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Abstract 

Industrial demands for higher productivity rates and more stringent part tolerances require faster 

production machines that can produce, assemble, or manipulate parts at higher speeds and with better 

accuracy than ever before. In a majority of production machines, such as machine tools, ball screw 

drives are used as the primary motion delivery mechanism due to their reasonably high accuracy, high 

mechanical stiffness, and low cost. This brings the motivation for the research in this thesis, which 

has been to develop new control techniques that can achieve high bandwidths near the structural 

frequencies of ball screw drives, and also compensate for various imperfections in their motion 

delivery, so that better tool positioning accuracy can be achieved at high speeds. 

A precision ball screw drive has been designed and built for this study. Detailed dynamic modeling 

and identification has been performed, considering rigid body dynamics, nonlinear friction, torque 

ripples, axial and torsional vibrations, lead errors, and elastic deformations. Adaptive Sliding Mode 

Controller (ASMC) is designed based on the rigid body dynamics and notch filters are used to 

attenuate the effect of structural resonances. Feedforward friction compensation is also added to 

improve the tracking accuracy at velocity reversals. A bandwidth of 223 Hz was achieved while 

controlling the rotational motion of the ball screw, leading to a servo error equivalent to 1.6 um of 

translational motion.  

The motor and mechanical torque ripples were also modeled and compensated in the control law. 

This improved the motion smoothness and accuracy, especially at low speeds and low control 

bandwidths. The performance improvement was also noticeable when higher speeds and control 

bandwidths were used. By adding on the torque ripple compensation, the rotational tracking accuracy 

was improved to 0.95 um while executing feed motions with 1 m/sec velocity and 1 g acceleration. 

As one of the main contributions in this thesis, the dynamics of the 1
st
 axial mode (at 132 Hz) were 

actively compensated using ASMC, which resulted in a command tracking bandwidth of 208 Hz. The 

mode compensating ASMC (MC-ASMC) was also shown to improve the dynamic stiffness of the 

drive system, around the axial resonance, by injecting additional damping at this mode. After 

compensating for the lead errors as well, a translational tracking accuracy of 2.6 um was realized 

while executing 1 m/sec feed motions with 0.5 g acceleration transients. In terms of bandwidth, 

speed, and accuracy, these results surpass the performance of most ball screw driven machine tools by 

4-5 times.  
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As the second main contribution in this thesis, the elastic deformations (ED) of the ball screw drive 

were modeled and compensated using a robust strategy. The robustness originates from using the 

real-time feedback control signal to monitor the effect of any potential perturbations on the load side, 

such as mass variations or cutting forces, which can lead to additional elastic deformations. In 

experimental results, it is shown that this compensation scheme can accurately estimate and correct 

for the elastic deformation, even when there is 130% variation in the translating table mass. The ED 

compensation strategy has resulted in 4.1 um of translational accuracy while executing at 1 m/sec 

feed motion with 0.5 g acceleration transients, without using a linear encoder. This result is especially 

significant for low-cost CNC (Computer Numerically Controlled) machine tools that have only rotary 

encoders on their motors. Such machines can benefit from the significant accuracy improvement 

provided by this compensation scheme, without the need for an additional linear encoder.  
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Chapter 1 

Introduction 

Ball screw drives are currently the most common means of delivering high precision motion in work 

machines, such as machine tools, where both high rigidity and positioning accuracy are required. 

They have several distinctive advantages such as low cost, high mechanical stiffness, large 

displacement stroke, and the ability to provide robustness to the servo system against work (e.g. 

cutting) forces and load inertia variations due to their inherent gear ratio. However, because of their 

contact-type design ball screw drives are subject to wear. They are also limited by lower acceleration 

and velocity values, compared to direct drives (e.g. linear motors), which are gradually becoming 

more accepted in the machine tool industry. However, linear motors are significantly more expensive 

and their control is more challenging, due to the lack of a motion transmission ratio. This results in 

the disturbances or load variation to be directly felt by the motor, thereby bringing serious robustness 

issues. Hence, as tried and tested technology, ball screw drives are still in widespread use in machine 

tools as well as other types of production machinery. In fact, major machine tool builders continue to 

invest in and maintain their own dedicated production lines to manufacture the ball screw drives 

required for their machines. 

The challenges associated with controlling any type of feed drive system, whether it is ball screw-

driven or direct drive based, are achieving high positioning accuracy at elevated speeds and 

accelerations; maintaining a sufficient amount of stiffness over a wide frequency range for 

disturbance force rejection; and delivering a specified performance in a robust manner in the presence 

of acceptable variations in the feed drive’s dynamics. With the recent advances in high speed 

machining, maintaining the dynamic tool positioning accuracy has become more important than ever 

before, in order to be able to take advantage of the productivity gains facilitated by high cutting 

speeds  [57]. This in return brings new challenges in terms of control law design. High dynamic 

accuracy requires the positioning bandwidths to be greater than even before  [53], in order to follow 

the rapidly varying tool commands without violating the part’s geometric tolerances. The trend is now 

towards new motion control techniques that can achieve responsive frequency ranges (i.e. 

bandwidths) beyond 100 Hz. This requires higher sampling frequencies and finer position feedback to 

be used; both of which are available through more powerful real-time computers and high resolution 

position sensors (i.e. sinusoidal encoders or laser interferometers). In addition, it is vital to have a 

profound understanding of the dynamics that govern the response of a feed drive system, so that 

adequate compensators can be designed that take full advantage of its physical capabilities. This is 
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essential for achieving the highest possible dynamic accuracy and disturbance rejection 

characteristics. 

This thesis follows a systematic approach in modeling the dynamics of ball screw drives and 

introduces new control techniques that deliver higher motion accuracy at elevated speeds. All 

modeling and control work is carried out on a high precision ball screw drive, supported on air 

guideways, that was built at the Precision Controls Laboratory at the University of Waterloo. The 

setup is instrumented with multiple position sensors at different locations, which allows detailed 

physical models and new control techniques to be developed and experimentally validated. 

Henceforth, the proceeding chapters in this thesis are organized as follows: 

A literature review on the existing modeling and control techniques for ball screw drives is 

presented in  Chapter 2. In particular, the high order dynamics comprising of axial and torsional 

vibrations is of interest, as one of the goals in this thesis is to develop new control techniques that can 

achieve bandwidths in the vicinity of these structural modes. In addition, imperfections of the ball 

screw’s motion delivery originating from lead errors and motion loss in the preloaded nut are also of 

concern. Other issues that are reviewed are the rigid body dynamics, friction characteristics, torque 

ripples, thermal expansions, and elastic deformations. Compensation strategies that deal with such 

effects are also surveyed. 

Basic dynamics of the ball screw drive are modeled and identified in  Chapter 3, comprising of rigid 

body motion, current loop dynamics, nonlinear friction characteristics, as well as the torsional and 

axial vibrations. The vibration modes are modeled using Finite Element and analytical approaches. 

They are validated experimentally with frequency response measurements. The models and 

parameters identified in this chapter are used in the following chapters for controller design and 

stability analyses. 

In  Chapter 4, the basic control methodology chosen in this thesis, which is Adaptive Sliding Mode 

Control (ASMC), is introduced and used for controlling the rigid body dynamics. The general ASMC 

formulation, developed by Slotine and Li  [60] and further improved by Zhu et al.  [75], is presented. 

As a special case, the control of a rigid body based plant with an unknown external disturbance is 

studied. This case boils down to the well-known PID controller with feedforward acceleration and 

velocity compensation terms. However, the ASMC design provides an efficient model-based means 

of tuning the feedback and feedforward gains. In order to improve the servo tracking accuracy at 

motion reversal, feedforward friction compensation is applied. In addition, to avoid exciting the 

structural resonances through the control signal, notch filters are designed for the torsional and axial 
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modes. Two feedback scenarios are studied: the first one using only rotational measurements from the 

ball screw, and the second one using direct translational position feedback obtained from the table. 

Rotary feedback results in a collocated control situation, where high bandwidth can be achieved with 

minimal interference from the 1
st
 axial and 1

st
 torsional modes (respectively at 132 Hz and 445 Hz). 

However, the translational accuracy of the drive is not guaranteed. In this scenario, active cancellation 

of the ball screw’s torsional vibrations is also investigated. The second case with direct translational 

feedback, on the other hand, brings a significant limitation in terms of the achievable control 

bandwidth (<70 Hz). This is due to the non-collocated control situation it causes in terms of the 1
st
 

axial mode. 

In  Chapter 5, the force/torque ripples in the motion delivery, which can occur in both ball screw as 

well as direct drive systems, are identified, modeled, and compensated in the control law. The torque 

ripple model comprises of the largest harmonic components, which are identified using a Kalman 

filter  [30] for disturbance observation. It is shown that compensating for the torque ripples can 

provide a significant improvement in the positioning accuracy and motion smoothness of feed drives, 

particularly during low speed movements and when there are limitations on the achievable control 

bandwidth. 

In Chapter 6, the ASMC is extended to actively compensate for the dynamics of the 1
st
 axial mode, 

resulting in the so-called Mode Compensating ASMC (MC-ASMC). This is one of the major 

contributions in this thesis. The MC-ASMC results in superior positioning accuracy over the rigid 

body based design which was implemented with notch filtering of the 1
st
 axial mode. The achieved 

command tracking bandwidth is 208 Hz, which is 4-5 times higher than the bandwidth realized in ball 

screw driven CNC (Computer Numerically Controlled) machine tools. The MC-ASMC also improves 

the damping and disturbance rejection characteristics around the 1
st
 axial mode, indicating a more 

favorable response in terms of avoiding machining chatter vibrations  [3]. In conjunction with active 

vibration damping, the lead errors in the ball screw drive have also been modeled and compensated, 

which yields a further improvement in the dynamic positioning accuracy. With this developed 

scheme, a translational tracking accuracy of 2.6 um has been maintained while traversing at 1000 

mm/sec speed with 0.5 g acceleration transients. This result surpasses the performance of most ball 

screw-driven CNC machine tools by 4-5 times in terms of accuracy and speed. Although the MC-

ASMC was demonstrated to give highly promising results, during its practical implementation it was 

seen that tuning this controller was not a trivial task. Hence, in order to aid in the design and safe 

implementation of MC-ASMC, a detailed stability analysis is conducted and the stability predictions 

are verified in further tracking experiments, at the end of  Chapter 6. 
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In  Chapter 7, a different approach is taken for realizing high positioning accuracy and stiffness. 

Instead of compensating for the axial vibrations, the quasi-static elastic deformation (ED) is estimated 

and cancelled out in the control law. A simplified lumped model is used for predicting the torque that 

is transmitted through the preloaded nut. This model is also capable of capturing the drive’s position-

dependent flexibility characteristic. Both feedforward and feedback compensation techniques have 

been investigated. 

The feedback based elastic deformation compensation, which is the second major contribution in 

this thesis, is shown to be robust against dynamic changes (e.g. mass variations) on the load side. This 

is because this approach continuously monitors the real-time control signal, which helps it detect and 

account for such perturbations. This compensation strategy results in an additional feedback loop, for 

which the stability implications have been studied by conducting Nyquist analyses. It is shown that 

the proposed feedback based ED compensation strategy always results in an improvement in the 

drive’s translational accuracy. This is particularly significant for low-cost ball screw drives that have 

only rotational feedback, typically on the motor shaft. The performance improvement is also 

demonstrated when both linear and rotational feedback are available. 

During the course of this research, all of the developed control algorithms were validated in 

tracking experiments, as well as in frequency response command following and disturbance rejection 

(i.e. impact hammer) tests. Currently the ball screw setup is undergoing retrofits so that these 

algorithms can also be validated in more realistic machining experiments in the near future. 
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Chapter 2 

Literature Review 

The growing demands for high productivity manufacturing have motivated research in new control 

techniques for multi-axis machines. In order to produce, assemble, or manipulate parts in minimum 

time without violating their tolerances, multi-axis machines are designed to achieve controlled high-

speed and high-accuracy movements. With the recent advances in high speed machining  [57], spindle 

speeds and material removal rates have increased by an order of magnitude in the last two decades. 

Typical high-speed machine tools today have spindle speeds around 30,000 to 40,000 rpm. To take 

advantage of such high cutting speeds, the feed drives also need to provide fast tool or part motion, 

while maintaining or improving the positioning accuracy. This requires the servo system to have a 

high bandwidth  [53] and good disturbance rejection characteristics. This is required to track sudden 

changes in the commanded position trajectory, while being robust against external disturbances such 

as machining forces. As another requirement, smooth trajectory generation is also essential in order to 

constrain the motion commands in the low frequency range. This helps to avoid excessive tracking 

errors and also prevents exciting the machine’s structural vibrations, contributing to the overall 

machined part quality  [2] [16]. 

This chapter reviews some of the research on dynamic modeling and control of ball screw drives. 

Section  2.1 addresses the work modeling and identification. Section  2.2 focuses on controller design. 

The conclusions are presented in Section  2.3. 

2.1 Modeling of Ball Screw Drives 

Dynamic modeling of ball screw drives can be performed at different complexity levels considering 

various effects such as the rigid body motion, bearing and guideway friction, electrical dynamics, 

torsional, axial, and bending flexibility, high order vibrations, hysteresis type motion loss in the 

preloaded nut, and motor and mechanical torque ripples. Rigid body modeling is one of the simplest 

approaches, which considers the effects of inertia as well as viscous and Coulomb type friction. More 

advanced modeling that considers torsional, axial, and possibly bending vibrations  [49] [68] [71], the 

kinematics and dynamics that influence the motion loss in the preloaded nut  [11] [59] [70], the velocity 

dependent nonlinear friction  [5] [17] [38], and motor torque ripples  [45] [46] [50], enables more 

accurate prediction of the drive’s response. In return, this knowledge can be incorporated into control 
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law design to achieve better tracking and disturbance rejection characteristics. Some of the research 

on modeling of ball screw drives is presented in the following. 

2.1.1 Rigid Body Dynamics 

Rigid body dynamics captures the fundamental behavior which dominates the low frequency range. 

This essentially consists of rigid inertia, viscous damping, and Coulomb friction effects. Rigid body 

dynamic identification was performed by Erkorkmaz and Altintas  [17] by using the Least Squares 

 [44] approach. In this method, an input signal (u ) is provided to the motor, which is proportional to 

motor torque in the low frequency range, when the motor is operating in current control mode. The 

motor torque can be expressed in the form uKK ta=τ  where aK  and tK  are the current amplifier 

gain and motor torque constant, respectively. By applying a series of piecewise-constant inputs and 

using the Least Squares technique on the logged velocity and motor torque data, the inertia and 

viscous damping parameters can be identified considering the following rigid body dynamic model: 

][
1

)( dT
BJs

s −τ
+

=ω
 

 ( 2.1) 

Above, )(sω  is the drive’s velocity expressed in the Laplace (i.e. “ s ”) domain. J is the inertia, and 

B  is the viscous damping. dT  is the disturbance imposed by constant Coulomb friction opposing the 

direction of travel. dT  can be represented with two parameters (
+

T  and 
−

T ) in the Least Squares 

identification, where += TTd  when 0>ω  and −= TTd  when 0>ω .  

This technique is used for identifying the rigid body dynamics of the ball screw in Section  3.3.2. 

More details of the rigid body identification technique can be found in  [17] and  Appendix A. 

2.1.2 Friction 

Friction is one of the most significant sources of disturbance in CNC (Computer Numerical 

Controlled) machines. It typically causes tracking error spikes during motion reversals, which occur 

at sharp corners or circular arc quadrants in the toolpath. This is due to a sudden and discontinuous 

change of the true friction value at a zero velocity crossing, to which the controller disturbance 

adaptation law (or integral action) cannot immediately respond. Hence, accurate identification and 

pre-compensation of friction helps alleviate the corresponding positioning errors at motion reversals. 

Dedicated friction modeling and compensation techniques that consider the Stribeck effect  [5] 

where static friction changes to dynamic friction, has been presented in literature  [5] [17] [38]. 
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Identification of friction can be performed in various ways, among which the use of Kalman filtering 

 [30] to observe the equivalent disturbance has been adopted in this thesis following the work in  [17]. 

This approach was found to be effective in capturing the Stribeck curve accurately. Among 

compensation techniques, feedforward friction compensation was found to be more effective 

compared to the feedback approach, as it did not interference with the closed loop dynamics, which 

can have its own stability implications. 

2.1.3 Structural Vibrations 

Structural vibrations comprise an essential part of the ball screw drive dynamics. These vibrations, if 

not adequately dampened out or avoided, can limit the achievable control bandwidth to be 

significantly below the 1
st
 vibration mode  [54]. Accurate knowledge of the vibration modes is 

necessary for the application of most vibration compensation techniques. Structural vibrations have 

been modeled in literature through analytical methods  [8] [68], frequency response measurements 

 [21] [62] [68] and Finite Element (FE) modeling  [1] [21] [49] [62] [71]. 

With knowledge of the vibration modes, feedforward (FF) compensation techniques can be 

developed which avoid exciting the torsional or axial vibrations of ball screw drives, such as the one 

presented by Chen and Tlusty  [8]. In feedback suppression techniques, a lumped model can be used 

to represent the dynamics of vibration mode(s). Such a lumped model has been developed by 

 

Figure  2.1: Measured (solid line) and predicted (dashed line) transfer functions of ball screw 

drive (source: Varanasi and Nayfeh  [68]). 
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Varanasi and Nayfeh  [68] analytically, representing the 1
st
 mode of torsional vibration. The frequency 

response function (FRF) they predicted with their model was verified to be consistent with the 

measured first axial resonance, as shown in Figure  2.1. Similarly, a lumped model was developed to 

investigate vibration compensation strategies for the first axial mode in this thesis  [32]. Although it is 

relatively straightforward to match single-mode lumped models to experimental data, higher order 

models require the use of a modal analysis package to accurately identify the modal parameters and 

vibration magnitudes contributed by each mode to the final response of the drive. 

2.1.4 Motion Delivery in the Preloaded Nut 

The motion delivery in the preloaded nut exhibits a hysteresis type nonlinear behavior originating 

from the rolling, slippage, and elastic deformation of the recirculating balls. Lin et al.  [43] conducted 

a detailed kinematic analysis revealing that the steel balls continuously undergo micro-scale slip 

between the screw and the nut during the motion transmission. Cuttino et al.  [11] pursued this work 

and successfully modeled the elastic deformation of the balls, related slip phenomena, and hysteresis 

behavior in the nut mechanism. This motion loss can be observed in the nut linear position vs. ball 

screw angle and also in the friction torque vs. ball screw angle profiles, as seen in Figure  2.2  [11].  

 

 

 

 

 

The nonlinear motion loss in the nut produces a translational position error if the control loop is 

solely closed with angular encoders. This effect can be alleviated to a certain extent by constructing 

compensation functions or using a linear encoder for direct translational feedback. Both approaches 

have been followed in this thesis. Since this topic was earlier studied in detail by other researchers, 

elaborate modeling of the nut dynamics has been kept outside the scope of this thesis.  

(a) (b)

 

Figure  2.2: Hysteresis behaviour of the ball screw nut (source: Cuttino et al.  [11]): (a) Angular 

displacement hysteresis, (b) Friction torque hysteresis. 
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2.2 Control Law Design 

This section reviews some of the contributions on feed drive controls. Simpler techniques like PID or 

P-PI velocity cascade control are typically implemented by either trial and error tuning, or using 

simple plant models that capture only rigid body dynamics. More advanced techniques, on the other 

hand, might require modeling of the axial and torsional vibrations, hysteresis behavior in the nut, 

nonlinear friction characteristics, lead errors, and motor torque ripples. In return, more detailed 

models can improve the control law design and ultimately the tracking performance, by helping 

compensate for such effects. Another important factor in the controller design is robustness against 

external disturbances (i.e. cutting forces) and changes in the dynamic characteristics of the drive (e.g. 

viscous friction, inertia, etc.). 

2.2.1 Tracking versus Contouring Control 

Motion control systems fall into two major categories, which are tracking and contouring control. 

In multi-axis machines, tracking control refers to independent position control of each axis drive 

using its own feedback. Contouring control, on the other hand, is the case where the contour error (i.e. 

geometric deviation from the desired toolpath) is directly estimated and used in the feedback law. 

Koren  [36] initiated the work in contouring control by developing the Cross-Coupling Controller 

(CCC). This initial design considered solely linear toolpaths in estimating the contour error. This 

algorithm was later extended to accommodate circular and parabolic toolpaths in  [37]. Erkorkmaz and 

Altintas  [14] [15] presented a real-time contour error estimation method for arbitrarily shaped 

toolpaths, and implemented it successfully in a CCC scheme in conjunction with Zero Phase Error 

Tracking Control (ZPETC)  [65]). This helped to simultaneously reduce the contouring and tracking 

errors. Following the concept of directly reducing the contouring error rather than individual axis 

tracking errors, Chiu and Tomizuka  [9] devised a scheme in which the multi-axis dynamics of the 

machine tool is projected along the tangential and normal directions of the toolpath. They designed a 

controller to reduce the tracking errors in the normal and bi-normal directions of motion, which in 

turn helped to reduce the contour error. 

In this thesis, the control algorithms are developed following the tracking control school of thought. 

This is a more practical approach compared to applying contouring control, especially considering 

that the robotics and machine tool industries are currently moving towards reconfigurable designs 

which require more flexibility and interchangeability in the control system implementation. The 

objective is to indirectly minimize the contour error, by minimizing the tracking errors in the 

individual axes. 
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2.2.2 Controller Design for High Accuracy and Vibration Avoidance 

The most favorable characteristics in a servo system are the suppression of disturbances and 

parameter variation effects for a wide frequency range, robustness against unmodeled high frequency 

dynamics and measurement noise, and a wide command following bandwidth. Pritschow noted the 

importance of achieving high closed-loop bandwidth in order to track sudden changes in the reference 

trajectory and also to reject disturbances caused by cutting (i.e. work) forces and friction in  [53]. 

Although many controllers have been developed based on rigid body dynamics alone, neglecting the 

influence of structural resonances significantly limits the achievable bandwidth  [54]. For example, the 

flexibility of a ball screw causes torsional and longitudinal (i.e. axial) vibrations which can be excited 

through the control signal or disturbances caused by the cutting force or friction. If the dynamics that 

govern these vibrations are not considered in the control law design, instability occurs when the 

feedback gains are increased too much for tight position tracking. 

One solution that alleviates this problem to a certain extent is to insert a notch filter into the control 

loop. Although the notch filter helps to attenuate the resonance effect, it does little to recover the 

phase margin, which still ultimately limits the achievable bandwidth. Furthermore, if the resonance 

frequency shifts due to a change in the mass of stiffness parameters, the closed-loop performance or 

even stability may be lost. Nevertheless, a significant improvement can be obtained by using a notch 

filter, compared to the pure rigid body-based design case. In machine tool drives, Smith  [62] has 

successfully implemented notch filtering as a solution to this problem. It is important to note that even 

with notch filtering, structural vibrations are not completely eliminated due to the existence of 

external disturbance forces and uncertainties in the drive model. On the other hand, active vibration 

damping, if implemented correctly, can result better servo performance by attenuating the structural 

vibrations through the use of feedback. 

Another preventative measure in avoiding structural vibrations is Input Command Pre-shaping 

(ICP) (or Input Shaping). Early investigation of this approach was conducted by Smith  [61] through 

the use of Posicast control (Smith imagined the corresponding control motion as casting a fly, and 

hence named it Positive-cast or Posicast). In input shaping, the input command is modified (i.e. pre-

shaped) through the construction of a series of impulses in order to achieve vibration-free positioning 

 [29], using a dynamic model of the system. The method is based on the idea that superimposed 

impulse responses will be cancelled out by each other after the last input impulse is applied  [27]. 

Hyde and Seering  [25] presented the theory behind ICP. For a simple case of a sequence with two 

impulses, they showed that the sequence consists of an impulse and a second impulse with a lesser 

magnitude occurring after half the period of the damped vibration. The action of adding an 
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appropriately delayed impulse response, which is performed by the ICP method, is equivalent to 

adding zeros at the system modes. Similarly, Jones and Ulsoy  [29] viewed the ICP technique as a 

pole-zero cancellation problem and found that it is equivalent to a special case of feedforward notch 

filtering of the position commands. 

Feedforward control can also be used to cancel out the stable dynamics of a closed-loop system, 

thereby yielding an overall command following transfer function that is very close to unity for a wide 

frequency range. One of the notable contributions in this area came from Tomizuka  [65], who 

introduced the Zero Phase Error Tracking Controller (ZPETC) which is based on cancellation of all of 

the closed loop poles and stable closed loop zeros. Theoretically, this controller yields zero phase 

shift between the commanded and actual position values, and a gain that is very close to unity for a 

wide frequency range. A similar contribution was also made by Weck and Ye  [69]. However, the 

performance of feedforward controllers is very sensitive to the accuracy of the assumed dynamic 

model  [52], as has been shown by Pritschow and Philipp. In reality, a drive’s dynamics, even if they 

can be identified in detail  [66], can vary over time and cannot be kept unchanged. The most important 

shortcoming of any type of feedforward approach is its open loop nature, which requires closed-loop 

robustness to be realized in feedback before it can be successfully applied. 

As mentioned earlier, a more effective way to deal with structural vibrations is to attempt to 

attenuate them in feedback control. This facilitates the achievement of a wider closed-loop bandwidth 

and better disturbance rejection. Chen and Tlusty were among the first to study this concept for 

machine tool drives, in which they demonstrated the effectiveness of vibration damping using 

accelerometer feedback in simulations  [8]. In recent years, as more powerful control computers and 

high resolution feedback devices have became available, successful experimental results have been 

reported by researchers for ball screw drives. Symens et al.  [64] used H∞ robust control with gain 

scheduling, which helped track the variations in structural dynamics with axis position. Zatarain et al. 

 [72] improved the drive stiffness, damping, and tool positioning accuracy by fusing linear encoder 

measurements with accelerometer feedback through a Kalman filter. Accelerometer feedback was 

also used by Symens et al. As a contribution from industry (Siemens AG), Schäfers  [56] developed a 

control loop tuning strategy which emulates the behavior of a mechanical damper, allowing high jerk 

movements to be executed without vibrating the translational part of the drive. All of these methods 

enable a significant improvement in the command following bandwidth, dynamic (i.e. frequency 

dependent) stiffness, and disturbance rejection characteristics. 

Recently, Kamalzadeh and Erkorkmaz have developed an active vibration damping and position 

control strategy for ball screw drives using Adaptive Sliding Mode Control (ASMC)  [32]. This 
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approach utilizes the methodology set forth by Slotine and Li  [60] and actively compensates for the 

dynamics of the 1
st
 axial mode. One nice feature about this controller is that it inherently contains the 

command following (feedforward) and disturbance rejection (robustness) terms that are synthesized 

through the solution of one Lyapunov inequality. Compared to other approaches, this control law is 

relatively easy to design and has been demonstrated to achieve a high command following bandwidth 

(208 Hz), and good accuracy (2.3 um) during high travel speeds and accelerations (1000 mm/sec, 0.5 

g). This controller design is one of the main contributions in this thesis, and is presented in  Chapter 6. 

ASMC has also been used to control the rigid body dynamics in this thesis. In this case, the 

vibratory modes have been attenuated by inserting notch filters into the control loop. Active vibration 

cancellation for the 1
st
 torsional mode, through additional control terms, has also been investigated 

and reported in  [21]. 

The idea of Sliding Mode Control was pioneered by Utkin  [67]. The original idea was based on 

discontinuous switching of the control signal in order to keep the system states on a “sliding surface”, 

which represents a stable linear differential equation governing how the states should converge to the 

origin (or to their desired values). Hence, the closed-loop response is dictated by the parameters of the 

sliding surface. Slotine and Li  [60] refined this methodology by developing a general and adaptive 

framework, which resulted in a continuous and nonlinear control law with Lyapunov-guaranteed 

stability. Later Zhu et al.  [75] provided the stability proof for conducting the parameter adaption 

within known bounds. 

In the early stages of the research in this thesis, many control techniques were investigated such as 

Pole-Placement, ZPETC, and ASMC. Adaptive Sliding Mode Control was chosen as the foundation 

for several of the developed compensation techniques, due to its excellent tracking performance and 

robustness against disturbances and low frequency dynamic variations. 

2.2.3 Compensation of Torque/Force Ripples 

Variation of the motor torque due to changes in the relative position between the rotor and stator is 

known as the motor torque ripple. Disturbances, such as motor and mechanical torque ripples, cause 

inaccurate torque delivery from the drive which in turn can deteriorate the motion control accuracy. 

Torque ripples can be modeled and compensated as a function of the motor position and the torque 

command  [23] [50].  

In AC servo-drives, which are becoming the mainstream in machine tool and industrial robotics 

applications, the torque ripple is composed of cogging torque, reluctance torque, mutual torque, and 
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the DC current offset torque  [24]. Cogging torque originates from the presence of stator slots and has 

a frequency at which the slots are located along the stator  [22]. Reluctance torque is due to the rotor 

geometry discontinuity (holes, saliencies, and other geometrical discontinuities which interrupt the 

internal flux). This causes variations in reluctance as the rotor rotates. Mutual torque is due to the 

interaction between the rotor magnetic field and stator current. Ideally, a motor should produce a 

constant mutual torque if the stator windings and rotor magnetic field have a perfect sinusoidal 

distribution. However, since this is not achievable in practice, the produced mutual torque contains 

higher harmonics which cause the torque ripples  [51]. The torque ripple due to DC current offset is 

caused by the offset in the current sensors and digital to analog converters (DAC) in the current 

control loop. In optimally designed AC permanent magnet motors, cogging, reluctance, and mutual 

torque ripples can be neglected  [23]. The DC current offset ripples are more dominant among other 

mentioned factors, due to the offsets in the current sensors and DAC’s being difficult to eliminate 

 [24]. Mechanical torque ripples, on the other hand, can be observed when there are minor 

misalignments in the feed drive mechanism. 

Many techniques have been proposed in literature for torque ripple minimization. The first class of 

these techniques focuses on improving the motor design  [7] [28] [39]. The second class considers 

injecting additional control signals for canceling out the ripples, by supplying an equivalent current to 

the motor. This cancellation can be performed in the current or motion control loops. As an example 

of torque ripple compensation in the current control loop, Parasiliti et al.  [50] used a Kalman filter 

 [30] to identify the harmonic components of the magnetic flux linkage and predict the necessary 

motor current to compensate for the ripples. However, to implement such an algorithm, the current 

amplifier hardware needs to be modified. In this thesis, torque ripple compensation is realized at the 

position and velocity control level, which is one level higher and more accessible. This work has been 

published in  [31]. One of the advantages of this approach is that it allows the methodology to be 

applied on different types of feed drives in a generic manner, without having to modify the current 

loop. The torque ripple harmonics were identified using a Kalman filter disturbance observer. Details 

of this work are presented in  Chapter 5. 

2.2.4 Compensation of Elastic Deformations 

Elastic deformations occur in ball screw drives typically due to inertial forces, guideway friction, and 

cutting forces, which result in elongation and compression of the ball screw. Many of the ball screw 

drives are controlled based on closing the position loop only with a rotary encoder, as these encoders 

are less expensive compared to linear encoders. When only rotary position feedback is used, the linear 
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positioning accuracy suffers due to lead errors, elastic deformations, thermal deformations, and 

motion loss in the preloaded nut  [11] [13] [26] [59] [70]. By using direct position feedback through a 

linear scale, it is possible to alleviate these problems to a certain extent, mainly during steady-state 

positioning and low frequency movements. However, during high speeds and accelerations, these 

factors become apparent again; and can deteriorate the dynamic linear accuracy of the drive 

mechanism. Also, with the use of linear feedback, the inclusion of additional mechanical flexibility 

(i.e. the axial mode) inside the servo loop can cause the bandwidth to suffer  [8] [54] [68] if the 

structural resonances are not compensated adequately. Although techniques have been developed to 

avoid or attenuate structural vibrations by pre-filtering the position commands or inserting notch 

filters inside the loop  [21] [27] [29] [62] [69], these techniques usually result in a drop in the position 

tracking bandwidth compared to using collocated rotary feedback. Moreover, linear encoders 

typically cost ten times more compared to rotary encoders, and their installation involves additional 

expenses as well. 

Among the above mentioned factors, compensation of the elastic deformations has received 

attention in motion controls literature. In the robotics field, Zhang et al. studied the “joint torque” 

feedback technique  [73] using a torque sensor in a flexible robot arm mechanism. The joint torque 

refers to the joint displacement multiplied by the stiffness of the flexible transmission system. This is 

conceptually equivalent to the “transmitted torque” that is estimated in the elastic deformation 

compensation scheme presented in Chapter 7 of this thesis. In  [73], the authors investigated the idea 

of injecting negative joint torque feedback to the control signal, and the relation between vibration 

suppression and disturbance rejection, which refers to the compensation of elastic deformations 

caused by disturbances. While a negative joint torque feedback is effective in vibration suppression 

(consistent with Chen and Tlusty’s simulations  [8] for negative acceleration feedback), it amplifies 

the effect of disturbances on the end effector position  [74]. On the other hand, positive joint torque 

feedback improves the disturbance rejection characteristics, but has a destabilizing effect on the 

overall servo system. A similar effect was also observed in the feedback based elastic deformation 

compensation scheme developed in Chapter 7. However, in this thesis, the instability problem has 

been mitigated by designing additional filters and applying a detailed stability analysis. 

Lim et al.  [41] [42] adopted the idea of positive joint torque feedback from Zhang et al.  [74], and 

applied it on an X-Y positioning table. Their method works in a feedback manner and rejects the 

disturbances that cause elastic deformations. However, the performance of this method is limited due 

to two major shortcomings. First, this technique assumes a constant stiffness parameter for the ball 

screw drive and does not take into account its position dependent flexibility. Second, the effects of 
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viscous and Coulomb friction are neglected in computing the transmitted (i.e. joint) torque, which can 

lead to incorrect estimation of the elastic deformation. 

In this thesis, more comprehensive and yet practical elastic deformation compensation strategies 

have been developed that address the shortcomings of earlier work. A feedforward approach has been 

developed  [33], which considers both the position dependency and the sources of external friction in 

computing the elastic deformation. This approach is relatively simple but not very robust against 

parameter changes in the load side of the drive, such as table mass and guideway friction variations. 

A feedback based technique has also been developed  [34], which is more robust and still relatively 

easy to implement. This technique is considered to be another major contribution in this thesis. Both 

approaches are detailed in  Chapter 7, which deals with the compensation of elastic deformations in 

ball screw drives. 

2.3 Conclusions 

This chapter has presented a survey of some of the critical issues related to the modeling and control 

of ball screw drives. Namely they relate to the rigid body dynamics, friction, elastic deformations, 

torque ripples, lead errors, thermal deformations, structural vibrations, and motion loss in the 

preloaded ball-nut mechanism. In the following chapters, some of these issues will be studied in more 

detail. New control laws will be developed which focus on achieving high command following and 

disturbance rejection bandwidth through the avoidance or damping of structural vibrations. Also, the 

achievement of high positioning accuracy will be investigated by compensating for some of the 

repeatable effects such as torque ripples, lead errors, and elastic deformations. 
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Chapter 3 

Modeling and Identification 

3.1 Introduction 

Development of high performance motion controllers requires a good understanding of the feed 

drive dynamics. In this chapter, the most significant dynamics of a ball screw drive, which is used as 

the primary experimental setup in this thesis, are modeled and experimentally identified. Section  3.2 

details the design of the experimental setup. Section  3.3 focuses on the identification of rigid body 

dynamics, including effects like inertia, viscous friction, and Coulomb friction. The drive parameters, 

including Coulomb friction torque, are initially calculated using a Least Squares techniques. The 

friction model is then refined by observing the control signal equivalent friction disturbance using a 

Kalman filter, while jogging the drive under feedback control at different velocities. The amplifier 

current loop is also measured, to validate the frequency range in which effective actuation can be 

realized. Section  3.4 deals with the modeling and identification of the vibratory dynamics. Torsional 

vibrations are investigated using finite element analysis and frequency response testing. The first 

axial vibration mode, which is highly significant in terms of influencing the drive’s linear positioning 

accuracy, is estimated through an analytical calculation and validated experimentally. The knowledge 

of torsional and axial vibration modes is crucial in designing high bandwidth motion controllers. 

Conclusions of this chapter are presented in Section  3.5. 

3.2 Experimental Setup 

The high speed ball screw drive built at the Precision Controls Laboratory, University of Waterloo is 

shown in Figure  3.1. The ball screw, which has 20 mm diameter and 20 mm pitch, is used to drive a 

table supported on an air guideway system. Actuation is provided through a 3 kW AC servomotor 

which is connected to the ball screw using a diaphragm-type non-backlash coupling. The motor is 

operated in current control mode. The bandwidth of the current control loop was measured to be 480 

Hz. The ball screw is instrumented at both ends with two high resolution rotary encoders which 

deliver 5000 sinusoidal signals per revolution. These encoder signals can be reliably interpolated by 

400 times in the motion controller, resulting in a position measurement resolution equivalent to 10 nm 

of table motion. Catalogue rated accuracy of these encoders are equivalent to 200 nm of table motion. 

For successful vibration measurement, these encoders have been mounted rigidly onto the ball screw 

and to the machine base. Encoder 1 is located at the free end of the ball screw, and Encoder 2 is right 
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after the fixed bearing support, as seen in Figure  3.1. A third encoder (Encoder 3) is available on the 

back of the motor which delivers 16384 quadrature pulses, resulting in a position measurement 

resolution equivalent to 305 nm of table motion. This study was initially focused on rotary dynamics 

of the drive, using the measurements obtained from the rotary encoders. Later on, to investigate the 

axial vibrations and validate the final linear positioning accuracy of the table, a linear encoder with 4 

um signal period was retrofitted on the table which provides a measurement resolution of 10 nm and 

an accuracy of 40 nm, as rated in the catalogue. 

The high resolution of the encoders enables accurate detection of the frequency response at 

different points along the ball screw, by yielding clear acceleration signals after double differentiation 

with respect to time. Hence, the vibration mode shapes can be observed and verified up to a frequency 

of 2.5 kHz. The setup is controlled with a dSPACE controller which can achieve a sampling 

frequency up to 20 kHz. 

3.3 Rigid Body Dynamic Identification 

The rigid body dynamics comprise the most fundamental characteristics of ball screw drives, which 

dominate the low frequency behavior. Accurate knowledge of these dynamics is essential for any kind 

of model-based controller design. Furthermore, these characteristics should be determined before 

 

Figure  3.1: Experimental setup. 
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higher order dynamics such as torsional or axial vibrations, or more complex phenomena like torque 

ripples, elastic deformations, or lead errors, are modeled and identified. This task is undertaken in the 

following subsections. In Section  3.3.1, the theoretical value of axis inertia is calculated. This is 

followed by Least Squares identification of the inertia, viscous damping, and Coulomb friction 

parameters in Section  3.3.2. Throughout most analyses in this thesis, dynamics of the current control 

loop is neglected. Validation for this simplification is provided in Section  3.3.3, with experimental 

measurement of the current loop bandwidth. In Section  3.3.4, the friction model is further refined by 

using a Kalman filter based disturbance observer. This facilitates correction to the friction parameters 

that were identified using Least Squares technique and produces an accurate description of the drive’s 

friction characteristics, for feedforward compensation. 

3.3.1 Theoretical Inertia Calculation 

The overall inertia of the ball screw mechanism is estimated using catalogue and calculated values for 

different components . The catalogue rated motor and coupling inertias are mm  = 9.10×10
-4
 kgm

2
 and 

cm  = 9.013×10
-4 

kgm
2
, respectively. The inertia of the ball screw is calculated assuming a cylindrical 

structure: 

32

4
d

lJ bsbs πρ=
 

( 3.1) 

where ρ = 7850 kg/m
2
 is the density of steel, bsl = 1.12 m, is the ball screw length, d=0.02 m is the 

ball screw diameter, resulting in an equivalent inertia of 1.3810
-4
 kgm

2
 for the ball screw. The table 

mass tm  was measured to be 33.474 kg. This can be expressed as equivalent rotary inertia as: 
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using the ball screw pitch length, ph = 0.02 m. The total equivalent inertia of the ball screw drive can 

be calculated by summing up the inertia values for the motor, coupling, ball screw, and the table as: 

 kgm 10 x 2.288
2-3=+++= tbscmeq JJJJJ

 
( 3.3) 

This calculation was verified with the inertia estimated using Least Squares parameter 

identification in Section  3.3.2. The results are shown in Table  3.1, where there appears to be 8.6% 

difference between the two estimates. This discrepancy likely originates from the coarse 

approximation of the ball screw as a single-diameter cylinder, which neglects the cross-section area 
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changes and the helical groove. Nevertheless, an analytical estimate of the total inertia helps check 

the validity of experimental parameter estimates obtained in Section  3.3.2. 

3.3.2 Least Squares Identification of Inertia, Viscous, and Coulomb Friction 

Following the analytical estimation of inertia, experimental identification of a simple rigid body 

dynamic model comprising of inertia, viscous damping, and Coulomb friction, as shown in Figure 

 3.2, is presented in this section. Coulomb friction is incorporated into the model to avoid a bias in the 

viscous damping estimate. Following this parameter estimation, the friction model will be further 

refined using Kalman filtering in Section  3.3.4. 

The rigid body dynamics of the drive are captured with the following model:  

][
1
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+
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 ( 3.4) 

Above, ω  is the angular velocity of the ball screw. J  is the motor-equivalent total rotary inertia, 

B  is the viscous friction coefficient, and τ  is the motor torque. The Coulomb friction dT is assumed 
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Figure  3.2: Rigid body dynamic model. 

Table  3.1: Inertia parameters for the ball screw drive system. 

Parameters Values 

Mass of table, air bushing, and other translational moving parts 33.474 kg 

Ball screw inertia 1.3810×10
-4
 kgm

2
 

Coupling inertia 9.0133×10
-4
 kgm

2
 

Motor inertia 9.1×10
-4
 kgm

2
 

Total equivalent inertia - computed analytically based on ball screw 

lead of 20 mm 

2.2886×10
-3
 kgm

2
 

Total equivalent inertia - experimentally identified using Least 

Squares parameter identification 

 

2.1×10
-3
 kgm

2
 

Discrepancy between analytically computed and experimentally 

identified inertia values 

 

8.6 % 
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to be in the form: 





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<ω

>ω
=

−

+

0

0

forT

forT
T

C

C
d

 

 ( 3.5) 

The ball screw rotational-to-translational motion conversion ratio is gr  = )2/( πph =3.1831×10
-3

 

m/rad. The motor torque can be expressed as )()( suKKs ta=τ , where )(su  is control input to the 

amplifier. aK  and tK  are the amplifier gain and the motor torque constants, with catalogue rated 

values of 1.7193 A/V and 0.57 Nm/A respectively. The axis position can then be expressed as: 

)]()([
1

)( sTsuKK
BJss

r
sx dta

g
−

+
=

 

 ( 3.6) 

In order to simplify the parameter estimation, the high order dynamics of the amplifier are ignored 

and only a constant amplifier gain ( aK ) is considered. The effective frequency range of the current 

amplifier, for this assumption to hold, is later measured in Section  3.3.3. 

The drive parameters were estimated using the Least Squares technique developed in  [17]. The 

applied procedure is explained in  Appendix A. A sequence of piecewise constant current commands 

were applied as the identification input. This input signal was selected in a form which excites the 

dynamics of interest for Lease Squares identification; that is, the pulse signals are large enough to 

produce high acceleration for identifying the inertia parameter, and long enough to result in high 

velocities for identifying the viscous damping parameter. Also, the amplitude of the pulses is varied 

in order to account for the amplitude dependency caused by the Coulomb friction term. The 

parameter estimates are summarized in Table  3.2. As mentioned earlier, the equivalent inertia was 

also calculated analytically using the table and air bushing masses and ball screw, coupling, and 

motor inertia values. These parameters are listed in Table  3.1. The analytical inertia is found to be 

close to the experimentally identified inertia with 8.6% error. This error could originate from the 

Table  3.2: Identified parameters. 

Ball screw drive parameters 

Equivalent inertia Ĵ  kgm
2
 2.1×10

-3
 

Viscous damping B̂  kgm
2
/sec  4.40×10

-3
 

Coulomb friction +
CT̂  N.m  7.30×10

-3
 

Coulomb friction −
CT̂  N.m  -6.68×10

-3
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simplifying assumptions made when calculating the inertia of various mechanical components, 

including the ball screw. It could also originate from the discrepancy between the rated and actual 

amplifier gains and motor torque constants. Nevertheless, there is reasonable match between 

analytically computed and experimentally identified inertia parameters. From here on, the 

experimentally identified values are used in controller design and analysis. 

It is important to note that when more detailed identification of friction is conducted in Section 

 3.3.4, it reveals that B̂  is initially overestimated and +

C
T  and 

−
C

T  are underestimated in the rigid body 

model. These parameters will be corrected as a more detailed friction profile is constructed which is a 

function of the axis velocity. 

3.3.3 Identification of the Amplifier Current Loop 

The current loop in the amplifier controls the motor current, which should be ideally be proportional 

to the amplifier input voltage. However, due to power limitations of the amplifier, as well as the 

motor armature dynamics and the amplifier current control circuitry, the current loop gain drops as 

the frequency of the input increases. In order to consider a more realistic model of the amplifier, and 

determine the frequency range up to which the “constant gain” assumption holds, tests have been 

conducted by applying a sinusoidal input voltage with 8 V amplitude at frequencies ranging from 10 

to 2500 Hz, with 2 Hz increments. In these tests, the equivalent motor current was monitored from the 

amplifier, as shown in Figure  3.3. For each test, a sinusoidal curve was fit to the motor current data in 

order to measure the amplitude and phase shift of the response. The bode diagram for the motor 

current response, from input voltage to monitored current, is shown in Figure  3.4. As can be seen, the 

-3 dB drop occurs around 480 Hz. Although the current monitoring filter available in the amplifier 

was disabled during these tests, there may still be internal filtering, which could not be avoided. 

Nevertheless, the measurement indicates that the current loop has a bandwidth of at least 480 Hz. 

To get an idea of the most significant dynamics, the frequency response data was also used to fit an 

analytical transfer function using the Complex Curve Fitting method  [40], implemented in MATLAB 

 [10]. A 3
rd
 order model in the form: 

Control

signal

u [V]

Current 

amplifier

 i [A]

Monitored motor current i 

Motor

 

Figure  3.3: Current amplifier and motor block diagram. 
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  ( 3.7) 

was found to capture the observed current loop dynamics with adequate closeness. The poles, zeros, 

and gain are presented in Table  3.3. As indicated, the lowest frequency pole occurs at 440 Hz, 

roughly determining the usable current control bandwidth. However, the amplifier can still deliver 

current effecting higher frequencies, but with phase lag. This needs to be kept in mind during the 

controller design and stability analyses in proceeding chapters. For the purpose of identifying the 

rigid body dynamics, approximating the current amplifier with a fixed gain does not produce any 

detrimental error. 
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Figure  3.4: Measured current loop frequency response function. 

Table  3.3: Poles, zeros, and gain of 3rd order approximation of the current loop. 

Poles kp  rad/sec Frequency ω  Hz Damping ratio ζ  

-4169 + 5115i 1050 0.63 

-4169 - 5115i 1050 0.63 

-2763 440 1.00 

Zero 1z  rad/sec Frequency ω  Hz Damping ratio ζ  

12949 2061 -1.000 

Transfer function gain aK  A/V 1.7237 
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3.3.4 Detailed Identification of Friction Characteristics using a Kalman Filter 

Detailed identification of friction is performed by moving the table under closed loop control at 

constant speeds and monitoring the control signal equivalent disturbance, which attributes the total 

friction in the drive, using a Kalman filter  [30]. This scheme has been illustrated in Figure  3.5. In 

order to stabilize the feed drive, the Sliding Mode Controller, developed later in  Chapter 4, is utilized. 

The Kalman filter design used for friction observation has been adopted from the methodology in  [17] 

and  [18], and is summarized in  Appendix B. The Kalman filter can be expressed as a discrete-time 

model as: 
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( 3.8) 

 

Above, obsK  is the observer gain, A , B , and C  represent the discrete-time state space matrices 

of the rigid body dynamics, with numerical values presented in  Appendix B. d̂  is the estimated 

disturbance, mainly attributed to the total nonlinear friction in the ball screw mechanism, when there 

are no other disturbance forces (such as cutting), acting on the ball screw drive. x̂ , ω̂ , mx , and mω  

are the estimated and measured position and velocity values, respectively. A typical disturbance 
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Figure  3.5: Kalman filtering. 
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Figure  3.6: Estimated disturbance with Kalman filtering, jogging at a speed of 200 mm/sec. 
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estimate recorded while jogging the axis back and forth at 200 mm/sec is shown in Figure  3.6.  

The average value of the disturbance attributes to friction and appears reasonably consistent over 

the range of motion  [17]. Although the friction effect is isolated from the influence of torque ripples 

by averaging the disturbance at a constant speed, the effect of any constant disturbance such as an 

offset in the amplifier gain is absorbed in combination with the friction, in the identification process. 

Higher frequency harmonics are also evident, which correspond to 1x, 2x, 4x, 8x, and 12x of the 

motor rotation speed. These harmonics were observed to be quite repeatable and are attributed to the 

torque ripples in the motor and drive mechanism, which are studied in more detail in  Chapter 5. The 

focus in this section is only on the friction, which is obtained by averaging the disturbance values 

observed while traveling at a constant velocity . By repeating the test for different speeds, the friction 

characteristic of the ball screw drive can be constructed as a function of motor velocity, as shown in 

Figure  3.7. 

It should be noted that due to the earlier over-estimation of the viscous damping term B̂ , the 

average values of friction appear to be diminishing with increasing velocity, following a linear trend. 

By estimating the corresponding negative slope (-3.385×10
-3
 kgm

2
/sec), the value of B̂  was corrected 

as 'B̂ =4.40×10
-3
-3.385×10

-3
=1.015×10

-3
 kgm

2
/sec. The Kalman filter was redesigned and the 

experimentally recorded data was filtered once again, Now, it is seen that the high-velocity values of 

friction converge to constant asymptotes, which correspond to the updated values of Coulomb friction 

( ]'[ +
CT =+0.675 Nm and ]'[ −

CT = - 0.675 Nm), as seen in Figure  3.7. 

A friction model was fit to the observations in the form, similar to the one used by Kato et al.  [35]: 
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Figure  3.7: Observed and curve fit friction models. 
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)]1()[sgn(
/ Ωω−

−+ω= eTTT dsfric  
( 3.9) 

Here, fricT  [Nm] is the friction torque, ω  [rad/sec] is motor angular velocity, 64=Ω  rad/sec is 

the velocity constant, sT = 0.235 Nm is the static friction torque, and dT = 0.440 Nm such that 

ds TT + =0.675 Nm equals the Coulomb friction torque. It should be noted that the overall shape of 

the friction model is different from the typical friction characteristics of feed drives with lubricated 

guideways. Due to the use of air bushings, the friction originating from the linear guideways is almost 

eliminated. The remaining friction originates from the support ball bearings, encoders, nut assembly, 

and the motor’s internal bearings. Due to the dominance of rolling type friction, the Stribeck effect 

 [5], which is recognized as a transition from a larger static friction to a smaller dynamic friction, is 

not observed. 

The curve fit friction model represents the actual friction in the drive system more realistically than 

the simple Coulomb friction model used earlier in Least Squares parameter estimation. Furthermore, 

more accurate estimate of the viscous damping is also obtained. Hence, the analytical model in Eq. 

( 3.9) and the updated value of the viscous damping 'B̂  have been used in the proceeding chapters for 

control law and feedforward compensation design. 

3.4 Vibratory Dynamics 

Insight into the vibratory dynamics of ball screw drives plays a crucial role in designing high 

bandwidth control laws, which is one of the aims in this thesis. Sections  3.4.1 presents a simple Finite 

Element approach to modeling the ball screw torsional vibrations. The finite element analysis results 

are verified and refined using experimental frequency response measurements. In Section  3.4.2, the 

first axial mode, which has a major influence on the achievable linear positioning bandwidth and 

accuracy, is modeled and measured experimentally. Results of the modeling and identification work 

on vibratory dynamics will be incorporated into controller design in the proceeding chapters, as notch 

filters and active vibration damping techniques to achieve higher control bandwidth and smooth 

tracking motion. 

3.4.1 Finite Element Modeling of Torsional Modes and Experimental FRF Validation 

The torsional vibration modes of the drive were modeled in ANSYS® software. The developed FE 

model is shown in Figure  3.8. Modal analysis was conducted to investigate the torsional resonances. 

The ball screw was modeled as a rod with a varying outside diameter at different sections. The motor 

shaft was modeled as a rigid cylinder with the inertia reported in the motor catalogue. The coupling 
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was modeled with two cylinders, attached rigidly to the motor and to the ball screw, connected with a 

torsional spring in between representing the coupling flexibility. The catalogue values were used for 

the inertia and flexibility of the coupling. 

 

Boundary condition for the axially free end

Encoder 1 Ball screw Table inertia Encoder 2 Coupling Motor

Boundary condition for the axially fixed end
 

Figure  3.8: The finite element model in ANSYS. 
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Figure  3.9: Torsional modes: (a) 1st mode, (b) 2nd mode, (c) 3rd mode. 
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Figure  3.10: Measured open loop acceleration FRFs. 
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The two bearings supporting the ball screw were modeled by applying appropriate boundary 

conditions on the ball screw. For the axially fixed end, all degrees of freedom except for rotation 

around the x-axis (i.e. main ball screw axis) were fixed. For the axially free end, the y-axis and z-axis 

displacements were fixed. The inertia contribution of the bearings was modeled by two rings attached 

to the ball screw at the bearing locations. Details of the ball screw, coupling, motor, and bearing ring 

geometries have been reported in  Appendix C, along with the inertia and stiffness parameters of the 

model components. 

The effect of table inertia was modeled as a disc element at the nut position, which accounts for 

partial mass of the table. Due to the hysteresis-type motion loss in the preloaded nut  [11], very small 

motions of the ball screw do not fully transfer to the table and vice-versa. Thorough modeling of the 

nut dynamics is quite complex, and although there have been successful works reported in the 

literature  [11] [49] [68] [71], this task has been kept outside the scope of this thesis. In general, the nut 

dynamics is more significant at small motion range around velocity crossings due to stick-slip 
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friction, and is less significant at high speeds. Here, the equivalent inertia reflected from the linear 

motion of the table and nut was determined experimentally, in order to yield consistent modal 

frequencies with measured Frequency Response Functions (FRF’s). By trial and error, it was found 

that using an inertia element which accounts for 8.5% of the table’s inertia was successful in 

predicting the observed torsional frequencies. All other parameters in the Finite Element model were 

either determined analytically, or substituted from catalogue values. The disk representing the table 

equivalent inertia was connected to the ball screw by a torsional spring, representing the stiffness of 

the preloaded nut. This torsional stiffness (15.10 ×10
3
 Nm/rad) was calculated from the axial stiffness 

value (137×10
6
 N/m) provided in the ball screw catalogue. Details of this calculation are presented in 

 Appendix C. 

The first three torsional modes are shown in Figure  3.9, with the corresponding natural frequencies 

of 451, 1166, and 1752 Hz. In the 1
st
 torsional mode of vibration, the neutral position is near the 

motor end of the ball screw. The torsional displacement gradually increases from right to left along 

the ball screw and the maximum deflection happens at the free end. The motor has a negative 
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Figure  3.13: Torsional FRF with different amplitudes of input signal and the table at the middle 

position. Measurement from: (a) Encoder 1, (b) Encoder 2, (c) Encoder 3. 
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displacement in this mode. In the 2
nd

 torsional mode, there are two neutral positions, one near the 

motor and the other between the table location and the free end. The peak occurs near the position of 

Encoder 2. In the 3
rd
 torsional mode, two neutral positions occur between the table and Encoders 1 

and 2. A positive peak occurs at the table location, and negative peaks occur at both ends of the ball 

screw. 

The torsional vibrations were verified in frequency response tests, where a sinusoidal testing signal 

was applied to the amplifier input and rotational displacements were measured from Encoders 1, 2, 

and 3, as shown in Figure  3.11. The displacement measurements were double differentiated to obtain 

acceleration profiles, which were used in magnitude and phase evaluation with respect to the 

excitation signal. A sample result, evaluated at 40 Hz excitation frequency, is shown in Figure  3.12. 

As can be seen, the acceleration signal estimated from of Encoders 1 and 2 are less noisy compared to 

the signal obtained from Encoder 3 (motor encoder), due to the higher resolution of the first two 

encoders. However, with averaging in the Least Squares technique used to fit the sinusoidal curves to 
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Figure  3.14: Torsional FRF with different table position. Measurement from: (a) Encoder 1, (b) 

Encoder 2, (c) Encoder 3. 
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the signals, reasonably accurate estimations of vibration amplitude and phase are obtained, as seen in 

the FRF measurements shown in Figure  3.13 and Figure  3.14. These measurements contain the 

dynamics of the ball screw mechanism, as well as the amplifier and the motor. 

The tests were performed for frequencies ranging from 10 to 2500 Hz with an increment of 2 Hz. 

To investigate amplitude and position dependency, different amplitudes of input and axial positions 

of the table were examined. The middle position is where the table is in the middle of its stroke length 

and the nut is 520 mm to right of the free end. The left and right positions are where the table is 

displaced by 150 mm to the left and right sides, in the mentioned order. 

The measured torsional FRF’s for four different amplitudes of the excitation, with the table 

positioned at the middle of its stroke, are shown in Figure  3.13. Figure  3.13(a), (b), and (c) 

correspond to measurement from Encoders 1, 2, and 3, respectively. The predicted torsional 

resonances are observed in the experimental results. Comparing the cases with different excitation 

amplitudes, where 10 V corresponds to the full rated torque of 9.8 Nm in to the motor catalogue, the 

cases with sufficient amplitude, starting with 4 V, resulted in consistent torsional FRF’s as shown in 
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Figure  3.15: Experimental and curve-fit torsional FRFs for: (a) Encoder 1, (b) Encoder 2, (c) 

Encoder 3. 
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Figure  3.13. In the case with 2 V of input, the excitation amplitude is insufficient as the magnitude of 

the resonance peaks appear significantly attenuated, due to the nonlinear friction damping which 

becomes more dominant than the excitation being delivered by the motor. These measurements 

indicate reasonably linear and amplitude-independent behavior starting at 4 V of input. 

The first torsional resonance occurs at 445 Hz and is mainly observed by Encoder 1, where 

vibration amplitude is maximum. The amplitudes observed at Encoders 2 and 3 are smaller, which is 

in agreement with the 1
st
 mode shape shown in Figure  3.9. The second resonance occurs at 1080 Hz 

which is observed by all encoders. Encoder 2 is subject to the highest magnitude of vibration, which 

can be explained with the 2
nd

 mode shape. The 3
rd

 resonance is observed at 1755 Hz. Overall, it can 

be said that the torsional mode shapes obtained from FE analysis are in close agreement with the 

experimentally measured FRF’s. 

The accuracy of the measured data degenerates after 2500 Hz. This limitation is mainly due to the 

encoder resolution. Also, the bandwidth of the current loop is only 480 Hz, which results in lower 

Table  3.4: Poles, zeros, and gain of 6
th

 order torsional FRF observed by Encoder 1. 

T.F. observed by Encoder 1 

Order K Poles 1,kp  rad/sec Frequency ω  Hz Damping ratio (%) 

1 -526 + 11091i 1767.1 4.74 

2 -526 - 11091i 1767.1 4.74 

3 -205 + 6820i 1086 3 

4 -205 - 6820i 1086 3 

5 -56 + 2789i 444 2 

6 -56 - 2789i 444 2 

Order K Zero 1,kZ  rad/sec Frequency ω  Hz Damping ratio (%) 

1 -7194 + 17114i 2954.7 38.75 

2 -7194 – 17114i 2954.7 38.75 

3 2273 + 12422i 2009.8 -18 

4 2273 – 12422i 2009.8 -18 

5 5655 900 -100 

6 5655 900 -100 

Transfer function gain 1,enK  A/V 3800 
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excitation at high frequencies. Another limitation is the sampling rate, which was set to 20 kHz for 

the FRF measurements. In high frequency measurements, the sinusoidal acceleration signal 

accommodates very few data points, which degrades the accuracy of the fit sinusoidal curves and 

consequently the FRF measurements. Nevertheless, the most significant torsional dynamics were 

successfully captured with the presented FRF measurement scheme. 

A small peak is observed at about 140 Hz in the torsional frequency responses, which does not 

correspond to any torsional modes predicted in FEA. This frequency is close to the frequency of the 

1
st
 axial vibration resonance (169 Hz), which is predicted based on the table inertia and ball screw, 

nut, and bearing axial stiffness values, as detailed in Section  3.4.2. Since the ball screw is back 

drivable, traces of this axial mode are also reflected on the observed torsional FRF’s. Further 

investigation of the axial vibrations, using a linear encoder, has verified this observation by 

demonstrating the 1
st
 axial mode to be at around 132 Hz, as shown in Figure  3.16. 

Table  3.5: Poles, zeros, and gain of 6
th

 order torsional FRF observed by Encoder 2.  

T.F. observed by Encoder 2 

Order K Poles 2,kp  rad/sec Frequency ω  Hz Damping ratio (%) 

1 -476 + 11057i 1761.4 4.3 

2 -476 - 11057i 1761.4 4.3 

3 -183 + 6783i 1080 2.7 

4 -183 - 6783i 1080 2.7 

5 -350 + 3010i 482.3 11.56 

6 -350 - 3010i 482.3 11.56 

Order K Zero 2,kZ  rad/sec Frequency ω  Hz Damping ratio (%) 

1 2854 + 18252i 2940.2 -15.45 

2 2854 – 18252i 2940.2 -15.45 

3 6786 + 3287i 1200 -90 

4 6786 – 3287i 1200 -90 

5 -1856 + 3167i 584.3 50.57 

6 -1856 – 3167i 584.3 50.57 

Transfer function gain 2,enK  A/V 3800 
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The variation in torsional FRF’s for different table position is investigated in Figure  3.14. An 

excitation amplitude of 8 V (corresponding to 7.84 Nm in steady-state) was used to obtain these 

measurements. As seen in Figure  3.14, the torsional FRF’s are almost independent of the table 

position, except for some minor variations. When the table is at the left position, closer to the free end 

of the ball screw, Encoder 1 measures a lower peak for the first resonance compared to the cases 

where the table is at the middle or right, as shown in Figure  3.14(a). The peak of the 1
st
 torsional 

mode occurs close to the position of Encoder 1, as seen in Figure  3.9. Hence, it is believed that 

moving the table towards Encoder 1 attenuates the 1
st
 resonance by adding additional damping from 

the friction in the pre-loaded nut. A similar behavior is also observed for the attenuation of the peak 

of the second torsional resonance when the table is at the right position, i.e. close to the axial position 

of the 2
nd

 resonance, as seen in Figure  3.14(b). Apart from these minor observations, the axial 

location of the table has no significant effect on the torsional modes of the ball screw drive. 

Table  3.6: Poles, zeros, and gain of 6
th

 order torsional FRF observed by Encoder 3. 

T.F. observed by Encoder 3 

Order K Poles 3,kp  rad/sec Frequency ω  Hz Damping ratio (%) 

1 -221 + 11065i 1761.4 2 

2 -221 - 11065i 1761.4 2 

3 -271 + 6780i 1080 4 

4 -271 - 6780i 1080 4 

5 -559 + 2740i 445 20 

6 -559 - 2740i 445 20 

Order K Zero 3,kZ  rad/sec Frequency ω  Hz Damping ratio (%) 

1 182870 29105 -100 

2 -1410 + 9320i 1500 15 

3 -1410 – 9320i 1500 15 

4 -530 + 5270i 842 10 

5 -530 - 5270i 842 10 

6 1870 297 -100 

Transfer function gain 3,enK  A/V 3800 
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To get an approximate idea of the pole and zero locations in the observed responses, transfer 

functions were fit to the experimental data obtained with 8 V of excitation and with the table in the 

middle position. A 6
th 

order model, as in Eq. ( 3.10), was curve fit to the measured frequency 

responses, using the Complex Curve Fitting method  [40]. The experimental and curve-fit FRF’s are 

shown in Figure  3.15. 

numberEncoder  :   :   where,   

)(

)(
)(

6

1

6

1 i

ps

zs
KsG

k ik

k ik

ienien

∏

∏

= −

= −
−−

−

−
=  

 ( 3.10) 

The poles, zeros, frequencies, and gains of the curve-fit transfer functions (from the amplifier input 

to ball screw angular acceleration, measured with different encoders) are presented in Table  3.4, 

Table  3.5, and Table  3.6. The curve-fit transfer function is reasonably successful in replicating the 

FRF measurement from Encoder 1. It is interesting to note that the pole locations and damping ratios 

are generally estimated with reasonable consistency between the three transfer functions, as would be 

expected for measurements taken from the same dynamic system. However, there are noticeable 

discrepancies between the analytical models and experimental measurements obtained from Encoders 

2 and 3. This suggests that better modal parameter identification techniques could be employed, if the 

identified models were directly to be used in controller design. In this thesis, the curve-fit transfer 

functions are only used to aid in the tuning of notch filters, which are designed to attenuate the ball 

screw’s structural vibrations. 

3.4.2 Modeling and Measurement of the First Axial Mode 

The first axial mode has a major influence on the final linear positioning accuracy, as well as the 

achievable control bandwidth. This mode is generated due to interaction between the inertia of the 

translating components, such as the table and nut, and the axial flexibility of the drive, resulting from 

the nut, ball screw, and the axially fixed bearing. Accurate modeling and identification and of this 

mode is a crucial step in designing high performance controllers that can overcome the bandwidth 

limitation posed by this mode.  

The natural frequency of this mode was predicted using the catalogue rated stiffness values for the 

fixed axial bearing ( fbK = 113×10
6
 N/m) and the ball nut ( nutK =137×10

6
 N/m). The ball screw axial 

stiffness was calculated assuming a cylindrical geometry as follows: 
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a
bs

l
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K =

 
 ( 3.11) 

Above, 9
10210 ×=E  N/m

2
, is Young’s elasticity modulus for steel, A is the ball screw equivalent 

cross section (~2.545×10
-4
 m

2
), and al  is the ball screw approximate active length (~0.55 m from the 

fixed bearing location to the table at middle position). The ball screw stiffness is calculated to be 

97.2×10
6
 N/m. Consequently, the equivalent axial stiffness of the drive can be calculated by 

considering the three stiffness values as a combination of springs connected in series: 

 

Figure  3.16: Axial and Torsional FRF (Rotary encoder refers to Encoder 2). 
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Figure  3.17: Axial vibration FRFs at different table locations. 
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nutfbbseq KKKK

1111
++=

 
 ( 3.12) 

where eqK = 37.8 × 10
6
 N/m. The natural frequency of the 1

st
 axial mode can then be obtained as:  

3
6

10 ×1.0629
33.474

 10 × 37.8
===ω

t

eq
axial

m

K
 rad/sec (or 169 Hz) 

 ( 3.13) 

This frequency is verified by the axial frequency response measured by the linear encoder 

instrumented on the table. The frequency response shown in Figure  3.16 shows this mode at 132 Hz, 

and the measurements were taken when the table was in the middle of the stroke length. At a later 

stage of the research, more frequency response measurements were collected to investigate variation 

of this mode’s dynamics with axis position, as seen in Figure  3.17. The frequency of this mode shifts 

roughly by ± 4 Hz, at the extreme left/right table positions (± 175 mm from the middle position). The 

amplitude of the peak changes by a maximum of 18%. The amplitude of the 1
st
 axial mode was 

generally larger at the time of these measurements due to injection of hardening material (Moglice®) 

into air bushings to achieve higher mechanical stiffness. Later, this mode will be modeled as part of 

axis dynamics, in order to design an Adaptive Sliding Mode Controller that actively dampens out the 

axial vibrations. 

3.5 Conclusions 

This chapter has presented the development of a basic model for analysis and control of a ball screw 

drive. It has focused on modeling the rigid body motion, friction characteristics, as well as torsional 

and axial modes. Rigid body dynamics was identified using Least Squares parameter estimation, 

particularly for the total inertia. Nonlinear friction characteristics were identified through disturbance 

observation using a Kalman filter. The amplifier dynamics were identified and a current loop 

bandwidth of 480 Hz was measured through frequency response tests. The torsional and axial modes 

were modeled using finite element analysis and validated in frequency response measurements, 

indicating the first axial mode to be at 132 Hz, and the first three torsional modes at 445, 1080, 1755 

Hz, respectively. In the proceeding chapters, this model will be developed further to accommodate the 

effects of torque ripples, lead errors, and elastic deformations, which will also be considered in the 

controller design. 
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Chapter 4 

Adaptive Sliding Mode Controller Design  

4.1 Introduction 

This chapter presents the general framework for Adaptive Sliding Mode Control (ASMC), which is 

the principal design technique used in this thesis. ASMC was chosen for its excellent tracking and 

robustness features, which are facilitated through the inherent feedforward control and disturbance 

rejection characteristics that are realized during the synthesis of the control law. Section  4.2 presents 

the general design methodology. Section  4.3 details the ASMC design based on only rigid body 

dynamics of the drive. To attenuate the structural vibrations, notch filters are developed in Section 

 4.4, which significantly limit the excitation of the torsional and axial modes. Feedforward friction 

compensation is incorporated into the controller in Section  4.5. High speed tracking tests are 

performed in Section  4.6 in order to verify the performance of the developed controllers. The 

conclusions of this chapter are presented in Section  4.8. 

4.2 General Formulation of Adaptive Sliding Mode Control (ASMC) 

Utkin  [67] pioneered the idea of using sliding surfaces for control, which was based on discontinuous 

switching of the control signal in order to keep the system states on a sliding surface. The sliding 

surface is defined by a stable linear differential equation, as seen in Figure  4.1. As long as the states 

can be kept on this surface, they eventually converge to (i.e. slide towards) the origin. The 

characteristic of the response is dictated by the parameters that define the sliding surface. Slotine and 

Li  [60] refined this methodology by developing a general and adaptive framework, which resulted in 

a continuous and nonlinear control law with Lyapunov-guaranteed stability. Later Zhu et al.  [75] 

provided the stability proof for conducting the parameter adaption within known bounds. In the 

following, the design methodology established in  [60] and  [75] is briefly reviewed. 

The plant (i.e. system to be controlled) is assumed to be in the state-space form as, 

dBuAxx ++=&   ( 4.1) 

Above, nℜ∈x  is the state vector, mℜ∈u  is the control input, A  is the state transition matrix, B  is 

the input matrix and d  is the disturbance vector. A sliding surface mℜ∈σ  can be defined in the 

form: 
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)( xxSσ −= ref  
 ( 4.2) 

where refx  is the reference state vector, x  is the system state vector, and S  (the parameters of 

sliding surface) is chosen such that refxx →  when 0=σ . Also, the matrix product SB  is assumed 

to be positive definite and symmetrical. The time derivative of σ  can be expressed combining Eq. 

( 4.1) and ( 4.2) as follows: 

SBud)AxxSσ −−−= ref&& (
 

 ( 4.3) 

It is assumed that d)AxxSB −−−
ref&()(

1
 can be expressed as a linear combination of r  

parameters ( T
rppp ],,,[ 21 K=P ) and corresponding regressors ( ],,,[ 21 ryyy K=Y ) in the form: 

PxxYdAxxSSB ⋅=−−−
),()()(

1
refref &&

 
 ( 4.4) 

Furthermore, it is assumed that each parameter which represents the drive dynamics lies within pre-

known lower and upper bounds, i.e. ],[ +−∈ kkk ppp . The following parameter adaptation rule is used: 

σΚYP
T1ˆ −Γ=

&
 

 ( 4.5) 

where P̂  is the vector of estimated values for the system parameters. The true parameters are 

represented with vector P . )...,,( 1
1

rdiag ρρ=Γ−  is a diagonal matrix consisting of positive 

adaptation gains ( 0≥ρk ) which can be tuned for fast and stable convergence of the parameters. 

)...,,( 1 rdiag κκ=Κ  is a matrix of adaptation bound factors, where individual entries ( kκ ) assume 

binary (“0” or “1”) values to switch the adaptation on and off, in order to ensure that all estimated 

parameters ( kp ) lie within their pre-known bounds (i.e. ],[ˆ +−∈ kkk ppp ). kκ  is defined as: 


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otherwise

andppif
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 ( 4.6) 

In the above expression, [ ] σY
TT

r =ϕϕ=ϕ ,,1 K . Following this definition, it can be verified that the 

term )ˆ()ˆ( PσYPP
&

Γ−− TT
 will always be negative semi-definite, because both the actual and 

estimated parameters are within known bounds, i.e. ],[ +−∈ kkk ppp  and ],[ˆ +−∈ kkk ppp . This feature 

will later be used in the stability proof, when applying Lyapunov’s technique. Hence, 
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For stable control law design, a Lyapunov function is formulated in the form: 

)]ˆ()ˆ()([
2

1 1
PPPPσSBσ −Γ−+= − TTV

 
 ( 4.8) 

Assuming that the true parameters do not change over time ( 0P =& ), taking the time derivative of 

V  and substituting the expression for σ&  from Eq. ( 4.3) results in: 

PPPuσdAxxSSBσ

PPPPPPPPσSBσσSBσ

&
&

&&&&&&&

ˆ)ˆ()()(
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−−

TT
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T

TTTT
V

 

 ( 4.9) 

Substituting )()(
1

dAxxSB −−−
ref&  with PxxY ),( ref&  from Eq. ( 4.4), 

PPPuσYPσ
&& ˆ)ˆ( Γ−−−= TTT

V
 

 ( 4.10) 

By adding and subtracting PYσ ˆT , V&  becomes:  

PYσPσYPPuσ ˆ)ˆ()ˆ(
TTTT

V +Γ−−+−=
&&

 
 ( 4.11) 

According to Eq. ( 4.7), 0)ˆ()ˆ( ≤Γ−− PσYPP
&TT

. Hence, in order to ensure stability, V&  has to be 

made negative definite. This can be accomplished by equating the PYσuσ ˆTT +−  term to a negative 

definite quantity, such as σKσ s
T− . Here mm

s
×ℜ∈K  and 0>sK . Hence,  

σKσPYσuσ s
TTT −=+− ˆ

 
 ( 4.12) 

This results in the ASMC control law: 

PxxYσKu ˆ),( refs &+=
 

 ( 4.13) 

As can be observed from the above expression, there is no discontinuous switching of the control 

signal. This distinguishes this controller design from the switching-based sliding mode controller, 

which was developed by Utkin  [67]. This method is more favorable for implementation on real 

physical systems, as high frequency switching of the actuation force/torque could be highly 

detrimental for the motors and mechanical components. The design choices for this controller are the 

sliding surface definition )( xxSσ −= ref , the feedback gain sK , adaptation gains 
1−Γ . Proof of V&  
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being negative definite ensures asymptotic convergence of state regulation errors onto the sliding, 

where they eventually converge to zero. However, the parameters are not guaranteed to converge 

unless the control signal delivers sufficiently persistent excitation to the plant  [55]. This may be tricky 

to realize on precision motion control systems, where the commanded trajectories are typically 

smooth up to acceleration or jerk level, and sudden changes or high frequency content in the control 

signal are not desirable. 

4.3 ASMC Design for Rigid Body Dynamics 

In this section, the ASMC design is adapted to control the rigid body dynamics of the ball screw 

drive. This control law has been used as the foundation in several compensation schemes, for torque 

ripples and elastic deformations etc., that are developed in later chapter of this thesis. In  Chapter 6, 

the ASMC is also designed to explicitly consider the axial vibrations of the ball screw as part of the 

plant dynamics. It is interesting to note that when only rigid body dynamics are considered, the 

ASMC law takes the form of a PID controller with feedforward velocity and acceleration 

compensation terms, which makes this control law highly suitable for practical implementation on 

commercially available motion control hardware. 

The rigid body dynamics of the drive in Eq. ( 3.6) can be simplified as: 

)]()([
)(

1
)( sdsu

bmss
s −

+
=θ

 
 ( 4.14) 

Above, θ  [rad] is the ball screw angular position, u  is the control input, d  represents the 

equivalent external disturbance, ta KKJm /=  [V/(rad/sec
2
)], and ta KKBb /=  [V/(rad/sec)] are the 

control-signal normalized inertia and viscous damping terms. The above model can be expressed in 

state space form as:  
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 ( 4.15) 

Generic representation for 

asymptotic convergence of 
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Figure  4.1: 1
st
 order linear sliding surface. 
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Using the estimated inertia ( J = 2.1×10
-3
 kgm

2
) and viscous damping ( B = 1.015×10

-3
 kgm

2
/sec), 

and the catalogue values for amplifier gain ( aK = 1.7193 A/V) and motor torque constant ( tK = 0.57 

Nm/A), the equivalent inertia and viscous damping can be respectively calculated as taKKJm /=  = 

2.1429×10
-3
 V/(rad/sec

2
) and ta KKBb /=  = 1.0357 V/(rad/sec). As the model is second order, and 

there is only one control input, the sliding surface is chosen to be first order as follows 
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Considering that the sliding surface represents a desired model with first order dynamics, the pole 

frequency 0>λ  represents the desired control bandwidth. Choosing the plant parameters to be m , 

b , and d , a regressor-parameter expression similar to the one in Eq. ( 4.4) can be constructed as 

follows: 
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( 4.17) 

Above, TT dbmppp ],,[],,[ 321 ==P  is the parameter vector and ],,[),( 321 yyyref =xxY &  

]1,),([ θθ−θλ+θ= &&&&&
refref  is the corresponding regressor vector. Correspondingly, Tdbm ]ˆ,ˆ,ˆ[ˆ =P  

represents the set of parameter estimates. Substituting the expressions for σ , Y , and P̂  into the 

general control law, derived in Eq. ( 4.13), yields the following expression for ASMC designed based 

on rigid body dynamics. 

dbmσKσKu refrefsrefssmc
ˆˆ)]([ˆˆ),( +θ+θ−θλ+θ+=⋅θθ+= &&&&&& PY

 
 ( 4.18) 

It is important to note that in precision motion control systems, the position trajectory is usually 

very smooth (at least C
2
 continuous) and does not include a sufficient amount of excitation to 

estimate several parameters simultaneously  [19]. Therefore, only the external disturbance estimate d̂  

is chosen as the online adapted parameter. The mass and viscous friction estimates ( m̂  and b̂ ) are 

substituted from their nominal values obtained through parameter identification, as explained in 

 Chapter 3. It is interesting to note that adapting for the external disturbance d  also provides 



 

 42 

robustness against variations in the drive dynamics up to a certain frequency, thereby accounting for 

the mismatch between actual and estimated inertia and viscous damping values. 

Using the general parameter adaptation law given in Eq. ( 4.5)-( 4.6), and assuming that the true 

external disturbance lies within known bounds: ],[ +−∈ ddd , the disturbance adaptation law assumes 

the following expression: 
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If the disturbance adaptation bound κ  is omitted from the equations, the ASMC law assumes the 

form of a PID controller with acceleration and velocity feedforward terms as shown in the following, 
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 ( 4.20) 

As stated earlier, this control law will be used when validating a majority of the compensation 

algorithms developed in this thesis. In the proceeding sections and chapters, the tracking performance 

of this control law will be augmented with several other compensation techniques, such as notch 

filtering of the resonances, cancellation of the predictable friction characteristics, as well as the 

modeling and cancellation of torque ripples, lead errors, and elastic deformations. In addition, the 

concepts of applying active vibration damping will be explored, by either incorporating a simple 

cancellation strategy that works together with the rigid body based control law, or by incorporating 

the vibratory dynamics as part of the plant model when designing the ASMC. 

4.4 Notch Filtering of Structural Resonances 

The control signal can excite the structural vibrations of the ball screw, in particular the axial and 

torsional modes, when it has frequency content near their resonances. In order to avoid this, notch 

filters are designed to flatten out the open loop acceleration FRF’s as much as possible. This helps to 

improve the stability margins and control bandwidth, by attenuating potential sharp resonances in the 

loop transfer function (i.e. feedbackplant KGL = ) in the vicinity of the crossover frequency ( cω , 

where 1|)(| =ωcL ). Notch filtering has been successfully applied in earlier works as well, such as in 
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 [19] [62], to improve the stability margins and achieve further bandwidth increase in machine tool 

drives. The designed notch filters to attenuate the torsional and axial modes are presented in Sections 

 4.4.1 and  4.4.2. 

4.4.1 Notch Filtering of Torsional Modes 

For the first two torsional modes, two sets of notch filters are designed based on the frequency 

responses registered from Encoders 1 and 2. Each set of filters can be used when closing the position 

control loop with the corresponding encoder. The discrete-time expression for each notch filter has 

the form: 

21
2

21
2

)(
dzdz

nznz
KzN n

++

++
=  

 ( 4.21) 

Above 1n , 2n , 1d , and 2d  are obtained from the tuned poles and zeros. The frequencies and damping 

ratios of each notch filter are tuned to attenuate the input signal around the resonance frequency and 

appropriately recover the gain afterwards, while resulting in an overall transfer function as flat as 

possible. The gain, nK , is adjusted to yield a steady-state gain of unity. The actual values for 1n , 2n , 

1d , 2d , nK , as well as the corresponding frequency and damping ratios are summarized in Table  4.1. 

The relationship between the pole frequency and damping ratio ( dω  [rad/sec], dζ  [ ]) and the 

Table  4.1: Torsional notch filter parameters, using sT = 1/20,000 sec for discretization. 

 1
st
 torsional resonance 2

nd
 torsional resonance 

Encoder 1 

9719.0986.1

999.0999.1
026.1)(

2

2

11
+−

+−
=

zz

zz
zN  

 
987.0986.1

999.0998.1
8624.0)(

2

2

12
+−

+−
=

zz

zz
zN  

Zeros: Frequency: nω  = 444 [Hz] 

Damping ratio: nζ  = 0.035 

Zeros: Frequency: nω  = 1096 [Hz] 

Damping ratio: nζ  = 0.015 

Poles: Frequency: dω  = 453 [Hz] 

Damping ratio: dζ  = 1 

Poles: Frequency: dω  = 1021 [Hz] 

Damping ratio: dζ  = 0.2 

Encoder 2 

973.0973.1

988.0988.1
032.1)(

2

2

21
+−

+−
=

zz

zz
zN  

938937.1

998.0997.1
8411.0)(

2

2

22
+−

+−
=

zz

zz
zN  

Zeros: Frequency: nω  = 432 [Hz] 

Damping ratio: nζ  = 0.45 

Zeros: Frequency: nω  = 1096 [Hz] 

Damping ratio: nζ  = 0.03 

Poles: Frequency: dω  = 441 [Hz] 

Damping ratio: dζ  = 1 

Poles: Frequency: dω  = 1021 [Hz] 

Damping ratio: dζ  = 1 
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discrete-time denominator coefficients ( 1d , 2d ) can be expressed as  [47]: 

)2exp(   ,   )1cos()exp(2 2
2

1 sdddsdsdd Tωζ-dTT--d =ζ−ωωζ=
 

 ( 4.22) 

where sT  [sec] is the sampling period. Similar expressions also hold for the numerator parameters. 

nK is adjusted to yield unity d.c. gain: 
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 ( 4.23) 

By multiplying the experimentally measured torsional FRF’s with the frequency response of the 

notch filters, it can be seen that the resultant FRF’s achieve fairly flat gains up to about 1300 Hz, as 

shown in Figure  4.2. These notch filters are used to attenuate the excitation of the structural vibrations 

that can be caused by the ASMC, which was designed considering only rigid body dynamics. 
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Figure  4.2: Original and notch-filtered torsional FRF’s, measured from: (a) Encoder 1, (b) 

Encoder 2. 
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4.4.2 Notch Filtering of the 1st Axial Mode 

When direct linear feedback is used from the table’s translational motion, the first axial mode 

contributes a significant resonance at 132 Hz with nearly 10 times gain magnification. This resonance 

can be highly detrimental to the stability of the closed-loop system, unless it is either attenuated or 

explicitly considered in the controller design. Hence, another notch filter is designed to counteract the 

effect of this mode. The filter assumes the same structure as in Eq. ( 4.21), with the following discrete-

time parameters.  
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zz
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 ( 4.24) 

The numerator frequency and damping ratios are nω =127.4 Hz and nζ =0.05, and the 

corresponding parameters for the denominator are dω =130 Hz and dζ =0.6. Similar to the notch 

filters designed for torsional modes, the sampling period is =sT 1/20,000 sec. The open loop FRF of 

the axial mode, observed by linear encoder, is shown in Figure  4.3, before and after applying the 

notch filter. The graph verifies that the notch filter has been designed to successfully attenuate this 

mode.  

4.5 Nonlinear Friction Compensation 

During velocity direction change in the drive, friction changes discontinuously. Although the 

controller already has a built-in disturbance adaptation feature, it cannot immediately detect and 
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Figure  4.3: Original and notch filtered FRF of the 1
st
 axial mode. 
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compensate for sudden changes in the friction force. In fact, faulty estimation of the friction force 

during such a transient phase results in further deterioration of the tracking accuracy. In multi-axis 

machining, this can also result in the deterioration of the contouring (geometric tool positioning) 

accuracy. Hence, in order to avoid this problem, feedforward nonlinear friction compensation is 

applied.  

The friction compensation signal is generated using the model in Eq. ( 3.9), by substituting the 

reference velocity refθ& , and injecting it in feedforward as shown in Figure  4.4. Necessary scaling has 

been applied to account for the motor torque ( tK ) and amplifier current ( aK ) gains: 
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Figure  4.4: Designed ASMC with notch filtering and feedforward friction compensation 

(position feedback loop closed with Encoder 2). 
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Figure  4.5: Commanded position trajectory. 
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4.6 High Speed Tracking Tests 

The ASMC designed for rigid body dynamics, together with notch filters and feedforward friction 

compensation, were tested in high speed tracking experiments. Two different cases were considered. 

Case 1 considers rotational position feedback from the ball screw. Case 2, on the other hand, uses 

direct position measurement from the table, obtained through the linear encoder. As an additional 

improvement upon the rotary feedback case, active damping of the first torsional mode is also 

investigated using a simple but effective vibration cancellation strategy. The advantages and 

disadvantages of both feedback configurations are discussed in the context of the tracking results. 

Both cases were tested using a jerk continuous trajectory, shown in Figure  4.5. This trajectory has 350 

mm displacement and 1000 mm/sec feed. The rotary feedback case was tested with 1 g acceleration, 

whereas 0.5 was used in the linear feedback case. The maximum jerk value was 200,000 mm/sec
3
. 

4.6.1 Rotational Feedback 

In this case, the position loop was closed using rotary Encoder 2, which is very close to the motor. 

This results in collocated control from the standpoint of the first axial and first torsional mode. At 

higher frequencies (i.e. 2
nd

 torsional mode), the acceleration FRF measured from Encoder 2 lags 180° 

behind the actuation thereby loosing its collocated nature, as seen in Figure  3.13. Feedback from 

Encoder 2 has been preferred over Encoder 1, because it exhibits significantly lower phase lag, 
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Figure  4.6: Closed loop tracking FRF’s without and with active damping of the 1
st
 torsional 

mode. 
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particularly up to the first torsional mode’s frequency of 445 Hz, as seen in Figure  3.13. This enables 

higher control bandwidth to be achieved. On the other hand, the signal resolution of Encoder 2 (~10 

nm) is significantly better than the resolution of Encoder 3 (305 nm). This results in a less noisy 

control signal and therefore better bandwidth. The implemented control scheme is shown in Figure 

 4.4. 

By tuning the ASMC parameters to be λ  = 1400 rad/sec (223 Hz), sK  = 0.15 V/(rad/sec), and ρ  = 

80 V/rad, an experimental command following bandwidth of 223 rad/sec has been achieved, as seen 

in Figure  4.6. The sampling frequency used is 20 kHz. Figure  4.7 shows the high speed tracking 

performance obtained. In order to interpret the tracking results in terms of the contribution to the 

linear positioning accuracy, the position unit has been changed to microns (um), using the ball screw 

pitch length (20 mm). As can be seen, the servo tracking error does not exceed 1.6 um. This 
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Figure  4.7: Experimental high speed tracking result for Adaptive SMC using rotary feedback, 

with notch filtering. 
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Figure  4.8: Experimental high speed tracking result for Adaptive SMC using rotary feedback, 

without notch filtering. 
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performance could be achieved after proper design of the ASMC, notch filters, and feedforward 

friction compensation. Without the notch filters, the sliding surface bandwidth could only be 

increased up to λ =450 rad/sec (72 Hz). This case resulted in a maximum tracking error of 10 um for 

the same trajectory, as can be seen in Figure  4.8. Although a high tracking accuracy was obtained 

with the rotary encoder feedback, this does not guarantee the accuracy of table motion. This is due to 

additional factors such as lead errors, elastic deformations, and backlash-like motion loss in the 

preloaded nut, which will be considered in more detail in later chapters.  

One of the main ideas explored in this thesis is the use of active vibration control techniques to 

augment the stiffness and damping characteristics, and positioning bandwidth, of ball screw drives. 

To investigate the feasibility of realizing this on the experimental setup, a simple and effective 

torsional vibration cancellation strategy was implemented. This is an intuitive design based on the 

shape of the 1
st
 torsional mode, which was identified in  Chapter 3. Figure  3.9(a) shows this mode, 

which has a node close to the motor and Encoder 2 location, and maximum amplitude at the free end 

of the ball screw. This mode shape will be similar in all ball screw drives that are actuated in the 

traditional configuration, i.e. with the motor at one end and the other end being free to rotate. The 

idea in damping this mode is to cancel solely the high frequency motion in the vicinity of the 1
st
 

torsional resonance (445 Hz), by injecting appropriate torque inputs from the motor. The proposed 

strategy is shown in Figure  4.9. The “twist” on the ball screw is computed by subtracting the 

measurement of Encoder 2 from Encoder 1. The torsional vibrations are decoupled from the steady-

state twist by applying high-pass filtering (HPF) at cω =390 Hz, which is just below the first torsional 

resonance. The cancellation signal is generated proportionally to the filtered position difference 

between the two encoders. This is done to counteract the vibration registered at the free end of the 

ball screw (Encoder 1) by commanding a similar motion close to the actuated end (Encoder 2). The 

cancellation signal is obtained as: 

[ ]212
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θ−θ

ω+
=

c

pdamp
s
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( 4.26) 

Considering the open loop acceleration response of the drive in Figure  3.10(b), the phase shift for 

the open loop FRF measured from Encoder 2 exceeds -180° after the second mode. This makes it 

difficult to dampen out the second and higher order torsional modes. The vibration cancellation signal 

is injected after the notch filters, in order to avoid attenuation by these filters, as shown in Figure  4.9. 

The overall control signal is obtained by combining the contribution of each component: 
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[ ] dampfricsmc uuusNu ++⋅= )(
 ( 4.27) 

Above, )(sN  represents the torsional notch filters, fricu is the friction compensation signal, and 

dampu  is the vibration cancellation signal for the 1
st
 torsional mode. 

Figure  4.6 shows the experimentally measured tracking transfer functions through Encoders 1 and 

2. As mentioned earlier, Encoder 2 is the principal feedback in closing the position loop. The 

difference between Encoders 1 and 2 is used in generating the vibration cancellation signal. 

Considering Figure  4.6, a positioning bandwidth of 223 Hz has been achieved in the tracking 

response measured through Encoder 2. The application of active damping does not seem to alter the 

closed loop dynamics registered from this encoder significantly. Considering the frequency response 

measured though Encoder 1, the contribution of active damping in reducing the first torsional 

resonance at 445 Hz to half of its magnitude can clearly be seen. 

This result was also verified by monitoring the position difference (i.e. twist) between Encoders 1 

and 2 during trajectory tracking experiments. Measurements of the ball screw twist recorded without 
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Figure  4.9: Proposed control strategy for active vibration suppression of the 1
st
 torsional mode. 
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Figure  4.10: Contribution of active damping in attenuating ball screw torsional vibrations. 
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and with active damping are shown in Figure  4.10. As expected, the twist profile bears resemblance 

to the control signal (i.e. proportional to drive’s torque) shown in Figure  4.7, which can be 

approximately constructed from a linear combination of the velocity and acceleration profiles in 

Figure  4.5. This indicates the presence of elastic deformation due to the actuation torque, which is 

addressed in more detail in  Chapter 7. Following the quasi-static elastic twist, the largest motion 

component is the vibration registered at the first torsional frequency of 445 Hz, particularly when 

active damping is not used. With the application of active damping, these vibrations are significantly 

attenuated, resulting in smoother and more efficient motion of the ball screw mechanism. 

One particular advantage of this vibration cancellation strategy is its robustness against changes in 

the drive’s axial location. In frequency domain identification tests presented in Section  3.4.1 (Figure 

 3.14), it was seen that the natural frequencies and damping ratios of the torsional modes varied very 

little with changes in the axial position of the table and the excitation amplitude. This result was also 

confirmed in another study on a different feed drive system  [20], indicating that axially transmitted 

reaction forces have only a minor influence on the torsional dynamics of the ball screw drive. Hence, 

the closed loop response achieved by modeling and cancelling out the torsional vibrations would not 

be significantly altered during the normal course of the drive’s operation, particularly in the presence 

of axial position changes and external cutting and friction force disturbances. One drawback of this 

scheme, of course, is the requirement to use a second encoder at the free end of the ball screw. 

Although the presented scheme was found to be effective in damping out the first torsional mode of 

the ball screw, it was observed to result only in negligible improvement in the final linear positioning 

accuracy of the table. This is because vibrations of the 1
st
 axial mode at 132 Hz have a more dominant 

effect on the table motion than the torsional mode. The higher frequency (445 Hz) vibrations due to 

the torsional mode are already attenuated before they are transferred to the table. Hence, the final 

linear tracking accuracy does not improve significantly with active damping of the first torsional 

mode. Nevertheless, these results demonstrate the ability of the motor to excite or attenuate the 

structural vibrations of the ball screw up to a frequency of 450 Hz, which is sufficient for controlling 

the dynamics of the first axial mode, addressed in  Chapter 6. 

4.6.2 Using Linear Feedback 

In this case, the position loop is closed using a linear encoder. This allows high steady-state accuracy 

to be achieved at the table level, since the linear encoder measurement directly represents the table 

position. However the bandwidth is limited due to the first axial mode at 132 Hz, which originates 

from the flexibility of the nut, ball screw, and fixed thrust bearing. This creates a non-collocated 
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control situation, as the actuation and measurement are obtained from different points with significant 

dynamics of the torsional and axial vibrations in between. The first axial mode results in two 

problems associated with achieving high bandwidth control. The first one is the resonance peak in the 

feedback, which can be attenuated with a notch filter. The other problem, which is more severe, is the 

increased phase lag compared to feedback from the rotary encoder, which can be seen in Figure  3.16. 

The added phase lag prevents the achievement of a high crossover frequency, and therefore 

bandwidth. 

Another problem associated with the ball screw motion transmission originates from the lead errors, 

which are caused by imperfections of the groove on the ball screw. These imperfections typically 

cause 2-3 um of additional positioning error, in the form of a sinusoidal function of ball screw 

rotation angle. These errors have been modeled and compensated in detail in  Chapter 6 and  Chapter 

7. In the experimental result here, the lead error model that has been developed in  Chapter 6 has been 

used to mitigate the effect of lead errors as much as possible, in order to observe the ideal tracking 

performance that can be realized with ASMC, notch filters, and feedforward friction compensation. 

The control configuration is shown in Figure  4.11. The details of the lead error cancellation strategy 

can be found in Section  6.3. 
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Figure  4.11: Designed ASMC with notch filtering of the torsional and axial modes and 

feedforward friction compensation (Linear encoder used for feedback). 
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Figure  4.12: Experimental high speed tracking result for ASMC using linear feedback. 
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Because the frequency of the axial mode is relatively low, the sliding surface bandwidth λ  could 

only be increased to 70 Hz. The values of sK  and ρ  were tuned to be 0.08 V/(rad/sec) and 10 V/rad, 

respectively. To be consistent with the rotary feedback case, the position units in the control gains are 

expressed in terms of ball screw rotation angle (in radians). In this implementation, a sampling 

frequency of 8 kHz was used. The tracking result is shown in Figure  4.12, where the maximum error 

is around 24.1 um. The tracking accuracy could be improved further to 9.2 um, by increasing the 

sliding surface bandwidth, but this resulted in poor stability margins for the controller. 

The control bandwidth limitation imposed by the 1
st
 axial mode, which in turn affects the tracking 

accuracy, is clearly seen in this result. Later in this thesis,  Chapter 6 will focus on overcoming this 

limitation by designing an ASMC that actively compensates for the axial vibrations of the ball screw, 

thereby achieving higher bandwidth and accuracy. In  Chapter 7, an alternative technique will be 

investigated where the main position loop is closed using rotary collocated feedback (which achieves 

high bandwidth as demonstrated in Section  4.6.1), and linear encoder feedback is used only in the low 

frequency range for disturbance adaptation, to eliminate steady-state positioning errors. In addition, 

the influence of elastic deformations and lead errors will also be taken into account and compensated, 

in order to achieve a significant improvement in the final linear positioning accuracy of the ball screw 

drive system. 

4.7 Limitations 

Although ASMC with notch filtering was found promising, the controller performance depends on 

accurate knowledge of resonance modes ( ξω ,n ) and rigid body dynamic parameters (inertia, viscous 

damping, and disturbance bounds). Also, successful implementation of active vibration damping 

requires high sampling rates to detect the resonances of interest, and high resolution feedback to 

detect the corresponding vibration with minor displacements. 

4.8 Conclusions 

In this chapter, Adaptive Sliding Mode Control (ASMC) has been used to achieve high bandwidth 

control on a ball screw drive. The ASMC was designed based on rigid body dynamics. Feedforward 

friction compensation was added to improve the positioning accuracy at velocity reversals. Structural 

resonances were handled using notch filters, designed based on the FRF’s identified in  Chapter 3. The 

effectiveness of the control scheme was validated for rotary and linear feedback scenarios. Using 

rotary feedback resulted in higher controller bandwidth (223 Hz), which also contributes to higher 

servo stiffness. However, the final positioning accuracy of the table is not guaranteed, since the 
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motion delivery in a ball screw mechanism suffers from lead errors, elastic deformations, and nut 

hysteresis. When direct linear feedback was used, the bandwidth of the control system had to be 

significantly lower (113 Hz), due to the influence of the axial mode being seen in feedback loop. 

However, this configuration allows for the steady state positioning errors to be significantly reduced. 

As validation of the feasibility of conducting structural control on the ball screw drive, a simple 

vibration cancellation technique for damping out the 1
st
 torsional mode was also developed and 

successfully implemented. This damping technique results in smoother and more efficient motion, by 

reducing the magnitude of torsional vibrations excited at the first mode. However, its contribution to 

the linear positioning accuracy of the table was hardly noticeable. 

Building on these results, in the proceeding chapters, the control law will be further developed to 

compensate for torque ripples, axial vibrations, lead errors, and elastic deformations, to achieve 

superior positioning performance on the ball screw drive. 
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Chapter 5 

Modeling and Compensation of Torque Ripples 

5.1 Introduction 

In this chapter, the torque ripples in the ball screw drive are modeled and compensated in the control 

law. In Section  5.2, a ripple model is identified which comprises of the most significant harmonic 

components in the motor-felt disturbance, observed using through a Kalman filter. In Section  5.3, a 

feedforward compensation scheme is developed which utilizes the identified ripple model. 

Experimental results are presented in Section  5.4, that validate the tracking improvement obtained by 

pre-compensating for the torque ripples. The conclusions of the chapter are in Section  5.6. 

5.2 Identification of Torque Ripples using a Kalman Filter 

Torque ripples were observed through a Kalman filter as an equivalent disturbance at the drive’s 

input. These observations were used to construct a model, which will be used in feedforward 

cancellation of the equivalent torque ripples in the drive system. 

Figure  5.1 shows the disturbance observation scheme using a Kalman filter, which was also used in 

nonlinear friction identification in Section  3.3.4. The developed Kalman filter has three poles at 358 

Hz with damping ratios of 2,1ζ = 0.5 and 3ζ =1.0. The control signal equivalent disturbance ( d ) is 

observed while jogging the axis back and forth at constant speeds. For each speed, the disturbance is 

broken down to an average value ( d ), representing the control signal equivalent friction torque at 

that speed (i.e. )/( tafric KKTd = ), and an oscillatory component ( d
~

), which represents the sum of 

the torque ripples originating from both the motor and the drive mechanism. From the disturbance 

observations, the control signal equivalent torque ripple d
~̂

[V] can be determined as: 

ddd
ˆˆ~̂

−=  
 ( 5.1) 

As expected, the torque ripple ( d
~̂

) is observed to have dominant harmonics at integer multiples of 

the motor rotation frequency. A sample case is shown in Figure  5.2 which was obtained by taking the 

FFT (Fast Fourier Transform) of the observed ripple signal, while the drive was traversing in the 

positive direction at a constant speed of 100 mm/sec. These dominant harmonics were consistently 

observed in tests that were conducted at different speeds.  
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The 1× and 2× harmonics are attributed to the mechanical torque ripples which mainly originate 

from the coupling between the motor and ball screw, as they change each time the motor is detached 

from the drive and mounted back again. The 4×, 8×, and 12× harmonics originate from the motor, 

which was verified in additional tests conducted with the motor detached. Considering these five 

major harmonics (1×, 2×, 4×, 8×, 12×), the below ripple model has been proposed: 

∑
=

−+−+ φ+θ=
5

1

//
model )sin(

~

i

iii fAd
 

 ( 5.2) 

Above, −+ /
iA  [V] and −+φ /

i  [rad] represent the amplitude and phase shift of the i
th
 harmonic. The 

( −+ / ) superscript indicates the direction of motion. if  [cycle/rev] is the harmonic frequency with 

respect to the drive’s full revolution (i.e. 11 =f , 22 =f , 43 =f , 84 =f , 125 =f  cycle/rev), and θ  

[rad] is the angular position of the drive. 

The amplitude and phase values of the model were identified by applying Least Squares technique 

on the estimated torque ripple profiles ( d
~̂

)  [44]. Figure  5.3 shows the amplitude and phase values for 

the five harmonics, observed during forward and backward axis motions at different speeds. Readings 

in Figure  5.3(a) are arranged with respect to axis velocity. Readings in Figure  5.3(b) are arranged 
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Figure  5.1: Disturbance observation using a Kalman filter. 
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Figure  5.2: Torque ripple harmonics. 
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with respect to the torque command. The identified amplitudes become scattered at high speeds, 

where measurement and control signal noise corrupts the disturbance estimation.  

As seen in Figure  5.3, the amplitudes of motor torque ripples (4×, 8×, and 12× harmonics) are 

nearly constant in forward and backward motions. The amplitudes of the mechanical torque ripples 

(1× and 2× harmonics) are almost constant during motion in the backward direction; but exhibit a 

linear variation as a function of the torque command in the forward direction. The physical reason 

behind this unsymmetrical behavior does not lend itself to a straightforward explanation. As indicated 

earlier, these harmonics are attributed to the coupling, which is a flexible disc (i.e. diaphragm) type 

coupling. This coupling transfers the motor torque through two sets of flexure plates. These plates 
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Figure  5.3: Observed and modeled torque ripple amplitude and phase shift varying with: (a) 
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provide high torsional stiffness and absorb minor axis misalignments by undergoing repeated bending 

cycles, as the ball screw rotates. This results in the storage and release of energy, causing the 

observed torque ripples. When there are geometric imperfections in the flexural elements or in the 

coupling assembly, the coupling will not behave like an ideal spring, but will deliver additional 

parasitic motion to the drive mechanism. The unsymmetrical nature of the observed ripples may be 

attributed to such parasitic motion. However, this is not known for sure at the moment, and merits 

further research beyond this thesis.  

In order to capture the observed ripple characteristic accurately, the proposed model uses a 

combination of constant and linearly varying amplitudes for the first two harmonics in the positive 

direction of motion: 

2,1      where
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 ( 5.3) 

In Eq. ( 5.3), u  [V] is the torque command (i.e. control signal). For the 1
st
 harmonic, 11a =0.035 V, 

21a =0.025 V, 1m = –0.048, 11u =0.45 V, and 21u =0.659 V. For the 2
nd

 harmonic, 12a =0.0016 V, 

22a =0.005 V, 2m =0.0227 , 12u =0.55 V, and 22u =0.70 V. The remaining ripple amplitudes are 

constant and have been summarized in Table  5.1. The modeled amplitudes have been overlaid on top 

of the observations in Figure  5.3(b), which can be seen to be in good agreement. 

Considering Figure  5.3(a), the observed phase lag associated with the harmonics increases with 

increasing axis velocity. In fact, the phase lag increase is steeper for higher frequency harmonics. 

This is due to the estimation phase lag inherent in the Kalman filter. Assuming that the torque ripples 

are position dependent, and always occur at the same location, the phase shift values ( iφ ) were 
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Figure  5.4: Modeled and observed disturbance at different axis velocities. 
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identified by taking their lowest velocity values as an initial guess, and performing iterative 

adjustments until the overall ripple model in Eq. ( 5.2), combined with the friction model in Eq. ( 3.9), 

was successful in reconstructing the observed disturbance profile. 

The developed ripple and friction models have been verified by reconstructing the estimated 

disturbance profiles, using the axis position and torque command data. Sample observed and 

predicted disturbance profiles are shown in Figure  5.4, where it can be seen that the developed 

friction and torque ripple models are successful in predicting the equivalent disturbance in the drive 

mechanism. There are minor discrepancies at the beginning and end of forward and backward 

motions, which are attributed to changes in the actual friction from time to time. In order to yield a 

cleaner signal for visual appeal, a slower Kalman filter has been used in generating the estimated 

disturbance profile in these figures ( 3,2,1ω = 148 Hz, 2,1ζ = 0.5, 3ζ = 1). 

The Kalman filter used in torque ripple observation has 3 poles at 358 Hz, which is high enough to 

capture the middle and low frequency harmonics with little phase lag. For example, considering that 

the ball screw has 20 mm lead, the 4× harmonic component will produce a 80 Hz torque disturbance 

if the table is traveling at 400 mm/sec speed (400 / 20 × 4 = 80 Hz). This is well below the Kalman 

filter pole frequency. However, for higher frequency harmonics (8×, 12×) the phase lag caused by the 

Kalman filter will be more evident as the frequency of these ripples approach and exceed the filter 

bandwidth, particularly at high travel speeds. Hence, as a final correction to the ripple model, minor 

Table  5.1: Identified amplitude and phase values for torque ripple harmonics. 

Harmonic 
[cycle/rev] 

Amplitude [V] Phase [deg] 

Forward  

motion ( +
iA ) 

Backward  

motion( −
iA ) 

Forward  

motion ( +φi ) 

Backward  

motion ( −φi ) 

1× +
1A  in Eq. ( 5.3)  0.0232 -10.0 10.0 

2× +
2A  in Eq. ( 5.3) 0.0058 -45.5 -34.5 

4× 0.0215 0.0227 78.5 68.0 

8× 0.0126 0.0107 18.0 35.0 

12× 0.0053 0.0052 50.0 60.0 
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Figure  5.5: Adaptive SMC with torque ripple compensation block diagram. 
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adjustments were made to the phase shift values while the model was being used in feedforward 

cancellation of the actual torque ripples, as explained in Section  5.3. The Kalman filter was left active 

to observe the equivalent torque disturbance felt by the motor, after ripple cancellation. When the 

ripple model was adjusted to be in close agreement with the actual torque ripples, the disturbance 

profile estimated by the Kalman filter assumed a flat shape, corresponding only to the friction 

component. This was used as an indication that the phase shift parameters in the torque ripple model 

were tuned to represent the actual torque ripples as closely as possible. The final phase shift values 

have been summarized in Table  5.1. 

5.3 Torque Ripple Compensation 

The motor and mechanical torque ripples were compensated in feedforward using the model 

developed in Section  5.2. The ripple compensation has been implemented in conjunction with the 

Adaptive Sliding Mode Control (ASMC) scheme developed in  Chapter 4. The implementation block 

diagram is shown in Figure  5.5. The ripple compensation, injected into the control signal, is computed 

by substituting the reference position value into Eq. ( 5.2) as follows: 

∑
=

−+−+ φ+θ=
5

1

//
ripple )sin(

i

irefii fAu  

 ( 5.4) 

5.4 Experimental Tracking Results 

The experimental accuracy achieved with the proposed ripple compensation scheme is shown in 

Figure  5.6. A jerk continuous trajectory with 350 mm displacement, 1000 mm/sec feed, 1 g 

acceleration, and 200,000 mm/sec
3
 jerk was commanded, as shown in Figure  4.5. The control loop 

was closed at 8 kHz sampling frequency. At the time this algorithm was tested, the linear encoder had 

not yet been instrumented on the setup. Hence, the tracking error profiles were computed based on 

rotary position measurements. In order to interpret the tracking results in terms of the contribution to 

the linear positioning accuracy, the position unit has been changed to microns (um), using the ball 

screw pitch length (20 mm). As can be seen, the servo tracking error does not exceed 0.95 um., which 

is better than the tracking accuracy of 1.6 um, that was obtained for the same trajectory in Section 

 4.6.1. 
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Figure  5.6: Experimental tracking result at 1000 mm/sec using ASMC with torque ripple 

compensation. 

 

(a) Low bandwidth ASMC  

λ  = 467 rad/sec (74 Hz) 

(b) High bandwidth ASMC  

λ  = 1400 rad/sec (223 Hz) 
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Figure  5.7: Experimental tracking performance without and with torque ripple compensation 

for: (a) Low bandwidth ASMC, (b) High bandwidth ASMC. 
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To further investigate the contribution of torque ripple compensation on the motion smoothness 

and accuracy, additional tests were conducted at different speeds: 100, 400, and 600 mm/sec, using 

different control bandwidths: λ  = 1400 rad/sec (223 Hz) and λ  = 467 rad/sec (74 Hz, i.e., 1/3
rd
 of the 

original bandwidth). The sK  and ρ  values for the 223 Hz design are presented in Section  4.6.1. Their 

values for the 74 Hz bandwidth controller are sK  = 0.05 V/(rad/sec) and ρ  = 26.7 V/rad. A similar 

position trajectory, with different feedrate values, was used in the additional tracking tests. As can be 

seen in Figure 5.7, a considerable improvement in the tracking error is seen at low axis speeds, 

particularly with the low bandwidth controller. The contribution of torque ripple compensation is also 

noticeable in high bandwidth control cases and higher speeds. However, it becomes less significant 

due to the control signal assuming larger amplitudes with higher variance, in comparison to the torque 

ripple. Overall, the proposed compensation of torque ripples is observed to improve the smoothness 

and accuracy of the feed motion delivered by the ball screw drive system. 

5.5 Limitations 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The presented torque ripple compensation technique is model-based and is performed in feedforward. 

Hence, long-term deviations of actual torque ripples from their modeled value could limit the 

compensation scheme’s performance. Also mechanical torque ripples (1× and 2× harmonics) could 

change if the motor and/or coupling are reinstalled. Hence, the ripple model needs to be updated from 

time to time to ensure that the compensation is accurate and successful. 

5.6 Conclusions 

In this chapter, the motor and mechanical torque ripples were modeled using Kalman filtering and 

successfully compensated in the Adaptive Sliding Mode Control scheme, developed in  Chapter 4. The 

torque ripple modeling and compensation was realized at the motion control level, instead of the 

current loop, which allows the methodology to be applied on different types of feed drives in a 

generic manner. The compensation improves the smoothness and accuracy of the drive's motion, 

especially at low speeds and low control bandwidths. The tracking performance is also improved at 

high speeds and high control bandwidths, but this is less evident due to the control signal assuming 

larger magnitudes and becoming more sensitive to measurement noise under these conditions. With 

the principal feedback being obtained from rotary Encoder 2, a tracking accuracy equivalent to 0.95 

um of table motion was obtained while traversing the axis at 1000 mm/sec with 1 g accelerations. 

Although the torque ripple compensation strategy appears to be highly effective, one of its 

drawbacks is the high computational load required to compute several harmonic (sinusoidal) 
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functions in real-time. This can be simplified through the use of efficient mathematical algorithms or 

look-up tables, etc. In any case, with the rapidly increasing availability of computational power, 

implementation of the developed ripple compensation scheme should not be a major issue on new 

generation motion controllers. 
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Chapter 6 

Active Compensation of Axial Vibrations 

6.1 Introduction 

In this chapter, the Adaptive Sliding Mode Controller design is extended for active compensation of 

the 1
st
 axial mode. This is done with the intention of increasing the control bandwidth and drive 

stiffness, while at the same time delivering a higher positioning accuracy at the table level. Section 

 6.2 presents the ASMC design where the dynamics of the 1
st
 axial mode are explicitly considered in 

the plant model. In Section  6.3, the lead errors arising from imperfections of the ball screw are 

modeled and removed from the loop by offsetting their effect from the commanded trajectory and 

position feedback signals. Effectiveness of the proposed strategy is demonstrated in high speed 

tracking experiments in Section  6.4, where a linear positioning accuracy of 2.6 um has been 

maintained while traversing at 1000 mm/sec feed with 0.5 g acceleration transients. Detailed stability 

analysis in the frequency domain, which implicitly considers the effect of other vibration (i.e. 

torsional) modes and dynamics that were neglected during the controller design, is performed in 

Section  6.5. The conclusions for the chapter are presented in Section  6.7. 

6.2 ASMC Design for a Flexible Drive System 

This dynamics of the 1
st
 axial mode were measured and approximately identified in Section  3.4.2. In 

Section  6.2.1, a lumped model comprising of two masses, a spring, and a damper is used to capture 

this mode as part of the drive transfer function. Applying the general ASMC design rules that were 

presented in Section  4.2, a control law is designed in Section  6.2.2 which actively dampens out the 1
st
 

axial mode while achieving a high positioning bandwidth. Since the controller is designed in state 

space, a state trajectory generator is also developed in Section  6.2.3, which ensures that all 

commanded state variables are physically compatible with each other. 

6.2.1 Drive Model Considering the First Axial Mode 

To identify the 1
st
 axial mode, the open loop Frequency Response Functions (FRF’s) relating the 

motor torque command to the ball screw and table acceleration were measured as shown in Figure 

 6.1. To have consistency in units, the table displacement has been represented in terms of the 

equivalent ball screw angular motion, by making use of the pitch length ( ph = 20 mm ⇒ 1 
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rad=3.1831 mm). The combined gain for the motor and amplifier, based on values identified in 

 Chapter 3, is taKK = 0.98 Nm/V. As seen in the figure, the first axial mode is at 132 Hz and is very 

lightly damped ( ζ = 0.056). When the position loop is closed using a linear encoder and this 

resonance is not compensated, it brings about a severe limitation in terms of the achievable control 

bandwidth. The second resonance occurs at around 445 Hz and is attributed to the 1
st
 torsional mode, 

which was studied earlier in  Chapter 3. Attenuation of this mode was presented earlier using active 

(Section  4.6.1) and a passive (Section  4.4.1) techniques, different from the approach presented here. 

A two mass drive model, shown in Figure  6.2, was used in capturing the key dynamics of the ball 

screw drive including the 1
st
 axial mode. In the figure, 1m  represents the inertia of the rotating 

components, such as the motor, the coupling, and the ball screw. 2m  represents the table inertia, 

which is subject to axial vibrations. 1b  and 2b  represent the viscous friction in the rotary bearings and 

linear guideways, respectively. k  is the overall axial stiffness and c  represents the damping induced 

in the preloaded nut. u  is the motor torque command (i.e. control signal) and d  represents external 

disturbances acting on the table, such as cutting forces and unmodeled nonlinear friction. 1x  and 2x  

represent the ball screw rotational and table linear displacements, which are measured through the 

rotary Encoder 2 and the linear encoder, respectively. 

The total inertia and viscous friction were identified in  Chapter 3 using Least Squares parameter 

estimation. With knowledge of the drive’s mass distribution (Table  3.1), the individual inertia values 
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Figure  6.1: Open loop acceleration FRF’s. 
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Figure  6.2: Flexible drive model used in controller design. 
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were calculated to be 1m =1.858×10
-3
, 2m =0.346×10

-3
 V/(rad/sec

2
). 1b = 1.020×10

-3
, and since the 

setup employs air guideways 2b =0 V/(rad/sec). On machines that have lubricated or roller guides, a 

nonzero value for 2b  would need to be identified. 

There are several factors that influence the equivalent axial stiffness k . In particular, these are the 

individual stiffness values of the ball screw, preloaded nut, and thrust bearing. In addition, the 

preloaded nut serves as a special spring that couples different degrees of freedom together, especially 

in the torsional and axial directions. Detailed Finite Element studies have been conducted to analyze 

and simulate these effects  [49] [68] [71], which require knowledge of the individual stiffness values. 

The damping, on the other hand, is difficult to predict analytically and is best identified by taking 

measurements from the real machine. In this study, the axial stiffness and damping were identified by 

matching the frequency response of the lumped model with the measured FRF’s, as seen in Figure 

 6.1. The resulting values are k =202.21 V/rad and c =0.027 V/(rad/sec). It is seen that the model 

matches the drive’s FRF closely up to 250 Hz. Above this frequency, additional dynamics attributed 

to the current loop and the 1
st
 torsional mode become dominant, causing a variation from the model’s 

frequency response. The drive model can be written in state space as: 
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 ( 6.1) 

 

Above, the state vector z  is divided into two parts. ][ 12 x&=z  (velocity of 1m ) is directly influenced 

by the input torque ( ]/1[ 12 m=B ), whereas the remaining states Txxx ][ 1221 &=z  are influenced 

indirectly ( 131 ×= 0B ), through the 212zA  term. This separation is essential for formulating the sliding 

surface in the control law design.  

6.2.2 ASMC Formulation 

As stated in Section  4.2, the sliding surface selection is the first step in designing the ASMC. Here, 

this is achieved using the method of Equivalent Control  [12], as explained in the following. 
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Considering at first only the regulation problem for the states in 1z  and ignoring the effect of external 

disturbances (i.e. 0Wd = ), the objective is to constrain the system states on to a stable sliding surface 

so that they eventually converge to zero. The sliding surface is defined as: 
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where ][ 3211 sss=S  and ][ 42 s=S . When the states are on the sliding surface, 0=σ  should 

hold. Or in other words, the system states should satisfy 11
1

22 zSSz
−−= . Substituting this into the 

state transition expression for 1z&  (Eq. ( 6.1)) results in: 

11
1

212112121111 )]([ zSSAAzAzAz ⋅−=+= −&
 

( 6.3) 

The sliding surface parameters 1s , 2s , 3s , 4s  need to be determined so that the closed loop poles 

(i.e. eigenvalues of )]([ 1
1

21211 SSAA
−− ) can be assigned the desired natural frequency ( λ , nω ) and 

damping ( ζ ) values: 
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This can be achieved using the standard pole placement design technique  [48], by considering the 

similarity between Eq. ( 6.3) and the state feedback gain selection problem stated as: Find K  so that 

xBKAx )( −=&  has the desired eigenvalues. Since there are 3 pole locations and 4 sliding surface 

parameters, the designer has to make a choice for one of the values in S , which does not really affect 

the outcome. In this work, 4s  has been chosen as “1” for mathematical convenience. Since the design 

deals with trajectory tracking, the sliding surface is modified to consider the state tracking errors as, 
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Above, rz  represents the reference state, comprising of position and velocity commands for 2m  

and 1m , respectively. 
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The ASMC is designed by following the procedure set forth in  [60] and  [75], which was 

summarized in Section  4.2. Similar to the rigid body design case (Section  4.3) the external 

disturbance d  is considered as the only unknown parameter, which needs to be adapted and 

cancelled out in the control law. The design is carried out by constructing the parameter-regressor 

expression in the form: 

PzzYWdAzzSSB ⋅=−−− ),()()( 1
rr &&

 
( 6.6) 

Above, P  contains the unknown parameters and Y  contains the corresponding regressors. Using 

the drive dynamics in Eq. ( 6.1) and the sliding surface definition in Eq. ( 6.5), the parameter-regressor 

expression is obtained as, 
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As formulated before in  Chapter 4, a Lyapunov function postulated as: 

[ ])ˆ()ˆ()(
2

1 1
PPΓPPSB −−+σσ= − TTV

 ( 6.9) 

where SB  is a positive definite symmetrical matrix and Γ  is a diagonal matrix with positive entries. 

This function will be positive when the states are not on the sliding surface ( 0≠σ ) or there is 

discrepancy between the actual and estimated system parameters (i.e. PP ˆ≠ ). It was shown in  [75] 

that as long as the real and estimated parameters are within known bounds (i.e. maxmin PPP ≤≤  and 

maxmin
ˆ PPP ≤≤ ), a control law to stabilize the system (by achieving 0<V& ) can be obtained as: 

dyyKKu srssmc
ˆˆ),( 21 ++σ=⋅+σ= PzzY &

 
( 6.10) 

In the control law, sK  is a positive feedback gain to push the state errors onto the sliding surface. 

Expressions for σ , 1y , and 2y  are given in Eq. ( 6.5) and ( 6.8). In the ideal case, where the actual 
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drive dynamics perfectly matches the model in Eq. ( 6.1), the disturbance adaptation would be 

implemented as  [60],  [75]: 
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Above, 0>ρ  is the adaptation gain and κ  is a binary variable to switch the adaptation on and off 

in order to contain the disturbance estimate within specified bounds ( maxmin
ˆ ddd ≤≤ ), similar to the 

design in Section  4.3. In experimental trials, it was seen that this adaptation law, which uses feedback 

from both rotary and linear encoders, was not successful in achieving zero steady-state error in the 

final linear position. This is attributed to the imperfections in the drive’s rotary to linear motion 

delivery, which exhibits discrepancies in the order of a few microns from the ideal model in Eq. ( 6.1). 

In order to alleviate this problem, a simpler disturbance adaptation was applied. This adaptation law 

uses a first order sliding surface derived considering only rigid body dynamics, observed through the 

linear encoder ( )(' 2222 xxxx rr −λ+−=σ && ). Applying this adaptation law produced much better 

results in terms of the final linear positioning accuracy: 
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6.2.3 State Trajectory Generation 

One final requirement is the generation of state command trajectories. Since the primary objective is 

to have the table position ( 2x ) track the given motion commands ( Rx ), rx2  is chosen as: 

Rr xx =2  ( 6.13) 

On the other hand, the ball screw rotary position ( 1x ) has to be offset in order to account for the 

axial deformations that occur during accelerations and decelerations of the drive, or when external 

forces are applied on the table. Writing the equation of motion for 2m , 

dxbxxcxxkxm −−−+−= 22212122 )()( &&&&&
 ( 6.14) 

and assuming that rxx 22 ≅  and dd ˆ≅ , the position command for 1m  is obtained as: 
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It should be noted that the control law in Eq. ( 6.10) requires the computation of acceleration 

commands rx1&&  and rx2&&  while constructing the 1y  term given by Eq. ( 6.8). Estimation of rx1&&  requires 

the original command trajectory Rx  to be differentiated four times with respect to time and then low-

pass filtered at a cut-off frequency of ck /  (Eq. ( 6.15)). It is therefore necessary that a jerk continuous 

trajectory similar to the one in Figure  4.5 be used, in order to avoid delivering a discontinuous control 

signal that would excite the structural modes of the drive. In the digital implementation, numerical 

differentiation and integration were carried out using Euler’s approximation technique 

( )/()1( zTzs s−≅ ). A sampling frequency of 17 kHz was used, which was found to be sufficient in 

achieving successful vibration control on the ball screw drive. 

6.3 Modeling and Compensation of Lead Errors 

Using linear feedback, it is possible to detect and eliminate the positioning errors that originate from 

imperfections of the drive mechanism, in steady-state. The lead error is a good example of this. 

However, when the axis is in motion, the lead error takes the form of a sinusoidal gain variation that 

continuously offsets the drive’s true position. In this work, for the sake of convenience in modeling 

and compensation, the effect of this gain variation is approximated as an output disturbance. At high 

speeds, the control law cannot immediately detect and compensate for the lead error, which results in 

the deterioration of tracking accuracy. In order to alleviate this problem, a model-based compensation 

strategy has been used. The lead errors were measured by moving the axis back and forth at low 

speeds (~10 mm/sec), to minimize the effect of elastic deformations, and estimated by taking the 

difference between the linear and rotary encoder readings. Measurement for 10 back and forth 

movements is shown in Figure  6.3. It was seen that these errors remained reasonably consistent when 

the measurements were taken at different times under similar conditions. Defining the ideal and actual 

linear positions as 2x  and ax2  respectively, the lead error v  is expressed as: 

22 xxv a −=
 ( 6.16) 

For the ball screw setup, the below model was found to be adequate in describing the lead errors: 

nmxx
h

Axv
p

++φ+
π

= )
2

sin()(ˆ
 ( 6.17) 

Above, v̂ [mm] is the modeled lead error and x  [mm] is the nominal axis position. Using Least 

Squares  [44], the model parameters were identified as A = 1.960×10
-3
 mm, φ = 2.0627 rad. ph = 20 

mm. In the range 125<x  mm, m = 0 and n = − 0.833×10
-3
 mm. For 220125 <≤ x  mm, m = 
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2.4262×10
-5
, n = − 3.866e×10

-3
 mm. When 220≥x , m = 0, n = 1.472×10

-3
 mm. While implementing 

this model in the control law, the displacement units were changed to radians, in order to remain 

consistent with the controller formulation developed in Section  6.2. 

The concept of lead error compensation is illustrated with a simple example in Figure 6.4, where 

the effect of lead error v  is removed from the loop by subtracting its predicted value v̂  from the 

commanded and measured axis positions ( rx  and ax  respectively). In this case, the final axis 

position ax  can be expressed as: 
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( 6.18) 

In a well designed controller, the tracking transfer function will be close to unity in the frequency 

range of most motion commands (i.e. fbff GKGK +≅ 1 ). Assuming that the identified model 

represents the actual lead error with sufficient closeness (i.e. vv ≅ˆ ), it can be verified that the 

compensation term in Eq. ( 6.18) will cancel out the effect of lead errors transmitted into the servo 

loop, thus mitigating their effect on the dynamic performance of the drive. It can also be verified that 

this compensation strategy will produce the same outcome with the dual feedback control law 

developed in Section  6.2. LE compensation for dual control feedback is illustrated in Figure  6.5. In 

this case, the final axis position ax  can be expressed as: 
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Figure  6.3: Measured and modeled lead error profiles. 
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Above, 2221 GKGKL += . Similar to the previous case, it is assumed that 

22112 1 GKGKKG ff ++≅  and vv ≅ˆ  hold, resulting in the compensation term to cancel out the lead 

errors transmission term.  

The overall control scheme is shown in Figure  6.6. Control of rigid body motion and the 1
st
 axial 

vibration mode is achieved using adaptive sliding mode control. The sliding surface was designed to 

yield high tracking accuracy and good disturbance rejection, while attenuating vibrations of the 1
st
 

axial mode as much as possible and avoiding the excitation of unmodeled dynamics at higher 

frequencies. Following trials on the experimental setup, it was seen that placing the real pole at 

λ =1131 rad/sec (180 Hz), and the complex conjugate poles at nω = 628 rad/sec (100 Hz) with ζ = 

0.35 damping realized these goals. Although the damping is not very high, it is six times higher than 

the open loop damping of 5.6%, and is achieved through feedback control. It was observed that 

further increasing the pole frequencies or the damping ratio caused the control signal to become too 
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Figure  6.4: Removal of lead errors from the control loop for single axial feedback case. 
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Figure  6.5: Removal of lead errors from the control loop for dual (rotary-axial) feedback case. 
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aggressive at high frequencies, which led to undesirable vibrations. The feedback and disturbance 

adaptation gains were tuned to be sK = 0.005 V/(rad/sec) and ρ = 3.3937 V/rad. 

The lead errors were compensated using the model in Eq. ( 6.17). Considering that this model has 

first order discontinuity at transition points x = 125 and 220 mm, the compensation signal was low-

pass filtered at 250 Hz in order to mitigate the effect of this discontinuity on the drive’s performance. 

Notch filters were also incorporated into the control scheme, in order to avoid excitation of the 1
st
 and 

2
nd

 torsional resonances as earlier reported in Section  4.4.1. This made vibration control of the 1
st 

axial mode possible. 

6.4 Experimental Results 

The proposed control scheme has been evaluated in frequency response and high speed tracking 

experiments conducted on the ball screw drive. In frequency response tests, the mode compensating 

controller has been compared to an alternative design consisting of notch filtering the 1
st 

axial mode 

and using an ASMC designed only for rigid body dynamics. This controller was implemented earlier 

in Section  4.6.2, where the loop was closed using only linear encoder feedback. In this case, the 

sliding surface bandwidth could be increased only up to λ = 440 rad/sec (70 Hz). The sampling 

frequency in both implementations was 17 kHz. 

6.4.1 Frequency Response Measurements 

 

 

 

 

 

 

 

 

 

Experimentally measured FRF’s comparing the tracking performance of the two controllers are 

shown in Figure 6.7. It can be seen that the mode compensating controller has wider usable frequency 

range, where the gain drops below -3 db after 208 Hz. The -3 db drop occurs at 113 Hz for the rigid 

body based ASMC, which indicates a two-fold bandwidth difference. In addition, the gain of the 

mode compensating ASMC (MC-ASMC) is closer to unity and its phase lag is considerably lower 

(less than 30°) up to 170 Hz, indicating a more favorable tracking performance. 
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Figure  6.6: Mode compensating ASMC structure. 
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Disturbance transfer functions were measured by impact hammer testing, in order to compare the 

cutting force sensitivity of the mode compensating controller with the rigid body based ASMC. 

Figure  6.8 shows the real component of the measured disturbance transfer functions around the 1
st
 

axial resonance. Negative real values with larger magnitude, for this transfer function, indicate higher 

susceptibility to chatter vibrations during machining  [3]. In the case with no control, the minimum 

real component of the disturbance transfer function is -0.06 um/N. Rigid body based ASMC with 

notch filtering worsens the sensitivity around the axial mode, resulting in a minimum real component 

equal to -0.150 um/N. The mode compensating ASMC yields the least sensitive case, with the 

minimum real component of the dynamic compliance reducing to -0.040 um/N. This makes this 

controller more favorable in terms of reducing the ball screw drive’s susceptibility to chatter 

vibrations, by injecting additional damping around the first axial resonance frequency. 
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Figure  6.7: Experimental FRF’s for linear positioning. 
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Figure  6.8: Disturbance transfer functions measured by hammer tests. 
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6.4.2 High Speed Tracking Results 

The performance of the mode compensating ASMC was verified in high speed tracking experiments. 

Earlier in Section  4.6.2, it was seen that for a jerk continuous trajectory with 350 mm displacement, 

1000 mm/sec feed, 5000 mm/sec
2
 acceleration, and 100,000 mm/sec

3
 jerk, the rigid body based 

ASMC with notch filtering could only achieve a linear tracking accuracy around 24 um. By 

increasing the sampling frequency to 17 kHz and tuning this controller further, it was possible to 

bring the tracking error down to 9.2 um. However, this over tuning resulted in distortions in the 

command following FRF, with magnitudes reaching as high as 4.6. This is highly undesirable in 

terms of the tracking accuracy. Also, it is an indication of poor robustness margins due to severe 

peaks in the sensitivity and complementary sensitivity functions  [58].  

The tracking performance of the mode compensating ASMC (MC-ASMC) was evaluated without 

and with lead error compensation. Results of these tests are shown in Figure  6.9 and Figure  6.10. 

0
2
4
6

0

5

10

Time [sec]

C
o

n
tr

o
l 
S

ig
n

a
l

[V
]

L
in

e
a

r 
T

ra
c
k
in

g

E
rr

o
r 

[u
m

]
0 0.5 1.0 1.51.250.750.25

 

Figure  6.9: Tracking performance of MC-ASMC without lead error correction. 
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Figure  6.10: Tracking performance of MC-ASMC with lead error correction. 
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When lead error compensation is not used, a linear tracking accuracy of 6.5 um is maintained, as seen 

in Figure  6.9. This is better than the accuracy achieved with rigid body based ASMC and notch 

filtering of the 1
st
 axial mode. Furthermore, the closed loop frequency response is not distorted due to 

over tuning. The effect of lead errors can clearly be seen in the tracking error profile, as if a sinusoidal 

disturbance is being applied at the drive’s output. When lead error compensation is enabled (Figure 

 6.10) the tracking error is further reduced to 2.6 um, indicating an overall improvement in the drive’s 

dynamic accuracy, which is achieved with the proposed controller design. 

6.5 Stability Analysis 

The results of obtained with the mode compensating ASMC are highly promising in terms of 

augmenting the positioning accuracy and dynamic stiffness of ball screw drives. However, one 

drawback with this controller is its complexity, which requires the designer to select 3 pole locations 

for the sliding surface (using λ , nω , ζ ), and to tune two controller gains ( sK  and ρ ). During 

experimental implementation of the controller, it was seen that the selection of these parameters was 

not a trivial task. If the model pole locations or feedback gain are not determined correctly, this may 

result in overly aggressive control signals, which can excite the unmodeled dynamics (such as 

torsional or higher order axial modes etc.), and cause instability. In the controller design, although the 

first axial mode was considered in the plant model, and therefore the Lypunov stability analysis, the 

influence of torsional modes and current loop dynamics were not taken into account. These dynamics 

can lead to instability due to the additional phase lag and gain amplification (i.e. resonances) they 

contribute to the loop dynamics. These factors have to be carefully considered in selecting the mode 

compensating ASMC parameters. Therefore, in this section, a stability analysis of the mode 

compensating ASMC is conducted. In the analysis, Nyquist’s stability criterion has been used. The 

presented approach can be used as a tuning tool to aid in the selection of controller parameters to 

yield certain phase and gain margins, and/or sensitivity peak values. Since lead error compensation is 

realized only in feedforward, its effect is not included into the stability analysis. 

The block diagram for the mode compensating ASMC system can be represented as shown in 

Figure  6.11(a), with a feedforward filter ( )(sK ff ) and two feedback filters ( )(1 sK  and )(2 sK ) 

which generate the control signal ( smcu ) based on the position command ( rx2 ), rotary encoder 

reading ( 1x ), and linear encoder measurement ( 2x ), in the mentioned order. Although the plant (drive 

system) has one input and two outputs, the analysis can been simplified by combining both feedback 

channels into a single loop, since there is only one control input. This is done by applying the block 
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diagram manipulation shown in Figure  6.11(b), where the feedback filters are shifted to be right after 

the plant outputs. The resulting feedback control signal can be expressed as: 

rfffbkfbkrff

L

fbk xLKuLuxKGKGKu 22

FunctionTransfer  Loop :

2211 )1()()( =+⇒−+=
44 344 21  ( 6.20) 

The stability of the closed loop system can be analyzed by inspecting the Nyquist plot for the loop 

transfer function: 

2211 GKGKL +=
 ( 6.21) 

Assuming that the feedforward filter )(sK ff  and the inverse of the filters ( )(/1 1 sK , )(/1 2 sK ) are 

stable, the stability of the system depends on the stability of 1))(1( −+ sL . 

In computing the loop transfer function frequency response, the plant related terms 1G  and 2G  

were obtained by multiplying the experimentally measured open loop position FRF’s with the 

dynamics of the notch filters that were designed for the torsional modes. The drive’s acceleration 

response, relating the control input to the rotary and linear accelerations, was shown in Figure  3.16. 

The position FRF’s were constructed by multiplying these graphs with 2)/(1 ωj . The notch filters, on 

the other hand, have been described in Section  4.4.1. Here, the notch filters have been slightly retuned 

and the discrete-time parameters were updated to accommodate the new sampling frequency of 17 

kHz. Using experimentally recorded FRF’s for the plant, as done here, allows for the influence of 

additional dynamics, such as the torsional modes or the current loop, to be realistically incorporated 

into the stability analysis. 

According to the block diagram in Figure  6.11(a), smcu  can be expressed as: 

22112 )()()( xsKxsKxsKu rffsmc −−=
 ( 6.22) 

The control law for smcu , given in Eq. ( 6.10), can be transformed to the structure in Eq. ( 6.22) by 

substituting the expressions for σ  from Eq. ( 6.5), d̂  from Eq. ( 6.12), 1y  and 2y  from Eq. ( 6.8), and 

rx1  from Eq. ( 6.15). Organizing the terms yields the following expressions for )(sK ff , )(1 sK , and 

)(2 sK : 
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The coefficients were determined using the Matlab’s Symbolic Math Toolbox  [63] as follows: 
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Figure  6.11: MC-ASMC block diagram: (a) Feedforward and feedback transfer functions, (b) 

Rearranged to obtain the loop transfer function. 
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Figure  6.12: Nyquist diagram of mode compensating ASMC used in tracking experiments. 
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( 6.24) 

The frequency response of the control filters was calculated by substituting ω→ js  inside the 

expressions for )(1 sK  and )(2 sK  in Eq. ( 6.23) and ( 6.24). The loop transfer function )( ωjL  was 

computed by numerically combining the controller and plant dynamics using Eq. ( 6.21). The Nyquist 

plot for the MC-ASMC used in tracking experiments is shown in Figure  6.12, which verifies the 

stability of the designed controller with a gain margin of 2.14 and a phase margin of 30°. 

In order to validate the performed stability analysis, more tracking tests were conducted with 

different sets of control parameters, resulting in marginally stable to unstable cases. As shown in 

Figure  6.13 through Figure  6.16, both the Nyquist diagrams and the tracking profiles are in close 

agreement on the stability of the closed loop system. This is true even in borderline cases where the 

Nyquist plot passes very close to the 1−  point. When the Nyquist plot predicts instability, this is also 

validated experimentally in the form of severely large and oscillatory tracking errors and highly 

aggressive control signals. Overall, the experimental results indicate that the developed stability 

analysis can be used reliably in predicting the outcome of the MC-ASMC parameter selection. 
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Figure  6.13: Stability of MC-ASMC: Marginally stable case. (a) Nyquist prediction, (b) 

Tracking error, (c) Control signal. 
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Figure  6.14: Stability of MC-ASMC: At the stability margin. (a) Nyquist prediction, (b) 

Tracking error, (c) Control signal. 
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6.6  Limitations 

The presented mode compensating ASMC was found to be very effective in suppressing the 1
st
 axial 

mode of the high speed ball screw drive. However, its limitations also need to be mentioned. It 

requires elaborate tuning of more control parameters, compared to the rigid body-based design. Also, 

high resolution feedback from both rotary and linear encoders are required, as well as a high sampling 

frequency. Since the dynamics of the 1
st
 axial mode are incorporated into the plant model in the 
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Figure  6.15: Stability of MC–ASMC: Marginally unstable case. (a) Nyquist prediction, (b) 

Tracking Error, (c) Control Signal. 
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Figure  6.16: Stability of MC-ASMC: Unstable case. (a) Nyquist prediction, (b) Tracking error, 

(c) Control signal. 
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controller design, large deviations of the actual dynamics from the nominal model may limit the 

controller performance or even cause instability. Hence, the controller needs to be tuned considering 

an envelope of possible frequency response characteristics for the drive system. Finally, the two-mass 

lumped model captures only the phase lag originating from the 1
st
 axial mode. Additional phase lag 

due to the amplifier dynamics and other resonance modes will limit the achievable control bandwidth. 

Hence, these points need to be kept in mind when implementing the mode compensating ASMC on 

ball screw drives. 

6.7 Conclusions 

This chapter has presented a new approach in controlling ball screw drives through the application of 

active vibration damping using Adaptive Sliding Mode Control. It is shown that the mode 

compensating ASMC is capable of achieving significantly higher positioning bandwidth and dynamic 

stiffness, compared to the traditional practice of notch filtering the axial vibration inside the control 

loop. The mode compensating ASMC (MC-ASMC) can be practically implemented in real-time using 

a rotary and linear position feedback configuration, which is available on most drive systems. Since 

the state variables are the rotary and linear position and velocity, there is no need to construct an 

elaborate state observer. This decreases the computational load and makes the control law favorable 

for real-time implementation. 

Lead errors, which originate from the imperfections of the ball screw, have also been modeled and 

compensated in feedforward. It can be expected that as the thermal state of the ball screw changes, the 

lead error cancellation will become less accurate. However, this issue has been kept outside the scope 

of this thesis. The main reason for lead error compensation in this chapter was to investigate the ideal 

tracking performance that could be achieved with MC-ASMC, if the motion transmission in the ball 

screw was near-perfect. 

Overall with the MC-ASMC, an experimental command following bandwidth of 208 Hz has been 

verified, which is several-fold higher than typical positioning bandwidths (30-50 Hz) achieved on ball 

screw drives. After the implementation of lead error compensation, a tracking accuracy of 2.6 um has 

been maintained while traversing the axis at 1000 mm/sec feed with 0.5 g accelerations. Through 

impact hammer tests, it is also shown that the MC-ASMC helps to improve the dynamic stiffness 

around the axial mode, rather than to degrade it, which is what happens when the notch filter based 

rigid body ASMC is used. 

Although the MC-ASMC yields highly promising results, tuning its gains is not a trivial task. There 

are several parameters that need to be selected. Also, the additional dynamics which were not 
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considered in the plant model (i.e. the current loop and torsional modes) can have a major impact on 

the closed loop stability. Hence, a stability analysis has been conducted using Nyquist’s Theorem, 

which combines experimentally recorded FRF’s of the ball screw with the frequency response of the 

feedback control filters. It is shown that this analysis can be reliably used in stability predictions and 

in parameter selection when tuning the mode compensating ASMC. 
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Chapter 7 

Modeling and Compensation of Elastic Deformations 

7.1 Introduction 

In  Chapter 6, a technique was developed to handle the axial vibrations, allowing high positioning 

accuracy to be achieved using rotary and linear position feedback in the control law. In this chapter, a 

different approach is taken to achieve the same purpose. Rather than trying to implement active 

vibration suppression, the quasi-static elastic deformations of the ball screw are modeled and 

compensated. Both feedforward and feedback techniques are investigated. Essentially, the 

compensation considers the low frequency portion of the axial dynamics that were identified in 

 Chapter 6. Although, the feedforward method is simpler to implement, it is shown that the feedback 

approach yields higher robustness against dynamic variations and disturbances on the load side. This 

is because the feedback approach continuously monitors the real-time control signal, and implicitly 

estimates any additional elastic deformation that is caused by such perturbations. The proposed ED 

compensation strategies substantially improve the linear positioning accuracy of ball screw drives that 

are controlled using only rotary feedback. These methodologies also yield a performance 

improvement in ball screw drives with combined rotary and linear position feedback, by forcing the 

controller to react faster to compensate for the drive’s anticipated elastic deformations.  

In the two proposed techniques, the ED is estimated by dividing the torque transmitted to the table 

with the equivalent axial stiffness of the drive. The position loop is closed using rotary feedback from 

Encoder 2, which has smaller phase lag compared to the position measurements from the linear 

encoder (Figure  3.16). Also this feedback channel is influenced less by the 1
st
 axial mode. This 

enables a high control bandwidth to be achieved using the rigid body based ASMC in conjunction 

with notch filters for the torsional modes. The rotary position commands are offset to account for the 

anticipated elastic deformation, so that the final linear position of the table is realized correctly.  

Alongside ED compensation, lead errors (LE) are also modeled and compensated in the control 

signal. ED and LE compensation is implemented in conjunction with ASMC, which fulfills the basic 

servo function. The ASMC is designed to utilize either only rotary feedback, or combined rotary and 

linear position feedback, in order to achieve a high command following bandwidth and as well as 

high linear positioning accuracy. The methodology developed in this chapter can also be applied on 

feed drive systems which only have a rotary encoder mounted on the motor. 



 

 85 

The remainder of this chapter is organized as follows. The ED and LE models are developed in 

Section  7.2. Feedforward and feedback ED compensation strategies are presented in Section  7.3 and 

Section  7.4, respectively. In Section  7.4.4, stability analysis is performed to ensure that the adequate 

gain and phase margins are still maintained when applying ED compensation in feedback. 

Experimental results demonstrating the effectiveness of the proposed ED and LE compensation 

strategy are presented in Section  7.5, and the conclusions for this chapter are presented in Section  7.6. 

7.2 Modeling of Elastic Deformations and Lead Errors 

There are several factors which influence the rotary to linear motion transmission in ball screw drives. 

One of the dominant factors is the elastic deformation, which is studied in this chapter. Occurring 

simultaneously with elastic deformations are lead errors arising from manufacturing imperfections of 

the ball screw  [59], motion loss in the preloaded nut which is observed as nut backlash  [11], and 

thermal expansion errors  [26] which originate from the temperature rise due to contact friction in the 

ball screw-nut interface. Due to their complex and nonlinear nature, thermal deformations have been 

kept outside the scope of this work. Various studies have been conducted in the literature to model 

and compensate for their effects  [13] [26]. Lead errors and backlash, on the other hand, exhibit a 

reasonably consistent behavior and are easier to take into account in the controller design, as done in 

the work presented here. 

7.2.1 Lead Errors and Backlash 

The lead error (LE) model presented in  Chapter 6 is developed further here, by considering the 

positive and negative directions of motion which account for the backlash-like effect observed in the 

preloaded nut. Lead errors, backlash, and elastic deformations exhibit themselves in a combined 

manner, causing the majority of the discrepancy observed between the rotational motion of the screw, 

and linear motion of the nut.  

A schematic representation of the ball screw setup is shown in Figure  7.1(a). The rotary position 

measurement is registered from Encoder 2, denoted with rotx  [mm]. Rotary readings have been 

scaled to correspond to the equivalent table motion, by making use of the ball screw pitch length (i.e. 

1 rev = π2  rad = 20 mm). The table position measurement is obtained from the linear encoder, shown 

with linx  [mm]. During slow movements at a constant speed, the discrepancy between rotary and 

linear readings is accounted to the combined effect of lead errors, nut backlash, and a small amount of 

elastic deformation that would occur in order to counteract the sliding friction in the linear 

guideways. As mentioned earlier, the effect of thermal deformations have been kept outside the scope 
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of this study. In either case, during slow movements the temperature rise due to nut friction, and 

therefore the thermal expansion of the ball screw, will be minimal. On the other hand, since the setup 

uses air bushings the effect of elastic deformation due to sliding friction on the load side can also be 

neglected. In conventional drives with lubricated or roller guideways, this effect can be incorporated 

into the elastic deformation model during the parameter identification process, which is explained in 

Section  7.4.2. 

The lead error model is constructed by jogging the drive back and forth at a moderately low speed 

and logging the difference between the linear and rotary encoder readings. In the setup, which has air 

guideways and a maximum travel velocity of 1000 mm/sec, it was found that performing the jogging 

at 80 mm/sec was sufficiently slow for obtaining a good measurement of the lead error. On a 

conventional machine tool, this measurement can be realized in a lower speed range, such as 10-50 

mm/sec. The lead error (LE) is estimated as: 
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Figure  7.1: Schematic of ball screw for modeling elastic deformations. 
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rotlin xxLE -=
 

 ( 7.1) 

The LE was observed to exhibit a repeating sinusoidal pattern with a position dependent offset, as 

shown in Figure  7.2. Its overall shape is captured with the below model: 

10)
2

sin()( cxcx
h

AxLE
p

++φ+
π

=  
 ( 7.2) 

Above, x  [mm] represents the nominal axis position. A  [mm] is the magnitude of the lead error, 

ph = 20 mm is the ball screw pitch, and φ  helps to adjust the position phasing. Using Least Squares 

technique  [44], the amplitude and phase values were identified to be A = 987.1  um, and φ =2.079 rad. 

If necessary, the parameters A  and φ  can be made to be position dependent in order to reflect the 

variability of lead along long ball screw drives. 0c  and 1c  are linear interpolation parameters for 

adjusting the position dependent offset. They are calculated from a look-up table comprising of 

average offset values to be applied for each revolution of the ball screw, as summarized in Table  5.1. 

Considering the data in the table, it can be seen that there is on average 0.75 um difference between 

the offsets in the forward and backward directions, which captures the motion loss (i.e. backlash 

effect) in the preloaded nut. 

In the control scheme, the predicted lead error values are used to offset the trajectory commands in 

order to realize the linear motion of the table correctly. To avoid causing unwanted feedback loops, 

the nominal axis position x  in Eq. ( 7.2) is replaced by the commanded position value rx  when 

implementing the lead error compensation. Due to the piecewise linear approximation of the lead 

offsets, the lead error estimate calculated using Eq. ( 7.2) is only 0
C  (i.e. position) continuous. Most 
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Figure  7.2: Measured and modeled lead errors. 
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CNC controllers use feedforward dynamic compensation in order to achieve accurate command 

tracking, which requires the position commands to be differentiated with respect to time. In order to 

avoid severe discontinuities in the control signal due to this differentiation, the lead error 

compensation values were passed through a 1
st
 order low-pass filter with a cutoff frequency of 80 Hz, 

which provided sufficient smoothening before applying the corrected trajectory commands to the axis 

controller. 

7.2.2 Elastic Deformations 

There are several factors that influence the equivalent axial stiffness of a ball screw drive. In 

particular, this stiffness originates from the stiffness characteristics of the ball screw, the preloaded 

nut, and the thrust bearing(s). In addition, the preloaded nut serves as a special spring that couples 

different degrees of freedom together, especially in the torsional and axial directions of motion. 

Detailed Finite Element and hybrid simulation studies have been conducted to analyze and simulate 

these effects through rigorous theoretical analyses  [49] [68] [71]. In order to employ these methods 

successfully, a profound understanding of the Finite Element theory, dynamic model reduction, and 

advanced simulation techniques is required. Also, detailed knowledge of the individual component 

stiffness and inertia values are needed, which may be difficult to measure on existing machine tool 

drives.  

Table  7.1: Experimental data used in constructing the lead error offset look-up table. 

Nominal Position 

x [mm] 
-9 11 31 51 71 91 111 131 151 

Forward Motion 

Average Lead Error 

LE(x) [um] 

2.105 2.105 2.028 1.289 0.638 0.094 -0.761 -1.296 -1.247 

Backward Motion 

Average Lead Error 

LE(x) [um] 

1.060 1.060 0.312 -0.045 -0.644 -1.215 -1.736 -2.160 -2.058 

. . . 

Nominal Position 

x [mm] 
171 191 211 231 251 271 291 311 331 351 

Forward Motion 

Average Lead 

Error 
LE(x) [um] 

0.771 -0.505 -0.062 -0.219 -0.494 -0.880 -1.262 -1.237 -0.999 -0.999 

Backward Motion 
Average Lead 

Error 

LE(x) [um] 

1.556 -1.105 -0.511 -0.768 -1.037 -1.899 -1.677 -1.674 -1.304 -1.304 
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For an elastic deformation model to be used in the CNC for real-time compensation, it needs to be 

as simple and intuitive as possible, and its parameters should be easy to identify or tune. In the 

following, such a model is developed for predicting the equivalent axial elastic deformation in ball 

screw drives. The model successfully captures the position dependent stiffness behavior. 

Considering the schematic representation of the ball screw drive in Figure  7.1(a), the actuation 

torque that is transmitted to the table passes through the screw’s active length, shown as linxa + , 

where a  is the distance between the fixed bearing location and the axis “home position”, and linx  is 

the table linear position referenced according to the drive’s home position. There are three main 

components that contribute to the stiffness of the ball screw within its active length. These are the 

axially fixed bearing, the screw itself, and the ball screw-nut interface. The stiffness of these elements 

are represented with three springs connected in series, as shown in Figure  7.1(b). bearingK  represents 

the bearing stiffness, and nutK  represents the equivalent axial stiffness at the preloaded nut interface. 

screwK  represents the equivalent stiffness contributed by the screw itself. The coupling between the 

torsional and axial deformations, and the effect of torsional winding and unwinding of the screw on 

its axial length, are also considered to be lumped into these parameters. It should be noted that 

)( linscrew xK  is dependent on the axial position of the table ( linx ) along the ball screw. Hence, the 

equivalent axial stiffness eqK  which transmits the actuation torque to the table is expressed as: 

nutlinscrewbearingeq KxKKK

1

)(

111
++=  

 ( 7.3) 

Considering that the ball screw has a uniform outer diameter along its threaded length, the screw’s 

equivalent axial stiffness can be expressed in the form: 

lin
linscrew

xa

K
xK

+
=)(

 
 ( 7.4) 

Above, K/1  is the unit flexibility per active length of the ball screw. By substituting Eq. ( 7.4) into 

Eq. ( 7.3), the drive’s equivalent axial flexibility (i.e. inverse of stiffness), can be expressed as follows: 

{
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 ( 7.5) 

In the above model, the parameters 1p  and 2p  are experimentally identified. The transmission of 

motion through the equivalent stiffness chain, from the rotating components of the drive mechanism 
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to the translating components (i.e. nut and table assembly) is depicted with a simplified dynamic 

model, which is shown in Figure  7.1(c). This is similar to the model used to capture the axial 

vibrations in  Chapter 6. The model parameters have been normalized in terms of the control signal u  

[V], which corresponds to the actuation torque. The total mass ( m ), viscous damping ( b ), and 

nonlinear Coulomb friction ( fricu ) characteristics were identified earlier in  Chapter 3. mr  is the mass 

distribution ratio for the rotational components and has to satisfy 10 << mr . Intuitively, since the 

actuation is transmitted from the rotating elements to the translating components, mrm  represents the 

total inertia of the rotating components (i.e. motor, coupling, bearings, and ball screw.), and 

mrm )1( −  represents the total inertia of the translating components (i.e. table and nut assembly). 

Similarly, the total viscous friction has been distributed between the rotational and translational sides 

of the drive mechanism as brb  and brb )1( −  respectively, where 10 ≤≤ br . The Coulomb friction 

has also been distributed between the rotational and translational parts of the drive with the factor 

]1,0[∈cr . This approximation assumes that the Coulomb friction characteristics on the rotating and 

translating sides have the same function shape. Although this approximation will not always exactly 

hold, the steady-state (high velocity) Coulomb friction values will still be captured correctly, which 

allows the elastic deformation model to be reasonably accurate for real-time trajectory correction. The 

actuation torque that is transmitted to the table through the equivalent axial stiffness ( eqK ) and 

damping ( eqC ) elements has been denoted with Tu . The equivalent damping coefficient eqC  

represents primarily the energy dissipation in the nut interface. Although this parameter is important 

when the axial vibrations of the ball screw are of concern, it does not have too much practical 

significance in predicting the elastic deformation of the drive mechanism, which is more quasi-static 

in nature compared to the structural vibrations. Lastly, d  represents the effect of external 

disturbances including cutting forces, and the lumped effect of changes in the dynamic parameters 

(like table mass and guideway friction) on the load side. Ultimately, these effects would need to be 

detected and accounted for in the elastic deformation model in real-time. The elastic deformation is 

estimated by dividing the transmitted torque by the equivalent axial stiffness,  

eq

T

K

u
ED =  

 ( 7.6) 

The Tu  term, which represents the transmitted actuation torque that causes the elastic deformation, 

can be calculated in two different ways leading to two different approaches that are developed in the 
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following sections. These are the feedforward (open loop) approach and the feedback (closed-loop) 

technique. 

7.3 Elastic Deformation Compensation in Feedforward 

In the feedforward (open loop) elastic deformation compensation strategy  [33], the control signal 

equivalent torque ( Tu ) transmitted through the nut is computed by considering the nominal torque 

required to actuate the translating components of the ball screw mechanism: 

friccrbrmT urxbrxmru )1()1()1( −+−+−= &&&
 ( 7.7) 

The control signal applied for feedforward friction compensation ( fricu ) is also purely in open 

loop. The ED value is computed by dividing the transmitted torque estimate ( Tu  from Eq. ( 7.7)) with 

the equivalent axial stiffness ( eqK  from Eq. ( 7.5)), resulting in: 

)]()1()1()1[( 21 rfriccrbrm xppurxbrxmrED +−+−+−= &&&
 ( 7.8) 

The realized compensation is shown in Figure  7.3. The ED estimate is combined with the predicted 

lead error (LE) value in generating the corrected rotational position command ( crx ): 

LEEDxx rcr −+=  
( 7.9) 

This trajectory is fed to the rigid body based ASMC, developed in  Chapter 4, in which the position 

loop is closed with Encoder 2. If direct linear position measurement ( linx ) is also available, the same 

control law is used with the following modification for the disturbance adaptation law: 

)]([ˆ
linrlinrlin xxxxd −λ+−ρκ=ρκσ= &&

&
 

( 7.10) 

This case is depicted with the dotted linear feedback line in Figure  7.3.  

Although the feedforward compensation technique is simple to implement, it can be expected that 

its accuracy will deteriorate when there are external disturbances (i.e. cutting forces), or changes on 

the load side of the drive, such as mass or guideway friction variations. This robustness issue is 

confirmed in the tracking experiments conducted in Section  7.5. In order to address these problems, 

the following feedback strategy was developed for ED compensation. 
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7.4 Elastic Deformation Compensation in Feedback 

The feedback approach uses the real-time control signal to estimate the elastic deformation, which 

gives it its robustness against external disturbances and load parameter variations. However, this 

creates a secondary feedback loop in the control system, which brings new stability implications. 

Also, the real-time control signal is noisy and needs to be smoothened out before it can be used for 

on-line trajectory correction. To resolve these issues, adequate filtering needs to be applied when 

implementing the feedback ED compensation technique. 

In the following, formulation of the feedback based ED estimation is presented in Section  7.4.1. 

Experimental identification of the ED model parameters is explained in Section  7.4.2. Integration of 

the compensation scheme into the servo control system is explained in Section  7.4.3, and stability 

analysis is conducted in Section  7.4.4. 

7.4.1 Formulation of Feedback ED Compensation 

In the feedback (closed-loop) ED compensation strategy  [34], the control signal equivalent torque 

( Tu ) transmitted through the nut is calculated using the real-time control signal, u . The transmitted 

torque is obtained by writing the equation of motion for the first mass, representing the rotating 

components, in Figure  7.1(c), 







++−=⇒

−−−=⇒=∑
)( friccrotbrotmT

friccrotmTrotm

urxbrxmruu

urxbruuxmrforcexm

&&&

&&&&&

 ( 7.11) 

Substituting eqK/1  from Eq. ( 7.5) and Tu  from Eq. ( 7.11) into Eq. ( 7.6) yields the ED model, 
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Figure  7.3: Feedforward (open loop) elastic deformation compensation. 

 



 

 93 

))](([/ 21 linfriccrotbrotmeqT xppurxbrxmruKuED +++−== &&&
 ( 7.12) 

In the above model, the elastic deformation is computed using the value of the real-time feedback 

control signal u . A well designed servo controller will typically have integral action, or some kind of 

disturbance adaptation scheme, which will detect and counteract the effect of the external disturbance, 

represented in Figure  7.1 with d . Hence, by making use of the feedback control signal, which 

already accounts for unmodeled external disturbances, robustness is achieved in the ED estimate 

against cutting forces and dynamic variations on the load side, which will also be perceived as 

equivalent disturbances. This ED estimate is then used to offset the position commands so that the 

final linear movement of the table is realized correctly. In practical implementation, the rotary and 

linear position, velocity, and acceleration terms ( linx , rotx& , rotx&& ) are replaced by the commanded 

position, velocity, and acceleration values ( rx , rx& , rx&& ), in order to avoid generating additional 

feedback loops which can cause stability problems. Using commanded position values also results in 

less noisy ED estimates, as opposed to using direct encoder measurements. 

The model in Eq. ( 7.12) assumes that the rotational dynamics of the ball screw (inertia, viscous, 

and Coulomb friction) do not change much over the daily operation of the machine tool, which is a 

reasonable assumption. Accurate knowledge of these parameters is crucial for the feedback based ED 

compensation scheme to be successful. Assuming that the overall rigid body mass ( m ), viscous 

damping ( b ), and Coulomb friction ( fricu ) values are known, the ED model has 5 parameters ( mr , 

br , cr , 1p , 2p ), which need to be identified experimentally. During the lifetime of a machine, it is 

evident that the viscous and Coulomb friction acting on the rotary components, as well as the axial 

stiffness of the ball screw mechanism, will gradually change. Hence, the ED model parameters would 

need to be updated during scheduled maintenance cycles of the machine tool, typically when the CNC 

servo parameters are also re-tuned. Tuning of the ED compensation parameters is presented in the 

following subsection with an example, which corresponds to the identification procedure that was 

applied on the ball screw setup. 

7.4.2 ED Model Identification 

The parameter identification is carried out using data captured from rotary and linear encoders during 

a trajectory tracking experiment. If the drive does not have a linear encoder, a laser interferometer can 

also be used. The trajectory used in this section is shown in Figure  4.5, where 350 mm of 

displacement is commanded at 1000 mm/sec speed, with 0.5 g acceleration and 100,000 mm/sec
3
 jerk 

transients. The minimum and maximum displacement values are x =0 and x =350 mm. Maximum 
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acceleration magnitudes can be observed when the drive travels through x =5…65 and x =285…345 

mm. The maximum velocity occurs in the region x =120…230 mm. Different sections of this 

trajectory allow the effect of different model parameters to be observed in predicting the elastic 

deformation. 

During parameter tuning, the combined effect of the modeled lead error and the elastic deformation 

( EDLE − ) is overlaid on top of the experimentally observed difference between linear and rotary 

encoder readings ( rotlin xx - ), as shown in Figure  7.4. This is done because the effect of lead errors 

and backlash, which are captured in the LE model, exhibit themselves together with the effect of 

elastic deformations in measurements gathered this way. When the torque transmitted to the table has 

a positive sign, the elastic deformation will be negative due to compression of the ball screw. Hence, 

the ED  prediction obtained from Eq. ( 7.12) is subtracted rather than adding it on top of the LE  

value computed using Eq. ( 7.2). 

Of the five parameters, the inertia ratio mr  in most cases can be computed analytically, which is 

the approach followed here. The control signal equivalent total inertia value was identified as 

m = 310204.2 −×  V/(rad/sec
2
). The analytically computed inertia for the rotating components is 

rotm = 310858.1 −×  V/(rad/sec
2
). Hence mr  is calculated to be mr = mmrot / = 84.0 . If an inertia 

estimate for the rotating components is not available, it can be calculated with sufficient closeness by 

conducting two identification experiments, one with the motor detached and the second one with the 

motor attached to the ball screw mechanism, and making use of the catalog rated (or analytically 

computed) inertia values for the motor, the coupling, the gears (if there are any), and the ball screw 

 [3]. 

The drive’s flexibility parameters 1p  and 2p  are tuned at extreme values of the motion stroke. 

When the drive is at its home position ( x =0), the axial flexibility and therefore the elastic 

deformation is dominated by 1p  , since 1/1 pKeq ≅ . Hence, this parameter is tuned by minimizing 

the discrepancy between observed and predicted values of the elastic deformation around 0≅x  mm, 

as seen in Figure  7.4(a-b). Once 1p  is determined, 2p  is tuned to match the elastic deformation at the 

end of the motion stroke, i.e. at ≅x 350 mm, where its maximum effect will be observed as seen in 

Figure  7.4(b-c). 
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The tuning of the viscous friction ratio br  is realized by matching the predicted elastic deformation 

with the observed values in the maximum velocity region, as depicted in Figure  7.4(d). Similarly, the 
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Figure  7.4: Tuning of elastic deformation model parameters. 
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Coulomb friction ratio cr  is tuned by matching the overall offset for the elastic deformation in the 

positive and negative directions throughout the motion stroke, as seen in Figure  7.4(e). The tuning of 

the parameters is iterated until the combined ED and LE model accurately predicts the difference 

between the drive’s rotary and linear position readings, as seen in Figure  7.4(f). Using the above 

approach, the ED model parameters for the setup were identified to be 1p = 3
10432.5

−×  rad/V, 

2p = 5
10626.1

−×  1/V, mr =0.84, br =0.8, cr =1.0. In order to stay consistent with the model 

developed earlier in this thesis, the displacement unit has been represented in terms of the ball screw’s 

rotational motion in radians when applying the model in compensation. 

7.4.3 Integration into the Control Scheme 

In this section, the lead error and elastic deformation models are integrated into the control law. 

Although the LE and ED compensation techniques have been implemented in conjunction with rigid 

body based ASMC, these compensation ideas are generic and can also be applied alongside other 

control techniques, like PID or P-PI position-velocity cascade. 

Figure  7.5(a) shows the proposed integration of closed loop elastic deformation compensation into 

the servo control scheme. The original command trajectory rx  is modified to account for the 

anticipated lead errors ( LE ) and elastic deformations ( ED ), and the corrected position command 

crx  is utilized by the servo control law, which is the same as in the feedforward compensation 

scheme in Section  7.3. Again, feedforward friction compensation is applied using the model derived 

in Eq. ( 4.25), to improve the tracking accuracy at motion reversals. The ASMC and friction 

compensation signals are combined together ( fricsmc uuu +=* ) and passed through the notch filters 

which are designed to avoid exciting the 1
st
 and 2

nd
 torsional resonances, as explained in Section  4.4. 

The control law can use either only rotary feedback, or a combination of rotary and linear feedback, 

depending on which ever is available. 

As before, the lead error compensation is realized in feedforward using the commanded position 

values ( rx ) rather than actual measurements ( x ) in Eq. ( 7.2). This avoids creating additional 

feedback loops in the control system. Under controlled laboratory conditions, the lead errors do not 

exhibit a significant variation during the drive’s operation. Hence the feedforward approach was 

found to be successful. On a production machine tool, the lead error model would have to be 

calibrated after the ball screw warms up to its thermal steady state condition. Another option is to use 
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an adaptive lead error compensation technique, which is being investigated in another project at the 

Precision Controls Laboratory. 

The elastic deformation compensation also makes use of the commanded position values rather 

than measurements. Hence, the occurrences of linx , rotx&  and rotx&&  in Eq. ( 7.12) are replaced by rx , 

rx& , and rx&& , respectively. However, the actual value of the control signal *u , computed by the servo 

control law (ASMC) and the feedforward friction compensation blocks, is used directly in the place 

of u  in Eq. ( 7.12). The reasoning behind using the actual control signal rather than an estimate 

computed using only feedforward terms (such as ffwdu = )( rfricrr xuxbxm &&&& ++ ) is that a well 

designed servo controller with integral action will detect and compensate for any dynamic changes 

and external disturbances that occur within its active frequency range (i.e. bandwidth). In other 

words, if the inertia or friction parameters vary or there are cutting forces acting on the drive, the 

feedback control signal will change accordingly to accommodate the new torque demand caused by 

such perturbations. Under the assumption that the rotational dynamics of the drive do not change 

much, the additional torque demand will be accounted to the factors on the load side, which are 

implicitly captured in the *u  term. Hence, using *u  in the elastic deformation estimate provides 

robustness against variations in the table mass and guideway friction, as well as cutting force 

disturbances. Instead of using *u , it is also possible to use the control signal u , right after the notch 

filters. However, since the filters’ attenuation frequencies are very high (445 and 1080 Hz), doing so 

would not change the result significantly.  

A detailed view of the closed-loop elastic deformation estimation scheme is shown in Figure 

 7.5(b). The torque transmitted through the nut ( Tu ) is computed in the top section of the block 

diagram, per Eq. ( 7.11). Note that the *u  term enters the computation with a positive sign, 
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Figure  7.5: Feedback (closed-loop) elastic deformation compensation. 
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establishing a positive feedback loop that is used to estimate the instantaneous elastic deformation. 

This loop needs to be implemented carefully, in order to not jeopardize the stability of the overall 

system. The calculation of Tu  uses the parameters of the rotating components ( mrm , brb , friccur ), 

which are assumed to be known with sufficient closeness. The position dependent flexibility term 

( xpp 21 + ) is constructed at the bottom of the block diagram and multiplied with the transmitted 

torque estimate. Two additional blocks are also incorporated, in order to condition the elastic 

deformation estimate ( ED ) for utilization in trajectory correction. First of all, a low-pass filter fG  is 

introduced, which slows down the ED estimation relative to the position loop servo response. This 

filter is required in order to ensure that the secondary positive feedback loop, established for ED 

estimation, does not jeopardize the stability of the overall system. The low-pass filter also smoothens 

out the ED estimates, which are noisy in nature due to the actual value of the control signal *u  being 

used. By trial and error, it was seen that a 6
th
 order filter in the form: 

6

2

2









π+

π
=

c

c
f

fs

f
G  ( 7.13)

 

resulted in acceptable separation between the elastic deformation correction and position regulation 

loops. The cut-off frequency parameter cf  [Hz] is tuned iteratively using a combination of stability 

analysis techniques and tracking experiments. It was found that using high values for cf  resulted in 

the elastic deformation to be estimated and compensated faster in the control loop. This improved the 

drive’s linear positioning accuracy, but reduced the stability margins for the overall system. In 

extreme cases when cf  was made too high, this led to the instability of the control loop. Using lower 

values for cf , on the other hand, resulted in slower ED estimates and lower tracking accuracy. 

Following trial and error, it was determined that a cut-off frequency of 80 Hz led to both successful 

ED compensation and acceptable stability margins on the ball screw setup. The selection of the filter 

order and cut-off frequency, using Nyquist stability analyses, is explained in detail in Section  7.4.4. 

During experimental implementation of ED compensation, it was found that a deadband filter was 

also necessary in order to prevent the closed loop system from going into limit cycles when stationary 

(zero velocity) position commands were applied. The stability analysis in Section  7.4.4, based on 

linearity assumptions, was not able to predict this limit cycle which occurred only during static 

position commands. It is believed that these limit cycles originate from the interaction between the 

drive’s and controller’s dynamics, and the nonlinear stick-slip friction acting on the ball screw rotary 

components. For the time being, it was found that a deadband filter, which turned the ED 
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compensation off during very small velocity commands, was successful in eliminating these limit 

cycles. The deadband filter used ( DBG  ) has the following expression: 



 <<−

=
otherwise       1

       n       whe0 minmin vxv
G

cr
DB

&

 ( 7.14) 

By trial and error, setting the minv  value to 10 mm/sec was observed to yield satisfactory results. 

Considering the real-time implementation of closed-loop ED compensation shown in Figure  7.5(b), 

the elastic deformation estimate is obtained as: 

))]((*[)/( 21 rfriccrbrmfDBeqTfDB xppurxbrxmruGGKuGGED +++−=⋅= &&&
 ( 7.15) 

The lead error and elastic deformation estimates are then used to correct the trajectory command as, 

LEEDxx rcr −+=
 ( 7.16) 

in order to realize the drive’s instantaneous linear position as originally intended (i.e. rlin xx ≅ ). 

As indicated in Section  7.3, the rigid body based ASMC has been used together with notch filters 

to fulfill the basic servo function. Cases involving only rotary feedback, as well as combined rotary 

and linear feedback, have been investigated. In the latter, linear position measurements were used 

only for disturbance adaptation, which ensured that they would be active only in the low frequency 

range. It was found that incorporating additional linear position feedback helped to eliminate the 

translational errors in steady-state, and improved the drive’s positioning accuracy. In tuning the 

ASMC, the sliding surface bandwidth could be increased up to λ =1200 rad/sec ( ≅ 190 Hz). By 

conducting analytical stability analyses and experimental tracking tests, the other parameters were 

tuned to be sK =0.1 V/(rad/sec) and ρ =25 V/rad, which led to accurate position tracking and 

acceptable stability margins. The computer implementation sampling frequency was 8 kHz. 

7.4.4 Stability Analysis 

Frequency domain stability analysis was conducted to ensure that the closed-loop ED compensation 

does not jeopardize safe operation of the feed drive system. This analysis is also useful for tuning the 

ASMC and the low-pass filter in ED compensation. The analysis is conducted using Nyquist’s 

stability theory, which requires the derivation of the loop transfer function. The analysis here assumes 

that only rotary position measurements are used in the feedback control law. A similar procedure, like 

the one presented in Section  6.5, can also be used to analyze the stability with combined linear and 

rotary feedback. 
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A block-by-block representation of the dynamics that affect the stability of the control system is 

shown in Figure  7.6(a). In the figure, G  represents the drive’s rotary position transfer function (i.e. 

)(/)( susxG rot= ). )(sGN  represents the notch filters. As indicated in Section  4.3, the rigid body 

based ASMC can be rewritten as a PID controller with feedforward velocity and acceleration 

command terms, in the form: 

bmKKKKKbKmK

KdKKKKu

sdispvelacc

refd

t

refirefprefvelrefaccsmc

ˆˆ   ,   ,   ,ˆ   ,ˆ   :where

)()()(

Control (PID) Derivative  Integral  alProportion

0

dFeedforwar
Velocity andon Accelerati

−λ+=ρλ=ρ+λ===

θ−θ+τθ−θ+θ−θ+θ+θ=

++

∫
444444444 3444444444 21

&&
444 3444 21
&&&

 ( 7.17) 

The feedforward terms can be represented in the Laplace domain as )()( 2 sxbsms cr⋅+ . The PID 

terms correspond to ))()(()( sxsxsG rotcrPID −⋅ = ))()(()/( sxsxsKsKK rotcrdip −⋅++ . In Figure 

 7.6(a), the PID and feedforward terms have been represented with the “ASMC Feedforward” and 

“ASMC Feedback” blocks. 

It was shown in Eq. ( 7.5) that the drive’s equivalent axial flexibility varies as a function of the 

drive’s position (i.e. xppK eq 21/1 += ), which brings an inherent nonlinearity to the closed-loop 

system. In order to simplify the analysis, this flexibility is approximated with single nominal value 

( *21 xppF += ), computed at one particular position of the drive ( *x ). To evaluate the effect of 

position dependency, the flexibility values will later be calculated for different axis locations and 

considered in the stability analysis, thus yielding an envelope of Nyquist plots which correspond to 

different axis positions. In Figure  7.6(a), fG  corresponds to the low-pass filter used in the closed-

loop elastic deformation compensation, which was given in Eq. ( 7.13). 

The effects of lead error cancellation and friction compensation enter the control loop in a purely 

feedforward manner, and do not affect the feedback stability. Hence, they are not considered in the 
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Figure  7.6: Derivation of the loop transfer function for Nyquist stability analysis. 
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analysis. Due to its nonlinear nature, the deadband filter has been left out of the analysis as well. This 

is not an overly constraining simplification, because this filter is only used to turn the ED 

compensation off when the position commands are stationary. When this happens, the drive does not 

experience significant elastic deformation, anyway. The remaining terms used to construct the ED 

estimate in Eq. ( 7.15) are represented with the blocks that contain the expressions ( bsrmsr bm +2 ) and 

( fFG ) in Figure  7.6(a). 

By applying block diagram algebra, the schematic in Figure  7.6(a) can be simplified into the form 

in Figure  7.6(b), where the two feedback channels close the loop at the same junction point. The 

trailing feedforward component fbm FGbsrmsr )(1
2 +−  does not affect the stability, as long as the 

low-pass filter fG  has stable poles ( 0>cf ). The dynamics of the two feedback loops can be 

combined into a single transfer function which closes the loop with a negative sign: 

11

2
)(

−−−
++

= GGFG
bsmsG

G
sH Nf

PID

PID
 ( 7.18) 

The dynamics in the forward path of the loop are, 

)()(
2

bsmsGGGsD PIDN ++=
 

( 7.19) 

The loop transfer function )(sL  is obtained by multiplying )(sD  with )(sH : 
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 ( 7.20) 

The stability analysis is conducted by evaluating the Nyquist plots for the loop transfer function, 

calculated at different values of the drive position. In computing the frequency response of )(sL , the 

frequency response of the drive transfer function ( G ) is directly substituted from the experimentally 

measured data. The frequency response of the remaining terms, which are part of the digital control 

law (i.e. NG , PIDG , bsms +2 , and fG ), are computed analytically. The contribution of each term 

is then combined using complex arithmetic. The Nyquist plots generated this way are shown in Figure 

 7.7. 

Figure  7.7(a) investigates the effect of the low-pass filter order, and Figure  7.7(b) the cut-off 

frequency, on the overall system stability. The shaded zones represent the Nyquist curve envelopes 
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obtained by varying the drive’s position, and therefore the axial flexibility, between the extreme 

values of 0 and 350 mm. The upper boundaries of the shaded regions correspond to the case where 

the drive is at its furthest position, which yields the highest value for the axial flexibility parameter 

F . Since this term acts as a positive feedback gain, these cases result in the lowest stability margins. 

The lower boundaries corresponds to the case where x =0 mm, and the middle (nominal) curves are 

obtained by considering the nut location to be at the center of its travel range, which is 175 mm. 

Considering Figure  7.7(a), when no ED compensation is used (i.e. the “Original ASMC” case), the 

adaptive sliding mode controlled system has a gain margin of GM = 2.3 and a phase margin of PM = 

31°. When a 5
th
 order low-pass filter with 80 Hz corner frequency is used to smoothen the ED 

compensation values, the phase margin for the nominal case (i.e. mid drive position) drops to PM = 

27°. However, the situation gets worse when the drive is at its extreme end position (350 mm) in 

which PM becomes only 12°, which is not acceptable for safe machine tool operation. When the low-

pass filter order is increased to six (as represented in Eq. ( 7.13)), the region in the Nyquist plot that 

exhibits a significant position dependent behavior occurs outside the unit circle. Neither the gain, nor 

the phase margins suffer from the ED compensation loop. In fact the PM increases slightly, to 36°. In 

tracking experiments, it was observed that the 6
th 

order filter allowed the ED compensation loop to 

react quickly enough to correct for the drive’s final linear position. When the filter order is increased 

to 8, the stability margins are still retained. However, the tracking results obtained with the 8
th
 order 

filter were visibly worse, due to the slower reaction time in the ED compensation. Hence, 6
th
 order 
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6th Order Filter
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0 1 Re
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Original ASMC
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100 Hz Cut-off

0 1 Re

j

Im(b)

 

Figure  7.7: Variation of loop stability with the choice of ED compensation filter: (a) Effect of 

filter order, (b) Effect of corner frequency. Shaded regions indicate the influence of position 

dependent drive flexibility. 
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filtering was found to be the most adequate for smoothening the ED estimates for real-time 

compensation. 

The effect of filter corner frequency is shown in Figure  7.7(b). In this case, the filter order has been 

set to 6 and the value of cf  is varied between 60 to 100 Hz. When the corner frequency is at 100 Hz, 

the closed-loop system is barely stable for the nominal drive position (PM=4°), and unstable when the 

drive is at its extreme end. This indicates that the ED compensation loop is too fast and that it 

interferes with the basic servo function of the ASMC. The loop stability is recovered when the cut-off 

frequency is decreased to 80 Hz. Using a lower cut-off (60 Hz) does not affect the stability margins, 

as the variations in the Nyquist plot occur outside the unit circle. However, the ED compensation 

becomes more sluggish, resulting in less improvement in the final positioning accuracy of the drive. 

Hence, for the balls screw setup and the given ASMC design, a 6
th 

order low-pass filter with 80 Hz 

cut-off frequency was found to be the most suitable. 

The above stability analysis has focused mainly on the selection of the low-pass filter, which acts 

as a frequency dependent weight to ensure that the ED compensation loop, with positive feedback, 

does not jeopardize the stability of the overall servo system. The same framework can also be used in 

tuning the ASMC parameters ( λ , sK , ρ ), or ensuring that the notch filters in the loop have been 

designed correctly.  

7.5 High Speed Tracking Results 

In order to evaluate the performance of the developed compensation techniques, tracking tests were 

performed on the ball screw setup. A jerk continuous trajectory, similar to the one shown in Figure 

 4.5, was used with 350 mm of displacement, 1000 mm/sec feed rate, 0.5 g acceleration, and 100,000 

mm/sec
3
 jerk transients. Six different cases were investigated. The first set of experiments (Cases 1-3) 

focused on using only rotary feedback for controls, in which the benefit of applying ED compensation 

is the most significant. The second set of tests (Cases 4-6) considered the availability of both rotary 

and linear feedback. These tests investigate whether the proposed ED compensation technique can 

provide a further improvement in the ball screw drive’s linear positioning accuracy, beyond the 

performance that is already achieved by just incorporating direct linear position feedback. To evaluate 

the robustness of each implementation against load changes, the experiments were conducted for both 

nominal table mass, and 130% increased table mass conditions. The controller parameters were left 

unchanged. The mass increase was realized by attaching a 43.5 kg weight to the table. 
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7.5.1 Using only Rotary Feedback 

In Cases 1-3, the control loop was closed using rotary feedback and the linear encoder was used only 

to monitor the table’s true position. The tracking results are shown in Figure  7.8 to Figure  7.13. The 

maximum and RMS values of tracking error are summarized in the first three rows of Table  7.2. The 

RMS error values were computed by considering the movement (i.e. nonzero velocity) portions in the 

command trajectory. The tracking error was evaluated using the original position commands and 

linear encoder measurements ( linr xxe −= ). 

In Case 1, no ED or LE compensation is used. Although the servo controller is successful in tightly 

controlling the rotary motion of the ball screw, the tracking error estimate (which is based on linear 

encoder measurements) indicates the presence of significant elastic deformations and lead errors. 

Considering Figure  7.8, the dominance of elastic deformation is confirmed by the fact that the shape 

of the tracking error profile closely resembles that of the control signal (i.e. actuation torque). The 

maximum and RMS values of linear positioning error are 15.9 and 9.017 um, respectively. When the 

additional weight is added to the table, as see in Figure  7.9, the ED becomes more severe resulting in 

a maximum error of 28.6 um. The RMS value also increases to 15.952 um. 

In Case 2, the open loop compensation strategy outlined in Section  7.3 is applied. This is done in 

order to facilitate a comparison with the closed loop scheme tested later in Case 3. As seen in Figure 

 7.10, the application of feedforward ED and LE compensation reduces the tracking error noticeably, 

from a maximum value of 15.9 down to 5.4 um. However, when the table mass changes, the 

prediction accuracy of the ED model degrades, as can seen at the bottom of Figure  7.11. Due to the 

faulty compensation, and also the use of the incorrect total inertia value in the ASMC law, the 

Table  7.2: Summary of maximum and RMS (root mean square) tracking error values. 

Case 
Nominal Table Mass 130% Increased Table Mass 

Max. Error [um] RMS Error [um] Max. Error [um] RMS Error [um] 

Only Rotary Feedback 

No compensation 

 
15.9 9.017 28.6 15.952 

Open loop compensation 

 
5.4 1.660 15.4 8.718 

Closed-loop compensation 

(proposed) 
4.1 1.494 10.6 2.825 

Combined Rotary and Linear Feedback 

No compensation 

 
6.5 2.332 11.7 3.476 

Only lead error compensation 

 
6.2 1.580 9.8 2.950 

Closed-loop compensation 

(proposed) 
3.8 1.360 8.3 2.572 
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maximum and RMS values of linear tracking error increase to 15.4 and 8.718 um, respectively. 

The sensitivity of the open loop compensation scheme to changes in the load mass is explained by 

the fact that the ED estimate is calculated assuming accurate knowledge of the dynamic parameters 

(i.e. mass, friction, etc.) on the load side, as can be seen in Eq. ( 7.8). As this experiment demonstrates, 

the performance improvement gained with the open loop approach will deteriorate when the table 

mass changes due to part loading or unloading. Similarly, also when there are cutting forces acting on 

the table. 

In Case 3, the closed-loop compensation technique is implemented. Under nominal mass 

conditions (Figure  7.12), this technique performs slightly better than the open loop approach yielding 

maximum and RMS tracking error values of 4.1 um and 1.494 um, respectively. When the table mass 

is increased (Figure  7.13), the closed-loop compensation technique is able to detect this effect by 

monitoring the feedback control signal, and produces a more accurate estimate of the combined 

elastic deformation and lead error profile, as can be seen at the bottom of Figure  7.13. Hence, this 

compensation scheme is more effective and robust, compared to the open loop approach, and the 

linear tracking errors are smaller. The maximum value of the tracking error is 10.6 um (31% less) and 

the RMS value is 2.825 um (68% smaller). 

The results obtained for the increased table mass are in general worse than those obtained for 

nominal mass conditions. This overall degradation is due to the mismatch between the actual and 

modeled values of total inertia, which results in faulty feedforward compensation of inertial forces in 
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Figure  7.8: No ED or LE compensation, only 

rotary feedback, nominal table mass. 

 

Figure  7.9: No ED or LE compensation, only 

rotary feedback, 130% increased table mass. 
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the adaptive sliding mode control law (i.e. the rracc mK θ=θ &&&& ˆ  term in Eq. ( 7.17)). In spite of the 

significant variation on the load side, the closed-loop technique is still fairly successful in estimating 

and correcting for the actual elastic deformation, as seen in Figure  7.13. 
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Figure  7.10: Feedforward (open loop) ED and 

LE compensation, only rotary feedback, 

nominal table mass. 

Figure  7.11: Feedforward (open loop) ED and 

LE compensation, only rotary feedback, 130% 

increased table mass. 
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Figure  7.12: LE and feedback (closed-loop) 

ED compensation, only rotary feedback, 

nominal table mass. 

Figure  7.13: LE and feedback (closed-loop) 

ED compensation, only rotary feedback, 130% 

increased table mass. 
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Among the results obtained in Cases 1-3, it can be inferred that the closed-loop compensation 

strategy yields the best linear positioning accuracy when only rotary feedback is available, and is the 

most robust against changes in the drive parameters. 

7.5.2 Using Combined Rotary and Linear Feedback 

In Cases 4-6, the control loop was closed using both rotary and linear feedback. As explained in 

Section  7.3, rotary position measurements were used as the principal feedback, in order to achieve 

tight control over a wide frequency range. Linear encoder measurements were used only in the 

disturbance adaptation law. This helped to improve the steady-state positioning accuracy of the table. 

This configuration is somewhat similar to the P-PI position-velocity cascade control structure used in 

most machine tools, where the velocity loop is closed using rotary feedback for high stiffness, and the 

position loop is closed using a linear encoder which helps to mitigate the effects of backlash, lead 

errors, and elastic deformations in steady-state. The objective in the proceeding experiments is to 

evaluate whether the developed closed-loop compensation strategy yields a further improvement in 

the positioning accuracy of a ball screw drive, which already has rotational and linear position 

feedback. The experiments were conducted in a similar manner to those in Section  7.5.1. The tracking 

performance was evaluated using the original command positions and linear encoder measurements 

( linr xxe −= ). The results are presented in Figure  7.14 through Figure  7.19. The maximum and RMS 

values of tracking error have been summarized in the last three rows of Table  7.2. 

Linear Tracking Performance

Lead Error & Elastic Deformation

0 0.5 1.0 1.5 2.0
Time [sec]

Axis Position [mm]
0 50 100 150 200 250 300 350

0

10

-10

Measurement

0

10

-10

0

20

-20

T
ra

c
k
in

g
 

E
rr

o
r 

[u
m

]

C
o

n
tr

o
l

S
ig

n
a

l 
[V

]

L
E

 &
 E

D

[u
m

]

max: 6.5 , rms: 2.33 um 

     

0

10

-10

0

10

-10

0

20

-20

T
ra

c
k
in

g
 

E
rr

o
r 

[u
m

]

C
o

n
tr

o
l

S
ig

n
a

l 
[V

]

L
E

 &
 E

D

[u
m

]

Linear Tracking Performance

Lead Error & Elastic Deformation

0 0.5 1.0 1.5 2.0
Time [sec]

Axis Position [mm]
0 50 100 150 200 250 300 350

Measurement

max: 11.7 , rms: 3.48 um 

 

Figure  7.14: No ED or LE compensation, 

combined rotary and linear feedback, nominal 

table mass. 

Figure  7.15: No ED or LE compensation, 

combined rotary and linear feedback, 130% 

increased table mass. 
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In Case 4, neither lead error nor elastic deformation compensation is applied. In this case, the effect 

of elastic deformation is gradually corrected in the feedback loop, using direct linear position 

measurements. This correction is not instantaneous, but quick enough to avoid a visible offset in the 

average value of the tracking error. The lead errors, on the other hand, enter the feedback loop along 

with linear position measurements and are amplified inside the control loop. Although the actual lead 

error amplitude is only around 1.987 um, as reported in Section  7.2.1, the amplitude of fluctuations in 

the tracking error profile caused by the lead errors is around 4-5 um, as a result of the mentioned 

amplification in the feedback loop. For the nominal table mass (Figure  7.14), the maximum and RMS 

values of linear positioning error are 6.5 and 2.332 um, respectively. When the table mass is increased 

by 130% (Figure  7.15), the maximum and RMS values of linear tracking error increase to 11.7 and 

3.476 um, respectively. This confirms the observation that the main reason behind the performance 

degradation is the mismatch between the nominal value of inertia used in the ASMC design, and its 

actual value. This problem can be corrected, if necessary, by allowing for on-line adaptation of the 

mass parameter in the sliding mode control law derived in Section  4.3. Alternatively, short 

identification experiments can also be incorporated into the operation of the drive between long G-

code cycles, in order to update the model parameters  [17]. 

It is interesting to note that the positioning accuracy obtained in this case, using combined linear 

and rotary feedback but no LE or ED compensation, is slightly worse than the accuracy obtained 

using only rotary feedback together with LE and closed-loop ED compensation (Case 3). This holds 
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Figure  7.16: Only LE compensation, combined 

rotary and linear feedback, nominal table 

mass, max. er.: 6.2 um, rms: 1.58 um. 

 

Figure  7.17: Only LE compensation, combined 

rotary and linear feedback, 130% increased 

table mass, max. er.: 9.8 um, rms: 2.95 um. 
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for both nominal and increased table mass cases. However, this observation applies only from the 

standpoint of elastic deformations and lead errors. In the presence of thermal expansion of the ball 

screw, which is usually inevitable, using direct linear feedback will typically yield more accurate 

positioning results.  

In Case 5, only lead error compensation is used. As mentioned earlier, when a linear encoder is 

used for direct position measurement, the lead error enters the feedback loop in the form of a 

sinusoidal output disturbance. If the ball screw’s rotational frequency is in the vicinity of one of the 

peaks in the complementary sensitivity (i.e. measurement noise) transfer function, then the effect of 

lead errors will become amplified. Even if the control system is designed to avoid such closed-loop 

resonances, the feedback control law cannot immediately compensate for rapid fluctuations in the 

axis position caused by lead errors. Subtraction of the anticipated lead error from command trajectory 

is an effective way of mitigating this problem. In order to assess the performance improvement 

realized by closed-loop ED compensation, separately from the contribution of LE cancellation, in this 

intermediate step only LE compensation is applied in conjunction with the dual feedback 

configuration.  

The tracking results are shown in Figure  7.16 and Figure  7.17. In the nominal mass case, the largest 

value of the tracking error drops from 6.5 to 6.2 um, indicating the dominance of elastic deformation 

transients, which are not instantaneously corrected in the control law. The contribution of lead error 

compensation can be observed from the drop in the RMS value of tracking error, from 2.332 to 1.580 

Linear Tracking Performance

Lead Error & Elastic Deformation

0 0.5 1.0 1.5 2.0
Time [sec]

Axis Position [mm]
0 50 100 150 200 250 300 350

0

10

-10

Measurement
Model

0

10

-10

0

20

-20

T
ra

c
k
in

g
 

E
rr

o
r 

[u
m

]

C
o

n
tr

o
l

S
ig

n
a

l 
[V

]

L
E

 &
 E

D

[u
m

]

max: 3.8 , rms: 1.36 um 

     

0

10

-10

0

10

-10

0

20

-20

T
ra

c
k
in

g
 

E
rr

o
r 

[u
m

]

C
o

n
tr

o
l

S
ig

n
a

l 
[V

]

L
E

 &
 E

D

[u
m

]

Linear Tracking Performance

Lead Error & Elastic Deformation

0 0.5 1.0 1.5 2.0
Time [sec]

Axis Position [mm]
0 50 100 150 200 250 300 350

Measurement
Model

max: 8.3 , rms: 2.57 um 

 

Figure  7.18: LE and feedback (closed-loop) 

ED compensation, combined rotary and linear 

feedback, nominal table mass. 

 

Figure  7.19: LE and feedback (closed-loop) 

ED compensation, combined rotary and linear 

feedback, 130% increased table mass. 
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um. As seen in the tracking error profile, the fluctuations due to lead errors are somewhat smaller, 

compared to those in Figure  7.14 (i.e. Case 4). Looking at the bottom of the figure, it is seen that the 

lead error model predicts only the sinusoidal component of the discrepancy between the rotary and 

linear encoder measurements. With the table mass increased, the maximum and RMS values of 

tracking error also increase to 9.8 and 2.950 um, which are better than those reported in Case 4 with 

no LE compensation. 

In the last case (Case 6), both LE and closed-loop ED compensation have been applied together 

with rotary and linear feedback in the servo loop. The experimental tracking results are shown in 

Figure  7.18 and Figure  7.19. Under nominal inertia conditions, this implementation yields the highest 

dynamic accuracy among all other cases. The tracking error does not exceed 3.8 um, which is a 39% 

improvement over the results obtained with only LE compensation. The reduction in the RMS value 

of tracking error is more modest (14%), since this value is influenced primarily by the lead errors 

which were already compensated in Case 5. The overall performance improvement is accounted to 

the closed-loop ED compensation mechanism, which was designed to explicitly estimate and cancel 

out the drive’s elastic deformation, on top of the ASMC’s regular servo function. Considering the 

tracking results obtained for increased table mass, it is seen that the closed-loop ED compensation 

still yields the best results in terms of maximum and RMS tracking error, which were recorded to be 

8.3 and 2.572 um respectively. These results are also the best ones among all of the cases that were 

tested. 

As confirmed in the experimental results, the developed closed-loop ED compensation strategy 

improves the final positioning accuracy of ball screw drives beyond the performance that is already 

achieved by just incorporating additional linear position feedback. As seen in Figure  7.13 and Figure 

 7.19, the elastic deformation and lead error model accurately predicts the discrepancy between the 

drive’s rotary and linear motions, even in the presence of table inertia changes, which validates the 

robustness of the technique. It can also be inferred that the closed-loop ED compensation strategy will 

be robust against machining forces and changes in the linear guideway friction, which would be 

perceived as equivalent external disturbances similar to the effect of inertia variation. These effect 

would be implicitly taken into account in the elastic deformation model. In fact, viscous friction and 

average cutting forces, which are functions of velocity and feed, typically exhibit a slower variation 

compared to inertial forces which depend on acceleration, and are therefore easier to detect and 

account for in the control law and the ED compensation scheme. Currently, the ball screw drive is 

undergoing a retrofit so that the robustness of the ED compensation scheme can be verified in 

machining experiments. 
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7.6 Limitations 

The presented closed-loop ED compensation technique is an efficient and effective approach for 

improving the linear positioning accuracy of ball screw drives, in particular for less expensive feed 

drives with only rotational feedback. Iterative tuning of the ED model is not trivial and requires some 

expert knowledge. Although the scheme is robust against deformations caused by disturbances and 

dynamic parameter changes, the compensation is realized with a small delay due to the response time 

of integral action in the feedback control signal, which compensates for the equivalent additional 

disturbance. Another limitation is the requirement for accurate partial information about the drive 

system, namely the rotational inertia, viscous damping, and Coulomb friction values.  

7.7 Conclusions 

This chapter has presented two techniques to compensate for the elastic deformations in ball screw 

drives. The feedforward approach is simple to implement but suffers in robustness when there are 

parameter variations (or force disturbances) on the load side of the drive. The feedback approach, on 

the other hand, is more robust, even when there are significant variations in the table inertia. 

The overall methodology is based on a simple and intuitive physical model, which captures the 

drive’s elastic deformation characteristics with reasonable accuracy. The parameters of the model 

were identified by matching the predicted discrepancy between the rotary and linear motions of the 

drive mechanism. Due to the utilization of the actual control signal in the closed-loop compensation 

scheme, the effect of external disturbances and load changes are implicitly accounted for and 

compensated. In order to improve the tracking accuracy further, the effect of lead errors has also been 

modeled and incorporated into the compensation scheme. Stability implications of conducting ED 

compensation in closed-loop, which adds a secondary positive feedback loop, were analyzed and 

tuning guidelines established, in order to maintain safe operation of the feed drive system. 

Experimental tracking results indicate that the closed-loop strategy always achieves an improvement 

in the drive’s linear positioning accuracy, both for only rotary feedback, as well as combined rotary 

and linear feedback configurations.  

In the experiments conducted so far, only the effect of load inertia variation was investigated. The 

ball screw is currently being retrofitted with guideway covers, in order to validate the developed 

compensation algorithms in machining tests. 
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Chapter 8 

Conclusions 

8.1 Conclusions 

This thesis has studied new control techniques to achieve higher dynamic accuracy and stiffness in 

high-speed ball screw drives. After detailed identification of the drive’s dynamics, high bandwidth 

and accurate tracking controllers were developed using Adaptive Sliding Mode Control (ASMC) 

theory. New compensation techniques were also developed for the torque ripples and elastic 

deformations. As the first major contribution in this thesis, the 1
st
 axial mode of vibration was 

actively dampened out by including the dynamics of this mode into the controller design. As the 

second major contribution, a robust strategy was developed which compensates for the elastic 

deformations and lead errors, thus resulting in accurate positioning of the table using only rotary 

encoder feedback. 

A precision ball screw was designed and built for this study. Detailed dynamic modeling and 

identification tasks were performed, considering the rigid body dynamics, nonlinear friction, torque 

ripples, axial and torsional vibrations, lead errors, and elastic deformations. Various techniques were 

used in the model building stage, such as Least Squares parameter identification, Finite Element 

modeling, Kalman filtering, and experimental frequency response measurements. Consequently, 

motion control laws capable of achieving high control bandwidth, good tracking accuracy, and decent 

disturbance rejection characteristics, were developed based on the identified dynamics. The 

contributions are summarized as follows: 

As the first attempt in achieving high control bandwidth, an Adaptive Sliding Mode Controller 

(ASMC) was designed based on the rigid body dynamics of the drive. Feedforward friction 

compensation was added to improve the accuracy at velocity reversals. Notch filters were used to 

handle the structural resonances. A bandwidth of 223 Hz was realized in controlling the rotational 

motion of the ball screw, resulting in servo accuracy equivalent to 1.6 um, while the table was 

traveling at 1000mm/sec with 1 g acceleration transients. Also, a simple vibration cancellation 

technique for damping out the 1
st
 torsional mode was developed and successfully implemented. This 

technique results in smoother and more efficient motion, by reducing the magnitude of vibrations 

excited at the 1
st
 torsional mode.  
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The motor and mechanical torque ripples were modeled using Kalman filtering and were 

compensated in conjunction with the ASMC scheme. This was realized at the motion control level, 

instead of the current loop, allowing the methodology to be applied on different types of drives in a 

generic manner. The compensation improved the smoothness and accuracy of the drive's motion, 

especially at low speeds and low control bandwidths. Improvement was still observed at high speeds 

and high control bandwidths, but was less evident due to the control signal assuming larger 

magnitudes and becoming more sensitive to measurement noise. Still using the rotary encoder as the 

principal feedback, the tracking accuracy was further improved to 0.95 um. 

As one of the main contributions in this thesis, a new control algorithm was developed based on 

Adaptive Sliding Mode Control, which actively dampens out the vibrations of the 1
st
 axial mode and 

achieves superior command following accuracy in the drive’s translational motion. It was shown that 

this “mode compensating” ASMC (MC-ASMC) is capable of achieving a significantly higher 

positioning bandwidth and dynamic stiffness, compared to the traditional practice of notch filtering 

the axial vibration inside the control loop. The MC-ASMC can be practically implemented in real-

time using rotary and linear position measurements, which are available on most drive systems. Since 

the state variables are only rotary and linear position and velocity, there is no need to construct an 

elaborate state observer. This decreases the computational load and makes the control law favorable 

for real-time implementation. In this scheme, lead errors which originate from imperfections of the 

ball screw, were also modeled and compensated in feedforward. 

After tuning the MC-ASMC, an experimental command following bandwidth of 208 Hz was 

achieved, which is several-fold higher than typical positioning bandwidths (30-50 Hz) realized on ball 

screw drives. Through impact hammer tests, it was shown that the MC-ASMC helps to improve the 

dynamic stiffness around the axial mode, which also contributes to making the drive system more 

immune against chatter vibrations. Stability analysis was performed, demonstrating decent phase and 

gain margins (2.14, 30°), and a linear tracking accuracy of 2.6 um was obtained at 1000 mm/sec feed 

and 0.5 g accelerations. The stability analysis, which was verified with further tracking experiments, 

can be used in parameter selection for the MC-ASMC. 

Another major contribution in this thesis was the development of a novel feedback control strategy 

for compensating for the elastic deformations (ED) in ball screw drives. Due to the utilization of the 

real-time control signal in ED estimation, the compensation technique is robust against the effect of 

external disturbances and load side parameter variations. The proposed strategy establishes a 

secondary positive feedback loop, similar to the positive “joint torque feedback” technique known in 

the literature. Stability issues are addressed by incorporating a high-order low-pass and a deadband 
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filter in the ED compensation loop. Nyquist stability analysis was performed to predict the stability of 

the overall system. This control technique also demonstrates decent gain and phase margins while 

achieving a high linear positioning accuracy of 4.1 um at 1000 mm/sec feed and 0.5 g acceleration. 

This performance was obtained with only rotary encoder feedback in the control law, making the 

developed ED compensation algorithm highly favorable for low-cost CNC machines that are not 

equipped with linear scales. This compensation technique also resulted in an improvement in the 

dynamic accuracy when it was implemented in conjunction with both rotary and linear feedback 

devices. 

8.2 Future Research Conclusions 

The developed control algorithms can be implemented independently on different drives of a multi-

axis machine. By improving the individual tracking accuracy in each axis, it can be expected that the 

overall contouring accuracy will also improve. Further experiments to verify this on a multi-axis CNC 

machine tool are considered as future work. 

In addition, the control algorithms still need to be validated in machining experiments. Preparations 

for such experiments are currently underway, which require the retrofit to the ball screw drive with 

guideway covers so that it can be used in cutting operations. 

A stability analysis was developed for the MC-ASMC. However, the parameter selection for this 

controller is still not a trivial task. New tuning guidelines need to be investigated, in order to make the 

MC-ASMC more practical for safe implementation on industrial machines. 

In the MC-ASMC and closed-loop ED compensation strategies, a simplified lumped model was 

used to describe the axial vibrations and drive flexibility. This model can be improved further by 

complementing it with Finite Element analyses and additional frequency response measurements. 

This would allow the representation of additional modes, as they reflect on the axial dynamics of the 

drive, to be considered and compensated in the control law. Although compensation at high 

frequencies beyond 500 Hz appears impractical on the current setup, as better motors and amplifiers 

that deliver higher actuation bandwidths become available, achieving higher positioning bandwidth 

will become even more relevant, particularly in mechanical actuation systems such as ball screw 

drives. 
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Appendix A: 

Least Squares Identification of Rigid Body Dynamics 

This appendix details the method for identification of the drive’s rigid body dynamics using Least 

Squares technique, considering inertia, viscous damping, and Coulomb friction effects. 

The dynamics of the drive can be expressed as: 

][
1

)( dT
BJs

s −τ
+

=ω
 

(A.1) 

as in Eq. ( 3.4), which can be re-expressed as (Eq. ( 3.6)): 
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in terms of axis position. 

Above, ω  is the angular velocity of the ball screw. J  is the motor-equivalent total rotary inertia, 

B  is the viscous friction coefficient, and τ  is the motor torque. The disturbance torque ( dT ) which is 

assumed to be mainly due to the Coulomb friction (when the machine is not cutting) is considered in 

the form of: 
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The ball screw rotational-to-translational motion conversion ratio is gr  = )2/( πph =3.1831×10
-3

 

m/rad. The motor torque can be expressed as )()( suKKs ta=τ , where )(su  is the amplifier input. 

aK  and tK  are the amplifier gain and the motor torque constants, with catalogue rated values of 

1.7193 A/V and 0.57 Nm/A respectively.  

The disturbance torque, dT , can be expressed as a control signal equivalent disturbances: 

tad KKsTsd /)()( =
 

 (A.4) 

In order to simplify the formulation, inertia and viscous friction parameters can be represented by 

two other parameters, JKKsK tav /)( =  and JBspv /)( −= , leading to the following expression for 

the drive’s angular velocity in terms of the control signal: 
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Correspondingly, the axis position can be written as, 
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Selecting the axis position and velocity as two states, Eq. (A.6) can be transformed into state space 

form as: 
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As the control signal is generated through a digital-to-analog convertor using a sampling frequency 

of sT , the velocity expression in Eq. (A.5) can be expressed in discrete-time considering a zero order 

hold at the input  [6] as: 

)]()([)( kdku
pz

K
k

vd

vd −
−

=ω      , where )1( svTp

v

v
vd e

p

K
K −

−
=  and svTp

vd ep =  (A.8) 

Above, vdK  and vdp  are the gain and pole of the discrete-time transfer function, z  is the discrete-

time forward shift operator , and k  is the sample counter. 

Using the above definitions, the discrete-time state space form of Eq. (A.7) is obtained as: 
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In order to include the effect of Coulomb friction into the rigid body dynamic identification, the 

following model has been assumed to represent this friction: 
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where +
CT  and −

CT  are the Coulomb friction parameters for positive and negative directions of 

motion. Their control signal equivalent values will be taCf KKTd /
++ =  and taCf KKTd /

−− = . 

For joint identification of the inertia, viscous damping, and Coulomb friction parameters, the 

friction model in Eq. (A.10) is combined with the rigid body model in Eq. (A.8). In order to avoid 

oscillations in the friction model, due to noise in the velocity estimate when the axis is at rest, a sign 

function is defined with a dead band velocity dΩ  that is just above the velocity measurement noise 

floor , 









Ω−<ω−

Ω>ω+

Ω≤ω

=ωγ

d

d

d

for

for

for

1

1

0

)(  

(A.11) 

Consequently, the friction model scaled to the level of the control signal can be expressed as: 
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Now, the rigid body model in Eq. (A.8) can be combined with the control signal equivalent friction 

model in Eq. (A.12), resulting in: 
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The above equation can be written in parameter-regressor form as: 
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Considering the availability of the regressor terms and defining the input vector 

Tkuuu )]1(,...),2(),1([ −=u , the velocity vector Tk)](,...),2(),2([ ωωω=ω , and parameter vector 
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T
fvdfvdvdvd dKdKKp ][ −+=θ , the parameter estimation is cast as a Least Squares (LS) 

problem where the estimation output vector (Y ) is: 
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Above, E  is the vector of output prediction errors. In the LS problem above, the objective is to find 

the optimal set of parameters, θ̂ in order to minimize the sum of the squares of output prediction 

errors, 
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which is solved as  [44]: 
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Referring to the definition of vdK  and vdp  in (A.8), and noting that JKKsK tav /)( =  

and JBsPv /)( −= , the estimated inertia, viscous damping, and Coulomb friction parameters can be 

determined as: 
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)2(ˆ/)3(ˆ θθtaftaC KKdKKT == ++  (A.21) 

)2(ˆ/)4(ˆ θθtaftaC KKdKKT == −−
 (A.22) 
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Appendix B: 

Kalman Filter Design 

This appendix details the design of a Kalman filter for disturbance observation in the drive, which is 

used in identification of friction and torque ripples in  Chapter 3 and  Chapter 5. The Kalman filter 

design here is based on the methodology applied in  [17]. The filtering schematic was presented earlier 

in  Chapter 3, and is shown here in Figure B.1. The ball screw drive motion is under control while the 

Kalman filter estimates the disturbance using the input torque and measured rotational position. 

The Kalman filter is an observer designed to estimate the states of a dynamic system, where the 

system inputs and the measurements are corrupted by noise with known statistical properties 

(variances). The dynamic system is assumed to have a certain model with known parameters. 

Selecting the axis rotational displacement and velocity as two states, the following continuous state 

space model is assumed to hold for the ball screw drive dynamics, which is similar to Eq. (A.9) : 
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where JKKsK tav /)( =  and JBsPv /)( −= . 

Considering the sampling frequency of sT  (0.125 msec in the Kalman filter design), the discrete-

time form of the above state space model can be written as: 
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Figure B.1: Kalman filtering block diagram. 
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In order to design the Kalman filter, variances of the input torque and position measurement noise 

need to be estimated. The input torque command (control signal or u ) is generated by a 16-bit 

Digital-to-Analog convertor with ± 10 V output range. Hence, the resolution is 

416 3.052x10)2/20( −==δu  V. The difference ( u~ ) between the ideal input u  and DAC output *u , 

can assume values between uδ−  and uδ+ , and is considered to have a uniform distribution. 

Assuming a zero mean value for u~ , ( 0}~{ =uE ), its variance can be calculated as: 
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(B.3) 

High resolution rotary encoders instrumented on the setup (Encoder 1 and 2) generate 5000 sine 

waves per revolution, which can be reliably interpolated 400 times in the data acquisition system. 

Using Encoder 2 for the Kalman filtering, a resolution of 

6103.142
4005000

][2 −×=
×

π
=δθ

rad
 rad (B.4) 

is achieved, which is equivalent to 10 nm of table linear motion. 

Similar to u~ , θ
~

 is the difference between the actual position ( θ ) and the measured position ( mθ ),  

θ−θ=θ m
~

 (B.5) 

Assuming θ
~

 to have a uniform distribution between 2/δθ−  and 2/δθ , where 6
103.142

−×=δθ  rad 

is the encoder resolution, the position measurement variance can be expressed as, 
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The disturbance can be added as a 3
rd

 variable into the model in B.2, enabling the Kalman filter to 

estimate it as a dynamic state. The disturbance state ( )(kd ) is assumed to consist of a piecewise 

constant signal with a perturbation of dw  as follows, 

)()()1( kwkdkd d+=+  [V] (B.7) 

The disturbance perturbation variance, }var{ dwd wR = , will be used as a tuning parameter in the 

design, which determines the speed and aggressiveness of the Kalman filter. Incorporating Eq. (B.7) 
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into the state space model in Eq. (B.2), and considering u~ , the difference between the ideal u  and 

actual DAC output *u , the following augmented state-space model is obtained: 
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(B.8) 

Considering the measurement noise of the rotary encoder, θ−θ=θ m
~

, the measured output, mθ  

can be expressed in terms of the states as, 
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In the above state space model, A  and B  are the augmented system and input matrices. 

W determines how the process noise vector [ ]T)(~)(~ kwku d  affects the state transition. C  is the 

output matrix and V relates the measurement noise θ
~

 to the measured angular position mθ . The 

numerical values of A  and B , in the above state space model can be obtained by substituting the 

dynamic parameters identified in  Chapter 3 ( J =2.1×10
-3
 kgm

2
, B =1.015 kgm

2
/sec), and rated values 

for the amplifier gain and motor constant ( aK = 1.7193 A/V, tK = 0.57 Nm/A) into Eq. (B.1), and 

following the rest of the formulation in this appendix. Hence, A  and B are obtained as: 
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The Kalman filter estimates the angular position, velocity, and disturbance in the following form, 
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The filter design requires obtaining the constant observer gain obsK  through the below off-line 

iteration until the individual entries of obsK  converge to steady-state values  [30], 
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where },{dia ~ wdu RRg=wR and  ][ ~
θ

= RvR . 

In the above equations, )1|1( −− kkP  is the covariance of state estimation error for iteration 1−k . 

)1|( −kkP is its prediction to the next iteration based on knowledge of plant dynamics ( A ) and 

process input noise (W  and wR ). The gain obsK  is then computed to yield an optimal state estimate, 

considering the effect of measurement noise ( vR ). Finally, using the new value of the state 

estimation gain obsK , the state estimation error covariance is updated to )|( kkP  for the next 

iteration. 

In the iterative calculation process, )|( kkP  is initially set to a large value (e.g. IP α=)1|1( ) 

where α  is a large number ( 12
10 ). obsK  is initially set to zero and is obtained after the convergence 

of iterative algorithm, usually within the first 50 or 100 iterations. The steady-state value of obsK  is 

then used in Eq. (B.11) to obtain the state estimates T)](ˆ)(ˆ)(ˆ[ kdkkx ω . 

The disturbance perturbation variance ( wdR ) is tuned in tracking tests where the estimated 

disturbance d̂  is desired to approach the constant steady-state value of Coulomb friction reasonably 

quickly, without too much oscillation. At the same time, minimal noise and oscillation level is desired 

in the d̂  estimate. Higher values of wdR  lead to a faster estimate, but also higher sensitivity to noise. 

By trial and error, wdR  was tuned to be: 

27 V1077 −×=wdR  (B.13) 

resulting in reasonably fast estimation and also acceptable noise level. 

Considering the covariance values, 






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
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×

×
==

−7

-9

~

10770

0107.761
},{ wdu RRdiagwR  and 

13
~ 108.2247][

−
θ

×== RvR  
(B.14) 

after iterating Eq. (B.12) using the state space matrices in Eq. (B.8) and (B.9), the state estimation 

gain was obtained as: 
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
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



×

×=

3

3

102.30976

100.963055

   0.430486     

obsK  

(B.15) 

Hence, observer poles ( )]([eig ACKI obs− ) with the following natural frequency and damping ratio 

values were obtained, which determine the “activeness” of the designed Kalman filter: 

Hz 3583,2,1 =p , 5.02,1 =ζ , 13 =ζ . 
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Appendix C: 

Finite Element Analysis of the Ball Screw Drive 

The layout of the ANSYS model is shown in Figure C.1. The FE modeling was briefly described in 

Section  3.4.1. 

Boundary condition for the axially free end

Encoder 1 Ball screw Table inertia Encoder 2 Coupling Motor

Boundary condition for the axially fixed end
 

Figure C.1: Layout of FE model in ANSYS. 

The element used for modeling of the ball screw, motor, coupling, bearing rings, and the disk 

representing the table inertia is a pipe element, (“PIPE16”), as illustrated in Figure C.2. The material 

selected for the model is steel with 210 MPa Young’s modulus, 0.3 Poisson’s ratio, and 7850 kg/m
3
 

density. The inner diameter for the elements was set to zero. 

More details about the finite element model including the ball screw sections, inertias, and stiffness 

parameters are presented in Table C.1 through Table C.3. The axial position of the connection points, 

referenced from the free (left hand) end of the ball screw according to Figure C.1, are summarized in 

Table C.3. These points denote the connections between the table and the ball screw, the motor and 

the coupling, and the coupling and the ball screw. 

 

Figure C.2: ANSYS “PIPE16” element  [4], source: ANSYS 2004. 
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The axial positions of Encoders 1, 2, and 3, illustrated in Figure C.1, are respectively 89, 974, 1360 

mm from the free end of the ball screw. The torsional stiffness of the nut is calculated based on the 

catalogue value of its axial stiffness, as explained in the following. Considering the pitch ( p = 20 

mm) of the ball screw and the radial distance of rolling balls with respect to the ball screw central axis 

( r  = 0.0105 m), the simplified free body diagram shown in Figure C.3(a) is used to represent the ball 

screw nut contact.  

 

Table C.1: Details of the finite element model. 

Section Axial position 

(begins at) 

 [mm] 

Axial 

position 

(ends at) 

[mm] 

Outside 

diam. 

[mm] 

Inside 

diam. 

[mm] 

Part Boundary 

condition 

1 0 15 15 0 Ball screw  

2 15 25 15 0 Ball screw Y and Z fixed 

3 25 1035 20 0 Ball screw  

4 1035 1045 15 0 Ball screw  

5 1045 1060 19.5 0 Ball screw  

6 1060 1075 15 0 Ball screw X, Y, Z, Ry, 

and Rz fixed 

7 1075 1100 15 0 Ball screw  

8 1100 1120 12 0 Ball screw  

9 1130.6 1380.6 46.6 0 Motor X, Y, Z, Ry, 
and Rz fixed 

10 1097 1117 65 0 Coupling (left 

part) 

X, Y, Z, Ry, 

and Rz fixed 

11 1120 1140 65 0 Coupling (right 

part) 

X, Y, Z, Ry, 

and Rz fixed 

12 510 530 37 0 Table inertia 
(represented by a 

disk) 

 

13 1060 1075 22 15 Right bearing 
inertia 

(represented by a 

ring) 

 

14 15 25 23 15 Left bearing 

inertia 

(represented by a 
ring) 
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The ball contact force, bF , is the force transmitted by a single rolling ball. This force can be 

decomposed to three components in the axial ( baF ), tangential ( btF ), and radial ( brF ) directions in a 

cylindrical coordinate aligned with the ball screw axis. Assuming a well designed ball screw, the 

radial component, brF , is negligible  [62] . As a result, the 3-dimensional free body diagram of the 

rolling ball is simplified to a planar diagram, shown in Figure C.3(a). Assuming n  number of balls in 

contact, the resultant axial force is baa nFF =  and the resultant transmitted torque is rnFbt=τ . 

Figure C.3(b) shows an exaggerated deformation of a single ball in the nut. Similar to the 

decomposition of forces in the nut, the ball deformation ( d∆ ) has two components of axial 

deformation ( ad∆ ) and tangential deformation ( td∆ ). The tangential deformation results in an 

angular displacement between the ball screw and nut with the amount 
r

dt∆
=ψ∆  [rad]. 

Table C.2: Inertia/stiffness parameters for the finite element model. 

Parameters: Values: 

Coupling stiffness 39543 Nm/rad 

Nut torsional stiffness (the stiffness for the torsional spring 

used to connect the ball screw to the disk representing the 

table) – the value is calculated from the axial stiffness of 

the nut given in its catalogue (137×10
6
 N/m) 

15104 Nm/rad 

Inertia of the motor rotor  9.1×10
-4
 kgm

2
 

Full equivalent inertia of the table 3.3916×10
-4
 kgm

2
 

 
Table C.3: Connection points. 

Connection between Axial position [mm] from the free end of the ball screw 

Table and the ball screw 520 for the table-at-the-middle position 

670 for the table-at-right position 

370 for the table-at-left position 

Coupling and ball screw 1097 

Motor and coupling 1140 
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The axial stiffness of the ball screw nut may be written as 
a

ba

a

a
a

d

nF

d

F
k

∆
=

∆
= , where 

θ= cosbba FF  and θ∆=∆ cosdda  as seen in Figure C.3. Substituting the expressions for baF  and 

ad∆  yields,  

d

nF

d

F
k bb

a
∆

=
θ∆

θ
=

cos

cos
 

(C.1) 

The torsional stiffness of ball screw nut may be defined as 
ψ∆

τ
=tk . As shown in Figure C.3, 

θ= sinbbt FF  and θ∆=∆ sinddt . Substituting τ , ψ∆ , btF , and td∆ , 

=
∆

=
ψ∆

τ
=

)(
r

d

rnF
k

t

bt
t  

=
θ∆ sin

2

d

rnFbt =
θ∆

θ

sin

sin 2

d

rnFb

d

rnFb

∆

2

 

(C.2) 

Using Eq. (C.1) and (C.2), the torsional stiffness can be expressed as 

2rKk at =
 

(C.3) 

Using the catalogue values of aK  (137×10
6
 N/m) and r  (0.0105 m), the torsional stiffness can be 

calculated as 

151040105.010137 26 =××=tk  Nm/rad (C.4) 

This value is used for the nut torsional stiffness in the FE modeling. 
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Figure C.3: Nut planar schematic: (a) Force components, (b) Deformation. 


