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 High-performance mechatronic systems are widely used in precision 

manufacturing equipment such as CNC machine tools, 3D-Printers, photolithography 

systems, industrial robots, and Coordinate Measuring Machines (CMMs). These 

equipment are utilized in producing parts and components for aviation, semiconductor, 

optics, and many other emerging industries, with geometric features and surface 

properties within micrometer-, or even in some cases nanometer-level accuracy. To 

keep up with the rapidly increasing productivity and accuracy demands, it is crucial 

that mechatronic systems of these manufacturing equipment deliver high-speed motion 

with high precision. In this dissertation, motion control strategies are presented to 

increase dynamic positioning accuracy and productivity of such mechatronic systems. 

First, a novel trajectory generation method is presented to avoid exciting low frequency 

structural vibration modes of machine tools and 3D-Printers, without compromising 

from productivity. The trajectory generation problem is posed as a convex optimization 

problem, and a practical windowing method is presented to implement the proposed 

strategy in real-time for long and realistic manufacturing scenarios. The proposed 

algorithm is validated on an industrial 3-Axis machine tool, and 4-6 times attenuation 

of the column vibration mode is achieved with 1[g] acceleration commands, without 

increasing the cycle time compared to state-of-the-art trajectory generation methods. 



 

 

This is followed by proposition of a data-driven trajectory shaping algorithm designed 

to eliminate dynamic positioning errors induced by flexible motion transmission 

components (such as ball-screw drives) and nonlinear friction forces typically caused 

by mechanical bearings and guiding units. The proposed algorithm is used for 

optimizing trajectory pre-filters through machine-in-the-loop iterations, in a data-

driven fashion, and therefore it can be applied on a wide variety of systems without 

requiring elaborate dynamic modeling. Effectiveness of the proposed technique is 

validated on a linear-motor-driven planar motion stage and an industrial 3-Axis 

machine tool, and it is shown that dynamic errors are reduced by 3-5 times compared 

to industry-standard approaches. Finally, an active tool position control strategy is 

proposed to mitigate self-excited (chatter) vibrations for improving stability margins of 

turning processes. Two motion control algorithms are developed to control the dynamic 

process defined by the interaction of the tool and the workpiece. An industrial lathe 

(turning center) is utilized for validating the effectiveness of proposed algorithms. A 

piezo-actuator driven tool-assembly is utilized to control tool position during the 

machining process, utilizing tool acceleration feedback, and the experiments show that 

4-5 times increase in productivity (widths of cut) is achieved by the proposed strategy. 
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1. General Introduction 

 

Accuracy and productivity of precision motion generation systems such as CNC 

machine tools [1] (see Figure 1.a), 3D printers [2] (see Figure 1.b), industrial robots 

[3], photo-lithography equipment [4] and coordinate measuring machines (CMMs) are 

determined by dynamic positioning accuracy of their motion delivery mechanisms 

(commonly referred to as fed drives). The main goal of precision feed drives is to 

deliver high-speed motion with excellent dynamic positioning accuracy. To achieve 

this goal, high bandwidth control of precision motion delivery systems with the 

capability of rejection external disturbance forces has been an active research interest 

of mechatronics community, e.g. [5], [6], [7], [8] and [9]. 

 

Figure 1. Examples of a CNC machine tool (a) and a 3D-Printer (b).  

 Achievable accuracy of precision motion delivery systems and precision 

manufacturing equipment is limited by several factors. First, manufacturing equipment 

typically exhibit structural vibration modes originating from lightly damped 

mechanical components such as columns that carry the cutting tool of a CNC machine 

[10], or the extrusion nozzle of a 3D-Printer [11]. These equipment are typically 

operated at high speeds, following motion trajectories with rapidly varying 

acceleration/deceleration commands. Inertial forces generated by these commands 
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inevitably excite lightly damped structural vibration modes, which have detrimental 

effects on the quality of manufactured components. For example, vibrations of the 

cutting tool of a CNC milling machine with respect to the motion stage cause distortion 

of the manufactured workpiece’s geometry and surface [10] as demonstrated by Figure.  

 Second, vibrations may also occur within the feed drives since most feed drives 

consist of mechanical transmission components with limited stiffness. For example, 

ball-screw driven motion stages are commonly used in modern machine tools [12]. A 

ball-screw driven stage delivers translational/linear motion by converting the rotary 

motion generated by its motor through a ball-screw shaft/nut interface. Limited 

stiffness of their ball-screw shaft and support bearings causes ball-screw drives to 

exhibit lightly damped torsional and axial vibration modes [13]. This causes the work-

table to vibrate, causing large dynamic errors during positioning [5]. 

 

Figure 2. Illustration of a machine tool exhibiting ball-screw and column vibrations (a), 

and the effect of structural vibrations on machining surface quality (b) [10]. 

 In addition to structural vibrations, dynamics of the servo controller also induce 

command tracking errors, limiting the positioning accuracy of feed drives. As the 

motion axes try to follow a rapidly accelerating trajectory, servo controller overcomes 

inertial and viscous friction forces, which cause the axes lag the original trajectory [14], 

and therefore cause dynamic positioning errors. This lagging effect is further 

exacerbated by power amplifiers of actuators [1], non-minimum phase zeros introduced 
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by higher order mechanical dynamics [15] and time-discretization, all of which 

introduce additional phase loss within the control loop. 

 Another significant source of dynamic positioning errors (and thus manufacturing 

inaccuracy) is disturbance forces. Disturbances can either be inherent to the mechanical 

design of feed drives (such as friction) [7], or they could be external, injected to the 

system by the manufacturing process, such as cutting forces in machining applications 

[16]. Friction forces can either be induced by lubricants in mechanical bearing and 

guiding units as viscous friction [12]. Or, they can be induced by microscale 

mechanical breakage dynamics between rubbing surfaces of bearings and guiding 

components, which is typically known as pre-motion (pre-sliding or pre-rolling) 

friction [17]. Viscous friction linearly depends on the velocity, and it typically varies 

slowly [18]. Thus, conventional feedback controllers can easily eliminate errors 

induced by viscous friction forces. Pre-motion friction, on the other hand, varies rapidly 

anytime the feed drive comes to a full stop and changes its direction of motion (i.e. 

velocity reversals), following a Hysteresis behavior as demonstrated in Figure 3.a. 

These forces are difficult to compensate, and they induce large tracking errors [14]. 

These command tracking errors are imprinted on surfaces that are being produced in 

machining applications, and therefore they limit the achievable accuracy of machined 

parts as shown in Figure 3.b. 

 In addition to internal disturbances, external disturbances such as process (cutting) 

forces decrease positioning accuracy of precision motion systems and hinders 

manufacturing quality. A cutting process can either be stable or unstable [19]. Stable 

cutting occurs when disturbance forces are bounded (do not increase over time) during 

the cutting process. These forces can either be constant (e.g. turning), or periodic 

(milling), and they are easily suppressed by dynamically stiff feedback controllers. 

Elastic deformations of the machine's structure, feed drive, workpiece and the cutting 

tool may result in a wavy surface on the workpiece during the cutting process. This 

waviness results in cutting forces to fluctuate. For instance, in turning processes, 

fluctuations in cutting forces may get exacerbated at each rotation of the spindle, 

depending on the spindle speed. As a result, cutting forces increase at every cycle of 

the spindle rotation, causing an unstable cut [16]. These fluctuations in cutting forces 
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cause unstable vibrations, which are known as regenerative self-excited chatter 

vibrations, and they are the most detrimental type of process disturbances. They 

decrease the surface quality of the workpiece greatly and may damage the 

manufacturing equipment. 

 

Figure 3. Hysteretic stick-slip behavior of friction forces w.r.t. displacement (a) and the 

effect of friction forces on surface quality in precision machining applications (b) [14]. 

 In this dissertation, strategies for mitigating dynamic errors and increasing 

achievable positioning accuracy of precision mechatronic systems are presented. The 

dissertation consists of 5 papers appearing in or submitted to IEEE/ASME Transactions 

on Mechatronics and/or CIRP Annals – Manufacturing Technology journals. Each 

paper is presented in a separate section. Section 2 presents a robust trajectory 

generation algorithm to generate multi-axis position, velocity, acceleration, and jerk 

commands to avoid exciting lightly damped column vibrations commonly seen in 

modern machine tools and 3D-Printer systems (see Figure 2). Sections 3 and 4 present 

trajectory shaping (pre-compensating) strategies to eliminate dynamic positioning 

errors induced by servo-controller dynamics, structural vibrations of motion 

transmission components (see Figure 2), and pre-motion (pre-sliding/pre-rolling) 

friction forces (see Figure 3). In section 5 and 6, motion control algorithms are 

presented to improve stability margins of turning processes by utilizing a piezo-

actuated cutting tool assembly. Finally, section 7 summarizes the contributions of this 

dissertation and provides a conclusion.  
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2. Robust Trajectory Generation for Multiaxis Vibration Avoidance 

 

Precision manufacturing equipment suffer from unwanted vibrations triggered in 

rapid motion. Unless mitigated, these vibrations limit achievable accuracy and 

productivity of motion systems. This article presents a novel technique to generate 

reference motion trajectories that can robustly avoid triggering unwanted inertial 

vibrations. The reference trajectory is defined in B-spline form, and its frequency 

spectrum is optimized to attenuate spectral energy in a desired frequency band to avoid 

excitation of unwanted vibrations. A novel time-domain smoothing objective is also 

proposed to improve tracebility of generated trajectories. The trajectory optimization 

problem is put in a convex form, and a novel windowing scheme is designed to solve 

it efficiently for real-time implementation. Robustness and effectiveness of the 

proposed method is validated experimentally on an industrial three-axis Cartesian 

machine tool. Experiments show that the proposed method can robustly avoid 

unwanted structural vibrations without introducing delay to the motion and outperform 

state-of-the-art prefiltering methods. 

 

2.1. Introduction 

 

Speed and accuracy are contradicting objectives for modern manufacturing 

equipment such as industrial robots [3], computer numerical control (CNC) machine 

tools [10], three-dimensional printers [11], or even gantry [20] cranes and conveyor 

systems. High speed and acceleration induce positioning errors and trigger unwanted 

vibrations. Although servo positioning errors can be eliminated through effective use 

of feedforward control [5], unwanted vibrations cannot be easily mitigated due to 

complex coupled dynamics of the machine structure. As the axes in motion accelerate 

and decelerate, inertial forces excite the structure. When frequency spectrum of this 

excitation matches lightly damped resonances, it induces unwanted forced vibrations. 

These vibrations elongate settling time [3] or even damage safe manipulation of pay 

loads on industrial robots. For precision manufacturing equipment, unwanted 

vibrations may easily destroy surface finish quality [10]. Similarly, in semiconductor 
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manufacturing, they limit the achievable productivity and accuracy of the equipment 

[21]. 

Structural vibrations can be dampened by employing additional hardware. 

These add-on dampers can be passive [22] or active [23]. Tuned-mass-dampers [22] 

are some of the widely used passive damper systems. Active dampers provide greater 

robustness. Nevertheless, they require additional sensors and actuators [24], which 

make them costly; they consume significantly more energy, and their application is 

limited by design constraints. 

Active vibration suppression can also be realized by utilizing the existing 

actuator and sensors. If vibration modes are controllable and observable by actuators 

and sensors already existing in the equipment, active damping can be achieved directly 

by feedback control. The most common approach is use of feed-drive systems and by 

design of mode-compensating(damping) controllers. Pole placement control [5], [25], 

[1] is widely used. Dumanli and Sencer [6] designed a non-collocated linear quadratic 

regulator for optimal placement of rigid body and structural vibration modes for best 

performance. Linear parameter varying control strategies are also proposed [26] for 

increased robustness against parameter variations. In [27], rotor vibrations are 

controlled actively. In [21], a nonlinear controller design is proposed based on 

Heuristics on vibratory behavior and Lyapunov analysis. 

These active vibration control schemes have two shortcomings. First, a robust 

controller must be designed for practical implementation. Second, controllability and 

observability of the modes are limited. Most industrial systems suffer from crosstalk, 

where vibration modes are coupled and cannot be observed without additional 

measurement points and sensor systems [10], [28]. Therefore, the use of passive 

techniques such as introducing a notch filter into the controller becomes more 

favorable. Notch filters remove the spectral energy from control signal around target 

frequencies. They can help avoid exciting lightly damped modes in the system. 

However, introducing notch filters into the feedback control loop limits achievable 

tracking bandwidth and at the same time degrades dynamic stiffness of the servo system 

[5], [29] which makes them not suitable for high performance positioning systems. 
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One way to overcome deficiencies of notch filters is to shift the filtering into 

the feedforward control. Singer and Seering [30] pioneered this approach by designing 

the first input shaper (IS) filter. ISs are essentially finite impulse response (FIR)-based 

notch filters that filter the reference command trajectory to control frequency spectrum 

of the inertial forces during rapid motion. Nevertheless, ISs introduce a motion delay 

that is inversely proportional to the notch frequencies. Typically, the cycle time 

elongation due to IS is shorter than the settling time of the vibration for lightly damped 

structural modes. As a result, it still makes ISs favorable for generating vibration-less 

point-to-point (P2P) motion. However, IS-induced delay is detrimental in multiaxis 

contouring. When interpolating spline, circular, or even multisegmented linear 

toolpaths, shaper delay causes large contouring errors [10], [31]. Therefore, ISs are 

avoided in multiaxis contouring motion unless those errors are pre-compensated [32]. 

In practice robust ISs with wider attenuation bandwidth [33] should be employed, or 

multiple ISs must be used to accommodate parameter variations and introduce 

robustness to the operation. 

To overcome drawbacks of ISs, model-less trajectory generation approaches 

have been developed. Most modern motion systems generate reference trajectories with 

continuous acceleration and jerk. Flash and Hogan [34] showed that smooth motion of 

humans is generated by minimizing the jerk. Industrial robot systems use min.-jerk 

trajectories for generating rapid and accurate end-effector trajectories [35]. Altintas and 

Erkorkmaz [36], adopted this approach on CNC machine tools [37]. Since jerk is the 

derivative of acceleration, it controls high frequency spectrum of the trajectory. Even 

though this implies that a min.-jerk trajectory will have less excitation at high 

frequencies, it cannot quantitatively control the trajectory’s frequency spectrum, which 

is critical for avoiding unwanted forced vibrations in precision equipment. 

To overcome this, Sencer and Tajima optimized reference trajectories with 

respect to their frequency spectrum [38]. Since this approach optimizes the profile in a 

fixed Fourier window, residual vibration at the end of a motion window is avoided. For 

longer toolpaths, unwanted vibration may still be observed. Furthermore, application 

of this method on curved, spline toolpaths is limited due to the nonlinearity of toolpath 

kinematics [10]. Duan and Okwudire [11] addressed this by designing a nonlinear FIR 
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filter for inverting individual drive dynamics with nonminimum phase zeros. They 

were able to generate vibrationless motion on long toolpaths. However, their method 

requires precise identification of structural dynamics, which is limited in practice. 

This article proposes a novel reference trajectory generation method that 

overcomes deficiencies of the above techniques. In-stead of relying on filtering, 

frequency spectrum of the reference tangential acceleration profile [10] is optimized 

using a convex optimization scheme to robustly mitigate residual vibrations in linear 

P2P and complex curved toolpaths. Section II outlines the basis of the method and 

application on P2P toolpaths, whereas Section III presents solution of the convex 

optimization problem for complex curved toolpaths. An efficient windowing scheme 

is presented in Section IV to plan frequency optimal trajectories for long toolpaths. 

Section V presents experimental implementation and benchmarks against state-of-the-

art techniques [30], [39]. 

 

2.2. Optimal Trajectory Generation for Vibration Avoidance in P2P Linear 

Interpolation 

 

Numerical control (NC) unit of servo control systems generates (plans) 

reference motion trajectories consisting of position (s(k)), velocity ( s ), acceleration 

( s ), and jerk ( s ) profiles, and commands them to the axis servo controllers in real-

time at a fixed servo control interval, Ts [sec]. The torque/force delivered by the servo 

motors are proportional to the reference acceleration (s). Due to rich frequency 

spectrum of the acceleration, lightly damped modes of the servo system or the machine 

structure maybe excited during high-speed motion causing unwanted residual 

vibrations. In an effort to avoid unwanted vibrations, frequency spectrum of the 

reference acceleration must be controlled infrequency domain around critical modes of 

the structure. This objective is achieved by minimizing the discrete Fourier trans-form 

of acceleration in a frequency band [ω1, ωM] as also reported in [10]: 
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where N is the number of samples in the Fourier window, and 1/M the frequency 

resolution. Note that attenuating frequency spectrum in a band ensures robustness to 

avoid residual vibrations. The objective function in (2.1) is put in compact matrix-

vector form: 
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The objective is to determine the reference acceleration profile s̈ that minimizes 

the objective function in (2.2). In this article, reference acceleration profile is defined 

in B-spline form [40]. This will be the foundation for numerically stable and efficient 

generation of frequency optimal reference motion profiles. Trajectory profiles in B-

spline form can be written in compact vector-matrix from as: 
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Notice that q∈ℝP is the optimal control point vector, which is to be determined to 

minimize J defined in (2.1). As shown in Figure 4, shape of the acceleration profile is 

controlled by control points q based on the basis function matrix B, which consists of 

nth order basis polynomials evaluated at a fixed sampling interval B(t=kTs). n>3 should 

be selected to ensure a jerk-continuous acceleration profile. g is the homogeneous knot 

vector. B and B  are the first and second order time derivatives of B. 

 Residual vibrations are only triggered during acceleration/deceleration transients. 

Therefore, the B-spline-based frequency-optimal acceleration profile is used to plan the 

acceleration transients between target velocities vinit and vfinal. This is achieved by 

introducing kinematic boundary conditions. First, initial and final zero acceleration and 

jerk constraints are imposed to ensure smooth and continuous motion, i.e., ainit=afinal=0, 

jinit=jfinal=0. Next, initial and final velocity constraints (vinit, vfinal) are imposed to ensure 

target velocity traverse is achieved. Finally, initial position constraint is imposed, 

sinit=0. These constraints can be postulated as linear equality constraints by making use 

of the B-spline basis representation of the trajectory from (2.4) as: 
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Figure 4. Illustration of frequency optimal displacement, velocity, acceleration and jerk 

profiles. 
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 (2.5) 

The optimization problem is postulated by combining the objective function 

from (2.2) to control frequency spectrum of the acceleration profile and the constraints 

from (2.5) to impose boundary conditions as: 

 
2

2
minimize , subjec   t to: =

q
WBq Lq p  (2.6) 

Equation (2.6) is a linear least squares minimization problem with equality constraints. 

Employing vector of Lagrange Multipliers (), following linear system of equations 

can be solved analytically to obtain optimal control points q that govern the reference 

trajectory with desired frequency spectrum: 

 
1 18

8 1 8 18 8 8

( )

 

T T T
P PP P P

P

  

  

     
=     

    

q 0B W WB L

λ pL 0
 (2.7) 

P2P trajectories start from zero initial velocity and accelerate toa target cruise feedrate, 

which is then followed by a deceleration transient to reach a full stop as shown in Figure 

4.a. Above approach only plans the acceleration/deceleration transients. This results in 

an acceleration frequency spectrum illustrated in Figure 4.b, where the frequency 

components betweenω1andωMare attenuated to avoid residual vibrations. The 

deceleration portion can be planned similarly by swapping the initial and final 

kinematic constraints. It should also be noted that only the initial position boundary 

condition is imposed in generating the acceleration transient. Displacement traveled 

during acceleration phase is known once the profile is planned, and it is subtracted by 

the total travel distance to calculate the cruise (constant speed) motion duration. 
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Figure 5. Multiaxis spline interpolation strategy. (a) Quintic B-spline tool-path. (b) 

Spline interpolation with feed correction polynomial. 

 Multiaxis P2P motion can be planned using the trajectory shown in Figure 4.a. 

Since axis accelerations are linear projections of the path acceleration s̈(t), i.e.,  

( ) ( ) ( )cosx t s t =  and ( ) ( ) ( )siny t s t = , simply tuning frequency spectrum of 

tangential feed(velocity) profile is sufficient. However, for curved tool paths such as 

arcs and splines, the axis kinematic profiles are controlled by the tangential feed profile 

as well as the continuously varying curvature of the path geometry [10]. Next section 

presents convex optimization of tangential trajectory profiles for robust vibration 

avoidance along complex curved toolpaths. 
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2.3. Optimal Trajectory Generation for Vibration Avoidance in Spline 

Interpolation 

 

Spline interpolation is commonly used in machining [39] and additive 

manufacturing [2] processes. Spline toolpaths are either defined in the B-spline [41], 

NURBS or in cubic (3rd order) or quintic (5th order) polynomial form [42]. NURBS and 

B-spline representations can be mapped to their basic polynomial form [43]. Quintic 

spline paths [44] ensure C2 continuous motion that is most suitable for high-speed 

motion. Figure 5 shows an example Quintic spline toolpath. Fifth-order polynomials 

are used to interpolate continuous motion between knots (waypoint) and axis positions 

are defined as: 

 

( ) ( ) ( ) 2 ( ) 3 ( ) 4 ( ) 5

( ) ( ) ( ) 2 ( ) 3 ( ) 4 ( ) 5

( )

( )

p p p p p p

x x x x x x

p p p p p p

y y y y y y

x u a b u c u d u e u f u

y u a b u c u d u e u f u

= + + + + +

= + + + + +
 (2.8) 

where u∈[0, lp] [42] is the spline parameter and a...fx
(p) and a...fy

(p) are spline 

coefficients of each segment p=1...K−1 (see Figure 5.a), where K is the total number of 

waypoints. C2 motion is achieved by ensuring zeroth-, first- and second-order 

geometric continuity constraints at each knot as 
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p p
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p p

x x l y y l

dx dx dy dy
l l

du du du du

d x d x d y d y
l l

du du du du

− −

− −

− −

= =

= =

= =

 (2.9) 

where x(p) and y(p) are displacement polynomials for the pth segment, and lp is its 

Euclidean length between waypoints. 

The relationship between the spline parameter u and the arc displacement s are 

nonlinear due to the varying curvature of the toolpath. Therefore, the spline parameter 

u for each arc displacement must be computed either iteratively [44] or by mapping 

[42]. Here, the feed correction polynomial approach from Erkorkmaz [42] is adapted, 

and the relationship between spline parameter and arc displacement is captured by a 

seventh-order polynomial: 

 
( ) ( ) ( ) 6 ( ) 7...p p p pu A B s G s H s= + + + +  (2.10) 
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As shown in Figure 5.b, once arc displacement s(t) is commanded, corresponding 

spline parameter is obtained from (2.10) and the axis position, velocity, and 

accelerations profiles are interpolated. 

 Axis kinematics are controlled by the tangential velocity and acceleration as well 

as the geometrical path derivatives. The relation between axis velocities ( x , y ), 

tangential velocity (ṡ) and toolpath geometry (x′,y′) is obtained by applying the chain 

rule on (2.8) and (2.10): 

 
( ) ( )

,
s s

s s

 
 = = = =

 

x y
x s x s y s y s  (2.11) 

and axis accelerations are obtained as: 

 

2
2 2

2

2
2 2

2

( ) ( )

( ) ( )

s s

s s

s s

s s

 
 = + = +

 

 
 = + = +

 

x x
x s s x s x s

y y
y s s y s y s

 (2.12) 

Typically, geometric path derivatives (∂x/∂s, ∂y/∂s) are evaluated along the arc 

displacement in advance and stored in memory. They are then used for calculating axis 

velocity and acceleration commands. This strategy is essential for computationally 

efficient planning of time-optimal reference trajectories and widely adapted for real-

time interpolation [42]. 

 

2.3.1. Frequency Domain Optimization for Residual Vibration Avoidance 

 

As introduced in the previous section, tangential feed profile combined with the 

geometric derivatives of the toolpath control axis kinematic profiles. Here, the idea is 

to plan the tangential feed/acceleration profiles (s̈(t)) to shape frequency spectrum of 

the reference axis acceleration profiles and thereby avoid un-wanted vibrations. In this 

article, robust vibration attenuation is achieved by jointly shaping the tangential 

trajectory kinematics based on weighted frequency and time-domain objectives. 

First, tangential acceleration profile s̈(t) is planned to ensure that axis 

acceleration profiles ( )x t  and ( )y t  have minimum spectral energy within a desired 

frequency band. This guarantees that residual vibrations at the end of a Fourier window 

is eliminated. Similar to (2.2), this frequency domain objective is postulated as: 
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 ( )2 2

2 2
minimize +

s
Wx Wy  (2.13) 

where W is the Fourier Kernel from (3).  1 2

T

Nx x x=x  and 

 1 2

T

Ny y y=y  are the sampled axis acceleration commands.  

Note that, unlike linear interpolation, axis acceleration pro-files are controlled 

by both tangential velocity and acceleration as well as the path derivatives in spline 

interpolation (see (2.12)). This introduces two crucial nonlinearities that prevent 

convex formulation of the optimization problem. First, square of tangential velocity ṡ2 

appears in (2.12) and poses a direct nonlinearity. Second, the first- and second-order 

path derivatives (x′, x′′, y′, and y′′) in (2.12) are defined as high order polynomials and 

vary with the arc length along toolpath. These nonlinearities banish convex 

minimization of (2.13). In order to circumvent them and recover the convexity of the 

optimization objective, the following steps are taken. 

First, in an effort to eliminate the ṡ2 term, axis accelerations are simply obtained 

from backward differentiation of axis velocity profiles in frequency domain: 

 

( )
( )

( )

( )
( )

( )

1
( ) ( )

1
( ) ( )

s

s

j T

s

j T

s

e
x t x t

T

e
y t y t

T





−

−

−


−


 (2.14) 

where ( ).  is the Fourier transform operator, i.e., 
0

( ( )) ( ) j t

t
x t x t e dt


−

=
=  . Since 

sampling time in modern CNC systems are around 0.5–1 [msec], this approach 

provides high-fidelity acceleration kinematics. Another benefit of the above approach 

is that the second-order path derivatives x′′ and y′′ are no longer required, which 

partially eliminates the second nonlinearity. However, first-order geometric derivatives 

x′ and y′ are arc dis-placement dependent and are still required. This nonlinearity is 

overcome by relaxing the displacement dependency as follows. 

 The toolpath is first interpolated at constant speed by a smooth “template” feed 

profile, se. Planning of a constant feed template motion profile is computationally 

insignificant [36], and path derivatives at sampled displacement points 

s(t=kTs),dx/ds,dy/ds can be stored in a lookup table for further evaluation. As long as 
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the generated displacement profiles and the template displacement profile se are 

sufficiently close, |s−se|< , stored path derivatives can be used safely in planning 

optimal feed profiles. Keeping the discrepancy ≤200 [μm] ensures accurate 

evaluation of axis accelerations. 

 Finally, the objective function for generating the frequency optimal trajectory 

originally given in (2.13) is repostulated as a linear least-squares problem to minimize 

frequency spectrum of axis accelerations as: 

 
( ) ( )

2 2

2 2
minimize ( ) ( ) ( ) ( )

subject t  o:

D e D e

e e

s s +

−   +

q
W x Bq W y Bq

s Bq s

 (2.15) 

where ◦ denotes Hadamard (entry-wise) vector product. The inequality constraints 

guarantee that se is sufficiently close to s. The regressor matrices in above optimization 

objective (WDdiag(x′)(se) B  and WDdiag(y′)(se) B ) contain WD instead of W, where 

WD is the Fourier differentiation matrix obtained using (2.14) and given as: 
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 (2.16) 

As a result, frequency optimal reference motion trajectories can be solved through 

convex optimization, and global optimum is sought. 

 

2.3.2. Time Domain Optimization for Forced Vibration Avoidance 

 

The optimization objective formulated in the previous section minimizes 

frequency spectrum of the trajectory (15) within a desired frequency band. This band 

is designed to robustly encapsulate natural frequencies of vibratory modes of the 
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structure. It attenuates residual vibrations that occur at the end of an acceleration 

transient. In other words, residual vibrations are eliminated when the acceleration phase 

is completed. If the acceleration phase is long, forced vibrations may be triggered and 

deteriorate the performance before they are cancelled. 

Unwanted forced vibrations during long acceleration transients are avoided by 

augmenting the original frequency domain objective function with the time domain 

response. In this article, the difference between reference acceleration ( x ) and 

acceleration response of a lightly damped vibratory system ( actx ) is considered to 

eliminate forced vibrations in time domain (i.e., actx x− ), and it is called the 

“acceleration response error.” Series of lightly damped oscillators are used to estimate 

residual vibrations from: 

 

2

,

2 2
1 , ,

( )
2

Q
n i

i i n i n i

G



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=
+ +

  (2.17) 

where ξ is the Laplace-domain frequency variable, ζi and ωn,i  are the damping ratio and 

the natural frequency of the ith mode. Note that each ωn,i is selected to lie within the 

target frequency attenuation band. The optimization problem to penalize acceleration 

response error is defined as: 

 

2

2

minimize

act

−
q

x x

Bq GBq  (2.18) 

where G is the discretized convolution matrix, which is obtained from the lifted-domain 

representation of G(ξ) as: 
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where A, b, and c are state transition, input, and output matrices of G(ξ), respectively. 

Axis accelerations are derived from differentiation of axis velocities using the 

following filter: 

 
2

1
( )

( )cf

s

z
D z

T z e
−

−
=

−
 (2.20) 

where z is the z-transform frequency variable, Ts is the sampling time, and fc is the 

cutoff frequency of the filter. D(z) behaves as a numerical differentiator for frequencies 

smaller than fc. With this modification, the optimization problem from (2.18) is 

augmented to: 
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q
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 (2.21) 

where D is the convolution matrix of D(z). Equation (2.21) ensures that the response 

acceleration follows the reference acceleration, which implicitly suppresses any forced 

vibration that may occur. For best performance, an accurate system model could be 

used instead of a simple resonator as in (2.17). 

 Both the frequency (2.13) and the time domain (2.18) objectives attenuate 

excitation of lightly damped vibratory modes and have complementary strengths. The 

frequency domain objective in (2.13) provides robustness against parameter variations 

and guarantees suppression of residual vibrations in a wide attenuation band, whereas 

the time domain objective given in (2.18) provides suppression of forced vibrations 

that occur during a long acceleration transient. A weighted objective function is 

postulated to exploit the benefits of these two objectives as: 
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 (2.22) 
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where λx and λy are the weights for x- and y-axis profiles. The ratio of singular values 

of the regressor matrices are employed so that above objectives are normalized against 

each other and well balanced by setting: 
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 (2.23) 

Equation (2.23) poses an optimization problem where a balance between forced 

and residual vibration avoidance is achieved through combining frequency and time 

domain objectives. Once this optimization objective is postulated, kinematic 

constraints for the motion can be introduced into the formulation.  First, as defined in 

(2.6), boundary conditions need to be included to impose initial and final motion 

kinematic states, i.e., Lq=p. Additionally, it is desirable to introduce limits on axis 

accelerations to avoid actuator saturation. These requirements are introduced as a 

convex set of inequality constraints: 
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 (2.24) 

dsas where vmax, maxx , and maxy  are the maximum allowable tangential velocity and 

axis acceleration values, respectively. Notice that the tangential displacement 

constraint ensures geometric derivative accuracy and also included in (24). Imposing 

kinematic equality and inequality constraints onto (22), the final optimization problem 

is postulated as:  
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  (2.25) 

In (2.25), JF refers to the frequency-domain objective, whereas JT indicates 

time-domain objective. This formulation allows us to generate multiaxis trajectories 

with optimal frequency spectrum in the axis-level. In the following section, a 

computationally efficient solution scheme is proposed for solving this convex 

optimization problem for longer toolpaths. 

 

2.4. Windowing Approach for Long Trajectories 

 

Proposed trajectory generation method can efficiently avoid unwanted 

vibrations within an attenuation band. However, for trajectories with longer motion 

duration (cycle time), size of the optimization problem grows in both number of 

optimization variables (control points, P) as well as the constraints imposed on the 

profile. Solving the convex problem globally in a single shot may not be suitable for 

real-time trajectory generation on a NC system. Instead, the problem is solved in 

“solution windows,” and the feed profile is planned for portions of the toolpath which 

are then connected together. This approach is similar to model predictive control 

(MPC) control framework [45], also known as the “look-ahead” functionality, found in 

modern NC systems [46]. 

Typically, “windowing” approach is implemented by solving the feed 

optimization problem within a “displacement window(interval)” [46]. In other words, 

the problem has been solved in feed-displacement phase plane where the feedrate 

(velocity)is defined as a function of arc displacement. In this article, we keep the 

trajectory optimization problem in time-feedrate plane so that the Fourier transform 

and time domain behavior of the acceleration profile could be retained. 
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Figure 6. Windowing approach for efficient trajectory optimization for real-time 

implementation. 

 The presented solution is illustrated in Figure 6. Optimal feed profile is first solved 

for the first window (ṡ(1), see Figure 6.a) by imposing zero initial and final kinematic 

(velocity, acceleration, and jerk) constraints commanding a short start-stop motion. 

Control points only within a solution window are optimized to minimize the objective 

function. ṡ(1) is solved for W samples (WTs [sec]), and i is the window counter. For this 

first window, the objective function (2.25) can be evaluated easily. Next, the window 

is shifted in time whereαcontrols the overlapping portion between successive windows 

(see Figure 6.b). For this subsequent window, the feed profile ṡ(2) is solved again with 

zero initial and final boundary conditions. In order to ensure sufficient duration for 

accelerating to the peak velocity, the window width is extended by L samples. 

Furthermore, to ensure that the feed profiles of successive windows are continuously 

connected; velocity, acceleration, and jerk constraints are introduced into the 

optimization problem as: 
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Although objective function can be easily evaluated for the first window, care 

must be taken for its evaluation in the intermediate windows i >1. First, let us focus on 

the second solution window, i=2. The objective function in (2.25) contains both the 

Fourier transform of acceleration profile and the vibratory dynamics of the system. It 

requires time history, i.e., the past motion trajectory, so that vibration within the current 

solution window is accurately attenuated. One way to address this is to simply evaluate 

the objective function spanning from the motion start (ṡ(1)(0)) to the end of the current 

solution window (ṡ(2)((L+W)Ts). Since past control points q(1) are already solved, 

objective function affecting only the current unknown control points q(2) within the 

current (i=2) solution window is solved from the following reduced optimization 

problem: 
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where 
( )1

B  and 
( )2

B  are the first derivative of B-spline function matrices for the first 

and second solution windows defined as: 
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where PW is the number of B-spline control points per window. Notice that this 

approach limits the amount of unknown parameters at each solution window to PW 

despite the increasing trajectory length. This procedure is followed for successive 

solution windows until the desired trajectory length is reached, and B-spline control 

points are solved from (2.27). Finally, the length of the profile in the last window (see 

Figure 6.c) is selected slightly larger (L+W′) to ensure that full stop at the end of the 

tool paths safely ensured. 

 The above strategy is effective for solving the global convex optimization problem 

efficiently for longer toolpaths. However, since the optimization problem given by 

(2.27) is solved by gradient-based methods, computational effort still grows for longer 

toolpaths due to increased size of data points to evaluate the objective function. For 

instance, in order to solve the optimization problem given by  (2.27), WD is constructed 

for the entire trajectory length up to second window, which is (2−α)W. For the 

following (third) window, this length increases to(3−2α)W. Similarly, sizes of D, G, 

x′(se), and y′(se) also increase. Furthermore, at each successive optimization, number of 

B-spline matrices to reconstruct (2.27) grow (B(2), B(3)). In order to limit the 

computational expense, an additional windowing approach, which emphasizes the most 

recent samples in the trajectory is implemented. The basic idea is presented in Figure 

6.d. As shown, a Tukey (tapered cosine) window is used. This window is referred to as 

the forgetting window. The objective function is simply multiplied by the forgetting 

window in the vicinity of the current solution window [47] similar to short-time Fourier 

transform. The forgetting window (f) is given by: 
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whereτ≥0 is the shifted time parameter, i.e., τ=t−tstart, and tstart is the window start time. 

The window undergoes a transient from “0” to “1” for r/2 [sec], and it saturates at “1” 

for τ ≥ r/2. The width (F) of the Tukey window is selected slightly longer than the 

duration of the solution window (L+W) so that L+W+(r/2)<F<U is satisfied, where U 

is the length of the complete trajectory. In practice, transient length (r/2) is selected as 

25%–50% of the total forgetting window length (F). 

With the introduction of the forgetting window, dimensions of WD in (2.27) at 

the second solution window (i=2) are fixed at 2M×F instead of 2M×(2−α)W. For the 

following window (i=3), the size of WD remains constant at 2M×F, as opposed to 

increasing to 2M×(3−2α)W. Furthermore, sizes of D, G, x′(se), and y′(se) also remain 

constant for each successive window. This ensures that the computational cost of 

calculating the objective function gradient of (2.27) remains unchanged even though 

the trajectory length increases, which makes the developed trajectory generation 

method suitable for real-time implementation. 

 

2.5. Experimental Validation 

 

Experiments are conducted on an industrial three-axis CNC machine tool 

shown in Figure 7.a. Accelerometers in X-Y directions with 103 mV/m/s2sensitivity 

are attached on spindle head to measure residual vibrations when the Cartesian X- and 

Y-axes are moved. Frequency response functions in Figure 7.b show that the machine 

suffers from several lightly damped resonances and the spindle head is easily excited 

by the motion of the table in both X- and Y-directions. 
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Figure 7. Illustration of the three-axis CNC machine tool used in experimental 

validation and the frequency response functions of its spindle head. 

 First set of experiments are performed along P2P linear trajectories. The min.-jerk 

[39] trajectory generation technique is used as a benchmark. A X-axis trajectory for 

110 [mm] stroke is planned with 10 [m/sec2] max acceleration to reach 400 [mm/s] 

cruise speed. Total acceleration transient lasts 0.075 [sec]. Based on this min.-jerk 

trajectory, proposed frequency optimal trajectory is generated with a frequency 

attenuation band of 25–60 [Hz]. The attenuation band is selected to robustly avoid all 

the low frequency modes shown in Figure 8.c. At first only frequency domain objective 

is minimized by solving the optimization problem given in (2.25). The control point 

resolution is set to 400 [points/sec]. Next, proposed optimal trajectory is generated by 

minimizing only the time domain objective through (2.25). The resonator model is 

selected with n=28 [Hz] and ζ=0.03 to target the most critical mode. Finally, both 

frequency and time-domain objectives are minimized from (2.25). Convex 

optimization Toolbox, CVX [48] is used to solve the problem. Figure 8 summarizes 

time and frequency domain analysis of generated trajectories. As shown, basic min.-
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jerk trajectory triggers large residual vibrations during acceleration/deceleration 

transients. Note that frequency spectrum of min.-jerk trajectory cannot be controlled. 

When only the frequency domain optimization is used, acceleration’s frequency 

spectrum is well attenuated and residual vibrations are avoided; however, high 

frequency spectrum is amplified. When the proposed time and frequency optimal 

reference trajectory technique is applied, frequency spectrum of reference acceleration 

in the desired band is attenuated, and at the same time high frequency spectrum is also 

controlled to avoid exciting higher order modes. Note that cycle time is not altered from 

the template min.-jerk trajectory. Input-shaping strategy is also implemented on the 

min.-jerk trajectory by filtering it with 3 cascade IS with delays of 0.0179, 0.0143, and 

0.0109 [sec] to cancel structural resonances at 28, 35, and 46 [Hz]. As seen, the IS 

provides frequency attenuation comparable to the proposed strategy. However, it adds 

0.043 [sec] delay to the original acceleration profile. It elongates the cycle time and 

sacrifices from productivity. Overall, proposed technique avoids residual vibrations 

effectively while not elongating cycle time in linear P2P interpolation. 

 

Figure 8. P2P linear interpolation trajectories. 

 Experimental validations are conducted also on the quintic spline toolpath shown 

in Figure 9.a. The toolpath consist of 220 waypoints (knots) with a total arc length of 

975.9 [mm]. A constant feedrate (80 [mm/sec]) trajectory is generated based on min.-

jerk acceleration transients and used as the template [se in (24)]. Reference kinematic 
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profiles are depicted in Figure 9.b. As shown, axis accelerations exceed 1 [g] due to 

varying path curvature. Proposed windowing approach is used, and the time/frequency 

optimal trajectory is generated. Parameters used in the optimization are identical as the 

ones used in the P2P interpolation case. Solution window length is set to be L+W=332 

samples (0.332 [sec]). The overlap ratio α is chosen as 0.5 [see (26)]. This results in 73 

solution windows, each of which is solved using a 1 [sec] long forgetting window with 

a resolution of 150 [points/sec]. This ensures that problem size remains unchanged as 

trajectory length grows. Note from Figure 9.b that the cycle time is kept unchanged 

from the template trajectory. 

 The machine is commanded with the template constant feed, proposed optimal 

trajectory and additionally constant feed trajectory filtered by identical ISs used in 

single-axis experiments (see Figure 8). Results are summarized in Figure 9. As shown, 

constant feedrate trajectory triggers large residual vibrations due to varying path 

curvature. Proposed trajectory generation technique provides robust vibration 

avoidance (see Figure 9.(c–h)). All of the target modes are within the cancellation band 

([22, 55] [Hz]), and their vibrations are avoided. ISs also provides effective vibration 

avoidance. However, it clearly jeopardizes contouring performance and elongates the 

cycle time by 0.043 [sec] [see Figure 9.e]. Contouring errors are measured by the 

method given in [49]. IS increases max contour errors by∼1.5×. In contrary, proposed 

method avoids residual vibrations and does not induce contouring errors. In fact, 

contouring performance is even improved by 60% since the time domain objective 

provides some feedforward action. Also, notice that the cycle time is unchanged from 

the template profile. 
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Figure 9. Experimental validation of the proposed method for a multiaxis trajectory. 
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2.6. Conclusions 

 

This article presented a trajectory generation method with optimal frequency 

spectrum in order to robustly avoid excitation of lightly damped structural resonances 

of precision motion generation systems. The proposed method is formulated 

forbothP2Pmotiongenerationandcoordinatedmultiaxistrajectorygeneration. Proposed 

method is posed as a linear least squares minimization problem with convex equality 

and inequality constraints. The resulting problem is a convex optimization problem, 

and therefore can be efficiently solved to global optimality. A windowing-based 

solution method is proposed in order to efficiently implement the proposed method for 

industrial ap-plications. Proposed method is validated on an industrial-scale machine 

tool with multiple vibration-modes. The experimental results show that the proposed 

method provides superior vibration avoidance compared to min.-jerk trajectories. 

Additionally, it is demonstrated that the proposed method is able to deliver vibration 

avoidance and reduce contouring errors simultaneously, whereas IS-based trajectories 

deteriorates the contouring performance. 
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3. Pre-Compensation of Servo Tracking Errors through Data-Based Reference 

Trajectory Modification 

 

This paper presents a new dynamic errors compensation approach with novel data-

based tuning scheme to enhance tracking accuracy of machine tool feed-drives. Both 

plant’s dynamic and friction disturbance induced positioning errors are compensated 

by modifying the reference trajectory. Velocity, acceleration, jerk and snap profiles of 

reference trajectory are modulated to achieve perfect tracking. Reference position 

profile is modified based on the pre-sliding regime to eliminate quadrant glitches. 

Optimal compensation parameters are identified iteratively by making on-the-fly 

adjustments to the reference trajectory through machine-in-the-loop type optimization. 

Effectiveness of proposed compensation approach is validated experimentally in multi-

axis feed drive systems. 

 

3.1. Introduction 

 

Productivity and overall accuracy of machine tools depend on speed and accuracy 

of its feed drive systems [12]. Feed drives suffer from quasi-static volumetric and 

dynamic tracking errors. Volumetric errors can be measured and compensated through 

reference trajectory modification without interfering with servo controller [50]. 

Dynamic tracking errors occur constantly as servo controller tries to compensate for 

inertial and viscous damping forces, and struggles to overcome non-linear friction and 

process induced disturbances [51]. 

Machine tool literature focuses on two major strategies to mitigate dynamic feed-

drive errors: (i) exhausting limits of feedback (FB) control through design of non-

linear, robust adaptive [12], [51], [29], [52] controllers with modal damping [29], [6], 

and (ii) compensating rest of the dynamic errors through feedforward (FF) control, 

which is not only used to cancel known servo dynamics [51], [53] but also disturbances 

such as the non-linear friction [51], pitch error induced loads and harmonic cogging 

forces [12], [29]. If the dynamics to be compensated is represented accurately by 

casual, stable models; FF compensation is safe and effective [51], [53]. However, 

modelling stage is typically by-passed in practice, and FF compensator gains are hand-
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tuned via trial-and-error. Drive dynamics vary with both position and workpiece inertia 

[12], [52]. Friction dynamics vary by time, and hence compensator re-tuning is 

necessary to regain lost dynamic accuracy, which is time consuming and costly. 

Relying solely on FB and FF control is insufficient. Recently, benefits of reference 

trajectory generation are recognized as they are optimized to avoid residual vibrations 

[10] or pre-compensate for the servo lag to enhance machine’s contouring performance 

[32]. Most NC systems provide digital trajectory pre-filters [50] and external trajectory 

command input functions to help end-users exploit limits of their machines, and also 

integrate with the industry 4.0 [54]. 

 

Figure 10. Proposed trajectory modification strategy. 

This paper presents a novel strategy to pre-compensate dynamic feed drive errors 

through reference trajectory modification. Reference velocity and acceleration 

commands are modified to pre-compensate servo dynamics induced errors. Whereas, 

reference position profile is modified locally to cancel pre-sliding (stick/slip) friction 

induced positioning errors to achieve near-perfect tracking. 2 key contributions are 

presented to achieve this compensation scheme effectively. Firstly, the trajectory pre-

compensation is realized by a fixed-structured digital pre-filter whose parameters are 

identified automatically via machine-in-the-loop learning, which is data-based and 

does not require any expert knowledge. Secondly, identification of trajectory pre-filter 
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is posed as a convex optimization problem, which provides rapid, save and reliable 

auto-tuning. The proposed approach is simple. It can improve dynamic accuracy of 

older or newer CNC machines either through offline or online trajectory modification 

and demonstrated experimentally on feed drives. 

As shown in Figure 10 reference commands xR are modified by two pre-

compensation filters, FN and FL, and the modified trajectory xM=xR+FL(xR)+FN(xR) is 

sent to the closed loop servo control system so that final axes position x perfectly follow 

xR. The pre-compensation filter FL is used to cancel feed drive’s linear closed loop 

dynamics. FN(.), is designed to cancel the non-linear stick/slip friction induced errors 

by offsetting the trajectory during velocity reversals. The following sections describes 

pre-filter design and its auto-tuning using data-based optimization.   

 

3.2. Pre-Compensation of Linear Servo Dynamics 

 

Machine tool feed-drives are mostly controlled by cascade P-PI or PID controllers 

tuned carefully to avoid exciting structural resonances [12]. As a result, typical feed-

drive tracking response is dominated by rigid-body plant G(s) and FB controller C(s) 

dynamics, which induces large servo errors during rapid acceleration and deceleration. 

If the original trajectory is modified by a pre-filter FL (see Figure 10) whose transfer 

function in Laplace (s) domain is selected as:  

 ( )
3 2

2

1
  1 1

1

CL

L L

D P I R

G

ms bs x GC
F F

GC K s K s K x GC

+  
= = → = +  

+ + + 
 (3.1) 

closed loop servo dynamics GCL(s) can be compensated to achieve near-perfect tracking 

(x≈xR). Above pre-filter structure satisfies 2 key assumptions. Firstly, the numerator 

amplifies original acceleration and velocity profiles only by the uncompensated mass 

(m) and viscous friction (b) amount. Secondly, the denominator tries to compensate for 

the FB controller dynamics. Note that all linear servo controllers can be implemented 

by mapping their parameters into basic PID gains, KP, KD and KI [29], [6]. Therefore, 

proposed pre-filter design can capture dynamics of most industrial servo systems. 
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Initial pre-filter parameters are identified automatically from a single closed-loop 

tracking experiment. The machine is instructed by a simple back-and-forth trajectory 

and the resulting error profile eL is recorded. The error dynamics is governed by: 

3 2

3 2

0 0 0 0

1

1

1
( )

L

R D P I

t t t t

L R D L P L I L R

e ms bs

x GC ms K b s K s K

e x K b e d K e d K e d b x d
m

 (3.2) 

Eq. (3.2) is sampled at servo loop period Ts and mass-normalized (m) pre-filter 

parameters are identified from least squares (LS) fitting: 
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 (3.3) 

where ei, eii, eiii are digitally integrated error eL profiles in Eq. (3.2) over 0…M samples. 

 In practice, above transfer function fitting approach may not provide the most 

suitable compensator parameters. If the feed-drive suffers from strong non-linear 

guideway friction, identified rigid-body parameters could be biased [18], or even the 

pre-filtered trajectory may excite resonances [53]. To alleviate those practical problems 

following machine-in-the-loop fine-tuning approach is developed, and numerator of 

the pre-filter is updated. 
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Figure 11. Machine-in-the-loop tuning of trajectory pre-filter FL. 

 The machine is commanded by an NC code containing non-stop speed changes 

shown in Figure 11.a. Pre-filter parameters are updated to minimize the tracking errors 

around acceleration transients, which helps to eliminate non-linear friction bias and at 

the same time penalizes excitation of higher order error dynamics. This can be 

postulated by the following optimization problem:  

 
2

2,

1 1
min , subject to: 0, 0

2 2

T

L L L L
m b

J m be e e  (3.4) 

where eL is the tracking error vector. Based on Eq. (3.4) pre-filter parameters are 

adjusted; compensated trajectory is sent to the machine again, and resulting error trend 

is used to update the filter parameters for the next run as shown in Figure 11.b. 

Machine-in-the-loop iterations are continued until convergence is achieved. 

This approach mimics manual trial-and-error tuning by an expert. Safe and reliable 

convergence is crucial. Automatic parameter update is achieved by solving Eq. (3.4). 

This is a convex optimization problem, and thus utilizing gradient (Jacobian) of its cost 

function ∇JL=[∂JL/∂m, ∂JL/∂m]T=eL
T∇eL, and the positive definite Hessian matrix 

∇2JL=∇eL
T∇eL enables us to rapidly and safely guide the search to global minimum. 

Notice that eL is already available as a measurement data, and its gradient ∇eL can be 

obtained by filtering reference trajectory xR or the original uncompensated response x 

from Eq. (3.1) as: 
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Filter parameters are updated by simply making use of Newton’s second order iteration 

scheme: 
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 (3.6) 

 

where  is the learning gain, and k is the iteration number. Notice that above iteration 

scheme is a discrete linear dynamic system. Range of learning gains for reliable 

convergence can be analyzed [8] and 1>>0 provides reliable convergence. Inequality 

constraints are included using primal-dual interior point algorithm [55]. 

 

3.2.1. Experimental Validation 

 

 

Proposed algorithm is tested on a cartesian micro-machine tool shown in Figure 12. 

X and Y axes are controlled by cascade P-PI controllers with hand-tuned FF 

compensators on the deltaTau NC system. Axes are moved by a single G-code back-

and-forth at 50 and 100 [mm/sec]. Reference trajectory and error profiles are recorded 

at 1 [kHz]. As shown in Figure 12.c, tracking errors peak around acc/dcc sections of 

reference trajectory. Proposed trajectory prefiltering is applied by tuning (training) the 

prefilter FL using Eqs. (3.3) and (3.6) on the same trajectory. As shown in Figure 12.b, 

best filter parameters are identified within 5-6 iterations with =0.75, and tracking 

errors are reduced to less than +/-3[m]. Remaining tracking errors are due to non-

linear friction disturbance. They are eliminated by the reference trajectory pre-filtering 

technique presented in the following section. 
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Figure 12. Experimental validation of servo dynamics compensation. 

Once the trajectory pre-filter FL is trained for the machine’s feed drive dynamics, 

it can be applied to any trajectory for perfect tracking. This is demonstrated by 

eliminating contouring errors along a curved tool-path presented in the following 

section 3.3.1. 

 

3.3. Pre-Compensation of Nonlinear Pre-Sliding Friction 

 

Another major source of dynamic servo errors is the non-linear friction. As shown 

in previous section, industrial servo controllers cannot effectively reject rapidly 
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changing friction forces, which leaves quadrant glitches and surface location errors 

during velocity reversals [51], [29], [52], [53]. This section shows how reference 

trajectory can be modified to compensate for them.  

Trajectory pre-filter FL is used to cancel linear servo dynamics. Therefore, only 

friction induced errors are apparent at velocity reversals and can be predicted from 

closed-loop dynamics as: 
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 (3.7) 

where xF is the pre-compensation command generated by FN(.) (see Figure 10), D(s) is 

the disturbance TF, and fF is the nonlinear friction disturbance. Eq. (3.7) reveals an 

important fact: If the reference trajectory is offset by controller (C(s)) filtered friction 

forces xF=xR+C-1fF , it can cancel friction induced errors as well. This requires (i) 

knowledge of controller dynamics C(s), which is already identified from LS fitting in 

Eq. (3.3), and (ii) an accurate estimation of friction forces. The following describes 

how nonlinear stick/slip friction could be identified automatically (adaptively) from 

closed-loop experiments and cancelled by the pre-compensation signal generated by 

trajectory prefilter, FN(.). 

 

 

Figure 13. Modified GMS Model and the Spring Activation Matrix (A). 
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Generalized Maxwell-slip (GMS) model [51], [56] accurately captures hysteretic 

stick/slip induced pre-sliding friction dynamics with non-local memory. However, it 

must be tuned either manually [51], [56] or using non-linear optimization [57] to 

compensate or cancel friction disturbances. To facilitate automatic tuning, a modified 

GMS form is proposed here as: 

 
( )

( )1

, if stick . . / 2
,

0, if slip . . / 2

K
R R i ii

GMS i i

i i i

x v i e z Pdz
f k z

dt i e z P=

 = 
= = 


  (3.8) 

where K is the number of MS blocks that stick and slip (see Figure 13), and ki is ith 

block’s spring coefficient while sticking. As blocks undergo local micro-translation 

(zi), they slip only when they exceed their break-away (stick) distance, Pi. The 

fundamental difference of above modified GMS formulation (Eq. (3.8)) from the 

conventional one is that; here, the stick/slip conditions are governed by break-away 

distances rather than break-away forces [56]. Stick distance of feed-drives range 

10~100[m] [56], which can be observed from a simple tracking experiment. The stick 

distance is divided and distributed to individual MS block’s stick distances as; 

P1<P2<…<PK=P. As a result, only unknowns in this modified GMS model are spring 

coefficients ki that can be identified simply in the sense of linear least squares (LS). 

Furthermore, above GMS formulation preserves all the properties of original GMS 

including the non-local hysteresis memory [51], [56].  

Eq. (3.8) can be put in a simple linear matrix-vector form as: 

  1 2, where  GMS K

d

dt
= =f Ak A z z z  (3.9) 

where, k=[k1…kK]T contains spring constants, and A is the spring activation matrix, 

which contains stick/slip velocities vR for each individual block. Its structure is 

illustrated in Figure 13 for a sinusoidal trajectory. Each column of A represents 

individual MS block’s stick/slip kinematics during velocity reversals. For instance, first 

MS block sticks during a velocity reversal (t=0) until xr=P1, which occurs at t=t1. The 

next block sticks a little longer, until xR=P2, t=t2. The A matrix is generated from 

reference trajectory, and it is “velocity reversal dependent”. Combined with spring 

constants, it captures the friction induced hysteresis behavior shown in Figure 13. 
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Identification of GMS spring constants to compensate (minimize) friction errors is 

postulated by the following optimization problem: 

 
2

2

1 1
min , subject to: 0

2 2

T

N v v vJ
k

e e e k  (3.10) 

where ev is the tracking error vector recorded around a velocity reversal. Similar to the 

previous section, Eq. (3.10) depicts an optimization problem with quadratic objective 

JN, and it can be solved utilizing its gradient ∇JN=[∂JN/∂k1…∂JN/∂kN]T= ev
T∇ev and 

Hessian ∇2JN=∇ev
T∇ev. ∇ev that are available analytically by filtering measured tracking 

error data by plugging Eq. (3.9) into (3.7): 
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where ∇fGMS is the friction pre-compensation signal, and ∇fGMS is its discretized vector 

containing M samples.  

As shown, proposed formulation of GMS friction model (Eq. (3.8)) allows us to 

define friction induced error gradient explicitly as a function of the reference trajectory. 

Machine-in-the-loop iterations are used to safely train the friction pre-compensator 

parameters FN = fGMS/C using Newton iterations: 

 ( ) ( )
1

1 2k k

N NJ J
−

+ = −  k k  (3.12) 

 

3.3.1. Experimental Validation 

 

Effectiveness of the proposed trajectory pre-filtering scheme for friction 

compensation is tested on the same linear motor driven micro-machine tool (see Figure 

12.a). A spiral curved tool-path shown in Figure 14.a is commanded at a feed of 

50[mm/sec].  The linear FL filter (tuned previously) is used to compensate for servo 

dynamics. As a result, large quadrant glitches occur around velocity reversals due to X-

Y drive’s friction disturbances, and they are visible in the contour error trend in Figure 

14.c. Friction compensator pre-filter FN is trained using Eq. (3.12) at each velocity 

reversal (iteration) on-the-fly to offset the trajectory and cancel friction. 10 GMS blocks 
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are used to capture the pre-sliding friction regime of the feed-drive. As shown in Figure 

14, after the 15th velocity crossing, stick/slip hysteresis curve is automatically 

identified, and reference trajectory is modified to perfectly cancel quadrant glitches as 

shown in Figure 14.a and c. Contour errors are reduced down to 1[m]. By combining 

both linear servo dynamics and the friction pre-compensator filters, near-perfect 

tracking could be achieved. Once trained, the trajectory compensation filters can be 

used at any trajectory to enhance the contouring performance. 

 

Figure 14. Experimental compensation of Stick/Slip friction. 
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 Finally, micro milling experiments are conducted to showcase the importance of 

stick/slip pre-sliding fiction compensation in surface finish quality in Figure 14.d. A 

concave surface is cut on A5052 workpiece at 5[mm] depth and 0.1[mm] radial 

immersion with 15[krpm] spindle speed and 0.02[mm/rev-tooth] feed. X-axis reverses 

its motion direction at the bottom of surface. At that instant pre-sliding friction starts 

kicking in and causes surface profile errors over ~20[μm] (Figure 14.d, measured by 

Surfcom Flex-50A). Notice that profile errors occur slightly delayed from velocity 

reversal point due to friction breakaway distance. Proposed pre-compensated trajectory 

cancels friction errors and thereby enables machining of near-ideal surface profile. 

 

3.4. Conclusions 

 

A novel error pre-compensation scheme is proposed, which greatly improves 

dynamic accuracy of machine tools by compensating for the closed-loop servo and 

stick/slip (pre-sliding) friction induced errors by modifying reference trajectory. 

Proposed scheme does not need prior knowledge of feed-drive dynamics nor it requires 

complicated open-loop identification experiments. It is implemented by a digital pre-

filter whose parameters are tuned automatically from simply moving the axes back-

and-forth by standard G-code, or even on-the-fly as machine travels along a known 

tool-path. It requires no expertise. Safe and reliable auto-tuning is achieved by 

formulating the tuning problem based on iterative learning and convex optimization. 

Overall, proposed technique can improve dynamic accuracy of newer or older 

machines equipped with a modern NC system. 
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4. Data-Driven Iterative Trajectory Shaping for Precision Control of Flexible 

Feed Drives 

 

With recent advances on material processing technologies, design requirements on 

modern manufacturing equipment are shifting towards achieving higher speed and 

accuracy rather than stiffness and load capacity. Motion systems used in additive or 

ultra-precision manufacturing equipment need to be designed to achieve greater 

dynamic positioning accuracy. As a result, Feed-forward (FF) control becomes an 

effective tool. This paper presents a novel and practical FF controller design 

methodology to widen tracking bandwidth of precision motion systems suffering from 

structural dynamics and friction induced disturbances. The proposed feedforward 

controller is designed to (1) compensate for the closed-loop servo dynamics to widen 

the command tracking bandwidth, (2) mitigate unwanted vibrations and (3) compensate 

friction disturbance induced positioning errors. The FF controller is structured in a 

trajectory pre-filter form where the FF compensation signal is injected into the 

reference trajectory rather than torque command. This facilitates the FF controller to 

be applied conveniently without intervention with the servo controller. FF controller 

parameters are identified (tuned) automatically through machine in-the-loop-iterations. 

Parameter identification is posed as a convex optimization problem to realize safe and 

reliable auto-tuning. Proposed FF controller and its parameter tuning methodology are 

tested experimentally on an industrial scale multi-axis machine tool and its 

performance is validated. 

 

4.1. Introduction 

 

Accuracy and productivity of modern manufacturing equipment, such as machine 

tools [5], 3D-printers [2], industrial robots and ultra-precision systems [4] are largely 

influenced by dynamic positioning accuracy of their motion delivery (feed drive) 

systems. The ultimate goal is to widen the command tracking bandwidth, which is 

typically limited by the drive’s structural dynamics and disturbance loads. This paper 

presents a novel trajectory pre-filter design and its practical auto tuning method to 

widen tracking bandwidth of flexible feed drives and overcome friction induced 
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disturbances. 

Disturbances greatly limit dynamic accuracy of motion systems, and they can be 

categorized as internal or external. External disturbances originate from the 

(manufacturing) process. For CNC machines, external disturbances are due to cutting 

forces between tool and workpiece, and their frequency spectra is dictated by the 

rotational speed of the tool/workpiece [16]. High-gain feedback (FB) control design is 

needed to reject those process induced disturbances. FB control strategies based on 

loop shaping [1], pole placement [5][6], and H∞ synthesis [26], or nonlinear techniques 

such as Sliding Mode Control [13] are employed to improve dynamic stiffness of 

motion system. 

Modern positioning systems used in advanced manufacturing equipment, on the 

other hand, don’t necessarily suffer from external disturbances. Instead, friction forces 

are more significant. Friction induced disturbances are wideband and inherent 

(internal) to the mechanical design. Unless these disturbances are tackled through 

hardware-based solutions such as frictionless bearings and guides [58], or hybrid drives 

[59]; their effect needs to be rejected through feedforward (FF) compensation [51]. Due 

to the complex pre-rolling/pre-sliding (stick/slip) friction regimes of disturbance 

forces, they exhibit nonlinear dynamics with position and velocity. Dahl, LuGre [60] 

and Generalized Maxwell Slip (GMS) [61] models are proposed to capture hysteretic 

displacement/friction force characteristics. Accurate parameter identification and 

adaptation are critical for successful FF compensation. Friction forces are sensitive to 

operating conditions including environmental temperature [57]. Frequency [56] and 

time domain-based parameter [17] identification methods are available. However, 

these methods are cumbersome to apply and not frequently used in practice. Built on 

the original GMS architecture, this paper proposes a modified GMS formulation to 

apply linear parameter regression to accurately and conveniently tune friction FF 

compensators for precision positioning. 

Unwanted vibrations are another major source of errors affecting dynamic accuracy 

of precision motion platforms. They originate from the structural dynamics, e.g. lightly 

damped resonances of the feed-drive system and mostly triggered by inertial forces 

generated during high speed/acceleration motion [6], [10]. Therefore, they are referred 
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to as “trajectory induced (residual) vibrations” and most successfully mitigated by 

feedforward compensation. Input shaping (IS) [20], notch filtering [5], moving average 

(FIR) filtering [62], or frequency shaped trajectory generation [10] are used to control 

the spectral energy of reference motion commands and thereby mitigate trajectory 

induced unwanted vibrations. 

 

Figure 15. Overall block diagram of the proposed reference trajectory modification 

strategy. 

Input shaping, when robustified [63], is effective in mitigating residual vibrations; 

however, robust shapers add extra delay to the system and elongate cycle times [10]. 

They can avoid excitation of resonances and improve point-to-point positioning 

accuracy. But, they distort original reference trajectory and degrade contouring 

accuracy in multi-axis applications [31]. Therefore, ISs are applied only to point-to-

point (P2P) positioning. Inverse dynamic filtering (plant inversion) based on Zero 

Phase Error Tracking (ZPET) [64] or Perfect Tracking pre-filters (PTP) [5] are used to 

pre-filter reference trajectories to both avoid vibrations and improve tracking accuracy 

at the same time. These filtering techniques are effective in widening the tracking 

bandwidth of most motion systems. Nevertheless, they rely on dynamics inversion and 

thus require precise identification of system dynamics. 

Plant-inversion based pre-filters and FF controllers can also be designed by making 

use of Iterative-Learning-Control (ILC) framework, where filter parameters are 

optimized through Machine-In-the-Loop (MIL) iterations [65]. Simple Finite-Impulse-

Response (FIR) pre-filters can be easily tuned using data-driven ILC methods [8]. 

However, compensating flexible dynamics of feed drive systems with Infinite-Impulse-

Response (IIR) pre-filters promises much better performance [4]. Iteratively tuning IIR 



49 

 

 

coefficients requires solving a nonconvex optimization problem that does not  

guarantee convergence to global optimum [66]. Furthermore, executing such 

optimization schemes in a MIL fashion may jeopardize equipment safety and largely 

avoided in practice. 

This paper proposes a novel multi-step trajectory pre-filtering technique, which 

suppresses trajectory induced vibrations in flexible feed drive systems, widens tracking 

bandwidth and also rejects friction induced disturbances to attain greater positioning 

accuracy. The pre-filter pack is tuned automatically through use of convex MIL 

iterations so that lengthy identification and testing procedures are eliminated. Figure 

15 shows the proposed pre-filtering scheme, which consists of the following 3 key 

components:  

i) A Closed Loop Dynamic Compensator (CLDC) is designed to invert collocated 

closed-loop dynamics and widen the tracking bandwidth. 

ii) Next, a Rotary Command Generator (RCG) is designed to mitigate excitation of 

lightly damped structural vibrations modes (resonances). 

iii) Lastly, a Pre-Motion Friction Compensator (PMFC) is designed to directly offset 

the reference trajectory, so that friction induced tracking errors are eliminated. 

Through design of these trajectory pre-filters, this paper presents the following 

contributions: 

C1) Instead of relying on single-shot plant inversion, a systematic multi-stage 

trajectory pre-filter design approach is put forward, where each pre-filter targets 

a specific error source inherent to flexible feed drives. 

C2) Filter parameters are tuned through data-driven (MIL) convex optimization, 

which provides numerical efficiency and guarantees global optimality. 

C3) A linear Generalized Maxwell Slip (GMS) friction model formulation is 

presented, which allows convex parameter tuning through MIL iterations. 

The paper is outlined as follows. Section 4.2 presents control oriented modeling of 

flexible ball-screw drives widely used in modern feed drive systems. Sections 4.3, 4.4 

and 4.5 introduce design, auto-tuning and experimental validation of the proposed 

RCG, CLDC and PMFC pre-filters in sequences. 

 



50 

 

 

4.2. Dynamics of Ball-Screw Drives 

 

Most industrial feed-drive systems are driven by ball-screw (BS) transmission 

mechanisms. A typical BS driven feed-drive, and its physical lumped-mass model are 

illustrated in Figure 16.a and b. A rotary motor drives a ball-screw to realize linear 

motion of the table. Due to their transmission components, most BS feed-drives are 

flexible, and their attainable positioning accuracy (bandwidth) is limited by structural 

vibrations [6]. Figure 16.c shows frequency response function (FRF) of a flexible BS 

drive. The 1st resonance at (n) generally originates due to the flexibilities in the bearing 

system [5]. When excited, it induces relative motion between motor and table as shown 

in Figure 16.d. Control oriented flexible BS models [6] are based on a lumped mass 

model as shown in Figure 16.b, where mM and mT denote motor and table inertias, 

whereas k and c are spring and viscous damping coefficients. bM and bT depict viscous 

friction originating from guideways and bearing systems. 

 

Figure 16. 2DOF ball-screw driven feed drive system dynamics. 

 

Equation of motion for a flexible BS drive can be written as: 

 
( ) ( )

( ) ( )

M M M M M T M T

T T T T T M T M

m x u b x c x x k x x

m x b x c x x k x x

= − − − − −

= − − − − −
 (4.1) 
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where xM and xT are the motor and table displacements. u is the control signal. Equation 

(4.1) can be written in Laplace (s) domain as: 

 

( )

( )( )
( ) ( )( ) ( )

2

4 3

2

,
T TM T

M T

M T M T T M M T

M T M T M T M T

m s c b s kX X cs k
G G

U P U P

P m m s m b m b m m c s

b b b b c m m k s b b ks

+ + + +
= = = =

= + + + +

+ + + + + + +

 (4.2) 

where GM and GT are the motor and table side transfer functions (TF). In non-collocated 

control, FB measurements are taken from the table side (GT), and only the resonance 

vibration mode is observed at ( ) ( )n M T M Tk m m m m = +   as illustrated in Figure 

16.d. On the other hand, in collocated FB control strategy, rotary encoder feedback is 

used, and based on GM, an anti-resonance at z Tk m = appears exhibiting another 

relative vibration mode shown in Figure 16.e. 

Understanding these vibration modes is critical in designing the feedforward pre-

filter to widen the positioning bandwidth. In practice, most industrial servo control 

systems rely on collocated control schemes [1] to attain larger stability margins. This 

strategy ensures that motor follows reference position command precisely, and it 

assumes that the table follows the motor accurately. The ultimate goal is always to 

position the table rather than the motor. Nevertheless, both anti-resonance and 

resonance vibration modes can induce relative motion between motor and the table, 

and thus degrade the positioning accuracy of the table. The objective of the proposed 

pre-filtering strategy presented in following sections II and III is to pre-compensate 

table positioning errors during collocated motion control so that the table is positioned 

accurately. 

 

4.3. Design of the Closed Loop Dynamics Compensator (CLDC) 

 

This section presents design of the Closed Loop Dynamics Compensator (CLDC) 

pre-filter, FCLDC. The objective of FCLDC is to widen the tracking bandwidth in 

collocated control of flexible BS systems. CLDC is designed to compensate for the 

slow dynamics of the controller and the resonance vibration mode shown in Figure 

16.d. Structure of the CLDC is shown in Figure 15. As shown, reference motor position 
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command (trajectory) xR is filtered by the FCLDC and injected back into the reference 

position signal. Compensated reference command becomes (1+FCLDC)xR, and by 

selecting FCLDC as inverse of loop transmission L-1=(GMC)-1, near-perfect collocated 

(motor-side) tracking can be achieved by: 

 ( ),1
1 1

1

M

M C M
CLDC CLDC

M R M

T

x G C
F F

G C x G C
= → = + 

+
 (4.3) 

where xM,C denotes the CLDC compensated motor position. C is the FB controller, and 

TM=L/(1+L) depicts the uncompensated motor-side closed-loop tracking TF. 

The objective is to estimate the unknown loop transmission dynamics L without 

prior knowledge by simple time-domain motion tests from closed-loop tracking 

response, TM. In order to estimate TM, reference-acceleration to motor-error TF (EA) is 

used: 

 

( )

( ) ( )( )

3 2

4 3 2 1

2 5 4 3 2

1 2 3 4 5

3 2 2 2

1
1M

A M

R

D P I T T

c s c s c s ce
E T

a s s s s s s

Ps

Ps s K s K s K m s c b s k

    

+ + +
= = − =

+ + + + +

=
+ + + + + +

 (4.4) 

where aR is the reference acceleration command, and eM is the motor-side tracking 

error, i.e. eM=xR-xM. P is the open-loop denominator already given in (4.2). Notice that 

acceleration error TF EA is used instead of position tracking (eM/xR) dynamics. Doing 

so amplifies contribution of high frequency dynamics and thereby increases accuracy 

and robustness of parameter identification. Parameters of EA are to be identified from 

a simple command tracking test by moving the motion system (axis) back-and-forth 

along a motion trajectory. Tracking error and reference acceleration signals are 

sampled at Ts period during the tracking experiment and stacked in matrix form: 
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 (4.5) 

where i is the number of rows and j is the number of columns in U and E matrices such 

that; U=Ui×j and E= Ei×j. i and j are selected by following the guidelines given in [67], 

such that aR is persistently exciting of order 2i, and j is significantly larger than i, i.e. 

j>>i. EA in (4.4) is written in the extended state-space form as: 

 ( ) ( ) ( )( ), 0 1s sT j T = + + = − E ΓX ΠU N X x x x  (4.6) 

where x5×1 is the vector of system states, and N is the noise data matrix with the same 

structure as E and U given by (4.6). Γ is the extended observability matrix, and Π is 

the input Toeplitz matrix defined as: 

 

1 2 3

0 0 0

0 0
,

0
j j j− − −

   
   

= =   
   
     

C

CA CB
Γ Π

CA CA B CA B

 (4.7) 

A5×5 is the state transition matrix, B5×1 and C1×5 are input and output matrices of the 

discrete-time state space representation of (4.4). 

The goal is to identify the state transition matrix A, which yields parameter 

estimation for EA (see (4.4)). To achieve this, Γ is identified by adopting the Multi-

variable Output-Error State Space (MOESP) method [67]. Once Γ is obtained, it is used 

to obtain a stable estimation of the state transition matrix A as outlined in the following 

paragraphs. 

Firstly, shift invariance property of the extended observability matrix (Γ) is utilized, 

and Γ is partitioned into two overlapping sections from (4.7) as: 

https://en.wikipedia.org/wiki/Gamma
https://en.wikipedia.org/wiki/Gamma
https://en.wikipedia.org/wiki/Gamma
https://en.wikipedia.org/wiki/Gamma
https://en.wikipedia.org/wiki/Gamma
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 (4.8) 

Equation (4.8) implies that the ideal A matrix satisfies: Γ1A=Γ2, and thus, it is used to 

postulate the following optimization problem in order to extract A matrix as: 

 
2

1 2
,

min , subject to:
T

TF

 −
− 

=
A P

A PA P 0
Γ A Γ

P P 0
 (4.9) 

where ||.||F denotes the Frobenius norm [68]. Linear matrix inequality (LMI) constraints 

of (4.9) guarantee that A is stable according to Lyapunov’s stability criterion [68], with 

P being the Lyapunov matrix. Notice that, (4.9) poses a non-convex optimization 

problem, which typically suffers from numerical inefficiency, inaccuracy and local 

minima. Hence, the problem in (4.9) is converted into a convex optimization problem. 

 The inequality constraints in (4.9) are rewritten using their equivalent Schur 

complement [55]: 

 
1 1

1 1

T

T T

− −

− −

  −
  

=   

A PA P 0 P AP
0

P P 0 P A P
 (4.10) 

Next, nonlinearities in (4.10) are circumvented by defining the new variables R=AP-1 

and Q=P-1, and Eq. (4.9) could be rewritten as a convex optimization problem as: 

 
2

1 2
,

min , subject to:
TF

 
 −   

 R Q

Q R
R Q 0

R Q
 (4.11) 

Equation (4.11) poses a convex semi-definite program [55], and it can be solved 

efficiently to global optimality. Its solution provides R and Q where A is easily 

recovered from A=RQ-1. 

Eigenvalues of A are the poles of EA - poles of the closed-loop servo dynamics TM. 

Note that A is the discrete-time state transition matrix, whereas the desired acceleration 

error dynamics model EA is written in continuous time (see (4.4)). Thus, A is converted 

to its continuous counterpart AC in controllable canonical form as: 

https://en.wikipedia.org/wiki/Gamma
https://en.wikipedia.org/wiki/Gamma
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with 1…5 are defined as: 

 
( )( ) ( )

( )( )

5 4

1 5 1 2 5

ln eigk k s

s s s p s p s p

p T

 + + + = − − −

= A
 (4.13) 

Utilizing the AC matrix, EA can be written in continuous state-space form as: 

  , , where:
T

C C C C R C C C C C C C Ce x x x x x= + = =x A x B a C x x  (4.14) 

where xC is the vector of continuous states. e and aR are the tracking error and reference 

acceleration given by (4.4). Structure of the continuous input matrix BC is selected as: 

[0,0,0,0,1]T so that all the zeros of EA are captured by the continuous output matrix 

CC=[c1,c2,c3,c4,c5]. This allows us to identify zeros of EA conveniently. To identify CC, 

(4.14)is used to calculate xC, and the following optimization problem is formed: 

 5min subject to: 0
C

C Ce c


− =
C

C x  (4.15) 

Equality constraint c5=0 is imposed to satisfy the structure of EA given in (4.4). 

Equation (4.15) is an infinity norm minimization problem, and it can easily be 

implemented as a linear program with linear inequality constraints and solved to its 

global optimum [55]. Finally, EA is obtained from (4.13) and (4.15) as: 
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 (4.16) 

Once EA is obtained, inverse loop transmission L-1 is estimated: 
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4.3.1. Experimental Validation and Iterative Tuning 

 

The proposed closed-loop identification strategy for the CLDC pre-filter is first 

validated on an industrial scale 3-axis Cartesian CNC machine tool shown in Figure 

17.a. Figure 17.b. shows motor and table side open loop FRFs (GM and GT) of x and y 

axes. As shown, both axes suffer from multiple resonances and anti-resonances. The 

1st (dominant) anti-resonance is at ~71[Hz] for x axis, and at ~54[Hz] for y axis, as 

highlighted in Figure 17.b. These are followed by the resonances at ~84[Hz] (x axis) 

and ~88[Hz] (y axis). The motor-to-table TF GMT (see Figure 17.c) clearly shows anti-

resonance/resonance effects and structural dynamics between motor and the table. Both 

x and y axes are controlled by industrial collocated (motor FB) PID controllers (C) with 

inertia (acceleration) FF. In order to identify the filter parameters, both axes are moved 

by a simple trajectory shown in Figure 18.a. The trajectory consists of simple multi-

step velocity commands generated by typical jerk limited acceleration profile [10]. 

Note that jerk limit should be selected high for wideband excitation of dynamics [1]. 

The proposed state-space identification procedure described above is then applied to 

estimate loop transmission TFs (L) for x and y axes (see (4.17)). Figure 18.b shows the 

identification performance. Estimated L captures fundamental physics of lumped-mass 

model as well as the controller dynamics. However, notice that at high frequencies 

(>100[Hz]), severe phase loss is observed. This is caused by higher order dynamics of 

the feed drive system, low pass filtering and amplifier delay.  
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Figure 17. Illustration of the experimental setup used and measured frequency response 

functions (FRFs). 

In an effort to further improve identification fidelity and widen tracking bandwidth, 

estimate of L is augmented with a finite impulse response (FIR) filter and the final form 

of FCLDC is postulated as: 

 ( )1 1 2

0 1 2CLDCF L m m z m z− − −= + +  (4.18) 
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Figure 18. Experimentally measured and estimated loop transmission FRFs (L). 

This additional FIR term helps recover the phase loss and retain collocated positioning 

accuracy. Parameters of added FIR filter, m0…m2 are obtained through data-based 

iterative tuning by solving the following optimization problem 

 
 0 1 2

1
min

2T

T

CLDC M M
m m m

J
=

 
= 

 η

e e  (4.19) 

through machine-in-the-loop (MIL) iterations. Motion trajectory (see Figure 18.a) is 

commanded, and motor tracking errors eM are recorded. Based on the error signal, 

unknown FIR filter parameters m0, m1 and m2 are iteratively identified by moving the 

axis back-and-forth with the same reference trajectory several times. In order to solve 

(4.19) iteratively, gradient (∇JCLDC) and Hessian (∇2JCLDC) of the objective function are 

needed. This can be extracted from gradient of eM: 
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Notice that the actual motor position (xM) appears in (4.20), and this means that the 

gradient (∇) and Hessian (∇2) of JCLDC can be obtained in a data-based fashion without 

requiring any system model, and the parameters =[m0…m2]
T are optimized iteratively 

with the following update law: 

 ( ) ( )
1

1 2n n

CLDC CLDC CLDCJ J
−

+ = −  η η  (4.21) 

where n is the iteration counter, and CLCD is the learning rate. Substituting (4.20) into 

(4.21), parameter update law can be expressed as a linear dynamic system in discrete-

iteration domain as: 
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 (4.22) 

where LINV is the Toeplitz matrix representing L-1 in lifted domain. k is the time-counter 

such that xM
k=[xM(2Ts)…xM(NTs)]

T, xM
k-1=[xM(Ts)…xM((N-1)Ts)]

T and xM
k-

2=[xM(0)…xM((N-2)Ts)]
T, where N is the total number of samples in the experiment, and 

Ts is the sampling time. CLDC and CLDC are the state transition and input matrices of 

the dynamic system represented by (4.22), and stability of (4.22) is guaranteed if the 

eigenvalues of CLDC are inside the unit circle, i.e |eig(CLDC)|≤1. It follows from (4.22) 

that all of the eigenvalues of CLDC are equal to 1-CLDC, and thus MIL iterations 

described by (4.21) are stable for 0≤CLCD≤2 [8]. In the proposed study, CLCD=1 is 

used to mitigate the effect of measurement noise. 

 The iterative tuning procedure (4.21) is implemented on the experimental setup (see 

Figure 17.a) with the reference motion trajectory shown in Figure 18.a. Results are 

presented in Figure 19. As shown from Figure 19.a, parameter convergence is achieved 

within 2-3 iterations. Figure 19.b. validates that the command tracking performance on 

the motor side is improved greatly.  



60 

 

 

 

Figure 19. Experimental validation of the CLDC pre-compensator. 

Uncompensated PID controller without acceleration FF results in large tracking errors. 

Adding acceleration FF to the controller increases high frequency tracking errors at the 

expense of low frequency positioning accuracy. Proposed CLDC (eM,C) pre-filter 

eliminates both low frequency (inertial and viscous friction induced) errors and high 

frequency (structural vibration-induced) errors. Notice that when CLDC is first 

implemented as FCLDC=L-1, it immediately improves tracking performance. When 

augmented with the iteratively tuned FIR filter (see (4.18)), it achieves near-perfect 



61 

 

 

motor-side (collocated) positioning accuracy. Nevertheless, it should be noted from 

Figure 19.c that the table-side tracking errors (eT,C) are still visible and degrade the 

table positioning accuracy. This is due to the anti-resonance behavior where table mass 

moves relative to the motor. The pre-filtering strategy in the following section is 

proposed to compensate those dynamics. 

 

4.4. Design of the Rotary Command Generator (RCG) 

 

CLDC minimizes motor-side (collated) tracking errors. Thus, it provides near-

perfect motor side tracking performance. However, the ultimate goal of a BS system is 

accurate positioning of the table rather than the motor. Table mass vibrates w.r.t. the 

motor at the anti-resonance frequency, which hinders dynamic table positioning 

accuracy even with the CLDC pre-filter applied. To circumvent this, as shown in Figure 

15, a Rotary Command Generator (RCG) pre-filter FRCG is designed to further modify 

original reference trajectory. RCG aims to modulate the reference trajectory so that the 

table (xT) follows the motor accurately. The form of FRCG is selected as: 

 
( )1 21

TT
RCG TM

c bm
F G s s

k k

−
+

= −  +  (4.23) 

so that 

 ( )( ),

1

1 1 1
T CR

RCG CLDC M TM

R

x
F F T G

x


= + +   (4.24) 

where GTM is the motor-to-table motion transmission TF, and TM is the uncompensated 

closed loop motor dynamics. xT,CR denotes the table position compensated by both 

CLDC and RCG. Notice that with the use of CLDC, motor-side closed loop tracking 

performance is assumed to be near-perfect: (1+FCLDC)TM≅1. Ball-screw stiffness is 

significantly larger than the viscous damping coefficient; k>>c, and hence the zero of 

GT is neglected in (4.23). For systems that can accurately be modeled by a 2nd order 

lumped mass model given by (4.1) (e.g. Figure 16.b), the form of GTM given in (4.23) 

would suffice to design FRCG. However, as seen in Figure 17.c, in realistic systems both 

axes exhibit higher order motor-to-table motion transmission dynamics. Therefore, a 

more generalized approach is adapted here, and higher order structural dynamics 
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between motor and table is considered by the following TF: 
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 (4.25) 

where R is the total number of poles, and O is the total number of zeros of GTM. z,o 

and z,o are the natural frequency and damping ratio of the anti-resonances, and p,r and 

p,r are the natural frequency and damping ratio of the resonances. Parameters of FRCG 

are identified through a two-step process. Firstly, in step 1) denominator (poles) of FRCG 

is determined by offline least-squares optimization based on command tracking data. 

Next, in step 2) its numerator (zeros) is optimized through machine-in-the-loop 

iterations for best performance. Steps 1) and 2) are realized by solving convex 

optimization problems as described in the following. 

First, axes are moved back-and-forth with a simple trajectory such as the one shown 

in Figure 18.a. The goal is to acquire a simple estimate for the poles of GTM. Only the 

CLDC filter is used in this experiment. Reference position as well as the motor (xM,C) 

and table (xT,C) displacements are recorded, and the following least squares problem is 

postulated based on (4.25) as: 
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 (4.26) 

By solving (4.26), an initial estimate of RCG parameters are obtained. Next, zeros of 

FRCG are optimized through machine in the loop iterations. This is achieved by 

minimizing the difference between the motor displacement compensated by only 

CLDC (xM,C) and table displacement compensated by both CLDC and RCG (xT,CR) as: 



63 

 

 

 ( ) ( ), , , ,

1
min

2

T

RCG T CR M C T CR M CJ
 

= − − 
 γ

x x x x  (4.27) 

where  is the vector of unknowns defined by discretizing GTM and extracting FRCG for 

R=2 and O=1 as: 
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where b0…b2 define the discrete equivalent of the numerator of GTM identified by 

solving (4.26), and a0…a4 define the numerator of FRCG and are obtained iteratively. 

Notice that (4.27) poses a convex optimization problem, and its iterative solution can 

be guided to global optimality with the use of gradient (∇) and Hessian (∇2) of its cost 

function JRCG, which can be obtained as: 
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Notice that the table motion compensated only by CLDC (xT,C) naturally appears in the 

calculation of ∇(xT,CR-xM,C), which is measurable. Therefore, ∇JRCG and ∇2JRCG can be 

obtained by using only measurement data, without relying on any system model. Once 

the gradient and Hessian of the objective function JRCG are obtained, (4.27) is solved 

iteratively by moving each axis back-and-forth at each iteration [4] and updating the 

filter parameters =[a0…a4]
T with the following update law: 

 ( )
1

1 2n n

RCG RCG RCGJ J
−

+ = −  γ γ  (4.30) 

where n is the iteration counter and RCG is the learning rate with RCG=1. Similar to 

(4.22), (4.30) can also be written as a linear dynamic system in discrete-iteration 

domain, and it can be shown that its stability is guaranteed with 0≤RCG≤2 [8]. 
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4.4.1. Experimental Validation 

 

Performance of the RCG is validated on the same experimental setup shown in 

Figure 17.a. Equations (4.26) and (4.30) are jointly used to optimize poles and zeros of 

FRCG. The reference trajectory in Figure 18.a is used for machine in the loop iterations. 

Figure 20 summarizes performance of the RCG pre-filter. As shown in Figure 20.a, 

when the RCG filter is not used (iteration 0), large discrepancy between motor and 

table position can be observed. In fact, every-time when an acceleration transient is 

commanded, it excites the anti-resonance mode and causes large table vibrations. After 

the least squares fitting and iterative tuning, the RCG filter ensures that table follows 

reference motion accurately. As shown, the discrepancy in the table position is greatly 

attenuated. Figure 20.b indicates the monotonic parameter converge, and Figure 20.c 

shows overall improvement achieved at the table positioning accuracy with the 

application of combined CLDC + RCG pre-filters. Proposed pre-filters are 

benchmarked against Zero Phase Error Tracking Controller (ZPETC) [64] and 

conventional rigid body (acceleration) FF controller. ZPETC is designed to 

approximate inverse of closed loop table tracking dynamics (xT/xR)-1 [64], and its 

numerator parameters are optimized through ILC framework [4] for better performance 

and a fair comparison. 

As seen from Figure 20.c, conventional FF controller clearly excites high order 

vibratory dynamics of the BS system and causes large positioning errors. ZPETC 

(optimized with MIL iterations) improves the performance. It aims to eliminate errors 

caused by resonance and anti-resonance vibrations as well as closed loop servo 

dynamics all at once. This limits the error reduction provided by ZPETC. In contrast, 

proposed pre-filter pack (CLDC+RCG) targets resonance and anti-resonance-induced 

errors separately, and thus it performs the best among the three strategies as 

demonstrated in Figure 20.c. However, nonlinear friction-induced errors are dominant 

in the vicinity of the velocity reversal, which occur at t=1.22[sec], as well as at the 

beginning of motion (t≅0[sec]). These errors cannot be eliminated by such linear pre-

filtering. The following section introduces the proposed friction compensator strategy 

to specifically eliminate those friction induced positioning errors. 
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Figure 20. Experimental validation of the RCG pre-compensator. 
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4.5. Design of the Pre-Motion Friction Compensator (PMFC) 

 

Typical industrial feed drive systems use mechanical bearings and guiding systems 

to support moving components [12]. As a result, majority of motion systems suffer 

from friction induced disturbances during motion start [17], or when the motion 

changes its direction during velocity reversals [14]. Actual friction regime is rather 

complex, exhibiting both rapidly varying position dependent pre-sliding forces [61], 

and also slowly varying velocity dependent viscous drag component [60]. Most high 

bandwidth controllers can reject viscous friction forces [6], or FF compensators can be 

used to eliminate them efficiently. However, pre-sliding friction forces cannot be 

rejected easily. This section presents design of a novel Pre-Motion Friction 

Compensator (PMFC) shown in Figure 15. Proposed compensator offsets 

(compensates) reference position commands so that friction induced tracking errors are 

eliminated.  

Pre-filters CLDC and RCG eliminate linear servo dynamics induced tracking 

errors. The remaining source of errors becomes the pre-motion friction, and those 

friction-induced tracking errors (eF) can be expressed from Figure 15 as: 

 
1

M
F F TM F M TM

M

G
e f G x T G

G C
= −

+
 (4.31) 

where fF is the friction force and xF is the pre-compensation signal generated by the 

nonlinear PMFC filter (see Figure 15). Equation (4.31) reveals that, in order to 

eliminate friction induced errors (eF ≅ 0), reference trajectory should be offset by xF=C-

1fF amount. Notice that the compensation signal xF is the controller-inverse-filtered (C-

1) pre-motion friction force (fF). To construct the xF signal, controller dynamics C and 

an estimate of friction forces fF are required. Controller gains can be either read directly 

from servo-controller, or C can be estimated from the already identified FCLDC filter 

dynamics in section 4.3 by C=(GRFCLDC)-1, where GR=((mM+mT)s2)-1 can be assumed 

as the rigid body axis dynamics. The friction force fF; however, must be identified 

accurately. Here, it is estimated iteratively and explained as follows. 
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4.5.1. Novel Re-Formulation of the GMS Friction Model 

 

Generalized Maxwell Slip (GMS) model [61] is well-known and widely used in 

motion control to model non-linear friction regime. GMS model captures the stick/slip 

friction regimes using massless Maxwell-Slip (MS) blocks that are connected with 

parallel springs (see Figure 21.b). 

 

Figure 21. Proposed GMS model re-formulation. 

Estimated friction force (fGMS) by the conventional GMS model is given as [59]: 

 
1

, if stick (i.e. )
,

0, if slip (i.e. )

H
h h R h h

GMS h
h hh

df k x f F
f f

f Fdt=


= =  =

  (4.32) 

where kh is the spring coefficient, and fh is the force acting on the hth block. Fh is the 

Coulomb friction force, and H is the number of MS blocks. During velocity reversal or 

a motion start, all blocks are stationary, i.e. sticking. As relative displacement is 

induced, MS blocks are loaded, where friction forces increase linearly w.r.t. axis 
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displacement. The “slipping” state for each block is then initiated when the load 

exceeds a threshold friction force, Fh. Notice that to build a GMS model, kh and Fh must 

be identified with good fidelity by experimentally constructing force/displacement 

characteristics in time or frequency domain [17], [51] (see Figure 21.c).  

The original GMS model above is designed in force domain, which means the 

stick/slip condition is controlled by the block forces (fh in (4.32)) and threshold values 

Fh as [17]: 
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h h h C j j
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F k P F k P
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 
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where Ph is the break-away distance of the hth block, and FC is constant. Notice that 

(4.32) and (4.33) clearly indicate that identification of individual spring coefficients 

(kh) in the original GMS formulation is indeed non-linear [57], [17], which makes 

parameter identification cumbersome. Typically, nonconvex optimization techniques 

such as Dynamic Nonlinear Regression with Direct Application of Excitation 

(DNLRX) [57] or parameter varying state observers [69] are used that may even 

produce negative spring coefficients. 

Firstly, in order to circumvent force-dependency of conventional GMS model, this 

paper proposes a re-formulated GMS, which postulates the hysteretic 

force/displacement relationship in a position-dependent formulation as: 
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, if stick (i.e. 2 )
,

0, if slip (i.e. 2 )

H
R R h hh

GMS h h
h hh

x v z Pdz
f k z
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
  (4.34) 

where fGMS is the estimated friction force. Ph is the break-away distance assigned to the 

hth MS block, which dictates when the block starts slipping. As the motion system 

moves back-and-forth, friction forces follow a hysteresis loop w.r.t displacement, as 

shown in Figure 21.c. Each block starts its motion with sticking, and after traveling as 

much as its break away distance (Ph), it starts slipping. This continues until the block 

comes to a full stop and changes its direction of motion (velocity reversal). Notice that 

total break-away (stick) distance, PH (see Figure 21.c) is a physical attribute to the 

motion system. Most precision motion platforms have stick distance in the range of 

20~200 microns [14], and it can be identified from a simple closed-loop motion 

experiment by observing the tracking error and control signals. Ph can be then 
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distributed evenly among MS blocks to satisfy P1<P2<…<PH. 

Furthermore, (4.34) can be put in matrix-vector form as: 
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where k is the vector of MS block spring coefficients, and AS is the spring activation 

matrix that consists of sampled velocity command vR. As the feed drive goes through a 

velocity reversal (Figure 21.a point c), columns of AS keep track of MS block velocities. 

For instance, 1st column of AS contains velocity of the 1st MS block, and the 2nd column 

contains velocity of the 2nd MS block. After a velocity reversal, every block starts from 

a sticking condition. The first block sticks until t=t1, at which point it reaches its break-

away displacement, i.e. xR(t1)=P1/2. Then, it starts slipping; i.e. vR(t>t1)=0. The second 

block sticks a little longer, until xR(t2)=P2/2. This pattern continues until each block 

completes sticking, and it starts over when a velocity reversal occurs. AS can be pre-

determined (constructed) once the reference trajectory profile (4.35) is known.  

 

4.5.2. Iterative Fine-Tuning and Experimental Validation 

 

The spring activation matrix AS provides a trajectory dependent linear mapping 

from k to fGMS (see (4.35)), and it allows us to formulate the following optimization 

problem in a convex manner where MS parameters are identified to minimize the 

friction induced errors by: 

 
1
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2

T

PMFC F FJ
 
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e e k 0  (4.36) 

where eF is the error vector given in (4.31).  

Above optimization problem (4.36) is then solved to identify the MS block spring 

coefficients through machine-in-the-loop iterations. Notice that inequality constraints 
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k≥0 are required to ensure that spring coefficients are physically meaningful. This is 

achieved by the help of gradient projection method [70], which is baked into MIL loop 

iterations as follows. 

Firstly, Newton’s second order iteration scheme is used to determine the 

unconstrained update of the spring coefficients kunc as: 
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where PMFC is the learning rate for the unconstrained update, and n is the iteration 

counter. CINV and TT are the Toeplitz matrices representing C-1 and TT in lifted domain, 

and column-wise integration of AS can easily be obtained numerically through 

trapezoidal methods. It is crucial to notice that, owing to the newly proposed 

reformulation of the GMS model (see (4.34) and (4.35)), ∇eF does not depend on k (see 

(4.37)). This makes (4.36) a convex optimization problem, since ∇2JPMFC=(∇eF)T∇eF≥0. 

kunc may violate constraints (k≥0) given in (4.36). Thus, it is projected back onto the 

feasible set: 

  max , 0proj unc=k k  (4.38) 

where kproj denotes its projection. The active constraints of this iteration are determined 

by the step size PMFC, and the goal is to find the first local minimizer of JPMFC along 

the search path defined by (4.37). This is achieved by performing line search to find 

the optimal projection learning rate proj by: 
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where eF
n is the recorded tracking error signal at the nth iteration. proj is the projection 

learning rate (step size), which minimizes the expected error at the (n+1)th
 iteration 

according to the update law given by (4.38). Projected MS block spring coefficients 

(kproj) are calculated from (4.38) using the projection rate proj. Some components of 
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kproj may be on the boundary (n) of the feasible set, which is defined as: 

 ( ) ( ) ,
| 0n proj proj i

i k = =k  (4.40) 

n contains MS blocks with “zero” stiffness at the nth iteration, and the spring 

coefficients residing in this set are called the Cauchy points [70].  

The spring coefficients that are outside of n are optimized by fixing the Cauchy 

points and minimizing the expected error at the (n+1)th
  iteration by: 
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Equation (4.41) is a convex optimization problem with equality constraints, and 

therefore it can be solved to determine the parameter update law analytically as well; 
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where  is the learning rate and  is the vector of Lagrange Multipliers. Cn is the matrix 

of equality constraints in (4.41), which changes size every iteration as the contents of 

n vary. For example, for an iteration where the active set indices (i, see (4.40)) are 

only 4 and 5 ({4, 5} ∈ n) and the number of MS blocks is H=10, Cn is constructed as: 

 

Total number of MS blocks = 10

Active constraints = {4, 5}

0 0 1 0 0 0
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C  (4.43) 

The solution of (4.42), kn+1, must be kept within the feasible region as well, i.e. 

kn+1≥0. This is achieved by either selecting  small enough to keep kn+1 feasible. Or,  

is determined by simple line-search to minimize the predicted error at the (n+1)th
 

iteration, and kn+1 is projected back onto the feasible set: 

 
 

( ) ( )( )

1

1 1

max , 0

arg min

n n n

T
n n n n

opt F F F F






+

+ +

= + 

= +  + 

k k k

e e k e e k
 (4.44) 
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Finally, (4.42) and (4.44) are used to guide the machine-in-the-loop iterations for 

optimizing the MS block spring coefficients safely to global optimality. Validation of 

the proposed friction pre-compensator is outlined in the following. 

Cartesian axes of the experimental setup shown in Figure 17.a suffers from large 

friction induced errors as already shown in Figure 19 and Figure 20. Effectiveness of 

the proposed PMFC compensator is demonstrated during contouring tests along a 

diamond shaped trajectory as shown in Figure 22. Notice that the machine axes are 

commanded to travel around this shape in a non-stop manner by blending sharp corner 

geometry using the method described in [62]. The tangential velocity profile is shown 

in Figure 22.a, and the measured contouring errors are shown in Figure 22.b. Large 

contour errors occur at the corners of the profile when x and y axes reverse their 

direction of motion. Figure 22.c shows commanded and resultant tool-path geometry 

measured by the table encoder. Proposed PMFC is then applied on the top of CLDC 

and RCG pre-filters using 10 MS blocks. Figure 22.d shows convergence of the 

objective function. Notice that, when the tool-path is traveled only 2-3 times, Maxwell 

spring coefficients are identified with good accuracy. Proposed strategy is 

benchmarked against the conventional GMS model-based FF control as well [51]. 

Parameters of conventional GMS model are identified through offline manual curve-

fitting to the hysteresis loops (see Figure 22.e). Notice that conventional (offline) GMS 

FF also decreases contouring errors; however, it is clearly outperformed by the 

proposed approach (CLDC+RCG+PMFC), which identifies GMS parameters while 

penalizing friction induced errors directly (by iteratively solving (4.36)) along the 

trajectory. In contrast, conventional (offline) GMS parameters are obtained separately 

from small stroke (300 [m]) motion experiments. Friction forces estimated by the 

conventional GMS model fit to the hysteresis curve accurately (see Figure 22.e). 

However, they cannot capture the friction behavior at higher speed and stroke (see 

Figure 22.b). Friction characteristics of the machine may vary with the table location. 

Such offline GMS parameter fitting suffer from robustness and flexibility. In contrast, 

proposed PMFC pre-filter can be optimized easily to eliminate friction-induced errors 

on-the-fly while capturing changes in the friction regime based on temperature or 

operating region for example [59]. 
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Figure 22. Experimental validation of the PMFC. 

Notice from Figure 22.e that the friction forces estimated by PMFC pre-filter can 

slightly differ from the Hysteresis Loop measurements when its parameters are 
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optimized using the toolpath given in Figure 22.c (see Proposed2 in Figure 22.e). 

However, since the main goal of the PMFC is to eliminate the positioning errors, 

inaccurate fitting of the Hysteresis Loop does not pose a problem. Figure 12.e also 

shows the performance of the PMFC filter iteratively optimized along the small stroke 

that is used to obtain the conventional GMS model parameters (see Proposed1 in Figure 

22.e). As observed, PMFC provides accurate curve fitting along the Hysteresis Loop in 

this case. 

 

4.6. Conclusions 

 

This paper presented a novel trajectory modification scheme based on 3 pre-filters 

to improve dynamic positioning accuracy of flexible precision motion systems. Each 

pre-filter targets a specific dynamic error source; namely, (i) positioning errors induced 

by closed loop servo-dynamics, (ii) structural vibrations (iii) and due to pre-motion 

friction disturbances. Each pre-filter is auto-tuned iteratively through data-based 

techniques that can be realized easily on-the-fly. The auto-tuning problem is posed as 

a convex optimization problem and global optimal solution is reached within several 

iterations. Proposed strategy is validated on a commercial CNC machine tool and 

shows that dynamic tracking errors can be improved up to 5× (see Figure 19 and Figure 

20) and friction induced errors are reduced more than 3× (see Figure 22). Overall, 

proposed scheme can be implemented without intervention on the servo controller by 

only modifying reference motion trajectory conveniently. 
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5. Active Control of High Frequency Chatter with Machine Tool Feed Drives in 

Turning 

 

This paper presents a new active vibration control strategy to mitigate high 

frequency regenerative chatter vibrations using machine tool feed drives. Rather than 

modal damping, proposed approach aims to control regenerative process dynamics to 

shape the Stability Lobe diagrams (SLD) and attain higher material removal rates. The 

controller is designed as a feedback filter whose parameters are optimized to 

compensate regeneration. The proposed strategy is applied to actively control 

orthogonal (plunge) turning dynamics where >2.5[kHz] chatter vibrations are 

suppressed by low bandwidth machine tool drives. Stability lobes are shaped locally to 

reach up to 4× higher material removal rates. 

 

5.1. Introduction 

 

Chatter vibrations have been a limiting factor for attaining larger material removal 

rates (MRR) in turning for decades [71]. They originate due the flexibilities 

(resonances) in the workpiece-machine-tooling structure and by the regeneration 

effects [71], [16]. Overall process-machine interaction can be modelled by a delay 

differential equation (DDE), and chatter-free cutting conditions are selected from 

Stability Lobe Diagrams (SLDs). Nevertheless, practical spindle speeds in turning are 

lower and when structural resonances are at high frequency, conventional SLDs have 

densely packed narrow lobes that cannot be used to maximize MRRs [16]. 

The overreaching goal has been to exceed stability limitations in turning, and it can 

be attained by shaping SLDs in two major ways; firstly, regeneration effect is targeted 

through process parameter selection such as exploiting process damping [72], 

optimizing tool geometry/posture [73], or by spindle speed variation (SSV) [16]. These 

efforts shape SLDs locally to create stable pockets to reach higher MRRs and designed 

to work on a pre-determined spindle speed region.  

Another approach focuses on dampening structural resonances by passive or active 

systems [16], [74], [23], [75], [76], [77]. Increasing modal damping lifts SLDs up, 

which delivers moderate stability increase over a wider spindle speed range. Tuned-
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mass-dampers (TMD), or tools with friction dampers [16] are widely used in practice, 

and their robustness can be enhanced semi-actively [23], [76]. However, fully active 

systems are much more effective since they can dampen multiple modes [75], integrate 

within machine elements [76], and even realized by using machine’s existing feed 

drives [77]. A fundamental requirement for effective active damping is that targeted 

resonances must lie within the control bandwidth of the actuator or feed drive system, 

which limits their practical usage to dampen modes within ~200[Hz] range [16], [77]. 

Control algorithms based on direct velocity [74], [23] or acceleration feedback [77] are 

widely used. However, when low frequency resonances are damped actively, the lightly 

damped high frequency modes becomes destabilized. Therefore, loop shaping based 

tuning should be practiced [77], or model-based techniques such as H∞, µ-synthesis or 

delayed feedback [75], [78], [79] are employed. Still, fundamental limitation of modal 

damping-based chatter control techniques is that they rely on servo control bandwidth, 

which cannot be widened enough to dampen high frequency modes. 

This paper presents a novel active chatter vibration control strategy for machine 

tool feed drives. As opposed to the injecting modal damping by servo loop shaping 

[80], [74], [23], [75], [76], [77], proposed controller is designed to achieve process loop 

shaping, which focuses on controlling regenerative machining process dynamics using 

machine tool feed drives. This approach brings two major advantages over state of the 

art. Firstly, core cause of chatter; regeneration effects are suppressed, which allows 

local shaping of SLDs to significantly increase MRR. Secondly, it allows control of 

high frequency chatter that is beyond the position bandwidth of feed drives. Figure 23.a 

depicts the proposed scheme. Proposed controller is designed as an add-on 

compensator (filter) strapped around the existing low-bandwidth servo controller to 

suppress chatter vibrations. Thus, both low frequency position control and high 

frequency chatter mitigation are achieved jointly. Following sections explain design, 

parameter tuning and experimental validation of proposed approach in orthogonal 

(plunge) turning. 
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Figure 23. Illustration (a) and block diagram (b) of the proposed strategy. 

 

5.2. Loop Transmission Dynamics of Orthogonal Cutting 

 

Figure 23 illustrates the well-known dynamics of orthogonal turning [71], [16] with 

a flexible tool assembly carried by a feed drive system. Dynamic chip thickness 

h(s)=L{h(t)} and feed forces f(s) generated by current vibration of the tool tip y(s) and 

the one left on part surface in previous spindle revolution, e-sTy(s): 

 0( ) [ ( ) ( )],    ( ) ( )sT

Fh s h y s e y s f s K ah s−= − − =  (5.1) 

where s is the Laplace operator, T is the spindle (delay) period, h0 is intended (static) 

chip thickness, KF is the cutting force coefficient, and a is width (depth) of cut. Cutting 

forces excite the flexible structure and produce current vibrations as: 

 ( )0( ) ( ) ( ) ( ) [ ( ) ( )]sT

Fy s G s f s G s K a h y s e y s−= = − −  (5.2) 

where G(s) is the transfer function of the flexible tooling system. Laplace operator (s) 

is dropped from signals and functions in the remainder, and Eq. (5.2) is expressed in 

transfer function form as: 
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( )0 11 1

F F

sT
PF

K aG K aGy

h aLaK G e−
= =

++ −
 (5.3) 

where the LP=KFG(1-e-sT) term in Eq. (5.3) is the so-called “process loop transmission” 

dynamics with a being the process gain. Figure 24 shows its characteristics for a delay 

period, T. Process loop transmission follows amplified flexible tooling dynamics KFG 

but modulated by the delay term (1-e-sT), which contains the “regenerative effects” and 

introduces gain and phase ripples. It is due to those ripples that phase of LP drops below 

-180[deg] right after resonance (𝜔n), which marks the “chatter frequency” (𝜔c) and 

determines min. gain margin of the process (See Figure 24.b). Note that limit width of 

cut becomes alim=1/|LP(j𝜔c)|. SLDs are generated scanning gain margin of LP over a set 

of spindle speeds. 

 

Figure 24. SLDs and Process Loop Transmission Dynamics. 

The following sections present the design of proposed vibration compensator that 

actively uses machine tool feed drives to shape the process loop transmission. The 

design philosophy is to attenuate regeneration induced phase/gain ripples around the 

resonance to drastically improve process stability and, thereby suppress high frequency 

chatter vibrations that are beyond the tracking bandwidth of conventional servo control. 
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5.3. Design of Active Regeneration Cancelling Compensator 

 

Block diagram of proposed control scheme is given in Figure 23.b. As shown, an 

add-on compensator (filter) is designed that injects a position compensation signal r 

based on the tool vibration measurement y. Its design is based on cancelling the inner 

and outer regeneration effects to shape the SLDs and to maximize the limit width of 

cut alim around a desired spindle (cutting) speed region. Therefore, it is called the Active 

Regeneration Compensator (ARC) and denoted by the transfer function, A. 

With the introduction of ARC signal r, the augmented tool tip and process dynamics 

can be derived from Eq. (5.2) and Figure 23.b as: 

 ( )0 1 sT

T F Ty Gf AT y y K aG h y e AT y− = + → = − − +
 

 (5.4) 

where TT=y/r is the tool tip tracking transfer function of feed drive system, which is 

typically governed by a low-bandwidth industrial PID controller. Equation (5.4) can be 

put in a transfer function form as: 

 
( )0 11 1

F F

sT
ARCF T

K aG K aGy

h LK aG e AT−
= =

++ − −
 (5.5) 

which reveals that the modified process loop transmission LARC=KFaG(1-e-sT)-ATT is 

augmented by the ARC filter, A. 

In order to effectively alter stability margins of LARC, A is designed with two parts: 

A=AIN+AOUT. AIN targets the inner modulation loop to suppress effect of current tool 

vibration y, whereas AOUT targets the delayed feedback dynamics due to the outer 

regeneration loop, e-sTy. Equation (5.5) can be re-written explicitly in terms of those 

AIN and AOUT components as: 

 
( ) ( )0

inner modulation outer modulation 
cancellation cancellation

1

F

sT

F IN T F OUT T

K aGy

h K aG A T K aGe A T−
=

+ − − +
 (5.6) 

Following sections present design of AIN and AOUT compensators to cancel the inner 

and outer modulation effects shown in Eq. (5.6). 
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5.3.1. Design of the Outer Modulation Compensator (AOUT) 

 

AOUT is designed to suppress the effect of outer modulation. Notice from Eq. (5.6) 

that if AOUT could be ideally chosen as:  

 1 sT

OUT F TA K aGT e  (5.7) 

effect of outer regeneration is completely cancelled. a is the desired stable depth of cut, 

and G is the disturbance response of tool/feed drive system, which can be measured by 

tap-testing. However, the inverse of higher-order closed-loop tracking dynamics, TT 
-1 

term, cannot be realized on a practical system due to servo phase losses and non-

minimum phase zeros [74], [23], [75], [76], [77]. Therefore, its delayed realization, the 

TT
-1e-sT term in Eq. (5.7) is considered. The idea is to approximate -TT

-1e-sT by an Nth 

order FIR filter within a meaningful frequency band 1[ , ]M as: 

 
1 2

1

1 2 ,
N

s s s s

OU

TT T
T T T sTsT

N TT p z p z pP z T e z e
−− −

− −= + + +  − =  (5.8) 

with Ts being position loop sampling time. Frequency band [1,M] is selected to 

confine chatter frequency by setting 1=n and M is set reasonably larger. Notice that 

the delay T is known at a given spindle (cutting) speed, T=60/n. Filter delays T1…TN 

are selected centered around that spindle period [T1…TN]↔︎[T-2/1…T+2/1] to 

ensure causal inversion of TT. Finally, gains of the FIR filter p1…pN are determined to 

minimize its fitting discrepancy from system inverse, min||POUT+TT
-1e-sT|| by: 

 
( ) ( ) 

( ) ( ) 
 

1

2

12

Re
min for all

ImN

j T

T

M
j

OUT

O

T

UT

p p

T

j T j e

jP T e

P

j





 
  

 

−

−

 +
  
 + +
 

 (5.9) 

which can be put in a matrix-vector form as: 
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Λ

ν

 (5.10) 

where M is the frequency resolution. Equation (5.10) is a convex optimization (least 

squares fitting) problem, which can be solved efficiently to determine FIR gains, and 

AOUT is implemented as: 

 OUT F OUTA K aGP  (5.11) 

An illustrative example is provided in Figure 25. When AOUT is implemented, delay-

induced phase ripples are robustly attenuated within [1, M]. As a result, 180[deg] 

phase crossing is shifted to high frequency, which increases gain margin of process 

loop transmission providing larger stable depth of cut (alim). 

 

Figure 25. Outer regeneration cancellation using AOUT. 
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5.3.2. Design of the Inner Modulation Compensator (AIN) 

 

The AIN compensator is designed to further increase alim around a targeted spindle 

speed by cancelling the effect of inner modulation. To cancel the inner modulation 

terms (see Eq. (5.6)), AIN is selected in the form of: 

 1ˆ
IN F T INA K aGT P  (5.12) 

where 1ˆ
TT is an approximate, causal inverse of feed drive’s tracking dynamics, which 

neglects non-minimum phase zeros. Design of the PIN filter in Eq. (5.12) is critical. 

Similar to the design of AOUT compensator, PIN is selected as simple Kth order FIR filter: 

 1

0 1 , ssTK

IN KP q q z q z z e− −= + + + =  (5.13) 

whose parameters q0…qK are determined to maximize alim by minimizing the real part 

of process loop transmission. Based on Eq. (5.6), this parameter search is set as an 

optimization problem: 

 

( )

0
lim

lim/ Outer modulation

Inner modula n

1

tio

1
min     subject to:

1
/ˆRe

K

IN T

q q

sT

F F T IN F T UT

A T

T O

a

a

K G K GT P K Ge T AT a
a

−−

 
 
 

 
  
  − − − +  
   

 
 

 (5.14) 

Above optimization problem has two key elements. Firstly, the objective function tries 

to minimize 1/alim, whereas its only constraint tries to keep the negative real part of 

loop transmission below that. Therefore, optimal filter parameters are sought that 

maximizes gain margin of the process by pushing the real crossing of process loop 

transmission to right-hand side of the complex plane. This parameter search is governed 

by Eq. (5.14), and it is in fact a convex optimization problem that can be solved 

conveniently using linear programming to determine the best filter parameters. With 

the PIN filter determined from Eq. (5.14) proposed ARC design, A=AOUT+AIN is 

implemented from Eqs. (5.11) and (5.12) as shown in Figure 23.b. 
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5.4. Experimental Validation 

 

The experimental turning system setup used in validating proposed active chatter 

avoidance strategy is shown in Figure 26. Orthogonal tube cutting experiments are 

conducted on a Al6061 workpiece with a carbide insert, yielding roughly KF=~1338 

[N/mm2]. A Dytran 3035B1G accelerometer with 10 [mV/g] sensitivity is used to 

measure the tooling dynamics G, and Figure 26.b shows measured and fitted FRFs. 

Notice that due to slender tool shank, the system suffers from a dominant mode at ~2.57 

[kHz].  

 

 

Figure 26. Experimental setup and its dynamic characterization. 
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As shown, the tool (shank) is fed to the workpiece by a piezo actuated feed drive system 

in this setup. Details of the drive system can be found in [81]. The actuator assembly 

contains an internal displacement sensor, which allows tuning a dedicated collocated 

PID controller with a maximum tracking bandwidth of 1[kHz] shown in Figure 26.c 

(see blue line, x/r). The sampling frequency of the real-time control system is set to 50 

[kHz].  Tool tip tracking transfer function (TT=y/r) is measured by integrating the tool 

tip acceleration measurements and shown in Figure 26.c. 

Proposed active control algorithm ARC is first designed to suppress chatter due to 

the dominant mode at ~2.57 [kHz] (See Figure 26.b) by selecting the target frequency 

band as  [2500, 2800] [Hz]. The objective is to open up a stable pocket at around 

n=1800 [rpm]. FIR filter orders of AIN and AOUT are set as N=20, K=5. Note that in 

realization of ARC, tool tip vibrations (y) are estimated from integrating accelerometer 

measurements and high-pass filtering with 250[Hz] cut-off.  

Figure 27 shows the original and shaped process dynamics by ARC. As shown in 

Figure 27.a, AOUT eliminates ripples due to the regeneration effect, and AIN further 

minimizes the negative real part of process loop transmission. This improves the gain 

margin of the process significantly. It is also evident from Figure 27.b that process loop 

transmission is squeezed and pushed to the right-hand side of complex plane and the -

1 point by the help of ARC.  

Next, SLDs are plotted in Figure 28.a. As shown, due to high frequency resonance 

(~2.57[kHz]), the original stability lobes are very tight, and asymptotic stability limit 

is below ~0.5[mm]. However, when ARC is used, stability is drastically improved 

around the desired 1800[rpm]. Widths of cut up to ~2[mm] can be cut stably providing 

4× improvement in productivity. Tube cutting experiments (plunge turning) at a 

feedrate of 4[m/rev] are conducted. As shown, workpieces with 0.5-1.75[mm] wall 

thicknesses are machined free of chatter with a smooth surface finish by the help of the 

proposed ARC design.  
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Figure 27. Process loop transmissions with and without ARC. 

Figure 27.b shows the effect of ARC when it is switched on during machining at 

1.75mm width. When ARC is turned on at ~2.5[sec], chatter vibrations at 2.66[kHz] 

are quickly dampened, and the process is stabilized. More importantly, ARC suppresses 

chatter vibrations originating from a mode beyond feed drive positioning bandwidth 

(~1[kHz]). This provides great flexibility since drive’s servo controller can be designed 

separately and safely for positioning, and ARC is activated to suppress chatter when 

needed. Note that to take advantage of ARC for high frequency chatter avoidance, 

drives must be able to respond to at least small (micron level) position commands at 

that high frequency. 

Lastly, ARC is implemented to create lobes at different spindle speeds such as at 

1000 and 1400[rpm] to showcase its flexibility and robustness to increase MRR on 

demand in Figure 29. As shown, ARC can be tuned to create large stability lobes at 

various speeds. In comparison, delayed feedback control [79] can only provide minor 

improvement and requires tedious manual gain tuning.  
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Figure 28. Experimental cutting results. 

 

 

Figure 29. Chatter stability lobe (SLD) shaping by proposed technique. 
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5.5. Conclusions 

 

The objective of this paper was to design a controller to exceed bandwidth 

limitation of conventional feed drive systems in actively controlling high frequency 

chatter vibrations. Regenerative chatter vibrations occurring at 2.66[kHz] are 

attenuated by a feed drive system that has <1[kHz] closed-loop bandwidth (2.5× lower). 

Stability lobes are shaped to realize 4× higher MRR in a desired cutting speed range. 

Proposed compensator can be used jointly with an existing servo control to utilize 

machine tool feed drives for active high frequency chatter control. Or, it can be 

implemented stand-alone on an active damper system such as in inertial actuators [80], 

[74], [23], [75], [76], [77], which broadens its impact for various machine tools and use 

scenarios. Implementation in other chatter-experiencing machining processes remains 

to be a future research topic. 
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6. Active Chatter Mitigation by Optimal Control of Regenerative Machining 

Process Dynamics 

 

Chatter vibrations are a type of self-exited vibrations observed in many subtractive 

manufacturing processes. They limit achievable material remove rate (MRR), reduce 

tool life, result in poor surface finish, and even damage the manufacturing equipment. 

This paper proposes a novel control system design for machine tool feed drives, which 

modulates cutting tool motion based on the in-process vibration measurements to 

mitigate chatter vibrations. Proposed approach has two key contributions. Firstly, as 

opposed to introducing modal damping to the structure, proposed approach stabilizes 

machining process dynamics by controlling its governing delay differential equation 

(DDE). H∞ control framework is used to design the controller and ensure robust 

process stability. The controller design problem is postulated as a convex optimization 

problem with linear matrix inequalities (LMIs), which is solved to global optimality. 

Secondly, proposed controller is implemented as an add-on compensator that works 

jointly with an existing servo motion control system to realize both positioning and 

chatter vibration control. Experimental validations are conducted on a lathe equipped 

with a fast tool servo (FTS) actuator. It is shown that regenerative chatter vibrations in 

orthogonal turning process can be suppressed robustly and up to 5× increase in MRR 

(productivity) can be achieved. 

 

6.1. Introduction 

 

Attaining greater material removal rates (MRRs) is utmost important for subtractive 

manufacturing processes [71]. Higher MRR leads to greater productivity and 

throughput. Nevertheless, productivity of subtractive manufacturing processes is 

affected by various forms of unwanted vibrations. For example, trajectory-induced 

residual vibrations occur during high-speed machining when feed drives of the 

manufacturing equipment undergo rapid acceleration. Such residual vibrations are 

widely observed in high-speed machinery, 3D printer systems and industrial robots 

[82]. Forced vibrations occur due to disturbance process (cutting) forces acting on the 

flexible machine structure and may destroy the surface finish or violate part tolerances. 
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Finally, self-excited chatter vibrations occur due to forced vibrations and the 

regeneration effect that is induced by the rotating kinematics of the machining process. 

Once chatter vibrations are triggered, machining processes become unstable, leading 

to excessive oscillations of the machine tool/workpiece structure that causes rapid tool 

breakage and feed drive system failure. The overreaching goal in most machining 

processes is to eliminate such destructive “chatter vibrations” through process planning 

[83] or more recently mechatronic hardware or control techniques [75], [77], [74]. This 

paper presents a novel control system design, which allows machine’s own feed drives 

(positioning) systems to actively control and stabilize chatter vibrations towards 

attaining higher MRR and productivity. 

 

Figure 30. Illustration of chatter vibrations in orthogonal turning process. 

Before discussing relevant state-of-the-art mechatronics-driven chatter vibration 

mitigation approaches, dynamics of orthogonal cutting and regenerative chatter 

vibrations are briefly introduced. Figure 30 illustrates dynamics of an orthogonal 

machining process, e.g. turning. A flexible tooling system is fed to a rotating workpiece 

to remove material from its surface. In such operation, feed (cutting) forces f(t) are 

proportional to the thickness h(t) and the width a of the material (chip) that is removed 

in each spindle (workpiece) revolution. Tool tip vibrates (y(t)) due to its structural 

dynamics G(s) and the disturbance cutting forces. Dynamic cutting forces (f) and chip 

thickness (h) can be represented in Laplace (s) domain as:  

 ( ) ( ) ( ) ( ) ( )0, where:  sT

Ff s K ah s h s h y s e y s− = = − −   (6.1) 

where KF is the cutting force coefficient and h0 is the indented or desired chip thickness. 
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Actual chip thickness h(s) is varying due to difference between current tool vibration 

y(s) and the one experienced in previous spindle revolution y(s)e-sT, and thus the 

dynamically varying portion of the chip thickness becomes y(s)(1-e-sT) with delay T 

being the spindle revolution period. Noting that cutting forces in (6.1) generate tool 

vibrations by y(s)=G(s)f(s), and hence the well-known orthogonal machining process 

dynamics can be postulated as: 

 ( ) ( )( )0( ) 1 sT

Fy s K aG s h e y s− = − −
 

 (6.2) 

Equation (6.2) is a delay differential equation (DDE), and its order is determined by 

the structural dynamics of the tooling G(s)=y(s)/f(s), which is also the disturbance 

transfer function (TF) of the feed drive system (see Figure 30). 

 

Figure 31. Block diagram of proposed chatter suppression strategy. 

Tools such as Nyquist (frequency domain) [19] or semi-discrete time domain 

analysis [84] can be used to test machining process stability for any given G(s), delay 

period T, and the width of cut, a. In manufacturing literature, the goal is to realize wider 

cuts at any cutting speed, and stability of (6.2) is analyzed for a range of spindle speeds 

(delay period) n=60/T to determine the maximum attainable (limit) width of cut, alim. 

When alim is plotted against n, it is called the Stability Lobe Diagram (SLD), which 

shows the stability border of the machining process. Figure 32.a (see below) shows a 

typical SLD, which indicates that as long as the width of cut, a is selected below the 

borderline alim(n), the process is stable.  

Mechatronics and manufacturing communities have been focusing on improving 

stability of this regenerative process dynamics to attain higher MRRs [16], [75], [85], 

[22]. It is well-known that introducing damping into G(s) improves stability [75]. Thus, 
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the most common approach has been to introduce damping through use of hardware 

systems. For instance, tuned-mass-dampers (TMDs) can effectively introduce modal 

damping [22]. Typical TMDs are passive solutions, and they fail if resonances in the 

structure shift, which very often happens on larger manufacturing equipment or when 

processing larger workpieces [86]. To increase their robustness, semi-active systems 

are designed [87]. Note that all such systems are “add-on” mechatronic components 

that are attached on the machine and may not fit onto smaller, more compact 

manufacturing equipment, or are simply too costly.  

Another strategy is to use control schemes to either robustify TMDs or use a dedicated 

inertial actuator system to inject modal damping to the structure in a fully active 

manner. Such systems typically use accelerometer feedback [77] or make use of 

velocity signals [74] to realize modal damping. Examples of inertial actuators applied 

on various equipment can be found in the literature [16]. However, their practical 

performance is limited. The limitation originates mainly from the fact that the machine 

structure suffers from various structural modes, and when damping of one structural 

resonance is achieved by feedback control, other higher frequency modes may be 

destabilized. The fundamental limitation of Bode’s Integral Theorem (waterbed effect) 

applies [88]. It should be noted that such modal damping approach can also be realized 

by the existing drives of the machine tool structure [85]. In this case, feed drives of the 

machine jointly undertake position control while at the same time try to dampen any 

observable and controllable resonant modes [5]. Such approach is cost effective since 

it eliminates the need for an additional actuator; however, it can only dampen low 

frequency modes due to its limited bandwidth and its tendency to destabilize higher 

frequencies.  

As discussed, injecting damping into structural dynamics has been the dominant 

approach  [75]. This is mainly due to the fact that stabilizing the original DDE in (6.2) 

with its inherent delays is a challenge for control design. Sophisticated state-space 

based methods are proposed, where transport delays are addressed with Padé 

approximation, and H∞ controllers are proposed [16,17]. However, these methods 

require significantly high-order controllers to accurately capture the delay effect. 

Control design suffers from numerical inaccuracy and these approaches fail to robustly 
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demonstrate greater improvement [78], [90]. 

This paper proposes a novel chatter mitigation strategy. The idea is to design an 

optimal process controller that utilizes existing feed drive axes of the machine to 

stabilize the process dynamics including its inherent delays. Proposed control 

architecture is illustrated in Figure 31. As shown, C(s) is the process controller, which 

injects a compensation signal to stabilize the process dynamics. The novelty in the 

design of C(s) comes from that fact that instead of approximating delays of (6.2), a 

delay-based Lyapunov function is utilized, which allows us to design a stable controller 

directly without any approximation. The controller design problem is postulated as a 

convex optimization problem with Linear Matrix Inequalities (LMIs). As a result, a 

lower order controller is designed, which works with existing positioning controller of 

the feed drive system to realize both low frequency positioning and high frequency 

process control. The design procedure is delay-independent, which means that once the 

controller is designed, it can be implemented for any spindle speed (n). The paper is 

organized as follows. Section II introduces the modeling strategy. Section III proposes 

the controller design methodology. Finally, Section IV presents implementation and 

experimental validation. 

 

6.2. Modeling of Machining Process Dynamics 

 

6.2.1. Open Loop Dynamics 

 

The DDE of the machining process in (6.1) can be put in a transfer function (TF) 

form as: 

 ( )
( )

( )

( )

( )( )
( )

( )0 11 1

F F

sT
PF

y s K aG s K aG s
P s

h s aL saK G s e−
= = =

++ −
 (6.3) 

where G(s) can be identified in the form of 

 ( )
2 2 2

, , , ,

2 2 2
1 , , , ,

2

2

L
Z i Z i Z i N i

S

i N i N i N i Z i

s s
G s g

s s

   

   =

  + +
=     + +  

  (6.4) 

where L is the number of flexible modes. N,i, N,i, Z,i and Z,i are the natural 

frequencies and damping ratios of the ith resonance and anti-resonance, respectively. gS 
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is the static gain of G. 

The LP(s)=KFG(s)(1-e-sT) term in the denominator of (6.3) is denoted as the process 

loop transmission dynamics with “a” (width of cut) being the process gain. Figure 32.b 

shows the frequency response of LP(s) for a delay period T. As shown, it follows the 

trend of KFG(s), but the delay term (1-e-sT) adds severe magnitude and phase ripples, 

which decreases gain margin of the process. The minimum gain margin determines the 

limit width of cut alim allowed for a stable process. Figure 32.a simply plots this 

minimum gain margin in the form of an SLD and depicts stability border of the DDE 

in (6.2). Workpieces with a width of cut smaller than alim, i.e. a<alim, can be machined 

in a stable manner without chatter, but widths of cut larger than a>alim will cause 

instability. 

 

Figure 32. (a) Example Stability Lobes Diagram (SLD), and (b) loop transmission 

frequency response function of turning process. 

 

6.2.2. Closed Loop Dynamics 

 

The objective is to improve stability margins of the process dynamics by shaping 

the process loop transmission, LP in (6.3). This is achieved by injecting an additional 

reference (compensation) signal r(s) to the feed-drive controller actively during the 

machining process, based on vibration measurements taken from the tool tip (see Figure 

31). Considering r(s), governing dynamics of the process is rewritten from (6.3) as: 



96 

 

 

 ( )0 1 sT

T F T

r

y Gf T Cy y K aG h y e T Cy− = + → = − − +
 

 (6.5) 

where TT=y/r is the tool tip position tracking dynamics (see Figure 31), which is 

controlled by a low-bandwidth PID controller [82]. C is the proposed controller TF, 

which receives tool displacement feedback (y) and generates compensation signal (r). 

The controlled process loop dynamics (PC) is defined as: 

 
( )0 1 1

F
C sT

F T

K aGy
P

h K aG e CT−
= =

+ − −
 (6.6) 

Notice that in (6.6), the proposed controller C modifies the process loop 

transmission additively rather than multiplicatively. This makes the control design 

problem challenging. To retain controllability of PC, characteristic equation of (6.6) is 

re-arranged as follows. 

Characteristic equation of PC is: 

 ( )1 1 0sT

F TK aG e CT−+ − − =  (6.7) 

where roots of (6.7) determine stability of the controlled process, and therefore C 

should be designed such that all the roots of (6.7) are on the left half side of the complex 

plane (LHP). To realize that, (6.7) is algebraically modified without changing its roots 

as: 

 
( )

1 0
1 1

T

sT

F

H

T
C

K aG e−

 −
 + =
 + −
 

 (6.8) 

Notice that in (6.8), C and H are multiplied, which enables us to utilize modern control 

design frameworks for designing C to stabilize H as outlined in the following section. 

 

6.3. Optimal Process Controller Design 

 

6.3.1. Design of the State Feedback Control Law 

 

The objective of the proposed controller C is to ensure that roots of characteristic 

equation (6.8) are placed robustly on the LHP. Notice that H in (6.8) contains TT=y/r, 

which denotes effect of slow feed-drive tracking dynamics. To help decouple the 
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process control design from feed-drive dynamics, inverse of the position tracking 

dynamics TT
-1 is included in C. TT

-1 can be estimated in a stable manner as: 

 ( )
( )

( ) ( )

1
,

, ,0

T P
T

T NZ T MZ

T s
T s

T T s

−

=  (6.9) 

where TT,P is the denominator of TT, TT,MZ and TT,NZ are minimum and nonminimum-

phase zeros of TT respectively. TT,NZ(0) denotes the DC gain (~0 [Hz]) of the 

nonminimum-phase zeros. 

Next, C is augmented by a state-feedback controller K as: 

 
( )

1 1

,
1 1

T
T TV sT

F

H

T
C KT G T

K aG e

− −

−

 −
 = =
 + −
 

 (6.10) 

where GV is called the “virtual open loop TF”. Notice that, roots of 1+KGV = 1+CH=0 

are identical to the poles of PC, and thus stabilizing GV with K ensures the stability of 

PC. K is designed in state space form as described in the following. 

The objective of K is to robustly stabilize roots of (6.8) by controlling the virtual 

open loop TF, GV. Notice that GV contains internal delay dynamics in its denominator 

(e-sT), and thus it may have infinitely many roots [91]. For this reason, typical pole 

placement techniques [5] are not suitable for designing K. Frequency domain controller 

design techniques such as loop shaping are also challenging. This is because internal 

delays might make virtual open loop (GV) unstable, and internal-delay-induced 

instability is difficult to test and control using frequency domain tools such as Nyquist-

based design. To circumvent these limitations, K is designed utilizing H∞-norm 

minimization, where closed loop Lyapunov stability is guaranteed by taking internal 

delays into consideration. 

Stable inversion of TT is implemented as given by (6.9), and GV is discretized as: 

 
( ) ( )

1

1 1 1 1 s

M
T T

VV sT T T

F F d

T T z
G G

K aG e K aG z

−
−

− −

− −
= → =

+ − + −
 (6.11) 

where T̂T
-1TT in (6.11) is replaced by z-M to represent the remaining delays induced by 

excluded non-minimum phase zeros and unmodeled dynamics. This helps reduce the 
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order of GV and simplify controller design. In (6.11), Ts is the sampling time and Gd is 

the discrete-time equivalent of G: 

 
1 1

1 1

1

11

L

L
d L

L

z z
G

z z

 

 

− − +

−

− −

+ +
=

+ + +
 (6.12) 

G̃V is then represented in discrete-time state space form as: 

 

( ) ( ) ( ) ( )

( )

( )

( ) ( )

( )

1

1 1 1 1 1

1 1
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1 1 1 1

1 1

1 1
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 
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=

q Aq A q B B

Cq

0 I 0

A 0 0 I

0 α

α

0 0
A β

0 β

B 0
( )1 1 1

1 , 1
T

L M
 

 −
   =
   

C 0

 (6.13) 

with q(M+L)×1 being its internal states and m is the sample counter. wm is the disturbance 

input, which represents unmodeled dynamics and modeling errors. rm is the 

compensation signal shown in Figure 31, and ym is the current tool displacement. Notice 

that the delayed internal state qm- appears in (6.13) with =T/Ts. Therefore, G̃V in (6.11) 

is still a DDE. 

If q is measured, G̃V can be stabilized by the following state feedback law: 

 m mr = Kq  (6.14) 

where K1×(M+L) is the state-feedback gain vector. K is designed by solving the following 

H∞-norm optimization problem to minimize sensitivity (S) of process dynamics: 

 
( )

1

min , subject to:  is stable

1
with: 1

1
D

V

S S

S z z
KG





−
−= = + − − −

+

K

K I A A BK B
 (6.15) 

Notice that (6.15) is a typical H∞ controller design problem augmented by internal 

delays. It is first converted into a convex optimization problem with the use of Linear 
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Matrix Inequalities (LMI) [92] as described in the following, and then solved 

numerically using semidefinite programming tools [55]. 

Firstly, to stabilize the system, (6.15) is converted into an LMI by defining a 

Lyapunov function candidate [92] for S as: 

 ( ) 1 2

m m
T T T T

m m m m i i i i

i m i m

V V R
 = − = −

= = + + q q Pq q R q q K Kq  (6.16) 

The candidate in (6.16) consists of three terms. The first term, qm
TPqm, is a typical 

energy-like quadratic function found in typical Lyapunov functions used for linear 

systems [93]. The second and third terms are introduced to penalize cumulative energy 

of the internal state qm and the compensation signal rm=Kqm within one delay period . 

If V is positive (V>0) and monotonically decreasing (ΔV<0) for all values of qm, then 

the closed loop system is ensured to be stable. These stability conditions can be 

summarized as follows: 

 1 1 20, , and 0m m mV V V R+ = −  P 0 R 0  (6.17) 

where “ 0 ” indicates positive definiteness, and Δ is the difference operator. ΔVm<0 

condition in (6.17) can be expanded as: 

 ( ) ( )

( )

11 12

22

2

11 1 2

12

22 1

0

where:

T

m m

m m m

m m

T T

T

D

T

D D
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 
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− −

− −

     
      =  
     
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Φ

q Φ Φ 0 q

q Φ 0 q

Kq Kq

Φ A BK P A BK P R K K

Φ A BK PA

Φ R A PA

 (6.18) 

Notice that (6.18) is satisfied if and only if the symmetric matrix   is negative definite, 

i.e. Φ 0 . With the help of , the Lyapunov stability conditions in (6.17) are revised 

as: 

 1 2, , and 0R Φ 0 P 0 R 0  (6.19) 

Next, utilizing the stability conditions given in (6.19), the optimization problem 

given in (6.15) is converted into a convex optimization problem with LMIs as: 
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S

K MQ Q P S R  (6.20) 

where   is the upper bound of the H∞-norm of S (||S||∞), and H is symmetric. The 

proof of equivalence of (6.15) and (6.20) is provided in appendix. Equation (6.20) can 

be solved conveniently using available semidefinite programming tools [55], [48] to 

obtain the feedback gain vector K. 

In order to implement the state feedback control law given in (6.14), internal states 

q need to be accessed. In practice, only tool kinematics, e.g. acceleration/displacement, 

can be measured on a physical system, and thus q needs to be observed. The following 

describes the design of an observer to achieve this. 

 

6.3.2. Design of the Delayed State Observer 

 

In this section, a state observer algorithm is presented to estimate the internal states 

of (6.13), q. A Luenberger observer structure [94] is utilized, which includes the 

internal delay in q:  

 
( ) ( ) ( ) ( )

( ) ( )
1

ˆ ˆ ˆˆ
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e e e e

m m D m m m m

e e

m m

r y

y

+ −= + + + −

=

q Aq A q B λCq λ

Cq
 (6.21) 

and the overall closed loop process dynamics can be written in state space form from 

(6.13) as: 
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 (6.22) 

where qm
(e) is the estimated internal state, and ym

(e) is the estimated tool displacement. 

Â, B̂ and Ĉ are the modeled (identified) state space matrices of the process (G̃V), and  

is the (M+L)×1 observer gain vector. Assuming Â≅A, B̂≅B and Ĉ≅C, state estimation 

error (q͂m) dynamics can be written as: 

 
( )

1m m D m m m

e

m m m

m m
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y

+ −= + + +

= −

=

q Aq A q λCq B

q q q

Cq

 (6.23) 

where y͂m is the output estimation error, i.e. y͂m=ym-ym
(e). Observer gain  needs to be 

designed to guarantee robust and stable estimation of the internal state so that the state 

feedback controller K can be implemented (see (6.14)). To achieve this,  is designed 

by minimizing the disturbance response (D) of estimation error dynamics given by 

(6.23) from wm to y͂m as: 

 ( )

( )
( )

1

min , subject to:  is stable

with: D

D D

y z
D z z

w z





−
−= = − − −

λ

C I A A λC B
 (6.24) 

Similar to (6.15), (6.24) is an H∞-norm minimization problem. By making use of the 

following identity 
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(6.24) can be converted into a convex optimization problem as: 
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where  is the upper bound of the H∞-norm of D (||D||∞), and  is symmetric. 

Equivalence of (6.24) and (6.26) can be proven by following the same steps used for 

converting (6.15) to (6.20), as shown in the appendix. 

Similar to (6.20), (6.26) can be solved using semidefinite programming tools [55], 

[48] to obtain the observer gain, . The controller dynamics (K) from the tool 

displacement measurement input (y) to the compensation signal output (r) including 

state feedback and observer dynamics then becomes: 
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and presented in TF form in z-domain as: 

 ( )
1

ˆ ˆ ˆˆ
DK z z 

−
−= − − − − −K I A A BK λC λ  (6.28) 

Once K is constructed as shown in (6.28), overall process controller can be 

implemented as C=KT̂T
-1 (see (6.10)). 

 

6.4. Experimental Setup and Implementation 

 

Proposed chatter suppression strategy is validated on an industrial turning center 

(lathe) equipped with a piezo actuated FTS shown in Figure 33.a. Cylindrical Al6061 

workpieces are machined with a carbide insert, resulting in a cutting coefficient of 



103 

 

 

KF=1336 [N/mm2]. Tool accelerations are measured using a Dytran 3035B1G 

accelerometer with a 10 [mV/g] sensitivity.  

 

Figure 33. Experimental setup and its frequency response. 

Dynamics of the tool assembly (G=y/f) is measured by impact testing, and Ĝ is 

fitted according to (6.4) with an order of L=5. Figure 33.b depicts the identification 

accuracy. Note that dominant resonant modes of G (~2.5[kHz] and ~3.2[kHz]) are 

captured by the model. These two modes are critical in destabilizing the machining 

process and cause chatter vibrations. The mode at ~1.2[kHz] is omitted in Ĝ to avoid 

increasing the degree of the system. This can be justified since that mode has a 

relatively larger dynamic stiffness and should not be the primary cause of instability.  

As shown in Figure 33.a, cutting tool is fed to the workpiece by a piezo-actuated 

FTS system. Details of the FTS is given in [95]. Its position tracking dynamics TP=x/r 

is shown in Figure 33.c. Actuator position x is controlled by a PID controller with a 
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tracking bandwidth (fBW) of ~1[kHz] (see Figure 33.c). Tool tip tracking transfer 

function TT, from r to the tool-tip displacement y follows the response of TP for f<fBW 

and exhibits magnitude peaks in the vicinity of the structural modes of G at 1.2[kHz], 

2.5[kHz] and 3.2[kHz]. Thus, TT is modeled by a 12th order TF as shown in Figure 33.c. 

 

Figure 34. Controller and process loop transmission dynamics. 

In order to implement the controller given by (6.27), tool displacement y is acquired 

by integrating and high pass filtering the acceleration signal: 
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where yacc is the acceleration signal on the tool-tip (see Figure 33.a), and GHP is the 

high-pass filter with a high-pass frequency of 325 [Hz]. Signal conditioning and real-

time implementation of the controller are both realized on a dedicated DSP board at a 

sampling frequency of 50 [kHz].  

The controller is tuned by solving the optimization problems given in  (6.20) and 

(6.26) with M=5 and L=5, and the state feedback control gain vectors K and  are 

obtained. Note that both K and  are optimized in a delay-independent manner, and 

hence they can be used for any spindle speed (n). The feedback controller (K=r/y with 

the order of M+L) is implemented in discrete time for n=1800[rpm] using (6.27), which 

corresponds to a delay of T=0.033[sec]. K is combined with the estimate of inverse 

tool-tip tracking dynamics (T̂T
-1), and the overall process controller (C) is implemented 

in the form of C=KT̂T
-1. 

Figure 34 summarizes controller and loop transmission dynamics. Figure 34.a 

shows the frequency response of C. As shown, controller dynamics is similar to G, but 
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frequencies of the open loop modes of G are shifted by state and observer feedback 

terms (K and ). Also, phase and magnitude ripples are introduced due to the ÂDqm-
(e) 

term in the observer (see (6.22) and (6.27)). This dynamic behavior of C helps improve 

the stability margins of loop transmission as shown in Figure 34.b and c. Figure 34.b 

shows process open (aLP) and closed loop (LC) transmission dynamics for a=1[mm]. 

As shown, severe phase ripples of aLP induced by the phase delay (see (6.3) and Figure 

32.b) are significantly suppressed though the use of proposed controller in the vicinity 

of the most critical mode of G at ~2.5[kHz]. This ensures that phase of LC remains 

above -180[deg] for a wide range of frequencies, which improves the minimum gain 

margin significantly, and shown in Figure 34.c. 

The improvement in gain margin is also evident by the SLD diagrams shown in 

Figure 35.a. Notice that open loop process (without process control) has a limit width 

of cut (stability border) of alim=0.245[mm], which is impractically small. This is 

improved ~5× times by the proposed strategy, and a limit width of cut of 1.5[mm] is 

achieved (see Figure 35.a). As a benchmark, a recently published chatter mitigation 

method, delayed-feedback control [79] (DFC) is also implemented, and shown in 

Figure 35.a. As seen, DFC provides some improvement in the limit width of cut as 

well, but its improvement is limited in comparison to the proposed strategy. 

To showcase robustness of the proposed strategy across different spindle speeds, 

machining tests are conducted at 1400, 1600 and 1800 [rpm]. Cylindrical workpieces 

(see Figure 33.a) with a=0.5, 0.75, 1, 1.25 and 1.5 [mm] widths of cut (wall 

thicknesses) are machined, and process stability is tested. Figure 35.a validates 

performance of the proposed controller. 

Tool-tip acceleration measurements for machining tests with a=1.5[mm] are shown 

in Figure 35.b, c and d, respectively. In all experiments, severe chatter vibrations occur 

without the proposed controller. As noted from frequency spectrum of tool acceleration, 

chatter frequencies are slightly higher than the most dominant mode of G (2.5[kHz]), 

which is expected since delay ripples cause loop transmission to cross the real axis (-

180[deg]) right after the resonance frequency (see Figure 32.b). Once the proposed 

controller is turned on, chatter vibrations are eliminated, and tool accelerations are 

attenuated drastically. Comparisons of machined surfaces for n=1800[rpm] is also 
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shown in Figure 35.e. As shown, chatter marks can clearly be seen on the surface 

machined without any compensation (Workpiece 2), and the proposed strategy results 

in a smoother surface that is free of chatter marks (see Workpiece 1). Thus, proposed 

controller can robustly attenuate chatter vibrations along a wide range of operating 

conditions. 

 

Figure 35. Comparison of Stability Lobe Diagrams (SLDs) and experimental 

machining results. 

Robustness of the proposed method against variations in the G is also analyzed and 

an achievable alim is shown in Fig. 7. Proposed controller provides good robustness 

against shifts in the dominant resonance frequency (2.45~2.625[kHz]) from its nominal 

value of 2.5[kHz]. Variation in damping ratio (mode’s quality factor) shows some 

adverse effect if it is largely overestimated. This is an expected behavior also observed 

in other techniques [16]. 
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Figure 36. Controller performance with modeling errors. 

 

6.5. Conclusions 

 

This paper presented a novel chatter suppression strategy for turning processes. The 

proposed strategy is to control the tool position during machining operation to stabilize 

the process dynamics. Controller design is achieved by minimizing H∞-norm of 

process sensitivity dynamics. System states are accessed by means of an observer, 

designed by optimizing disturbance rejection of state-estimation dynamics. A 

Lyapunov function considering delay dynamics is utilized to postulate 

controller/observer design problems as convex optimization problems with LMIs, 

allowing numerical stability and efficiency. Controller design is independent of process 

delays, and so it can easily be implemented for different cutting(spindle) speeds. The 

controller is implemented on an industrial lathe equipped with a fast tool servo drive. 

Structural modes that are higher than feed-drive position tracking bandwidth are 

suppressed by inverting the tool position tracking TF. The proposed method is validated 

through machining experiments with a range of spindle speeds (1400, 1600 and 1800 

[rpm]). It can increase stability of the system greatly, and workpieces with thicknesses 

of 1.5[mm] can be cut. This is an increase of 5× from the non-controlled case 

(0.245[mm]) providing significant gain in productivity. 
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7. General Conclusion 

 

This dissertation presented passive and active control strategies that improve 

dynamic positioning accuracy of precision motion generation mechanisms. First, a 

novel trajectory optimization strategy is presented which aims to eliminate trajectory-

induced excitation of lightly damped structural vibrations in CNC machine tools and 

3D-Printers. Multi-axis motion trajectories are optimized in time and frequency 

domains to attenuate the magnitude of reference accelerations within a target frequency 

band. The target frequency band is selected to contain the resonance frequencies that 

are aimed to be avoided. Trajectory generation problem is posed as a convex 

optimization problem with linear equality and inequality constraints, which is easily 

solved to global optimality. A new windowing method is also introduced as a part of 

this strategy, which makes it feasible for toolpaths with long cycle times by reducing 

its computational cost. The proposed method is validated on an industrial 3-Axis 

Cartesian machine tool, and up to 6 times attenuation of column vibrations is achieved. 

Secondly, a data-driven trajectory shaping method is presented for precision feed 

drives that suffer from positioning errors induced by ball-screw vibrations, servo-

controller dynamics, and pre-sliding friction forces. A novel multi-stage trajectory pre-

filter is designed to target each of these error sources separately. Pre-filter parameters 

are optimized utilizing machine-in-the-loop iterations, leveraging the data collected as 

the machine follows reference trajectories. Parameter optimization problems for each 

pre-filter is posed as a convex optimization problem, which guarantees reliable 

convergence with small number of iterations. The effectiveness of the proposed 

strategy is validated on an industrial machine tool, and it is shown that dynamic 

positioning errors are decreased up to 5 times compared to standard methods typically 

used in practice.  

Finally, active tool control algorithms are proposed to eliminate chatter vibrations 

in turning processes. Proposed strategies utilize feed-drives of an industrial lathe 

augmented by a piezo-actuated fast tool servo (FTS), which moves the cutting tool at 

high frequencies during machining, based on tool acceleration feedback. The goal is to 

improve stability margins of the cutting process by this additional motion. Two tool 
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motion is control strategies are developed. Firstly, process loop transmission dynamics 

is shaped in frequency domain by an additional compensator, which in return creates a 

stable pocket in the Stability Lobe Diagram (SLD) for a target spindle speed. Secondly, 

process dynamics is modeled in state-space form, and a tool control algorithm is 

designed utilizing H-∞ control framework with internal delays. This approach lifts the 

SLD as opposed to creating a pocket. Both methods are implemented on the 

experimental setup, where chatter vibrations occur due to the most flexible mode of the 

tool-assembly. It is shown that proposed strategies can improve productivity by 

allowing stable machining of up to 5 times larger widths of cut.  
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Appendix 

 

Equivalence between (6.15) and (6.20) is proven in this appendix. As reported in 

[92], H≺0 in (6.20) is equivalent to F≺0 which is a symmetric matrix defined as: 

 

( ) ( )

1

2

*

* *

* * *

T T T

D

T T

D D D

T

R



 + + +
 

− + =
 −
 

− +  

Ξ A BK PA 0 A BK PB K

R A PA 0 A PB
F

0

B PB

 (6.30) 

with: 

 ( ) ( ) 1 2

T T TR= + + − + + +Ξ A BK P A BK P R K K K K  (6.31) 

If F≺0, then the following must hold: 

     0
T

m m m m m m m mw w   − − − − q q Kq F q q Kq  (6.32) 

Left hand side of (6.32) is written as a scalar expression by making use of the definition 

of qm+1 in (6.13) and S in (6.15): 

 
( )1 1 1 2 1

2 2

2 0

T T T T

m m m m m m

T T

m m m m

R

R e w

 

  

+ + − −

− −

− − − −

− + − 

q Pq q P R K K q q R q

q K Kq
 (6.33) 

where e=Sw; w is defined in (6.13), and S is defined in (6.15). By making use of the 

Lyapunov function candidate (V) defined in (6.16), (6.33) can be rewritten as: 

 2 2 0m m mV e w + −   (6.34) 

Since the (6.34) holds for the mth sample time, summation over samples does not 

change the inequality, and therefore: 

 2 2

1 1 1

0i i i

i i i

V e w
  

= = =

 + −     (6.35) 

Notice that the second and third terms of (6.35) define 2-norms of em and wm, 

respectively. The first term of (6.35) is simplified, and the inequality is rewritten as: 

  
2 2

1 2 2
lim 0m m m
m

V V e w
→

− + −   (6.36) 

Assuming zero initial conditions, i.e. q1=0, V1=0 holds. Additionally, (6.15) requires S 

to be stable, which dictates that Vm converges to “0” as m approaches to ∞. Thus, (6.36) 

is further simplified as: 
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 2

2

m

m

e
S

w



=   (6.37) 

(6.37) implies that  is the upper bound of ||S||∞, assuming that  >0. Since (6.15) 

minimizes ||S||∞, and (6.20) minimizes  , it is proven that solving (6.20) minimizes 

||S||∞. 

 


