168 research outputs found

    A Study of Biased and Unbiased Stochastic Algorithms for Solving Integral Equations

    Get PDF
    In this paper we propose and analyse a new unbiased stochastic method for solving a class of integral equations, namely the second kind Fredholm integral equations. We study and compare three possible approaches to compute linear functionals of the integral under consideration: i) biased Monte Carlo method based on evaluation of truncated Liouville-Neumann series, ii) transformation of this problem into the problem of computing a finite number of integrals, and iii) unbiased stochastic approach. Five Monte Carlo algorithms for numerical integration have been applied for approach (ii). Error balancing of both stochastic and systematic errors has been discussed and applied during the numerical implementation of the biased algorithms. Extensive numerical experiments have been performed to support the theoretical studies regarding the convergence rate of Monte Carlo methods for numerical integration done in our previous studies. We compare the results obtained by some of the best biased stochastic approaches with the results obtained by the proposed unbiased approach. Conclusions about the applicability and efficiency of the algorithms have been drawn

    Interactive Optimization With Parallel Coordinates: Exploring Multidimensional Spaces for Decision Support

    Get PDF
    Interactive optimization methods are particularly suited for letting human decision makers learn about a problem, while a computer learns about their preferences to generate relevant solutions. For interactive optimization methods to be adopted in practice, computational frameworks are required, which can handle and visualize many objectives simultaneously, provide optimal solutions quickly and representatively, all while remaining simple and intuitive to use and understand by practitioners. Addressing these issues, this work introduces SAGESSE (Systematic Analysis, Generation, Exploration, Steering and Synthesis Experience), a decision support methodology, which relies on interactive multiobjective optimization. Its innovative aspects reside in the combination of (i) parallel coordinates as a means to simultaneously explore and steer the underlying alternative generation process, (ii) a Sobol sequence to efficiently sample the points to explore in the objective space, and (iii) on-the-fly application of multiattribute decision analysis, cluster analysis and other data visualization techniques linked to the parallel coordinates. An illustrative example demonstrates the applicability of the methodology to a large, complex urban planning problem

    Interactive optimization for supporting multicriteria decisions in urban and energy system planning

    Get PDF
    Climate change and growing urban populations are increasingly putting pressure on cities to reduce their carbon emissions and transition towards efficient and renewable energy systems. This challenges in particular urban planners, who are expected to integrate technical energy aspects and balance them with the conflicting and often elusive needs of other urban actors. This thesis explores how multicriteria decision analysis, and in particular multiobjective optimization techniques, can support this task. While multiobjective optimization is particularly suited for generating efficient and original alternatives, it presents two shortcomings when targeted at large, intractable problems. First, the problem size prevents a complete identification of all solutions. Second, the preferences required to narrow the problem size are difficult to know and formulate precisely before seeing the possible alternatives. Interactive optimization addresses both of these gaps by involving the human decision-maker in the calculation process, incorporating their preferences at the same time as the generated alternatives enrich their understanding of acceptable tradeoffs and important criteria. For interactive optimization methods to be adopted in practice, computational frameworks are required, which can handle and visualize many objectives simultaneously, provide optimal solutions quickly and representatively, all while remaining simple and intuitive to use and understand by practitioners. Accordingly, the main objective of this thesis is: To develop a decision support methodology which enables the integration of energy issues in the early stages of urban planning. The proposed response and main contribution is SAGESSE (Systematic Analysis, Generation, Exploration, Steering and Synthesis Experience), an interactive multiobjective optimization decision support methodology, which addresses the practical and technical shortcomings above. Its innovative aspect resides in the combination of (i) parallel coordinates as a means to simultaneously explore and steer the alternative-generation process, (ii) a quasi-random sampling technique to efficiently explore the solution space in areas specified by the decision maker, and (iii) the integration of multiattribute decision analysis, cluster analysis and linked data visualization techniques to facilitate the interpretation of the Pareto front in real-time. Developed in collaboration with urban and energy planning practitioners, the methodology was applied to two Swiss urban planning case-studies: one greenfield project, in which all buildings and energy technologies are conceived ex nihilo, and one brownfield project, in which an existing urban neighborhood is redeveloped. These applications led to the progressive development of computational methods based on mathematical programming and data modeling (in the context of another thesis) which, applied with SAGESSE, form the planning support system URBio. Results indicate that the methodology is effective in exploring hundreds of plans and revealing tradeoffs and synergies between multiple objectives. The concrete outcomes of the calculations provide inputs for specifying political targets and deriving urban master plans

    Systems Engineering

    Get PDF
    The book "Systems Engineering: Practice and Theory" is a collection of articles written by developers and researches from all around the globe. Mostly they present methodologies for separate Systems Engineering processes; others consider issues of adjacent knowledge areas and sub-areas that significantly contribute to systems development, operation, and maintenance. Case studies include aircraft, spacecrafts, and space systems development, post-analysis of data collected during operation of large systems etc. Important issues related to "bottlenecks" of Systems Engineering, such as complexity, reliability, and safety of different kinds of systems, creation, operation and maintenance of services, system-human communication, and management tasks done during system projects are addressed in the collection. This book is for people who are interested in the modern state of the Systems Engineering knowledge area and for systems engineers involved in different activities of the area. Some articles may be a valuable source for university lecturers and students; most of case studies can be directly used in Systems Engineering courses as illustrative materials

    Objective Tyre Development : Definition and Analysis of Tyre Characteristics and Quantification of their Conflicts

    Get PDF
    The present work focuses on tyres for passenger cars, especially on its influence on power loss, lateral dynamics, ride comfort and interior noise. The objective of the work is the quantification of conflicts between four selected requirements considering the physical constraints given by the tyre. The method proposed in the present book is based on a set of functional tyre characteristics, a physical tyre model and a procedure for identifying and quantifying the conflicts

    Artificial Intelligence and Cognitive Computing

    Get PDF
    Artificial intelligence (AI) is a subject garnering increasing attention in both academia and the industry today. The understanding is that AI-enhanced methods and techniques create a variety of opportunities related to improving basic and advanced business functions, including production processes, logistics, financial management and others. As this collection demonstrates, AI-enhanced tools and methods tend to offer more precise results in the fields of engineering, financial accounting, tourism, air-pollution management and many more. The objective of this collection is to bring these topics together to offer the reader a useful primer on how AI-enhanced tools and applications can be of use in today’s world. In the context of the frequently fearful, skeptical and emotion-laden debates on AI and its value added, this volume promotes a positive perspective on AI and its impact on society. AI is a part of a broader ecosystem of sophisticated tools, techniques and technologies, and therefore, it is not immune to developments in that ecosystem. It is thus imperative that inter- and multidisciplinary research on AI and its ecosystem is encouraged. This collection contributes to that
    • 

    corecore