76,859 research outputs found

    Edge-Cloud Polarization and Collaboration: A Comprehensive Survey for AI

    Full text link
    Influenced by the great success of deep learning via cloud computing and the rapid development of edge chips, research in artificial intelligence (AI) has shifted to both of the computing paradigms, i.e., cloud computing and edge computing. In recent years, we have witnessed significant progress in developing more advanced AI models on cloud servers that surpass traditional deep learning models owing to model innovations (e.g., Transformers, Pretrained families), explosion of training data and soaring computing capabilities. However, edge computing, especially edge and cloud collaborative computing, are still in its infancy to announce their success due to the resource-constrained IoT scenarios with very limited algorithms deployed. In this survey, we conduct a systematic review for both cloud and edge AI. Specifically, we are the first to set up the collaborative learning mechanism for cloud and edge modeling with a thorough review of the architectures that enable such mechanism. We also discuss potentials and practical experiences of some on-going advanced edge AI topics including pretraining models, graph neural networks and reinforcement learning. Finally, we discuss the promising directions and challenges in this field.Comment: 20 pages, Transactions on Knowledge and Data Engineerin

    CSCI 49378: Lecture 11: Logging, Monitoring, and Advanced Topics

    Get PDF
    Lecture for the course: CSCI 49378: Intro to Distributed Systems and Cloud Computing - Logging, Monitoring, and Advanced Topics (Week Eleven) delivered at Hunter College in Spring 2020 by Bonan Liu as part of the Tech-in-Residence Corps program

    Workshop on disruptive information and communication technologies for innovation and digital transformation

    Get PDF
    The workshop on Disruptive Information and Communication Technologies for Innovation and Digital transformation, organized under the scope of the DISRUPTIVE project (disruptive.usal.es) and held on December 20, 2019 in Bragança, aims to discuss problems, challenges and benefits of using disruptive digital technologies, namely Internet of Things, Big data, cloud computing, multi-agent systems, machine learning, virtual and augmented reality, and collaborative robotics, to support the on-going digital transformation in society. The main topics included: • Intelligent Manufacturing Systems • Industry 4.0 and digital transformation • Internet of Things • Cyber-security • Collaborative and intelligent robotics • Multi-Agent Systems • Industrial Cyber-Physical Systems • Virtualization and digital twins • Predictive maintenance • Virtual and augmented reality • Big Data and advanced data analytics • Edge and cloud computing • Digital Transformation The workshop program included 16 accepted technical papers, 2 invited talks and 1 technical demonstration of use cases. This volume contains six of the papers presented at the Workshop on Disruptive Information and Communication Technologies for Innovation and Digital Transformation.info:eu-repo/semantics/publishedVersio

    Pervasive Parallel And Distributed Computing In A Liberal Arts College Curriculum

    Get PDF
    We present a model for incorporating parallel and distributed computing (PDC) throughout an undergraduate CS curriculum. Our curriculum is designed to introduce students early to parallel and distributed computing topics and to expose students to these topics repeatedly in the context of a wide variety of CS courses. The key to our approach is the development of a required intermediate-level course that serves as a introduction to computer systems and parallel computing. It serves as a requirement for every CS major and minor and is a prerequisite to upper-level courses that expand on parallel and distributed computing topics in different contexts. With the addition of this new course, we are able to easily make room in upper-level courses to add and expand parallel and distributed computing topics. The goal of our curricular design is to ensure that every graduating CS major has exposure to parallel and distributed computing, with both a breadth and depth of coverage. Our curriculum is particularly designed for the constraints of a small liberal arts college, however, much of its ideas and its design are applicable to any undergraduate CS curriculum

    Teaching Data Science

    Get PDF
    We describe an introductory data science course, entitled Introduction to Data Science, offered at the University of Illinois at Urbana-Champaign. The course introduced general programming concepts by using the Python programming language with an emphasis on data preparation, processing, and presentation. The course had no prerequisites, and students were not expected to have any programming experience. This introductory course was designed to cover a wide range of topics, from the nature of data, to storage, to visualization, to probability and statistical analysis, to cloud and high performance computing, without becoming overly focused on any one subject. We conclude this article with a discussion of lessons learned and our plans to develop new data science courses.Comment: 10 pages, 4 figures, International Conference on Computational Science (ICCS 2016

    A survey of communication protocols for internet of things and related challenges of fog and cloud computing integration

    Get PDF
    The fast increment in the number of IoT (Internet of Things) devices is accelerating the research on new solutions to make cloud services scalable. In this context, the novel concept of fog computing as well as the combined fog-to-cloud computing paradigm is becoming essential to decentralize the cloud, while bringing the services closer to the end-system. This article surveys e application layer communication protocols to fulfill the IoT communication requirements, and their potential for implementation in fog- and cloud-based IoT systems. To this end, the article first briefly presents potential protocol candidates, including request-reply and publish-subscribe protocols. After that, the article surveys these protocols based on their main characteristics, as well as the main performance issues, including latency, energy consumption, and network throughput. These findings are thereafter used to place the protocols in each segment of the system (IoT, fog, cloud), and thus opens up the discussion on their choice, interoperability, and wider system integration. The survey is expected to be useful to system architects and protocol designers when choosing the communication protocols in an integrated IoT-to-fog-to-cloud system architecture.Peer ReviewedPostprint (author's final draft
    • …
    corecore