567 research outputs found

    Control Methods for Improving Tracking Accuracy and Disturbance Rejection in Ball Screw Feed Drives

    Get PDF
    This thesis studies in detail the dynamics of ball screw feed drives and expands understanding of the factors that impose limitations on their performance. This knowledge is then used for developing control strategies that provide adequate command following and disturbance rejection. High performance control strategies proposed in this thesis are designed for, and implemented on, a custom-made ball screw drive. A hybrid Finite Element (FE) model for the ball screw drive is developed and coded in Matlab programming language. This FE model is employed for prediction of natural frequencies, mode shapes, and Frequency Response Functions (FRFs) of the ball screw setup. The accuracy of FRFs predicted for the ball screw mechanism alone is validated against the experimental measurements obtained through impact hammer testing. Next, the FE model for the entire test setup is validated. The dynamic characteristics of the actuator current controller are also modeled. In addition, the modal parameters of the mechanical structure are extracted from measured FRFs, which include the effects of current loop dynamics. To ensure adequate command following and disturbance rejection, three motion controllers with active vibration damping capability are developed. The first is based on the sensor averaging concept which facilitates position control of the rigid body dynamics. Active damping is added to suppress vibrations. To achieve satisfactory steady state response, integral action over the tracking error is included. The stability analysis and tuning procedure for this controller is presented together with experimental results that prove the effectiveness of this method in high-speed tracking and cutting applications. The second design uses the pole placement technique to move the real component of two of the oscillatory poles further to the left along the real axis. This yields a faster rigid body response with less vibration. However, the time delay from the current loop dynamics imposes a limitation on how much the poles can be shifted to the left without jeopardizing the system’s stability. To overcome this issue, a lead filter is designed to recover the system phase at the crossover frequency. When designing the Pole Placement Controller (PPC) and the lead filter concurrently, the objective is to minimize the load side disturbance response against the disturbances. This controller is also tested in high-speed tracking and cutting experiments. The third control method is developed around the idea of using the pole placement technique for active damping of not only the first mode of vibration, but also the second and third modes as well. A Kalman filter is designed to estimate a state vector for the system, from the control input and the position measurements obtained from the rotary and linear encoders. The state estimates are then fed back to the PPC controller. Although for this control design, promising results in terms of disturbance rejection are obtained in simulations, the Nyquist stability analysis shows that the closed loop system has poor stability margins. To improve the stability margins, the McFarlane-Glover robustness optimization method is attempted, and as a result, the stability margins are improved, but at the cost of degraded performance. The practical implementation of the third controller, was, unfortunately, not successful. This thesis concludes by addressing the problem of harmonic disturbance rejection in ball screw drives. It is shown that for cases where a ball screw drive is subject to high-frequency disturbances, the dynamic positioning accuracy of the ball screw drive can be improved significantly by adopting an additional control scheme known as Adaptive Feedforward Cancellation (AFC). Details of parameter tuning and stability analysis for AFC are presented. At the end, successful implementation and effectiveness of AFC is demonstrated in applications involving time periodic or space periodic disturbances. The conclusions drawn about the effectiveness of the AFC are based on results obtained from the high-speed tracking and end-milling experiments

    Precision Control of High Speed Ball Screw Drives

    Get PDF
    Industrial demands for higher productivity rates and more stringent part tolerances require faster production machines that can produce, assemble, or manipulate parts at higher speeds and with better accuracy than ever before. In a majority of production machines, such as machine tools, ball screw drives are used as the primary motion delivery mechanism due to their reasonably high accuracy, high mechanical stiffness, and low cost. This brings the motivation for the research in this thesis, which has been to develop new control techniques that can achieve high bandwidths near the structural frequencies of ball screw drives, and also compensate for various imperfections in their motion delivery, so that better tool positioning accuracy can be achieved at high speeds. A precision ball screw drive has been designed and built for this study. Detailed dynamic modeling and identification has been performed, considering rigid body dynamics, nonlinear friction, torque ripples, axial and torsional vibrations, lead errors, and elastic deformations. Adaptive Sliding Mode Controller (ASMC) is designed based on the rigid body dynamics and notch filters are used to attenuate the effect of structural resonances. Feedforward friction compensation is also added to improve the tracking accuracy at velocity reversals. A bandwidth of 223 Hz was achieved while controlling the rotational motion of the ball screw, leading to a servo error equivalent to 1.6 um of translational motion. The motor and mechanical torque ripples were also modeled and compensated in the control law. This improved the motion smoothness and accuracy, especially at low speeds and low control bandwidths. The performance improvement was also noticeable when higher speeds and control bandwidths were used. By adding on the torque ripple compensation, the rotational tracking accuracy was improved to 0.95 um while executing feed motions with 1 m/sec velocity and 1 g acceleration. As one of the main contributions in this thesis, the dynamics of the 1st axial mode (at 132 Hz) were actively compensated using ASMC, which resulted in a command tracking bandwidth of 208 Hz. The mode compensating ASMC (MC-ASMC) was also shown to improve the dynamic stiffness of the drive system, around the axial resonance, by injecting additional damping at this mode. After compensating for the lead errors as well, a translational tracking accuracy of 2.6 um was realized while executing 1 m/sec feed motions with 0.5 g acceleration transients. In terms of bandwidth, speed, and accuracy, these results surpass the performance of most ball screw driven machine tools by 4-5 times. As the second main contribution in this thesis, the elastic deformations (ED) of the ball screw drive were modeled and compensated using a robust strategy. The robustness originates from using the real-time feedback control signal to monitor the effect of any potential perturbations on the load side, such as mass variations or cutting forces, which can lead to additional elastic deformations. In experimental results, it is shown that this compensation scheme can accurately estimate and correct for the elastic deformation, even when there is 130% variation in the translating table mass. The ED compensation strategy has resulted in 4.1 um of translational accuracy while executing at 1 m/sec feed motion with 0.5 g acceleration transients, without using a linear encoder. This result is especially significant for low-cost CNC (Computer Numerically Controlled) machine tools that have only rotary encoders on their motors. Such machines can benefit from the significant accuracy improvement provided by this compensation scheme, without the need for an additional linear encoder

    Robot Manipulators

    Get PDF
    Robot manipulators are developing more in the direction of industrial robots than of human workers. Recently, the applications of robot manipulators are spreading their focus, for example Da Vinci as a medical robot, ASIMO as a humanoid robot and so on. There are many research topics within the field of robot manipulators, e.g. motion planning, cooperation with a human, and fusion with external sensors like vision, haptic and force, etc. Moreover, these include both technical problems in the industry and theoretical problems in the academic fields. This book is a collection of papers presenting the latest research issues from around the world

    Practical Solutions to the Non-Minimum Phase and Vibration Problems Under the Disturbance Rejection Paradigm

    Get PDF
    This dissertation tackles two kinds of control problems under the disturbance rejection paradigm (DRP): 1) the general problem of non-minimum phase (NMP) systems, such as systems with right half plane (RHP) zeros and those with time delay 2) the specific problem of vibration, a prevailing problem facing practicing engineers in the real world of industrial control. It is shown that the DRP brings to the table a refreshingly novel way of thinking in tackling the persistently challenging problems in control. In particular, the problem of NMP has confounded researchers for decades in trying to find a satisfactory solution that is both rigorous and practical. The active disturbance rejection control (ADRC), originated from DRP, provides a potential solution. Even more intriguingly, the DRP provides a new framework to tackle the ubiquitous problem of vibration, whether it is found in the resonant modes in industrial motion control with compliant load, which is almost always the case, or in the microphonics of superconducting radio frequency (SRF) cavities in high energy particle accelerators. That is, whether the vibration is caused by the environment or by the characteristics of process dynamics, DRP provides a single framework under which the problem is better understood and resolved. New solutions are tested and validated in both simulations and experiments, demonstrating the superiority of the new design over the previous ones. For systems with time delay, the stability characteristic of the proposed solution is analyze

    NASA Tech Briefs, February 1989

    Get PDF
    This issue contains a special feature on shaping the future with Ceramics. Other topics include: Electronic Components & and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, Mathematics and Information Sciences, and Life Sciences

    Intelligent instrumentation, control and monitoring of precision motion systems

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Practical Solutions to the Non-Minimum Phase and Vibration Problems Under the Disturbance Rejection Paradigm

    Get PDF
    This dissertation tackles two kinds of control problems under the disturbance rejection paradigm (DRP): 1) the general problem of non-minimum phase (NMP) systems, such as systems with right half plane (RHP) zeros and those with time delay 2) the specific problem of vibration, a prevailing problem facing practicing engineers in the real world of industrial control. It is shown that the DRP brings to the table a refreshingly novel way of thinking in tackling the persistently challenging problems in control. In particular, the problem of NMP has confounded researchers for decades in trying to find a satisfactory solution that is both rigorous and practical. The active disturbance rejection control (ADRC), originated from DRP, provides a potential solution. Even more intriguingly, the DRP provides a new framework to tackle the ubiquitous problem of vibration, whether it is found in the resonant modes in industrial motion control with compliant load, which is almost always the case, or in the microphonics of superconducting radio frequency (SRF) cavities in high energy particle accelerators. That is, whether the vibration is caused by the environment or by the characteristics of process dynamics, DRP provides a single framework under which the problem is better understood and resolved. New solutions are tested and validated in both simulations and experiments, demonstrating the superiority of the new design over the previous ones. For systems with time delay, the stability characteristic of the proposed solution is analyze

    NASA Tech Briefs, March 1995

    Get PDF
    This issue contains articles with a special focus on Computer-Aided design and engineering amd a research report on the Ames Research Center. Other subjects in this issue are: Electronic Components and Circuits, Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Manufacturing/Fabrication, Mathematics and Information Sciences and Life Science
    corecore