 Mz bandwidth. The angle of
35° between the laser beam direction and the detector line of sight was chosen in such a

FLUORESCENCE SAMPLE

MIRROR

NITROGEN LASER

|

‘ PHASE-R N250
I

I LENS

[}

H.V, POWER

P.M. TUBE (13 cm F.L,)
SUPPLY (EMI 9781 B)
/ FARADAY CAGE
—
TR
NKV 370 UV BLOCKING
FILTER
o
TEKTRONIX 7704 | SPEX 1700 II
OSCILLOSCOPE MONOCHROMATOR

Figure 3. Schematic of fluorescence lifetime measurement apparatus

Figure 4. The Phase-R N250 nitrogen laser and associated equipment
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cence decay being detected.

wéy as to abolish polarization effects which distort the exponential nature of the fluores-

(The nitrogen laser output was polarized parallel to the plane
containing the laser beam and the detector line of sight.)

EXPERIMENTAL RESULTS AND DISCUSSION

Crude Petroleum Qils

Sample Descriptio

Ties, peak emission wavelengths and fluores

"TABLE 1.-PETROLEUM CRUDE OIL SAMPLE DESCRIPTION

n.-- A list of the crude oil samples studied, together with their API gravi-
cence lifetimes is presented in TABLE 1.

SAMPLE |  OIL TYPE ORIGIN | SUPPLTER | GRAVITY | PEAK EMISSION | FLUORESCENCE
NUMBER (°API) | WAVELENGTH,», | LIFETIME AT
N {nm) Ay (nsec)
6 BUNKER C I™P. OIL 16.7+.2 525 < 2 2.4 £ .2
14 CHAUVIN CRUDE B.P. 26.0 477 2.1
1 MED. CRUDE ANGOIA | GULE 26.4 456 2.9
9 MIDALE CRUDE | SASK. TEXACO 30.1 460 2.0
13 CABINDA CRUDE | ANGOLA | GULF 30.2 470 3.8
154 MIDALE CRUDE | SASK. SHELL 30.3 458 2.4
3 MED. CRUDE SASK. SHELL 31.0 454 2.4
10 NSO ALBERTA | B.P. 36.0 454 3.9
15iv | IP CRUDE ALBERTA | SHELL 37.3 465 3.9
12 SPECTAL BLEND | ALBERTA | TEXACO 38.0 468 5.5
4 SOUR CRUDE ALBERTA | SHELL 38.9 440 4.1
11 LEDUC CRUDE WEST.CAN| IMP. OIL 39.8 465 6.5

Excitation wavelength was 337.1 nm in all cases.

Emission Profiles and Relative Intensity.-- Emission profiles for the crude oil samples

were generated by th
wavelength was chosen to simulate nitrogen la
0il emission profiles are presented in Fi
bandwidths are indicated on the figure.

gure 5.

e spectrofluorometer, using an excitation wavelength of 337.1 nm.
ser excitation.

This

Five examples of the crude

Fxcitation and emission monochromator
The Schott UG-11 filter was placed at the output

of the excitation monochromator in order to block the low level broad band unmonochromated
The Schott KV-370 "cut-on"

leakage emitted from the
filter was placed at the input to the emission side i
radiation.

ent samples is sufficient to permi

excitation side of the instrument.
n order to block scattered ultraviolet

Note that the emission profiles peak in the range from 450 to 550 nm and have
bandwidths (TWHM) of about 150 mm.

emission wavelength is plotted against the oil

by Fantasia et al (Ref. 4) be
However, the trend
Clearly, other parameters wou

lengths.
of 0il API gravity.

specific oil type.
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comes apparent:

The variation in peak emission wavelength among differ-
t a small degree of identification potential.
API gravity, a rough trend first reported
lighter oils fluorescence at shorter wave-
is not pronounced enough to be used for remote determination

When peak

1d be required to remotely identify a
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Figure 5. Fluorescence spectra of crude oils

If the relative intensity, measured at the peak emission wavelength, is plotted against API
gravity, another rough trend develops; as pointed out by Fantasia et al (Ref. 4), the inten-
sity increases as the API mmber increases. Once again, this trend is not predictable

enough to be used by itself to identify the oil type. Furthermore, the inherent difficulty
in remotely measuring the relative intensity makes this parameter unattractive for identi-
fication’ purposes. Nevertheless, intensity can be used as a non-specific detection parameter.

Excitation Profiles.-- According to the work of Fantasia et al (Ref. 4), peak excitation
wavelengths for crude oils vary from 350 to 450 nm. In addition, a rough trend was observed
in that lighter oils had progressively shorter peak excitation wavelengths. With a view to
checking these results, and to assessing the remote sensing potential of this phenomenon,
the "tunable laser fluorosensor" (see paragraph two under Instrumentation) was employed.
For each of four crude oil samples, two measurements of the fluorescence intensity were
made at a fixed emission wavelength of 567 nm; the first measurement F(x;. Xp) resulted
from 347.1 nm excitation (second harmonic of ruby laser) while the second measurement

F(x,. AF) resulted from 460 nm dye laser excitation. Since the relative intensities are
proportional to the corresponding excitation coefficients (Ref. 3), the ratio F(i.. Ap)/
F(x_. Ap) will reflect the shape of the excitation profile for each of the samples’investi-
gatéd. Since the wavelengths, A, and A,, were chosen to encompass the range of excitation
profiles likely to be encountereé, one would expect, in the light of the.results of Ref. 4,
that F(A . Ap)/F(},. Ap) should increase as the API gravity number increases. The results
obtained, as shown In Figure 6, verify this expected trend.

It is reasonable to expect that use of a dye laser having a large range of tunability (e.g.
coumarin dyes with exciplex operation (Ref. 5)), should enable one to locate the peak exci-

tation wavelengths rapidly and accurately in order to extend the identification potential
of the technique.
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Lifetimes.-- Using the short pulse laser fluorosensor, the fluorescence lifetime was measured
at emission wavelength intervals throughout the emission profiles of each crude oil sample.
In Figure 7, temporal decay spectra are presented for five representative crude oils. Note
that for each sample, the lifetime increases monotonically with emission wavelength. Note
also that from sample to sample, the lifetime increases with increasing API number. This
lifetime variation with API is in agreement with the preliminary investigation of Fantasia

et al (Ref. 4); however, their lifetime measurements are suspected to include large experi-
mental errors as a result of an incorrect deconvolution procedure (Ref. 6).

A comparison of Figures 5 and 7 leads one to immediately appreciate the higher quality of
information available from the lifetime-spectral signatures. It is obvious from Figure 5,
that it would be very difficult to distinguish between four of the oil samples on the basis
of their emission profiles; on the other hand, Figure 7 shows that these samples could read-
ily be distinguished from a study of their decay characteristics as a function of wavelength.
It should be noted that in a practical airborne system, the exact measurement of a lifetime
is not necessary, owing to the virtually linear relationship between pulse width and life-
time. Consequently, any laser fluorosensor having appropriate temporal resolution should
detect the above trends without need for extensive instrument calibration.
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Mixing Effects.-- With a view to investigating the effect of mixing crude oils, samples 10
and 6 were mixed in a 1:1 ratio and in a 2:1 ratio. It was found that the resultant emis-
sion and lifetime profiles for these mixtures were identical to those profiles computed on
a weighted average basis. Similarly, the resultant API mumbers were identical to the
weighted average of the parent crude oil API numbers. These results are not surprising in
view of the fact that crude oils are mechanical mixtures of many components. However, theé
results confirm that discrimination of different oil types comprising a well-mixed oil
slick would be impossible.

Aging Effects.-- With regard to the effects of aging on fluorescence parameters, we have
?ouné that exposure of a crude oil spill to air results in no detectable alteration in the
emission profile, However, both relative intensity and temporal profile are subject to
changes. Five representative crude oil samples were poured into aluminum weighing dishes
and their relative intensities at peak emission wavelength, and temporal profiles, were
measured after zero, 24, 48, 72 and 96 hours of air exposure. In parallel, the same tests
were duplicated for 1 mm thick oil slicks on a 1 cm depth of tap water.

The intensity variations observed are summarized in Figure 8. Notice that all samples dis-
played a decrease in intensity, approaching some limiting value after 96 hours of exposure.
In each case, the limiting value was approximately 70% of the initial intensity.

The changes in temporal profile observed for sample 11 are presented in Figure 9. Note that
the lifetime decreased by about 1.5 nsec across the spectrum, reaching a steady value after
about 72 hours. 1In addition, the temporal profile developed a dip about 505 nm, after 48
hours of aging. Samples 1 and 6 developed similar dips in the temporal profile, at 455 and
485 nm respectively. On the other hand, samples 10 and 13 developed no temporal profile
dips, but decreased in lifetime by 2.0 and 1.0 nsec, respectively, across the spectrum.
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It was found that the crude oil spills on water displayed the same aging behavior as the pure

0il samples. Hence, no special effects due to dissolution were noted for the 1 mm oil slicks
considered.

Clearly, the effects of aging can complicate the problem of identification of crude oil
types. However, these effects may be useful if identification has already been accomplished,
since the aging effects can be used to estimate the time of occurrence of a spill. Of
course, this potential is all but completely lost after 96 hours.

Refined Petroleum Products.-- The fluorescence parameters for five refined products, sup-

plied by Imperial Oil Ltd., were determined. Measurements of emission profile and relative
intensity were carried out using the spectrofluorometer. The emission profiles obtained
are presented in Figure 10, Lifetime measurements at 400 nm were made using the short
pulse laser fluorosensor. The lifetimes, relative intensities, and relevant emission pro-
file parameters are summarized in TABLE 2,

The peak emission wavelengths for all five samples were quite near 400 nm being, in general,
much shorter than for crude oils. The bandwidths, all approximately 60 nm, are about one-
half the corresponding values for crude oils. The values of relative intensity were of
the same order of magnitude as the crude oils, but did not differ greatly from sample to
sample. The fluorescence lifetimes were generally much longer than for crude oils, and
displayed a marked variation from sample to sample, as shown in TABLE 2.

It is evident from the results for the limited number of samples studied, that refined pro-
ducts can be differentiated from crude oils using emission profile and lifetime measure-
ments, and that they can be identified more specifically by fluorescence lifetimes measured
at 400 nm.
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Figure 10. Fluorescence emission profiles for refined petroleum products
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TABLE Z.-FLUORESCENCE CHARACTERISTICS OF REFINED
PETROLEUM PRODUCTS

PEAK EMISSI PROFILE LIFil‘IME
SAMPLE CRAVITY WAVELENGH{,X FWHM AT rcs
(CAPI) {(nm) (nm) (nsec)
1. FURNACE FUEL 37.0 395 60 19.8
2. DIESEL FUEL 37.0 393 55 14.1
3. STOVE OIL 42.3 382 56 9.4
4. ESSO EXTRA 55.6 400 57 7.5
GASOLINE
5. ESSO GASOLINE 60.8 400 58 7.7

SUPPLIER: Imperial Oil Limited

EXCITATION WAVELENGTH: 337.1 nm

Fish Oils.-- The fish oil samples are described in TABLE 3. Emission profiles generated
using the spectrofluorometer are presented in Figure 11. These profiles look very much
like those obtained for the crude oils (see Figure 5) having peak emission wavelengths in
the 400 to 470 nm range and bandwidths (FWIM) from 120 to 150 nm, with the exception of
Flounder and Redfish, where multiple peaks were observed. The relative intensities were
also of the same order of magnitude as for crude oils.

TABLE 3.-FISH OIL SAMPLE DESCRIPTION

PEAX EMISSION | LITETIME
OIL TYPE SOURCE SUPPLIER GRAVITY WAVELENGX‘H,/\P AT /\g,
(TAPI) (nm) (nsec)

COD LIVER NEWFOUNDLAND FRB 21,15 420 + 2 3.7+ .3
FLOUNDER BODY NOVA SCOTIA NSP 21.55 407 5.5
462 5.5
REDFISH BODY NOVA SCOTIA NSP 21.85 388 5.9
407 6.9
HERRING BODY NOVA SCOTIA NSP 22,35 470 4.9
HERRING BODY CHEDABUCTO BAY FRB 22.4 460 6.5

SUPPLIERS: FRB - Fisheries Research Board, Halifax, Nova Scotia

NSP - National Sea Products Limited, Halifax, Nova Scotia

EXCITATION WAVELENGTH: 337.1 nm
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Figure 11. Fluorescence spectra of fish oils

Lifetime profiles were generated for each sample using the short pulse laser fluorosensor.
From these results, summarized in Figures 12a and 12b, we can see that although the life-
time values fall into the same range as for crude oils (from 2 to 7 nsec), the shapes of
the temporal profiles differ considerably. Where the crude oil temporal profiles increase
monotonically (see Figure 7), the fish oil profiles display maxima, minima, and points of
inflection.
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In the light of the above results, it is conceivable for an airborne fluorosensor, equipped
only with the emission profile scanning capability, to detect a fluorescent target on the
sea, and to identify it as a crude oil, although in reality, a fish 0il slick may have been
responsible for the signal. Even a lifetime measurement at one emission wavelength may not
be sufficient to discount a false alarm. However, a complete lifetime against wavelength
profile would ensure positive identification. If a target is identified as a fish oil, the
range of variation in emission and temporal profiles studied seems to afford potential for
identification of the type of fish oil. However, the task is complicated by other factors,
since two similar fish oil types from two different locations may display different spec-
tral and temporal characteristics, as our results have shown for the two Herring oil sam-
ples studied.

An aging experiment for fish o0il slicks was carried out simultaneously with the crude oil
aging experiment, following the same procedure as outlined in "Aging Effects'. It was
found that the emission profiles, relative intensity, and temporal profiles did not change
significantly throughout the 96 hours of exposure to air, although the characteristic fish
odors did decrease in strength.

Algae. -- Four algae samples were supplied by the University of Toronto Department of Botany.
The two green algae, Chlorella and Tribonema, and the blue-green algae, Phormidium, were
prepared in Bold's Basal Medium (BBM) and the brown algae, Nitzchia sp., was prepared in a
modified Chu 10 medium. A summary of the analysis for these samples is presented in TABLE

4. The peak excitation and emission wavelengths were determined using the spectrofluorome-
ter, and the fluorescence lifetime for Chlorella was determined using the short pulse laser
fluorosensor. The measured lifetime of 1.5 + 0.2 nsec for Chlorella was in agreement with
values reported in the literature (Ref. 7). The lifetimes for the other algae were so short
that they could not be resolved with our instrumentation. Notice that the peak emission
wavelengths of three of the four samples are contained in a 5 nm interval, but that the

peak excitation wavelengths are sufficiently different to permit identification. Jarrett

et al (Ref. 8) have taken advantage of this fact in designing an algae identification fluoro-
sensor incorporating a four wavelength dye laser as the excitation source.

A preliminary investigation was conducted to assess the potential of LIF for algae quanti-
fication. The relative fluorescence intensities of six different concentrations of each
algae sample were measured using the spectrofluorometer., This procedure could not be
applied to Tribonema since its filamentary growth could not be accurately diluted. The
sample pathlength was 1.001 cm in each case;since the attenuation length of the aqueous
medium at 337 nm was of the order of 50 cm, as estimated by a transmission experiment, the
samples were considered to be optically thin. However, intensity I and concentration C
were not found to follow a linear relationship, but rather, a power function of the form:

I =mcCX

where m and x are constants. The value of x for each sample is given in TABLE 4. Strick-
land (Ref. 9) has attributed this power function behavior to the scattering properties of
the cellular algae structures.

In relating these results to the remote sensing regime, we must realize that in most cases,
the water depth will be much greater than one attenuation length; hence, optically thick
analysis must be used. Consequently, if attenuation is absorption dominated, quantification
is impossible (Ref. 3). lowever, if attenuation is scattering dominated, quantification
may be possible if the extinction coefficient associlated with the scattering process, S3s

is shown. The situation is further complicated by diurnal variations in the algae fluores-
cence characteristics (Ref. 10) caused by changes in cell chlorophyll content under dark
and light conditions.
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TABLE 4.-FLUORESCENCE CHARACTERISTICS OF ALGAE

PEAK PEAK
ALGAE TYPE2 EXCITATION EMISSION LIFETIMEa EXPONENT®
WAVELENGTHP | WAVELENGTHP,C X
(nm) (nm) (nsec)
CHLORELLA 436 + 2 683 + 2 1.5+ .2 .83 £ .04
(Chlorophyceae) 470
TRIBONEMA 428 680 d e
(Xanthophyceae)
PHORMIDIUM 376 660 d .77 + .03
{Cyonophyceae)
NITZCHIA SP. 460 685 d .88 + .04

NOTES: a Samples supplied by University of Toronto Dept. of Botany

b Excitation and Emission Bandwidths were 22 nm

¢ Excitation Wavelength was 337.1 nm

d Lifetimes too short to be resolved

© Dilutions could not be performed on this sample.

CONCLUSIONS

If a laser induces fluorescence in a remote target of the marine environment, the process
of identification of the target must progress through two phases. The first phase is the
target family identification. In most cases we have studied, a measurement of the peak
emission wavelength and emission profile bandwidth is sufficient; however, the differentia-
tio¥ of crude oils and fish oils may require knowledge of the complete temporal-wavelength
profile.

The second phase is species identification within the family. Crude oil types may be class-
ified by a matrix of fluorescence parameters including peak emission wavelength, relative
intensity, peak excitation wavelength and lifetime at the peak emission wavelength. The
ground truth parameter of API gravity may be added to the matrix.

The problem has been found to be complicated by aging effects; however, if crude oil species
identification is accomplished, then the aging effects may be used to determine spill
occurrence time. For the small number of refined petroleum products studied, species iden-
tification seemed most promising using fluorescence lifetime measurements at 400 nm. The
possibility of fish o0il species identification using both the emission and temporal spectral
signatures, allows the application of fish school tracking to enter the realm of feasibility.
Finally, algae species may be identified by their characteristic peak excitation wavelengths.
Quantification of algae, although possible, is complicated first by the necessity for com-
plete knowledge of the water extinction coefficient and second, by diurnal variations in
cell chlorophyll content.
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A REMOTE SENSING LASER FLUOROMETER

R. A. 0'Neill, Anthony R. Davis, Harry G. Gross, J. Kruus
Environment Canada

ABSTRACT

The Water Science Subdivision has built a sensor which is able to identify certain specific
substances in water by means of their fluorescence spectra. In particular, we have used
the sensor to detect oil, lignin suphonates and chlorophyll. A sample does not have to be
placed inside our sensor, making it different from a conventional laboratory instrument.
We have been able to measure the fluorescence spectra of water at ranges up to 75 m and to

detect oil spills on water at altitudes up to 300 m.

Blue light from a laser is used to excite the fluorescence of the target. Any light from
the ambient background illumination, from the reflected laser light or from the induced
fluorescence is gathered by a small telescope focused on the target. Optical filters are
used to block the reflected laser light and to select the wavelengths of interest in the
fluorescence spectrum of the target. The remaining light is detected with a photomultiplier
tube. The background illumination is suppressed by making the detection system sensitive
only to signals which are modulated with the same frequency and phase as the incident laser
beam. The amplitude of the laser induced fluorescence in the wavelength interval selected

by the optical filters is displayed on a meter or strip chart recorder.

The apparatus can be mounted in an aircraft and has been flown with the cooperation of the
Canada Centre for Remote Sensing. We have been able to detect fluorescence of the water's
surface in flights over a controlled oil spill, oil refineries, pulp plants and a controlled
dye spill. It has also been possible to make a tentative interpretation of a number of

features observed during these flights.

On the ground, the system has been used to examine river water, and experiments are being
planned to monitor the chlorophyll concentrations in Lake Erie from on board the M, S,

Martin Karlsen, a ship from the Canada Centre for Inland Waters.
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INTRODUCTION

In today's context of environmental management, it is often desirable to have an instrument
capable of detecting certain specific substances at a distance. The utility of such an
instrument is greatly increased if it is able to operate at night, to perform well under
adverse conditions, to monitor large areas from a variety of land, ship and airborne plat-
forms or to run unattended for long periods.

Fluorescence spectra of some interesting substances dissolved in water are unique. The
fluorescence spectrum of chlorophyll in water shows a strong peak in the red whereas oil in
water fluoresces with a blue-green light. In addition to this uniqueness, the integration
of the intensity of the fluorescence radiation in particular wavelength intervals can yield
quantitative information on the concentrations. The present work describes a remote sens-
ing laser fluorometer constructed to observe organic and biological materials in water.

FLUORESCENCE

Fluorescence occurs when a molecule absorbs a photon and subsequently emits another photon
of less energy. The longer wavelength light (lower energy photon) is known as the fluores-
cence radiation. The optimum wavelength for absorption of 1ight by the molecule and the
wavelengths of subsequent emissions are determined by the molecular structure.

The spectra obtained by observing the fluorescence of different solutions are quite differ-
ent. Figure 1 shows the fluorescence spectrum of chlorophyll in natural river water, (The
spectrum was taken using a filter and a red sensitive photomultiplier tube. This spectrum
is not corrected for photomultiplier or filter response functions. The chlorophyll peak at
680 nm is quite prominent as is the very broad peak near 520 mm. The latter spectral fea-
ture is probably due to the fluorescence of organic material carried by the river water. A
blocking filter, made of 2 layers of Wratten #8 gelatin material and used to attenuate the
laser line, tends to cut out all the light below about 510 nm altering shape of the peaks
in the vicinity of 520 nm.) This may be compared to Figure 2 which shows a spectrum obtained
from an oil-water system. (This spectrum was taken with the land-based fluorosensor using
a variable filter and blue-green sensitive photomultiplier. Laboratory experiments on this
0il showed the fluorescence spectrum to peak near 480 nm; however, the blocking filter used
to attenuate the reflected laser light also attenuates the peak of the oil fluorescence.
Thus, this spectrum and the one shown in Figure 1 do not appear to differ significantly in
the region from 520-600 nm.) Both spectra were obtained by exciting the target with a beam
of blue light having a wavelength of 442 nm. The spectrum of chiorophyll in water has a
peak in the deep red at 680 nm whereas the oil dispersed in water shows a peak in the blue-
green at 520 nm. These spectra were taken with the remote sensing laser fluorometer which
contains filters (see The Laser Fluorosensor) to render the instrument insensitive to
wavelengths less than 510 nm. Thus, the maximum of the oil fluorescence (below 500 mm) is
not observed. Pure water does not fluoresce.

A general feature of fluorescence spectra of solutions is the presence of very broad peaks.
The width of these peaks is a handicap in the identification of specific types of mineral
oils. It has been shown (Fantasia et al. 1971) that the fluorescence peaks in the spec-
trum often shift to the larger wavelengths the greater the API density. Even over wide
variations of the API gravity (5°-40°) the peak emission wavelength does not vary more than
50 nm. In laboratory measurements, the fluorescence spectrum has some importance as a
method of distinguishing oil types. With the device described in present work, however,
only gross features in the fluorescence spectrum are used to distinguish oil or chlorophyll
from the background of other fluorescing organic materials in the water.
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Another property of*fluorescence radiation is a detectable time delay between the excitation

of the molecule and the fluorescence emission,
istic decay times; for mineral oils, however, they are all virtually the same.
et al, (1971) found the lifetime to lie between 9 and 21 ns with most at1l0 + 1 ns.

Many substances have different character-
Fantasia

The spreac

In the fluorescence lifetimes is insufficient to make use of this property for identifying

different types of oils.

The system described in this work is unable to take advantage of

any information about the nature of the target molecules which could be derived from the
fluorescence lifetimes.
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Figure 1. Fluorescence spectrum of chlorophyll in natural viver water.
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Figure 2, Fluorescence spectrum of chlorophyll in an oil-water system.
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REMOTE_SENSING

There are numerous reasons for choosing a remote sensing instrument over a conventional
laboratory instrument when monitoring the general state of the environment. Perhaps the
most obvious is that larger areas may be observed than by point sampling techniques. This
gross overview sometimes enables one to see the forest in spite of the trees. Another
advantage is that by using non-contacting techniques there are fewer problems in the con-
struction of instruments and data acquisition systems to operate in severe environments

or to operate unattended for long periods of time. No sample cells are used so that no
special techniques are needed to keep them clean. Difficulties associated with operating
sensors underwater do not exist with this device.

In the experimental stages of a project there is a great need to make careful laboratory
measurements of selected targets using the remote sensing instrument. This yields valuable
information which can be used later in the interpretation of field measurements. In the
initial stages of development, too, samples must be taken at the same time as field measure-
ments are made to establish the ''ground truth'.

There are two philosophies which may be followed in the interpretation of remote sensing
data. The first (and the ideal) is to expect the sensor to establish unambiguously the
nature of the targets. This involves very sophisticated equipment, a great deal of work

and a vast amount of data. The device described in the present work has not progressed to
this stage but is, in some respects, more specific than the approach frequently used by
exploration geophysicists, by whom the sensor is used to detect anomalies which merit further

investigations.
The Department of the Environment decided to develop an airborne fluorosensor. Initially
it was to be used as a detector of oil spills. Now, however, there are other potential uses

for which the instrument is as well suited as for its original policing role. The present
system is the result of the part time activities of two men over a period of two years.

THE LASER FLUOROSENSOR

The present fluorosensor uses a Helium-Cadmium laser. This is a CW* laser with two lines
which are useful for exciting fluorescence. A blue line at 442 mm has provided the excita-
tion for all the field trials of the fluorosensor. The laser can produce about 25 mw of
light in the blue line whereas an ultraviolet line at 325 nm is about five times less
intense. The ultraviolet line could be useful for exciting the fluorescence of light oils
which do not fluoresce when excited with the blue line. The laser may be converted to
ultraviolet operation by changing the laser cavity reflectors and beam director which steers
the beam onto the target.

As an aid in the detection of the fluorescent signal, the beam is modulated using a tuning
fork chopper. This operates a frequency of 550 Hz.

The receiver consists of an eight-inch Schmitt Cassegrain telescope which is focused onto
the laser spot on the surface of the water. This gathers the ambient background light, the
reflected laser light and the fluorescent light. The light is then focused onto a series
of filters. The divergence of the telescope is approximately the same as the 1 mr diver-
gence of the laser beam.

*CW stands for Continuous Wave. The laser itself is producing light continuously. This is
to be contrasted with a pulsed laser which emits light in short bursts. The laser light in
our system is modulated externally to the laser using a tuning fork chopper.
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Two sets of filters are used. The first is a high pass filter used to prevent reflected
laser light from reaching the detector. The second is a narrow band filter which operates
in the pass band of the blocking filter. By changing the narrow band filters, a spectrum of
the fluorescence radiation may be taken. In the aircraft, a single filter is chosen which
admits only light which could come from the fluorescence of the target of interest. In the
ground based system, a variable thickness dielectric interference filter is used which
enables spectra to be taken without the bulk, weight or resolution of a dispersion type
component.

The filtered beam may be expanded with an eyepiece so that it fills the photocathode of a
photomultiplier tube. In some cases, the beam is merely passed through a field stop to limit
the field of view of the photomultiplier. The particular photomultiplier selected depends
on the expected fluorescence of the target. For examining oil spills, a blue-green sensi-
tive one is chosen whereas a red sensitive photocathode is necessary for chlorophyll work.

The signal from the photomultiplier tube is fed into a lock-in amplifier which also has a
reference input from the laser chopper. Provided the photomultiplier is not saturated,
the lock-in amplifier detects the portion of the returning signal which is in phase with
the chopper. In so doing, the signal due to the constant ambient background illumination
is rejected. The output of the lock-in amplifier, then, is a measure of the fluorescence
signal which has been excited by the modulated laser beam.

The overall systems weigh 100 kg including all power supplies and electronics. About 600
watts of 60 Hz 120 VAC are required. The lock-in amplifier and displays require approxi-
mately 0.8 m of rack space. Floor space required in the present aircraft configuration is
a rectangle 1.3 by 0.3 m with at least 0.6 m vertical clearance. The laser can be oriented
differently to provide a differently shaped package if necessary. Finally, and perhaps the
most important, the complete package costs less than $10,000.

Figure 3 shows a schematic diagram of the airborne laser fluorosensor. (In this system the
fluorescence is excited by using a chopped laser beam. A small mirror is used to direct

the beam downward onto the ground. The reflex sight consists of a 45° mirror which may be
swung into the light path so that visual observations may be made. An eyepiece expands the
beam of light collected by the telescope onto the interference filter and photocathode of
the photomultiplier tube. The wavelength interval detected by the photomultiplier is deter-
mined by the particular interference filter selected on the filter wheel. A lock-in ampli-
fier detects only the signals from the photomultiplier.) Lasers have several distinct
advantages over conventional light sources. The beam has a very high intensity and a diver-
gence of 1 mr in the present instrument. Such fine collimation aids in steering the beam
and obtaining a small bright spot on the target. The fluorescent efficiency of most sub-
stances is quite low, being between 10°% and 1076 fluorescent photons per incident photon;
hence a high incident flux is needed at the target. To keep integration times in the
receiver short enough that fairly small fluorescent features can be detected from the air-
craft, a large returning signal is necessary.

A land based version has also been built. Figure 4 is a schematic diagram of the system,
(Only small changes have been made from the airborne system. There is no beam directing

mirror. A variable thickness dielectric interference filter is used to select the wave-

length interval so that a spectrum may be taken. Only the light arriving from the target
and its immediate surroundings is seen by the photomultiplier due to a field stop.)

177



vock - M 3 | preamp
AMPLIFIER ]

PHOTOMULTIPLIER

FILTER
RECORDER WHEEL

L.

REFLEX
SIGHT

CHOPPER

LASER {} ﬁ\

TELESCOPE

o 4

JAY
SHOCK - MOUNTED PLATFORM

|
|
|
|
|

Figure 3. A schematic diagram of the laser fluorosensor
in the airborne configuration.
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Figure 4. A schematic diagram of the remote sensing laser fluorometer
as it is assembled in its land based configuration.
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FIELD TRIALS
The airborne system has undergone a series of field trials using a DC-3 as a platform.

The first successful airborne test was over a controlled oil spill in the Bahamas. Figures
5a, b, and c show a portion of a record obtained while flying over the land, the water and
the oil spill itself. The wave action tended to pile the oil up into long thick strips or
"'ropes'’. What may be seen in this diagram is a series of sharp spikes as the laser spot
passes over these thicker sections of the spill. A degree of background fluorescence from
the thinner portions of the oil may be seen between the spikes. The passage of the laser
spot over the oil patches was confirmed by observation of reflected laser light with a low
light level television system on board the aircraft. Bright flashes were seen to arise from
the thick ropes of the slick and these may bave been correlated with spikes on the record.
The interpretation of the remainder of the record is highly speculative. It is worth noting
the stép in intensity observed in the fluorescence as the exciting laser spot moved from

the land to the ocean. The high background fluorescence in the water is probably caused by
chlorophyll and other dissolved organic materials. The sharp spike dividing the land record
from the ocean record could be due to oil on the beach, but it might result from reflection
of the beam by the wet sand on the foreshore. The intensity of such a reflection could be
so high as to be seen by the photomultiplier tube even through the blocking filters. One
other possible explanation might be fluorescence due to the small organisms living on the
wet beach.

OIL SPILL LASER FLUOROMETER
KELP GRAND BAHAMA ISLAND
FEBRUARY 1973
ALTITUDE 152 m
FILTER: WRATTEN No.8
NORMAL i l
BACKGROUND

BOAT WAKE 1 SHORE

&— FLIGHT

VERY THIN OIL LAYER
e i SR, U

Figure 5a. Data and interpretation from flight of laser
fluorosensor over controlled oil spill.
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Figure 5b. Continuation of 5a.
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Figure 5c. Another pass over same oil spill shown in Figures 5a § 5b
using a filter with a 10 nm band pass centered at 500 mm.
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Figure 6 shows the record obtained in a flight over the St. Lawrence River at Montreal near
some oil refineries. It was known that oil spills were often seen on the river in this area
and that the oil seemed to gather near the shore, the actual shipping channel being swept
clean by boats moving in the river. The record shows less fluorescence in the centre of the
river than near the edges. The fluorosensor, during these flights, was flown with only the
blocking filter and a blue-green sensitive photomultiplier thus the record shows the sum of
all the fluorescence. Again there is an increase in the fluorescence signal as the aircraft
passes from land to water.

The system has also been flown over rhodamine dye spills in Lake Ontario. In this case the
spill was so small that the spot was only over the spill for a second time. This caused a
single sharp spike on the record.

LASER FLUOROMETER

MONTREAL HARBOUR

1 OIL REFINERY AREA
i ALT - 305 m ABT JULY 16.73

1%

Figure 6. Record of a flight over the St. Lawrence River
in the Montreal oil refinery area.
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Pulp plant effluents have also been overflown. Figure 7 shows the record of a recent flight
over the holding ponds "of a sulphite process paper mill. The water in the pond is a deep

tea colour and has quite high concentrations of lignin sulphonates. The lignin sulphonates
result from the breaking down of the woody cells in the tree. In addition to this, the pond
contains a number of wetting agents. In the laboratory, these substances do not cause the
water from the ponds to fluoresce much differently from samples of ordinary river water. In
pulp plant effluents, the peak at 520 nm in Figure 1 is much more intense than in river water.
Also, the chlorophyll peak was not observed in the spectrum of the pulp plant effluent.

LASER FLUOROMETER
HAWKESBURY MILL

DISCHARGE POOLS

ALT - 305 m ABT JULY 16.73

p—
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STATUTE MILES

N / ° ‘iai;.!ﬁb
/
N %7
) Q!D 7
2,
Q\ 5”;’/ HAKESBURY

Figure 7. Fluorescence record from a flight over a
sulphite process paper mill.
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Pilots find it very difficult'to fly precisely over small areas or in particular directions.
_The fluorosensor yields superior results if flown at low altitudes, slowly, and at night--
all of which make it difficult for the pilot. In the airborne tests, the fluorosensor has

%igg op§§ated successfully at altitudes between 150 and 300 m and at speeds of up to 53 m/s
mph),

Figure 1 shows a spectrum obtained by the land based fluorosensor. Even though a blocking
filter is in the optical train, some of the laser light still appears in the spectrum. In
our limited sampling to date, the broad peak at 520 nm is a common feature in naturaliy
occurring waters of thg Ottawa area. It is probably due to suspended and dissolved organic
material which is carried by the river. The fluorescence peak of lignin sulphonate' appears
at SZQ nm. A water Raman line occurs at 520 mm but is extremely weak and makes no effective
contribution to the size of the peak. The chlorophyll peak at 680 nm in the deep red is
quite important, Chlorophyll is the most common substance in water to fluoresce in the red
portion of the spectrum when excited with blue light.

At one time, chlorophyll fluorescence was used as a measure of the biological activity in the
water. Such data were acquired with very simple laboratory fluorometers. This technique

is now rarely used, though it is able to give the concentration of chlorophyll in the sam-
pled volume. Chlorophyll is incorporated into plant cells in many ways. Some forms are
active biologically whereas others merely store the chlorophyll. It is the way in which

the chlorophyll is being used, as well as the amount, which determines the biological activi-
ty of water. Thus, the only knowledge that chlorophyll exists in a water sample is insuf-
ficient to draw conclusions concerning the condition of the water.

Plans have been made to mount the fluorosensor on a ship from Canada Centre for Inland Waters
in order to monitor the chlorophyll levels in the waters of lake Erie. Canadian waters are
murky enough that the laser fluorosensor is only able to analyze the fluorescence in the top
few centimeters of the lake. This is_due to both the high extinction coefficient of the
water which varies from 0.3 to 2.0 m-1 (Jerome 1973) and to the very low fluorescent con-
version efficiencies. The latter are of the order, typically of 10735 fluorescence photons
per incident photon striking the molecule (Fantasia et al, 1971).

Another possible use, which has yet to be tested, is the detection of phenolic residues
from petrochemical plants.

Though the present programme has emphasized measurements relating to water quality, the same
systems could be used on land. Some suggested uses have been: looking for oil pipeline
leaks and performing airborne forest health surveys. In such measurements it would be cru-
cial and quite difficult to develop a reliable method of interpretation. Were the system to
have an automatic scanning capability so that the fluorosensor could display a scene, both
interpretation and the navigation would be simplified.

OTHER LASER FLUOROSENSORS

Other groups have been working on airborne laser fluorosensors. The Water Science device
differs markedly from the other systems because it uses a CW laser. This particular approach
may not be as versatile as a system using a pulsed laser system, The main advantage of using
a (W laser may be found in the simplicity of the signal handling electronics. The compact-
ness of the fluorosensor package and the low power consumption of the system have enabled
the Water Science device to be flown before some of the larger pulsed laser fluorosensors.
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Measures and Bristow (1971) have built quite a successful system at the University of
Toronto. Their device is now continuing development at the Canada Centre for Remote Sensing
under the direction of Dr. Bristow. It has undergone extensive land based field trials but
has yet to be mounted in an aircraft. This instrument uses a pulsed ultraviolet laser and
uses pulse detection techniques to observe the fluorescence signal in the light gathered by
a telescope. This approach has several advantages. The first is that almost all organic
materials fluoresce when excited by ultraviolet radiation; thus, many potential targets are
available. The second advantage is that a pulsed system enables one to select the range at
which it is desired to measure the fluorescence. This would be useful in clear water where
the fluorescence could be measured remotely as a function of depth. Range gating could make
this device potentially useful for observing fluorescence and Raman effects in the atmosphere
as well. The laser is powerful enough that daylight operation is possible. The system is
handicapped by its large physical dimensions and power requirements.

Fantasia et al (1971) working under contract to the U.S. Coast Guard have constructed a simi-
lar system to the Measures and Bristow device. Fantasia has done a very careful analysis

of the optical parameters of the system and had a great deal of the optics custom built.

This approach has led to a very exotic system capable of measuring fluorescence spectra;
however, the cost is of the order of one hundred thousand dollars. The weight, physical
dimensions and power requirements have prevented the device from flying yet.

Gross and Hyatt (1971) of MacDonnell Douglas have made a study of many fluorescent materials
in order to find possible targets for a remote sensing laser fluorometer. A sensor has not
actually been built,

Kim (1973) and Jarrett et al, (1973) of NASA have constructed a four colour laser which has
been used to excite the fluorescence of algae. It has been observed that different types
of algae fluoresce with different intensities when exposed to light. The fluorescent inten-
sity as a function of the exciting wavelength is a characteristic of the target algae. By
measuring the intensity of the fluorescence spectrum at four wavelengths when excited by
four other wavelengths, one should be able to determine the concentration of up to four
species of algae in the water. Kim (1973) has been able to fly a system operating on this
principle over Lake Ontario to obtain surface algae concentrations. The algae were found
to be more prevalent on the Rochester, N.Y. side of the lake than on the Toronto shore or
in the middle.

Carswell et al. (1971) at York University in Toronto have built a LIDAR system. In this
particular device, the back scattered light rather than the fluorescence radiation is
observed. By measurements of the back scattered intensity and depolarization as a function
of distance, certain atmospheric effects can be detected. A marine system will enable the
depth of the thermocline and the turbidity of the water to be measured.

CONCLUSION

The present system using a (W laser may be used in applications where fluorescence is already
an established analytical tool but where remote sensing of the target is desirable. :

The remote sensing laser fluorometer is able to detect chlorophyll and oil. It seems unlike-
ly that a fluorometric device will be able to make unambiguous identifications of oil types.
The chlorophyll concentration may be related to the chemical oxygen demand or some other
gross indication of water quality. Lignin sulphonates have been shown to fluoresce in much
the same way as naturally occurring waters in the Ottawa area. This could be used by pulp
plants to monitor the contents of holding ponds before their contents are discharged into
the rivers. Investigations employing the fluorescence of naturally occurring water are
likely to make great use of a remote sensing instrument of the type described in tbe present
work. If used in conjunction with stream gauging stations, or controlling automatic sampling
units, a remote sensing laser fluorometer would provide useful information on the temporal
rather than the spacial characteristics of the water flowing past the sensor.
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The fluorosensor may also be employed to make remote reflectance measurements. In this
mode though, it is limited to a single wavelength. Such measurements would be more useful
if additional exciting wavelengths were available.

POSSIBLE FUTURE DEVELOPMENT

The laser fluorosensor was designed to determine whether it was possible to make fluoro-
metric measurements remotely. Hence, the instrument has only the basic components necessary
to test the idea. For detailed or comprehensive surveys, the system may need many additions.
The more obvious improvements, such as increasing the laser power or the diameter of the
telescope to improve the sensitivity of the instrument, are quite straightforward. The pre-
sent system is only able to operate in twilight or darkness because the photamultiplier
tends to saturate before the fluorescence signal is detected. Further study is warranted

in this area so that the fluorosensor's operation may be extended into bright daylight*.
Most of the other improvements are concerned with methods of acquiring the data and the
enhancement of its display to facilitate more certain interpretation.

A low light level television system has been found to be extremely useful during airborne
operations. Primarily, it has shown where the laser spot is striking the ground. At pre-
sent, the system has no automatic way of recording both the fluorescence signal and a view
of the target. This recording may be done by superposing a measure of the fluorescence
signal on a television display of the laser spot as it moves over the water's surface. The
entire display then could be recorded on videotape. While interpretative techniques are

.

being developed with a simple fluorosensor, such a videotape recording would be most useful.

A significant step in the fluorosensor's development would be to incorporate a beam scan-
ning system so that a scene could be swept out. This would yield a map of the fluorescence
similar to a false colour photograph or to a television display of the target with which it
could be compared directly. The scanning display could be checked for fluorescent anoma-
lies. Inan aircraft, a one dimensional scanning system could be used so that a swath was
swept out as the laser passed over the targets. An image could be formed of the fluorescent
target features as well as making the navigation easier. The development of a scanning
system could be quite expensive.

A third improvement could be made by exciting the targets simultaneously with more than one
colour of light. The fluorosensor than could be quite useful for making measurements of
reflected light at several different wavelengths. The additional exciting wavelengths would
yield additional data on the fluorescence which would aid in the interpretation of return-
ing signals.

The addition of more excitation wavelengths could be usefully combined with a fourth improve-
ment: a rapid scanning spectrometer. This would enable the fluorescence spectrum to be
taken very rapidly. The process now is quite time consuming with the circular variable
filter and is too slow to be used in the airborne configuration. Details such as relative
peak heights and peak shapes in the fluorescence spectrum could be quite important in the
identification of returning fluorescence signals from some targets. Many rapid scanning
spectrometers have been developed, some of which could be used almost without modification
on the present laser fluorosensor.

*Daylight operation is possible with pulsed lasers with high peak pulse powers.
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SUPPLEMENT

A set of diagrams (Figures A-1 through A-7) relating to the remote sensing laser fluorometer.
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Figure A-1.

EXCITATION (nm)

Excitation spectra.

(A plot of the intensity of fluorescence at 500 nm as

a function of the exciting wavelength for two fish oils
and one mineral oil. It may be seen that the optimum
excitation wavelengths for fish oils lie in the ultra-
violet whereas optimm excitation wavelength for Bunker
C oil occurs at 467 nm. The remote sensing laser
fluorometer has an exciting line at 442 nm which causes
very little fluorescence in fish oil. The fluorosensor
can be expected to excite the fluorescence of Bunker C
0il quite well. The He-Cd laser also has a line at 325
mm in the ultraviolet which could be used to detect
fish oils.)

189



190

NORTH SLOPE CRUDE

EXCITATION

400

442

320

Figure A-2.

Fluorescence spectra of north slope crude oil for
several different exciting wavelengths.

(The laser fluorosensor uses an excitation line at
442 mm for which the fluorescence is about 80% of
what could be obtained if the oil were excited by
radiation with a wavelength of 400 nm. The fluoro-
sensor may also use an ultraviolet excitation line
at 325 nm which would not induce strong fluores-
cence in North Slope crude oil.
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Figure A-3. Fluorescence spectra for Bunker C fuel oil at two wavelengths.
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Figure A-4.
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Fluorescence spectra from lubricating oil at two
excitation wavelengths.

(Detection of lubricating oil would be improved
if the remote sensing laser fluorosensor were to
use ultraviolet excitation.)
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Figure A-5. Fluorescence spectra of Rhodamine 6G dye for two wavelengths.
(The fluorosensor is able to excite fluorescence using a wave-

length of 442 nm. This spectrum was taken with a conventional
laboratory instrument and may be compared to Figure A-6.)
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Spectrum of Rhodamine 6G dye obtained with the land based version
of the remote sensing laser fluorosensor at a range of 27 m.

(A variable thickness dielectric interference filter was used to
select the wavelengths for the spectrum. This spectrum should be
compared to Figure A-5 which is a fluorescence spectrum taken of
the same material on a conventional grating type laboratory
instrument.)
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Figure A-7.

A diagram emphasizing that the laser fluorosensor
should be operated at the same time as other sensors

(One sensor alone is seldom able to provide complete
identification of an anomaly; hence, information
from other sensors working in different portions of
the electromagnetic spectrum must also be used.
Though, in this diagram, only passive sensors are
shown operating with the laser fluorometer, other
active sensors could also be used.)

195






AN AIRBORNE LASER FLUOROSENSOR FOR THE
DETECTION OF OIL ON WATER

Hongsuk H. Kim
NASA-Wallops Station

and

George D. Hickman
Sparcom, Inc.

ABSTRACT

An airborne laser fluorosensor for the detection of oil derivatives on water has been tested.

The system transmits 337 nm u.v. radiation at the rate of 100 pulses per second and monitors

fluorescent emission at 540 nm. Daylight flight tests were made over the areas of controlled
0il spinrsiand}glrdiwtzional reconnaissance flights were made over a 50 km stretch of the Dela-

ware Rivér to éstabiish ambient oil baseline in the river. The results show that the device

is ca;;ableof monitoring and mapping out extremely low level oil on water which cannot be

identified?by ordinary photographic method.
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A remote active sensor system designed to detect laser induced fluorescence from organic
and biological materials in water has been suggested by a mumber of investigators (Refs. 1,

2). Several different laser airborne systems are in the process of being developed in both
the U.S. and Canada (Refs. 3, 4).

In this presentation, we would like to report our successful operation of an airborne laser
fluorosensor system which is designed to detect and map surface 0il, either natural seepage
or spills, in large bodies of water. The test flights were conducted in daylight; prelim-
inary results indicate that the sensitivity of the instrument exceeds that of conventional
passive remote sensors which are available for the detection of an oil spill today.

The package was jointly developed by NASA Wallops Station and Sparcom, Inc. of Alexandria,
Va. The salient features of the system consist of a pulsed nitrogen laser, a f/1 28 cm
diameter Cassegranian telescope and a high gain photomultiplier tube (RCA 8575) filtered by
a U.V. blocking filter (0.01% and 0.3% transmission at 337 nm and 390 mm, respectively).
The laser produces a nominal 1 m joule pulse of 10 nsec duration at 337 mm contained in a
rectangular beam having a half angle divergence of approximately 30 by 2 mradians. The
repetition rate 100 pulses per second affords one good spatial resolution when operated
from an aircraft flying at 300 km/hr. Figure la is a photograph showing the laser equip-
ment installed in NASA DC-4 aircraft. Figure 1b is an illustration of Figure la.

b

;
o

£
N

Figure la, Laser fluorosensor installed in NASA's DC-4 aircraft
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Figure 1b. An illustration of Figure la

The laser induced fluorescence of the oil in the 450 - 500 nm spectral region was monitored.
Each return pulse (Figure 2) was fed into a range gated multimode analog-to-digital (A/D)
conversion unit which recorded the peak amplitude of fluorescence. Even though the pulse
width of the return fluorescence did not exceed 10 nsec, the width of the input gate to the
ADC was considerably wider. This was to insure signal detection as fluctuations occurred
in the laser/oil distance which were produced by aircraft motion: roll, pitch and changes
in altitude.

UPPER TRACE: FLUORESCENCE SIGNAL DETECTED
.LOWER TRACE: 50ns WIDE RANGE GATING

TARGET : AMBIENT OIL AND RIVER-WATER BACK-
GROUND, CLEAR SKY, 1¢:30am.
Figure 2. Delaware River overflight. 24 Aug. 73
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A 35 mm frame aerial camera equipped with a wide angle lens viewed the same area on the
water surface as seen by the fluorosensor. Our experiences gained through previous NASA
aircraft photo surveillance missions have shown us that the color photographic image tech-
nique is still one of consistently reliable positive indicators of the presence, position,
and extent of the oil slicks (Ref. 5).

The first series of flight tests were conducted in conjunction with a controlled oil spill
off Norfolk, Virginia in May 1973. This spill consisted of 1514 liters (400 gallons) of
No. 4 grade heating oil. The field experiments were managed by the U.S. Coast Guard. The
NASA aircraft, containing both the 0il fluorosensor and a dual channel microwave radiometer
(Ref. 6), flew over the spill site at altitudes ranging from 30.48 - 304.8 meters (100 -
1000 ft). Figure 3 illustrates typical return signals which were obtained at the airborne
receiver from the surface oil as the plane passed over the slick. The data shown in this
figure was obtained from an aircraft altitude of 121.9 meters (400 ft.). This figure shows
a large but fairly constant background previous to (< .41 seconds) and after (> .48 seconds)
the plane's passage over the spill. There is a marked increase in the amplitude of the
detected signal during the period of time that the aircraft was over the oil slick. Detec-
tion of the oil was recorded by the dual channel microwave radiometer during the time period
of .43-.45 seconds, which is close to the center of the spill. In all probability this
represented the thickest layer of oil. This single qualitative experiment dramatically
showed that while the microwave radiometer was able to detect the central portion of the
spill, the increased sensitivity of the laser fluorosensor permitted detection of approxi-
mately the entire visual extent of the slick. Although thickness of the oil changes as the
oil spreads on the surface of the water, the amplitude of the fluorescent signal remained
essentially constant (Figure 3)., Since oil exhibits extreme absorption in the UV region of
the spectrum, one would expect the amplitude of the fluorescence to be relatively independ-
ent of thickness. This is in agreement with the flight test results. Confirmation of the
dependence of o0il thickness on fluorescence has been made in the laboratory.

50 f—o - ——

3¢ 41 44 43 32 56 SEC

400m

Figure 3. Typical fluorescent signals observed with laser
fluorosensor-aircraft altitude 121.9 meters (400 ft.)
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A second set of flight tests consisting of six separate flights was made in August 1973 to
detect ambient 0il on the Delaware River. Figure 4 shows the results of one of these flights
from a 48 km section of the river between the Chesapeake and Delaware Bay Canal to the Dela-
ware - Pennsylvania state line. The observed fluorescent intensity was approximately five
times higher in the upper section of the Delaware River as in the lower section of the
river. The background noise was substantially reduced over that recorded in the initial
flight test. This was accomplished by narrowing the gate width of the digitizer input from
250 to 50 nsecs. The system was calibrated to register a yalue of, 50 on the ADC unit against
a thin oil film target in full view of the receiver at an altitude of 152.4 meters (500 ft.)
and a value of zero against ambient noise in the open sea. Thijs was accomplished by adjust-
ing the gains of the phototube and the threshold levels of the input discriminator to the
digitizer. Therefore, our calibration procedure assured us that the signal observed in the
lower section of the river was a real fluorescence and not background noise.

OIL SPREADING

10:40am

CANAL BRIDGE

48 km

Figure 4. 0il spreading in Delaware River observed with
an airborne laser fluorosensor

Figure 5 shows a bar chart of the morning flight results, previously shown in Figure 4, along
with the return afternoon flight made the same day. Each block in the figure represents an
average value of 3000 return pulses, This figure shows dramatically the change in the inten-
sity of the oil in the lower section of the river in a fairly short time.
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AMBIENT Q1L LEVELS IN THE DELAWARE RIVER (auc. 24 '73 10:40am)

Figure 5. Ambient oil levels in the Delaware River measured
with the airborne laser fluorosensor (Aug. 24, 1973 10:40 a.m.)

Images from the aerial photography showed the presence of 0il when a scale reading of 50 or
greater was reached on the ADC output. Therefore, photography did not show the presence of
oil in the lower section of the river during the morning flight, although detection of the
0il was made with the laser fluorosensor. This is significant, in that it shows the tre-
mendous sensitivity of the laser fluorosensor in detecting traces of oil that can not be
detected by other remote sensors. ,

REFERENCES

1. Hickman, G. D. and Morre, R. B., '"Laser Induced Fluoresin Rhodamine B and Algae', Proc.
13th Conf., Great Lakes Res. 1970.

2. Fantasia, J. F.; Hard, T.M.; Ingrao, H. C., "An Investigation of 0il Fluorescence as a
Technique for the Remote Sensing of 0il Spills", DOT-TSC Report 71-7.

3. Kim, H. H., "New Algae Mapping Technique by the Use of an Airborne Laser Fluorosensor",
Applied Optics, Vol. 12, p. 454-62, July 1973.

4. Munday, J. C. Jr.; McIntyre, W. G.; Pemney, M. E.; Oberholtzer, J. D. "0il Slick Studies
Using Photographic and Multi-Scanner DATA", Proc. of the 7th National Symposium of
Remote Sensing of the Environment. Willow Run Lab, University of Michigan, Ann Arbor,
1971. p. 1027.

5. Hollinger, J. P. and Mennella, R. A, "0il Spills: Measurements of their Distribution
and Volumes by Multifrequency Microwave Radiometry", Scierce, Vol. 191, p. 54, July
1973.

202



Lk A

I

APPENDIX

ROSTER OF PARTICIPANTS

James S. Bailey
Department of the Navy
Office of Naval Research
Arlington, VA 22217

Jacob Bechner

01d Dominion University
Department of Physics
Norfolk, VA 23508

David E. Bowker

National Aeronautics and Space Administration
Langley Research Center

Mail Stop 214
Hampton, VA 23665

Richard M. Boykin, Jr.

National Aeronautics and Space Administration
Langley Research Center

Hampton, VA 23665

Duane Bright
Naval Oceanographic Office
Washington, DC 20373

Michael Bristow

Canada Centre for REmote Sensing
Department of EMR

Ottawa, Ontario, Canada Kl1A OE4

Philip Brockman

National Aeronautics and Space Administration
Langley Research Center

Hampton, VA 23665

Clarence A. Brown, Jr.

National Aeronautics and Space Administration
Langley Research Center

Mail Stop 214
Hampton, VA 23665

Lewis G. Burney

National Aeronautics and Space Administration
Langley Research Center

Hampton, VA 23665

Michael A. Calabrese
National Aeronautics and Space Administration
Washington, DC 20546

A, I. Carswell
York University
Department of Physics
Toronto, Canada M3J 1P3

Theodore Chamberlain
Chesapeake Research Consortium
The Johns Hopkins University
Baltimore, MD 21218

Richard F. Chaney

Computer Sciences Corporation
Wallops Station
Wallops Island, VA 23337

Davidson T. Chen

National Aeronautics and Space Administration
Wallops Station
Wallops Island, VA 23337

Clifford Crandall

Director, Hydrographic Development Division
Naval Oceanographic Office

Washington, DC 20373

Thomas H. Curry

National Research Council
National Academy of Science
2101 Constitution Avenue, NW
Washington, DC 20418

Anthony Davis

Department of Environment
562 Booth Street

Ottawa, Ontario, Canada

Donald D. Davis, Jr.

National Aeronautics and Space Administration
Langley Research Center

Hampton, VA 23665

John S. Derr, Jr.

Physical Research Division
Chemical Laboratory
Edgewood Arsenal, MD 21010

Dick S. Diller

National Aeronautics and Space Administration
Washington, DC 20546 .

203



J. Dixon

Perkin-Elmer Corporation

Main Avenue (Mail Station 274)
Norwalk, CT 06897

Bennie W. Dodke

National Aeronautics and Space Administration
Langley Research Center ..,

Hampton, VA 23665 S

H. Dolezalek

Office of Naval Research
800 North Quincy Street
Arlington, VA 22217

Leslie Dunn

Environmental Protection Agency
P.O. Box 15027
Las Vegas, NV 89114

Charles Eastwood

National Aeronautics and Space Administration
1600 S. Joyce Street

Arlington, VA 22202

Herman G. Eldering

BATRO-ATOMIC

125 Middlesex Trp.
Bedford, MA 01730
Frank Eliot

Earth Satellite Corporation
1747 Pennsylvania Avenue, NW
Washington, DC 20006

Reginald J. Exton

National Aeronautics and Space Administration
Mail Stop 234

Langley Research €Center

Hampton, VA 23665

Murray Felsher

Environmental Protection Agency
Office of Technical Analysis
401 M. St., SW, Room 3211-J
Washington, DC 20460

William H, Fuller, Jr.

National Aeronautics and Space Administration
Mail Stop 492

Langley Research Center

Hampton, VA 23665

Charles S. Gilliland

National Aeronautics and Space Administration
Mail Stop 492

Langley Research Center

Hampton, VA 23665

204

Lowell R. Goodman

National Oceanic and Atmospherics Administration
Wallops Station
Wallops Island, VA 23337
Harry G. Gross
Environment Canada
Inland Waters
Ottawa,Ontario, Canada  KIA QE7
Shashi K. Cupta

Virginia Associated research Center
Newport News, VA 23606

Charles A. Curtler

National Aeronautics and Space Administration
Mail Stop 159

Langley Research Center

Hampton, VA 23665

Joseph M. Hallissy

National Aeronautics and Space Administration
Langley Research Center

Hampton, VA 23665

Herbert B. Hallock

Grumman Aerospace Corporation
56 Brookhill Lane
Huntington, NY 11743

David W. Hancock

National Aeronautics and Space Administration
Wallops Station
Wallops Island, VA 23337

Robert V. Hess

National Aeronautics and Space Administration
Mail Stop 160

Langley Research Center

Hampton, VA 23665

George D. Hickman
Sparcom, Inc.

4660 Kenmore Avenue
Alexandria, VA 22304

Frank Hoge

National Aeronautics and Space Administration
Wallops Station
Wallops Island, VA 23337
Donald C. Holmes

Environmental Protection Agency
Office of Monitoring System

635 Maryland Avenue, NE
Washington, DC 20002



o U T | R

il

William M. Houghton

Robert S. Levine

National Aeronautics and Space Administration National Aeronautics and Space Administration

Mail Stop 234
Langley Research Center
Hampton, VA 23665

Wayne R. Houston

Institute for Aerospace Studies
University of Toronto

Downview, Ontario, Canada M3H 5T6

Warren A, Hovis

Langley Research Center
Hampton, VA 23665

Curt A. Levis
Ohio State University
Columbus, OH 43212

Lt. Allen T. Maurer
US Coast Guard GDET-1
400 7th Street, SW

National Aeronautics and Space Administration WAshington, DC 20590

Goddard Space Flight Center
Greenbelt, MD 20771

Norden E. Huang

North Carolina State University
Department of Geosciences
Raleigh, NC 27609

Don Hutcheson
10224 Falls Road
Potomac, MC 20854

Olin Jarrett, Jr.

National Aeronautics and Space Administration

Langley Research Center
Hampton, VA 23665

Hongsuk H. Kim

Harold E. Maurer

National Aeronautics and Space Administration
Wallops Station

Wallops Island, VA 23337

William T. Mayo, Jr.

Texas A§M University
Remote Sensing Center
College Station, TX 77840

Nelson McAvoy

National Aeronautics and Space Administration
Goddard Space Flight Center

Greenbelt, MD 20771

W. R. McCluney
National Aeronautics and Space Administration

National Aeronautics and Space Administration Code 652

Wallops Station
Wallops Island, VA 23337

Roland W. Kinney

National Research Council
National Academy of Science
2101 Constitution Avenue
Washington, DC 20418

V. Klemas

University of Delaware
College of Marine Studies
Newark, DE 19711

John D, Koutsandreas
Fnvironmental Protection Agency
Office of Monitoring

Waterside Mall

Washington, DC 20560

A. Kuo
Virginia Institute of Marine Science
Gloucester Point, CA 23062

Donald W. Lear
Environmental Protection Agency
Annapolis, MD 21404

Goddard Space Flight Center
Greenbelt, MD 20771

Cdr. G. R. McFadden, USN
Defense Mapping Agency
Building 56, Naval Observatory
Washington, DC 20305

Raymond Measures

Institute for Aerospace
University of Toronto

4925 Dufferin Street

Downview, Ontario, Canada M3H 5T6

S.H. Melfi

FEnvironmental Protection Agency
NERC-LV

P.0. Box 15027

Las Vegas, NV 89114

William H. Michael, Jr.

National Aeronautics and Space Administration
Langley Research Center

Hampton, VA 23665

205



Peter B. Mumola

National Aeronautics and Space Administration
Mail Stop 401

Langley Research Center

Hampton, VA 23665

Roger N. Neece
General Land Office
200 E. 12th Street
Austin, TX 78701

G. Burton Northam

National Aeronautics and Space Administration
Mail Stop 401A

Langley Research Center

Hampton, VA 23665

John David Oberholtzer

National Aeronautics and Space Administration
Wallops Station
Wallops Island, VA 23337

Stewart L. Ocheltree

National Aeronautics and Space Administration
Mail Stop 234

Langley Research Center

Hampton, VA 23665

Kenneth J. Petri
U.S. Naval Air Development Center
Warminister, PA 18974

J. Plascyk

Perkin-Elmer Corporation

Main Avenue (Mail Station 274)
Norwalk, CT 06897

S. K. Poultney

Quantimm Electronics Group
Department of Physics
University of Maryland
College Park, MD 20742

R. G. Quiney

Spar Aerospace Products Ltd.

825 Caledonia Road

Taronto, Ontario, Canada M6B 3X8

€harles A. Requet

National Aeronautics and Space Administration
Lewis Research Center

Cleveland, OH 44135

Maurice Ringenbach
NOAA-National Ocean Survey
6015 Executive Blvd.
Rockville, MD 20852

206

Rose Ann Rowlett
General Land Office
120 E. 12th
Austin, TX 78701

Bernard Rubin

National Aeronautics and Space Administration
Mail Code REF
Washington, DC 20546

Shardanand

National Aeronautics and Space Administration
Wallops Station
Wallops Island, VA 23337
Sebastian Sizgoric

York University

2480 Shepard Avenue
Mississauge, Ontario, Canada

Abraham D. Spinak

National Aeronautics and Space Administration
Wallops Station
Wallops Island, VA 23337

D. G. Stephenson

University of Toronto

Institute for Aerospace Studies
4925 Dufferin St.

Downview, Ontario, Canada M3H 5T6

Robert L. Swain

National Aeronautics and Space Administration
Mail Stop 401

Langley Research Center

Hampton, VA 23665

Steve R. Twidwell

Texas WAter Quality Board

P.0. Box 13246 Captional Station
Austin, TX 78711

C.S. Welch
Virginia Institute of Marine Science
Gloucester Point, VA 23062

Andrew R. Wineman

National Aeronautics and Space Administration
Mail Stop 214

Langley Research Center

Hampton, VA 23665

Charles S. Yentsch
University of Massachusetts
Marine Station

Box 128 Lanesville Station
Gloucester, MA 01930



]

il Y

1

Lee A. Young

Avco Everett Research Lab
2385 Revere Beach Parkway
Everett, MA 02149

Albert V. Zimmerman, ITI

National Aeronautics and Space Administration
Langley Research Center

Hampton, VA 23665

#U,S. GOVERNMENT PRINTING OFFICE: 1975 - 635-053/98

207






