4,817 research outputs found

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    Smart Grid Technologies in Europe: An Overview

    Get PDF
    The old electricity network infrastructure has proven to be inadequate, with respect to modern challenges such as alternative energy sources, electricity demand and energy saving policies. Moreover, Information and Communication Technologies (ICT) seem to have reached an adequate level of reliability and flexibility in order to support a new concept of electricity network—the smart grid. In this work, we will analyse the state-of-the-art of smart grids, in their technical, management, security, and optimization aspects. We will also provide a brief overview of the regulatory aspects involved in the development of a smart grid, mainly from the viewpoint of the European Unio

    Scenarios for the development of smart grids in the UK: literature review

    Get PDF
    Smart grids are expected to play a central role in any transition to a low-carbon energy future, and much research is currently underway on practically every area of smart grids. However, it is evident that even basic aspects such as theoretical and operational definitions, are yet to be agreed upon and be clearly defined. Some aspects (efficient management of supply, including intermittent supply, two-way communication between the producer and user of electricity, use of IT technology to respond to and manage demand, and ensuring safe and secure electricity distribution) are more commonly accepted than others (such as smart meters) in defining what comprises a smart grid. It is clear that smart grid developments enjoy political and financial support both at UK and EU levels, and from the majority of related industries. The reasons for this vary and include the hope that smart grids will facilitate the achievement of carbon reduction targets, create new employment opportunities, and reduce costs relevant to energy generation (fewer power stations) and distribution (fewer losses and better stability). However, smart grid development depends on additional factors, beyond the energy industry. These relate to issues of public acceptability of relevant technologies and associated risks (e.g. data safety, privacy, cyber security), pricing, competition, and regulation; implying the involvement of a wide range of players such as the industry, regulators and consumers. The above constitute a complex set of variables and actors, and interactions between them. In order to best explore ways of possible deployment of smart grids, the use of scenarios is most adequate, as they can incorporate several parameters and variables into a coherent storyline. Scenarios have been previously used in the context of smart grids, but have traditionally focused on factors such as economic growth or policy evolution. Important additional socio-technical aspects of smart grids emerge from the literature review in this report and therefore need to be incorporated in our scenarios. These can be grouped into four (interlinked) main categories: supply side aspects, demand side aspects, policy and regulation, and technical aspects.

    A Gossip Algorithm based Clock Synchronization Scheme for Smart Grid Applications

    Full text link
    The uprising interest in multi-agent based networked system, and the numerous number of applications in the distributed control of the smart grid leads us to address the problem of time synchronization in the smart grid. Utility companies look for new packet based time synchronization solutions with Global Positioning System (GPS) level accuracies beyond traditional packet methods such as Network Time Proto- col (NTP). However GPS based solutions have poor reception in indoor environments and dense urban canyons as well as GPS antenna installation might be costly. Some smart grid nodes such as Phasor Measurement Units (PMUs), fault detection, Wide Area Measurement Systems (WAMS) etc., requires synchronous accuracy as low as 1 ms. On the other hand, 1 sec accuracy is acceptable in management information domain. Acknowledging this, in this study, we introduce gossip algorithm based clock synchronization method among network entities from the decision control and communication point of view. Our method synchronizes clock within dense network with a bandwidth limited environment. Our technique has been tested in different kinds of network topologies- complete, star and random geometric network and demonstrated satisfactory performance

    State of the Art and Trends Review of Smart Metering in Electricity Grids

    Get PDF
    Climate change, awareness of energy efficiency, new trends in electricity markets, the obsolescence of the actual electricity model, and the gradual conversion of consumers to prosumer profiles are the main agents of progressive change in electricity systems towards the Smart Grid paradigm. The introduction of multiple distributed generation and storage resources, with a strong involvement of renewable energies, exposes the necessity of advanced metering or Smart Metering systems, able to manage and control those distributed resources. Due to the heterogeneity of the Smart Metering systems and the specific features of each grid, it is easy to find in the related literature a wide range of solutions with different features. This work describes the key elements in a Smart Metering system and compiles the most employed technologies and standards as well as their main features. Since Smart Metering systems can perform jointly with other activities, these growing initiatives are also addressed. Finally, a revision of the main trends in Smart Metering uses and deployments worldwide is included.his work has been partially supported by the Spanish Ministry of Economy and Competitiveness (project TEC2015-67868-C3-1-R), the University of the Basque Country (UPV/EHU) within the program for the specialization of the postdoctoral researcher staff, and Microgrids with Renewable Distributed Generation (MIGEDIR) (project 713RT0468), funded by the Science and Technology for Development Iberoamerican Program (CYTED)

    A Survey on Communication Networks for Electric System Automation

    Get PDF
    Published in Computer Networks 50 (2006) 877–897, an Elsevier journal. The definitive version of this publication is available from Science Direct. Digital Object Identifier:10.1016/j.comnet.2006.01.005In today’s competitive electric utility marketplace, reliable and real-time information become the key factor for reliable delivery of power to the end-users, profitability of the electric utility and customer satisfaction. The operational and commercial demands of electric utilities require a high-performance data communication network that supports both existing functionalities and future operational requirements. In this respect, since such a communication network constitutes the core of the electric system automation applications, the design of a cost-effective and reliable network architecture is crucial. In this paper, the opportunities and challenges of a hybrid network architecture are discussed for electric system automation. More specifically, Internet based Virtual Private Networks, power line communications, satellite communications and wireless communications (wireless sensor networks, WiMAX and wireless mesh networks) are described in detail. The motivation of this paper is to provide a better understanding of the hybrid network architecture that can provide heterogeneous electric system automation application requirements. In this regard, our aim is to present a structured framework for electric utilities who plan to utilize new communication technologies for automation and hence, to make the decision making process more effective and direct.This work was supported by NEETRAC under Project #04-157

    Overlay networks for smart grids

    Get PDF
    • 

    corecore