5,157 research outputs found

    EcoGIS – GIS tools for ecosystem approaches to fisheries management

    Get PDF
    Executive Summary: The EcoGIS project was launched in September 2004 to investigate how Geographic Information Systems (GIS), marine data, and custom analysis tools can better enable fisheries scientists and managers to adopt Ecosystem Approaches to Fisheries Management (EAFM). EcoGIS is a collaborative effort between NOAA’s National Ocean Service (NOS) and National Marine Fisheries Service (NMFS), and four regional Fishery Management Councils. The project has focused on four priority areas: Fishing Catch and Effort Analysis, Area Characterization, Bycatch Analysis, and Habitat Interactions. Of these four functional areas, the project team first focused on developing a working prototype for catch and effort analysis: the Fishery Mapper Tool. This ArcGIS extension creates time-and-area summarized maps of fishing catch and effort from logbook, observer, or fishery-independent survey data sets. Source data may come from Oracle, Microsoft Access, or other file formats. Feedback from beta-testers of the Fishery Mapper was used to debug the prototype, enhance performance, and add features. This report describes the four priority functional areas, the development of the Fishery Mapper tool, and several themes that emerged through the parallel evolution of the EcoGIS project, the concept and implementation of the broader field of Ecosystem Approaches to Management (EAM), data management practices, and other EAM toolsets. In addition, a set of six succinct recommendations are proposed on page 29. One major conclusion from this work is that there is no single “super-tool” to enable Ecosystem Approaches to Management; as such, tools should be developed for specific purposes with attention given to interoperability and automation. Future work should be coordinated with other GIS development projects in order to provide “value added” and minimize duplication of efforts. In addition to custom tools, the development of cross-cutting Regional Ecosystem Spatial Databases will enable access to quality data to support the analyses required by EAM. GIS tools will be useful in developing Integrated Ecosystem Assessments (IEAs) and providing pre- and post-processing capabilities for spatially-explicit ecosystem models. Continued funding will enable the EcoGIS project to develop GIS tools that are immediately applicable to today’s needs. These tools will enable simplified and efficient data query, the ability to visualize data over time, and ways to synthesize multidimensional data from diverse sources. These capabilities will provide new information for analyzing issues from an ecosystem perspective, which will ultimately result in better understanding of fisheries and better support for decision-making. (PDF file contains 45 pages.

    Exploring object-oriented GIS for watershed resource management

    Get PDF
    The adoption of object-oriented programming for spatial technological advancement is an emerging trend in GIS. This research seeks to explore Object-Oriented GIS (OOGIS) and its potential application in watershed resource management. OOGIS provides a more intuitive and realistic abstraction of real world features as intelligent objects. The ability to embed behavior, geometry, and attribution with the objects provides considerable advantages in the processing and analysis of geospatial data. The main objective of this research was to design a prototype OOGIS for watershed resource management using the object relational Arclnfo 8.1 Geodatabase. The study builds on the OOGIS concepts of inheritance, polymorphism, and encapsulation and defines a schema for the project. Behavior is embedded in the watershed features through the use of methods and reflex methods that automatically perform functions such as data validation and text placement. Message propagation is tested using related objects, and a smart object-based topologically integrated geometric network is established for streams and roads. Because of the embedded topological relationships and methods this network is self-adapting. The resulting system indicates that OOGIS has many advantages over the more traditional entity-relationship model. The system provides a more intuitive representation of a watershed through the integration of intelligent behaviors and is particularly effective in addressing GIS maintenance issues at a database level through the use of reflex validation methods

    A free and open source programming library for landscape metrics calculations

    Full text link
    Landscape metrics are used in a wide range of environmental studies such as land use change and land degradation studies, soil erosion and run-off predictions, management of hunting communities, and strategic planning for environmental management, to name just a few. Due to their utility for a variety of applications, there are many indices and software packages that have been designed to provide calculations and analysis of landscape structure patterns in categorical maps. With the purpose of making a comparison between the most used tools (Fragstats, V-Late, PA4...), this paper examines their advantages and disadvantages in order to create a list of common features that need to be incorporated into this type of software. An Application Programming Interface (API) is produced without limitations on data input, that is capable of calculating vector or raster metrics and is extensible. This API should make it possible not only to build third party applications easily, but also make it possible to add new metrics and research into new paradigms related to traditional landscape metrics. Land-metrics DIY (DoIt Yourself) is the library presented in this paper. It can calculate almost 40 landscape metrics from geometry provided by an ESRI Shapefile. Š 2011 Elsevier Ltd.We especially appreciate the comments and suggestions by A. Jakeman and three anonymous reviewers which led to substantial improvements of the manuscript. This paper is partially supported by the FPU - Doctoral Research Scholarship program of the "Ministerio de Educacion de Espana" (2007-2011). Moreover, we would like to thank all the FOSS community, and in particular to Diego Guidi (NTS main developer) for their interesting and important work. Of course, we also thank the OGC and all FOSS projects related to spatial information because they suppose a strategic support to the further development of our idea and other possible GIS projects.Zaragozi Zaragozi, BM.; Belda Antoli, A.; Linares Pellicer, JJ.; Martínez-PÊrez, JE.; Navarro, JT.; Esparza Peidro, J. (2012). A free and open source programming library for landscape metrics calculations. Environmental Modelling and Software. 31:131-140. doi:10.1016/j.envsoft.2011.10.009S1311403

    Distribution pattern-driven development of service architectures

    Get PDF
    Distributed systems are being constructed by composing a number of discrete components. This practice is particularly prevalent within the Web service domain in the form of service process orchestration and choreography. Often, enterprise systems are built from many existing discrete applications such as legacy applications exposed using Web service interfaces. There are a number of architectural configurations or distribution patterns, which express how a composed system is to be deployed in a distributed environment. However, the amount of code required to realise these distribution patterns is considerable. In this paper, we propose a distribution pattern-driven approach to service composition and architecting. We develop, based on a catalog of patterns, a UML-compliant framework, which takes existing Web service interfaces as its input and generates executable Web service compositions based on a distribution pattern chosen by the software architect

    Proceedings of International Workshop "Global Computing: Programming Environments, Languages, Security and Analysis of Systems"

    Get PDF
    According to the IST/ FET proactive initiative on GLOBAL COMPUTING, the goal is to obtain techniques (models, frameworks, methods, algorithms) for constructing systems that are flexible, dependable, secure, robust and efficient. The dominant concerns are not those of representing and manipulating data efficiently but rather those of handling the co-ordination and interaction, security, reliability, robustness, failure modes, and control of risk of the entities in the system and the overall design, description and performance of the system itself. Completely different paradigms of computer science may have to be developed to tackle these issues effectively. The research should concentrate on systems having the following characteristics: • The systems are composed of autonomous computational entities where activity is not centrally controlled, either because global control is impossible or impractical, or because the entities are created or controlled by different owners. • The computational entities are mobile, due to the movement of the physical platforms or by movement of the entity from one platform to another. • The configuration varies over time. For instance, the system is open to the introduction of new computational entities and likewise their deletion. The behaviour of the entities may vary over time. • The systems operate with incomplete information about the environment. For instance, information becomes rapidly out of date and mobility requires information about the environment to be discovered. The ultimate goal of the research action is to provide a solid scientific foundation for the design of such systems, and to lay the groundwork for achieving effective principles for building and analysing such systems. This workshop covers the aspects related to languages and programming environments as well as analysis of systems and resources involving 9 projects (AGILE , DART, DEGAS , MIKADO, MRG, MYTHS, PEPITO, PROFUNDIS, SECURE) out of the 13 founded under the initiative. After an year from the start of the projects, the goal of the workshop is to fix the state of the art on the topics covered by the two clusters related to programming environments and analysis of systems as well as to devise strategies and new ideas to profitably continue the research effort towards the overall objective of the initiative. We acknowledge the Dipartimento di Informatica and Tlc of the University of Trento, the Comune di Rovereto, the project DEGAS for partially funding the event and the Events and Meetings Office of the University of Trento for the valuable collaboration

    Handling Data Consistency through Spatial Data Integrity Rules in Constraint Decision Tables

    Get PDF

    A Map-algebra-inspired Approach for Interacting With Wireless Sensor Networks, Cyber-physical Systems or Internet of Things

    Get PDF
    The typical approach for consuming data from wireless sensor networks (WSN) and Internet of Things (IoT) has been to send data back to central servers for processing and analysis. This thesis develops an alternative strategy for processing and acting on data directly in the environment referred to as Active embedded Map Algebra (AeMA). Active refers to the near real time production of data, and embedded refers to the architecture of distributed embedded sensor nodes. Network macroprogramming, a style of programming adopted for wireless sensor networks and IoT, addresses the challenges of coordinating the behavior of multiple connected devices through a high-level programming model. Several macroprogramming models have been proposed, but none to date has adopted a comprehensive spatial model. This thesis takes the unique approach of adapting the well-known Map Algebra model from Geographic Information Science to extend the functionality of WSN/IoT and the opportunities for user interaction with WSN/IoT. As an inherently spatial model, the Map Algebra-inspired metaphor supports the types of computation desired from a network of geographically dispersed WSN nodes. The AeMA data model aligns with the conceptual model of GIS layers and specific layer operations from Map Algebra. A declarative query and network tasking language, based on Map Algebra operations, provides the basis for operations and interactions. The model adds functionality to calculate and store time series and specific temporal summary-type composite objects as an extension to traditional Map Algebra. The AeMA encodes Map Algebra-inspired operations into an extensible Virtual Machine Runtime system, called MARS (Map Algebra Runtime System) that supports Map Algebra in an efficient and extensible way. Map algebra-like operations are performed in a distributed manner. Data do not leave the network but are analyzed and consumed in place. As a consequence, collected information is available in-situ to drive local actions. The conceptual model and tasking language are designed to direct nodes as active entities, able to perform some actions on their environment. This Map Algebra inspired network macroprogramming model has many potential applications for spatially deployed WSN/IoT networks. In particular the thesis notes its utility for precision agriculture applications

    Web Maps for Environmental Learning at Highland Sam J. Racadio Library & Environmental Learning Center

    Get PDF
    There is an exponential increase in the environmental issues globally causing various destructive events to both people and resources. This has raised concern to the industry stakeholders and the governments at local, regional, and global levels. Highland Library located in the City of Highland in California was not left behind. With their mission to educate the public of the importance of sound environmental management through learning, they had a problem in identifying the best media to use in communicating this to a wider audience. The project proposed the use of web maps for environmental learning. Using the ArcGIS API for JavaScript, ArcGIS Server, and ArcGIS Desktop, a web map application was developed that presented the identified environmental themes at different scale levels of the Library, City of Highland, County of San Bernardino, State of California, United States of America, and the World. With the application running through a browser on desktop computer, the library visitors were able to easily visualize and understand the environmental themes presented
    • …
    corecore