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Summary

High speed and high accuracy motion systems are essential elements in advanced

manufacturing systems. Demands on higher productivity and product quality call for

development of high performance positioning devices and accompanying robust con-

trol algorithms. The increasing complexity of precision motion systems coupled with

the increasing demands in closed loop performance specifications necessitates the use

of more complex and sophisticated controllers. It is desirable that these controllers are

able to perform well under significant uncertainties in its operating environment, be

able to compensate for system failures (within limits) without external interventions,

and be sufficiently adaptable to deal with unexpected situations, new control tasks or

changes in control objectives. Much benefits could be gained by combining intelligent

control with the well-established tools in control theory. In this perspective, con-

tributions in the areas of precision motion instrumentation, control and diagnostics

are proposed in this thesis, with the aim of improving the performance of precision

motion systems.

Firstly, an intelligent instrumentation methodology is developed for the purpose

of adaptive online correction and interpolation of quadrature encoder signals, suitable

for application to precision motion systems. Methods reported in the literature for

the correction and interpolation of the encoder signals generally require explicit high

precision analog-to-digital-converters (ADCs) in the control system, and a high speed

digital signal processor (DSP) to compute the electrical angle to the required resolu-

tion. Therefore, they are not applicable to the typical controller with only a digital

incremental encoder interface. Furthermore, it is cumbersome to integrate sinusoid

XIII



correction with interpolation since the correction parameters must be calibrated of-

fline. In this work, the radial basis functions neural network (RBFNN) is employed

to carry out concurrently the correction and interpolation of encoder signals in real-

time. Although the table look-up method may give similar results as the proposed

approach, there is much savings in memory storage requirements using the proposed

approach.

The following part of the thesis presents a intelligent control methodology for

precision motion systems, based on a mixed PID/adaptive algorithm. A second-

order linear dominant model is considered with an unmodeled part of dynamics that

is possibly nonlinear and time-varying. The PID part of the controller is designed

to stabilize the dominant model. The adaptive part of the controller is used to

compensate for the deviation of the system characteristics from the dominant linear

model to achieve performance enhancement. The advantage of the proposed controller

is that it can cope with strong nonlinearities in the system while still using the

PID control structure which is well-known to many control engineers. The proposed

robust control scheme guarantees the boundedness of the system states and parameter

estimation.

Two approaches to monitor and suppress mechanical vibrations in precision mo-

tion systems are presented next. The first approach utilizes an adaptive notch filter

to identify the resonant frequencies and suppress any signal transmission into the

system at these frequencies. The second approach uses a real-time analyzer to de-

tect excessive vibration based on which appropriate actions can be taken, say to

provide a warning or corrective action. This second approach can be implemented

independently of the control system and as such can be applied to existing equip-

ment without modification of the normal mode of operation. To expand the scope of

precision motion control, the Internet is utilized for remote vibration monitoring of

precision motion systems.

Simulation and experimental results are provided to highlight the effectiveness of

XIV



the proposed approaches.
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Chapter 1

Introduction

Precision motion systems play an important role in many industries. Some of these

industries include the microelectronics manufacturing, aerospace, biomedical and the

storage media. The role of precision motion systems in the wide range of industries

imposes challenging demands on precision motion systems as a result of the products’

shrinking sizes, tighter specifications and very large production volumes of the final

products. Furthermore, multi-functional products and product downsizing, which

provides space-saving features, are expected in the modern world. The tough demands

on the final products translates to different high precision and high speed requirements

of precision motion systems in all the fabrication, inspection, assembly, and handling

processes.

1.1 Evolution of Precision Motion Systems

The historical roots of precision engineering are arguably in the field of horology, the

development of chronometers, watches and optics, e.g., the manufacture of mirrors

and lenses for telescopes and microscopes. Major contributions were made to the
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development of high precision machine tools and instruments in the late 1800s and

early 1900s by ruling engines. Scales, reticules and spectrographic diffraction gratings

were manufactured with increasing precision and resolution. Today, ultra-precision

machine tools under computer control can position the tool relative to the workpiece

to a resolution and positioning accuracy in the order better than sub-micrometers.

It must be noted that achievable ‘machining’ accuracy includes the use of not only

machine tools and abrasive techniques, but also energy beam processes such as ion

beam and electron beam machining, as well as scanning probe systems for surface

measurement and pick-and-place type of manipulation.

The microprocessor began to proliferate into many motion applications in the late

1970s. The main technology force for all precision motors is the continued evolution of

both logic and power electronics. New power electronic devices joined microprocessors

and other logic integrated chips (ICs) in providing more efficient and higher power

devices as represented by the bipolar transistor in the early 1970s and the metal oxide

semiconductor field-effect transistor (MOSFET) at the end of the 1970s. Packaging

these devices into a step or servomotor drive moved in various directions. The personal

computer (PC) board with integrated heat sinks for the power devices was used

extensively. On-board logic circuitry became available for servodrives or amplifiers

to control motor commutation, current, and velocity control. The servo boards were

analog with output voltage signals from the generators as a function of speed providing

the precision velocity signal measurements for use in the servosystem.

One main application area for precision motion systems is in the precision manu-

facturing industry. One such industry is the microelectronics manufacturing industry

Manufacturing tolerances which are better than one part in 105 are now achievable.
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Much credit must be given to the advancements in terms of research and development

efforts dedicated to precision motion systems. Ultra-precision manufacture is poised

to progress further and to enter the nanometer scale regime, i.e., nanotechnology.

Increasing packing density on integrated circuits and sustained breakthrough in min-

imum feature dimensions on semiconductor set the pace in the electronics industry.

Emerging technologies, such as micro-electro-mechanical Systems (MEMS) and com-

puter numerical control (CNC) systems, expand further the scope of miniaturization

and integration of electrical and mechanical components. However, design rules for

precision motion systems with millimeter or sub-millimeter resolution do not apply

for the micron and sub-micron range. Resolution in the sub-micron or lower realm

cannot always be increased by simple means such as reducing the pitch of a lead-

screw or increasing the gear ratio of a motor/gearhead unit. Stiction/friction, play,

backlash, tilt, windup and temperature effects and many other disturbances will also

limit accuracy and resolution. Thus, sub-micron positioning systems require a great

deal of attention in design, manufacturing and selection of materials.

In view of the above motivation, the many control challenges ahead for precision

motion systems are to achieve higher speed, higher precision, and yet maintain robust

performance, in the face of several performance limitations such as system nonlinear-

ities, system uncertainties and system dynamic constraints. With increased speed in

manufacturing, a higher production rate can be achieved. On the other hand, prod-

ucts with better quality can be manufactured with increased precision. Maintaining

robust performance assures consistent product quality. But, it is difficult to maintain,

let alone increase precision when speed is increased.

In these recent years, several achievements in precision motion control are made

3



possible by key technological advances taking place in the industry. Today’s elec-

tronic control is becoming ever more proficient as new microprocessors, DSPs, and

similar electronic devices supply the control platform with tremendous computing and

process timing power. More powerful processors are allows more advanced control al-

gorithm to be used. Advances in actuators, such as direct drive motors, linear motors,

and brushless motors are reducing traditional difficulties such as backlash, friction,

and parasitic system dynamics. The linear motor is hailed as the motion device of the

next generation because of its superior performance compared to conventional linear

positioning devices such as ball-screw drives. The increasing widespread industrial

applications of linear motor in various semiconductor processes, precision metrology

and miniature system assembly are self-evident testimonies of the effectiveness of lin-

ear motor in addressing the high requirements associated with these application areas.

Advances is power semiconductors are allowing these new actuators to be driven in a

more power-efficient and cost-effective fashion. Advances in bearing systems, partic-

ularly for low load situations such as fluid and magnetic bearings, are also reducing

the effects of friction and stiction. Promising new materials such as composites and

ceramics offer potential benefits in mechanical properties such as lowering mass, im-

proving damping, and reduction in thermal effects. Finally, advances in sensors, due

primarily to new techniques in optics, electronics, and signal processing, are allowing

designers to get better feedback measurements.

Industry has favored classical controllers such as proportional-integrator-derivative

(PID) controller due to their structural simplicity and well-known characteristics. As

performance requirements become more stringent, conventional controllers often fail

because of system uncertainties, the presence of high-order dynamics and nonlineari-

4



ties such as friction (i.e., Coulomb, viscous and stiction) and actuator saturation.

1.2 Intelligent Precision Motion Systems

The increasing complexity of precision motion systems coupled with the increasing

demands in closed loop performance specifications necessitates the use of more com-

plex and sophisticated controllers. Yet as precision motion systems become more

complex, uncertainty in modeling increases. The challenges that arise in the control

of increasing complex precision motion systems can be broadly classified under three

categories:

(1) Computational Complexity.([1]) With the increasing scope of precision mo-

tion control systems and the resulting rush toward more sophisticated computational

architectures, more computing power at a higher speed is greatly desired in order to

implement the complex control algorithms. The development of higher power DSPs

and processors need to keep up with the pace of industry’s demands.

(2) Nonlinearity. ([2]-[3]) Even in a purely deterministic context, the presence of

nonlinearities in a dynamical system makes the control problem complex. Current

research efforts in nonlinear control theory focus on geometric methods and attempt

to extend well-known results in linear control theory to the nonlinear domain. De-

spite the great interest in this area, many fundamental theoretical issues related to

nonlinear control are currently not yet well understood. What is more relevant for the

purposes here is that many of the theoretical results available cannot be directly used

for practical control in precision motion systems. Besides these, the model structure

of complex precision motion systems, being nonlinear stochastic and time varying,
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may not be amenable to simple linear time-invariant modeling.

(3) Environmental Uncertainty. ([4]-[5]) Practical systems encountered in the

industries raise questions related to control when some part of the information essen-

tial for any mathematical analysis is unknown. In many situations, precision motion

systems are subject to large unpredictable environmental disturbances.

The design of controllers, which perform satisfactorily in high-dimensional deci-

sion spaces in the presence of nonlinearity under various conditions of uncertainty, is

a formidable problem. Pattern recognition, learning, adaptive control, robust control,

and knowledge-based systems are applicable in relatively disjoint contexts. Although

great advances have been made in each of these areas, the settings in which each

can be applied are too limited to connote intelligence. Hence, in a recent proposal,

Narendra and Koditschek [5] adopted the perspective that when such advanced ca-

pabilities (which are applicable to relatively narrow domains) are joined together in

special ways, they can result in complex systems that respond appropriately to very

challenging environments and even in situations for which they have not been ex-

plicitly designed. It is in this prespective that contributions are made in this thesis

to combine intelligent control with the well-established tools in control theory (i.e.,

linear and nonlinear control theory, optimal control and game theory, and stochastic,

adaptive, and learning control theories).

It is desirable to design new intelligent controllers that perform well under sig-

nificant uncertainties in the system and in the environment in which it operates, be

able to compensate for system failures (within limits) without external interventions,

and be sufficiently adaptable to deal with unexpected situations, new control tasks

or changes in control objectives. Intelligent control achieves automation via the em-
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ulation of biological intelligence. It either seeks to replace a human who performs a

control task (e.g., a chemical process operator), or it borrows ideas from how biologi-

cal systems solve problems and applies them to the solution of control problems (e.g.,

the use of neural networks for control).

There are many instances whereby the combination of intelligent control with the

well-established tools in control theory will yield good results. For example, in a

dynamical system whose characteristics are linear and are known exactly, the control

input can be determined by the application of well-developed control techniques.

Even at this level, when the characteristics are nonlinear, prescriptive methods for

generating the control input are not readily available. When the dynamical system is

linear but parametric uncertainty exists, adaptive control is a natural choice. Because

the parameters vary with time, the controller parameters tune themselves but have no

long-term memory. Pattern recognition together with adaptive control can be used

for this purpose.

By common practice, many practical precision motion systems are first regulated

or manually tuned by human operators before automatic controllers are installed.

The plant operator has few apparent problems with plant nonlinearities or adjusting

to slow parametric changes in the plant or with satisfying a set of complex static and

dynamic process constraints. The human operator is able to respond to complex sets

of observations and constraints, and to satisfy multiple subjective-based performance

criteria. However, the control actions of the human are difficult to analyze as they

are variable and subjective, prone to error, inconsistent and unreliable. In the case of

safety critical and hazardous situations, such human actions may be potentially dan-

gerous. It is desirable to incorporate the positive intelligent and creative attributes of
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human controllers, whilst avoiding the elements of inconsistency, unreliability, tem-

poral instability, fatigue and other negative attributes associated with the human

conditions.

In view of the above observations, control schemes that use different combinations

of the well-developed control theory and artificial intelligence are developed in this

thesis to develop precision motion control and diagnostic methodologies to achieve

high performance (in terms of tracking accuracy, robustness, and disturbance and

noise rejection). Particularly, the contributions are in the areas of intelligent instru-

mentation, control and monitoring. These areas will be highlighted below.

1.2.1 Instrumentation

To realize precision motion control, a precise measurement of the signals generated by

the position encoders is essential, since it will determine the final achievable resolu-

tion, and hence accuracy of the motion control application. To increase the precision

of the overall system, one approach is to increase the resolution of the encoders. How-

ever, this measurement precision is limited by the manufacturing technology of the

encoders. To date, the scale grating on linear optical encoders can be manufactured

to less than four micrometers in pitch, but clearly, further reduction in pitch will

be greatly constrained by physical considerations. This implies an optical resolution

of one micrometer can be currently achievable. Interpolation using soft techniques

provides an interesting possibility to further improve on the encoder resolution, by

processing the analog encoder signals online to derive the small intermediate positions.

The interpolation approaches in the literacture generally require explicit high pre-

cision ADCs in the control system, and a high speed DSP to compute the electrical
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angle to the required resolution. Therefore, they are inapplicable to the typical servo

controller with only a digital incremental encoder interface. Furthermore, it is cum-

bersome to integrate sinusoid correction with interpolation since the correction para-

meters must be calibrated offline. As a result, most servo controllers which are able

to offer interpolation have mainly inputs which are assumed to be perfect quadrature

sinusoids. Hence, specifications relating to resolution may be achievable, but the ac-

companying accuracy cannot be guaranteed. Current efforts for sinusoid correction

also does not consider error in the form of waveform distortion, i.e., the actual signal

may be periodic, but not perfectly sinusoidal. These errors can become significant

bottlenecks when sub-micron resolution and accuracy is required. In view of the

shortcomings of the current approaches, an intelligent instrumentation methodology

that will correct and interpolate the encoder signals concurrently is desired.

1.2.2 Control

As mentioned earlier, one of the many control challenges ahead for precision motion

systems is to achieve high speed, high precision, and yet maintain robust perfor-

mance, in the face of several performance limitations such as system nonlinearities,

system uncertainties and system dynamic constraints. For a long time, classical con-

trollers such as PID are favoured by the industry due to their structural simplicity

and well-known characteristics. As performance requirements become more strin-

gent, conventional controllers often fail because of system uncertainties, the presence

of high-order dynamics and nonlinearities such as friction and actuator saturation.

Furthermore, the limitations of PID control rapidly become evident when applied to

more complicated systems such as those with a time-delay, poorly damped, nonlinear
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and time-varying dynamics.

In this perspective, the structural simplicity and well-known characteristics of

classical controllers such as PID can be combined with artifcial intelligence to achieve

robust control of precision motion systems. This intelligent controller should be able

to stabilize the nominal system while taking into consideration the system nonlinear-

ities.

1.2.3 Monitoring

Mechanical vibration in machines and equipment can occur due to many factors,

such as unbalanced inertia, bearing failures in rotating systems such as turbines, mo-

tors, generators, pumps, drives and turbofans, poor kinematic design resulting in a

non-rigid and non-isolating support structure, component failure and/or operation

outside prescribed load ratings. The machine vibration signal can be typically char-

acterized as a narrow-band interference signal anywhere in the range from 1 Hz to

500 kHz. When the machine is used to perform highly precise positioning functions,

undue vibrations can lead to poor repeatibility properties, impeding any effort for

systematic error compensation. This results directly in a loss of achievable precision

and accuracy. It would be desirable if the vibration suppression capability can be

incorporated into the control structure. Undesirable vibrations can then be filtered

out of the system before they can cause any other complications.

As it is essential to monitor and suppress vibration in precision motion systems,

it would be desirable to have an external diagnostic tool that performs vibration

monitoring. This vibration monitoring and control device will be very useful to

prevent equipment damage from the severe shaking that occurs when a machine
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malfunctions or vibrates at a resonant frequency.

1.3 Remote Monitoring and Control

To further expand the scope of precision motion control, the power of the Internet

could be harnessed to perform remote monitoring and control of precision motion sys-

tems. In the current economy, many manufacturing processes are widely distributed

geographically, due to economy-related factors in manufacturing and distribution.

The layout of an entire plant can now be rather extensive, spreading across conti-

nents in certain cases. Therefore, it has become an important challenge to be able to

optimize any synergy opportunities in the operations of these distributed systems. In

many cases, the same set of processes to manufacture the same product (or to monitor

the same process) can be cloned over different plants. This requires close coordina-

tion and synchronization of the distributed operations, as well as an efficient remote

monitoring and control facility in place. Thus, an extensive and ‘borderless’ approach

towards the effective monitoring of the distributed points is crucial to enhance overall

efficiency and operational costs.

Harnessing the power of the Internet for the networking of plants will make it

possible to collect more information from the shopfloor and to disseminate it far and

wide through every level of the company structure. The fast expanding infrastructure

of the Internet, in terms of its high volume of traffic and the large number of network

nodes around the globe, makes it highly suited for the networking of plants at different

locations. Indeed, the ultimate aim for remote monitoring and control capability for

systems is to ensure static and mobile workers maximize their productivity for the
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business. This added capability may not be applicable for all types of systems and

situations. It is to be stressed that the main capabilibity of the proposed approach is

monitoring. Due to the added feature of remote monitoring, security and reliability

are two main considerations here. Emerson Process Managment [6] and GE Fanuc

Automation [7] are two active players in the remote monitoring and control business.

1.4 Contributions

The aim of this thesis is to design robust precision motion systems that perform sat-

isfactorily in high-dimensional decision spaces in the presence of nonlinearities under

various conditions of uncertainty. Experimental results are provided in this thesis to

support the various proposed approaches. The contributions made in this thesis can

be summarized as follows:

Intelligent Instrumentation: Adaptive Online Correction and Interpola-

tion of Quadrature Encoder Signals Using Radial Basis Functions

Precision motion control and positioning is a core requirement behind many robot-

ics and drive control applications. To enable it, a precise measurement of the signals

generated by the position encoders is essential, since it will determine the final achiev-

able resolution, and hence accuracy of the motion control application. However, this

measurement precision is limited by the manufacturing technology of the encoders.

Interpolation using soft techniques provides an interesting possibility to further im-

prove on the encoder resolution, by processing the analog encoder signals online to

derive the small intermediate positions. The methods reported in the literature gen-
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erally require explicit high precision ADCs in the control system, and a high speed

DSP to compute the electrical angle to the required resolution. Therefore, they are

inapplicable to the typical servo controller with only a digital incremental encoder

interface. Furthermore, it is cumbersome to integrate sinusoid correction with inter-

polation since the correction parameters must be calibrated offline. In this work, the

radial-basis function neural network (RBFNN) is employed to carry out concurrently

the correction and interpolation of encoder signals in real-time. A two-stage RBFNN

is used in the implementation of the proposed approach. This approach can be readily

applied to most standard servo controllers.

Intelligent Control: Combined PID and Adaptive Nonlinear Control for

Precision Motion Systems

The PID controller has remained, by far, as the most commonly used controller in

practically all industrial control applications. The reason is that it has a simple

structure which is easy to be understood by the engineers. Over the years, many

techniques have been suggested for tuning of the PID parameters. Among them,

the model-based tuning methods appear to be very encouraging. However, the lim-

itations of PID control rapidly become evident when applied to more complicated

systems such as those with a time-delay, poorly damped, nonlinear and time-varying

dynamics. In this work, an intelligent controller comprising of a PID and an adap-

tive controller is presented for a class of nonlinear servo mechanical system. In the

proposed approach, a second-order model with an unknown nonlinear term that is

nonlinear and time-varying is used as the dominant model of a class of nonlinear sys-

tems. PID control is applied to stabilize the nominal system based on this dominant
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model. The system nonlinearity is compensated using an adaptive scheme employing

the RBFNN. The stability and tracking performance associated with the scheme is

regional in system states.

Intelligent Monitoring: Monitoring and Suppression of Vibration in

Precision Motion Systems

Mechanical vibration in machines and equipment can occur due to many factors.

Equipment may be damaged as a result of the severe shaking that occurs when a

machine malfunctions or vibrates at a resonant frequency. Moreover, when the ma-

chine is used to perform highly precise positioning functions, undue vibrations can

lead to poor repeatibility properties. This piece of work addresses two approaches to

deal with mechanical vibrations. The first approach utilizes an adaptive notch filter

(narrow-bandstop filter) to identify the resonant frequencies and suppress any signal

transmission into the system at these frequencies. The second approach uses a real-

time analyzer to detect excessive vibration based on which appropriate actions can

be taken, say to provide a warning or corrective action. This second approach can

be implemented independently of the control system and as such can be applied to

existing equipment without modification of the normal mode of operation. To expand

the scope of vibration monitoring, an exemplary application concerning the remote

vibration monitoring and control of machines distributed over different locations, via

the Internet, is presented to illustrate the principles of the proposed configuration.
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1.5 Outline of Thesis

The contributions of this thesis is organized in the following manner.

Chapter 2 considers the development of an adaptive online approach for the correc-

tion and interpolation of quadrature encoder signals, suitable for application to preci-

sion motion systems. It is based on the use of a two-stage double-layered RBFNN. The

principles of the proposed interpolation approaches are then explained. The learning

and updating procedures of the two stages of the RBFNN are also described. Sev-

eral considerations that are pertinent to the interpolation problem are subsequently

discussed in the chapter.

In Chapter 3, a robust control method for precision motion systems, based on a

mixed PID/adaptive algorithm is covered. A second-order linear dominant model is

considered with an unmodeled part of dynamics that is possibly nonlinear and time-

varying. The different components of the composite controller are described in detail

here. The derivations for the stability of the proposed controller and the boundedness

of the system states and parameter values are then presented.

Two approaches to reduce the damage caused by the mechanical vibrations in

precision motion systems are presented in Chapter 4. The design of an adaptive

notch filter is first discussed. Following this, the hardware and software aspects of

a real-time analyzer are described in detail. The working principle of the real-time

analyzer, based on a fuzzy fusion technique, is then explained to illustrate how the

analyzer could be used to continuously monitor the machine vibrations and suppress

undesirable vibrations. To extend the capability of this vibration monitoring applica-

tion, the hardware and software aspects of a remote vibration monitoring and control
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application are discussed.

Throughout the thesis, simulations are provided for all algorithms proposed to

demonstrate their usefulness. Real-time experimental results are then presented to

assert their practical applicability. Finally in Chapter 5, directions of future work,

and general conclusions are documented.
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Chapter 2

Intelligent Instrumentation:

Adaptive Online Correction and

Interpolation of Quadrature

Encoder Signals Using Radial

Basis Functions

2.1 Introduction

Precision motion control and positioning is a core requirement behind many robot-

ics and drive control applications. To enable it, a precise measurement of the signals

generated by the position encoders is essential, since it will determine the final achiev-

able resolution, and hence accuracy of the motion control application. To increase

the precision of the overall system, one approach is to increase the resolution of the

encoders. However, this measurement precision is limited by the manufacturing tech-

nology of the encoders. To date, the scale grating on linear optical encoders can be
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manufactured to less than four micrometers in pitch, but clearly, further reduction

in pitch will be greatly constrained by physical considerations. This implies an op-

tical resolution of one micrometer can be currently achievable. Interpolation using

soft techniques provides an interesting possibility to further improve on the encoder

resolution, by processing the analog encoder signals online to derive the small inter-

mediate positions.

The error sources associated with positional information obtained this way can

be classified under pitch and interpolation errors. Pitch errors arise mainly due to

scale manufacturing tolerances and mounting distortion. They can be compensated

via the same procedures which are carried out for general geometrical error compen-

sation. Interpolation errors, on the other hand, are associated with the accuracy of

subdivision within a pitch. Ideal signals from encoders are a pair of sinusoids with

a quadrature phase difference between them. Interpolation operates on the relative

difference in the amplitudes and phases of these paired sinusoids. Therefore, interpo-

lation errors will occur if the pair-periodic signals deviate from the ideal waveforms on

which the interpolation computations are based. These deviations must be corrected

before interpolation.

One possible approach to compensate the mean value offset, phase and amplitude

errors for two quadrature sinusoidal signals was introduced by Heydemann [8]. He

used least squares fitting to compute these error components efficiently and made

correction for two non-ideal sinusoidal signals. Using this method, Birch [9] was able

to calculate optical fringe fractions to nanometric accuracy. By making use of the

amplitude variation with angle, Birch divided one period of sinusoidal signal into N

equiangular segments to increase the effective electrical angle resolution. A micro step
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controller [10] and encoder code compensation technology [11] have been developed

based on this method. Relevant applications can also be found in [12] and [13]. To

increase the resolution of optical encoders, Cheung [14] used logic gates, comparators

and digital filters to perform the sine/cosine interpolation. This method employed

hardware, complemented with some software programming to achieve its results. An

absolute high performance, self calibrating optical rotary positioning system was de-

signed by Madni et al. [15]. In this approach, a series of sine/cosine signals from the

encoders are digitized by high precision ADCs and interpolation and calibration is

performed by the DSP programs. ServoStar’s [16] motor drives offers the ability to

accept signals from various feedback devices and encoders. These encoders provide

analog-encoded motor position data to the drive amplifier. The advantage of these

analog signals is that they can be resolved to extremely small intervals, providing a

lot of data about the motor shaft position while maintaining reasonable data trans-

mission rates. The disadvantage is that analog signals are notably susceptible to noise

pickup and require good wiring installation practices.

These interpolation approaches generally require explicit high precision ADCs in

the control system, and a high speed DSP to compute the electrical angle to the

required resolution. Therefore, they are inapplicable to the typical servo controller

with only a digital incremental encoder interface. Furthermore, it is cumbersome

to integrate sinusoid correction with interpolation since the correction parameters

must be calibrated offline. As a result, most servo controllers which are able to

offer interpolation have mainly inputs which are assumed to be perfect quadrature

sinusoids. Hence, specifications relating to resolution may be achievable, but the

accompanying accuracy cannot be guaranteed. Current efforts for sinusoid correction

19



also does not consider error in the form of waveform distortion, i.e., the actual signal

may be periodic, but not perfectly sinusoidal. The work in the literature considers

‘ideal’ sinusoids when performing interpolation. The errors in the waveforms have to

be compensated carefully when sub-micron resolution and accuracy is required.

In this chapter, the radial basis function neural network (RBFNN) [17] is em-

ployed to carry out concurrently the correction and interpolation of encoder signals.

This is the first application of neural network for this purpose. Neural networks

(NNs) ([17] and [18]) are inherently useful for approximating nonlinear and complex

functions. This is especially true for functions where only the input/output pairs are

available and the explicit relationships are unknown. The RBFNN is one popular and

commonly used configuration of neural network which uses a set of basis functions in

the hidden units. The effective interpolation of the available sinusoidal signals can

be seen as the generalization process for the available data. One main challenge, to

be addressed in this chapter, is to realize an adequate fit with the simplest RBFNN

structure possible by minimizing the redundancy present in the data mapping process.

The square quadrature signals are derived from the sinusoidal signals, after they are

corrected and interpolated. These square signals are then decoded by the control

system’s counter to obtain position measurements. The correction and interpolation

process can only be performed using the sinusoidal quadrature signals, not the square

ones. Thus the focus of the chapter is on the correction and interpolation of the

sinusoidal encoder signals.

A two-stage RBFNN is used in the implementation of the proposed approach.

The first RBFNN stage is concerned mainly with the correction of incoming non-

ideal encoder signals, including the compensation of mean, phase offsets, amplitude
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deviations and waveform distortion. This RBFNN can be updated adaptively on-

line to reflect any subsequent changes or drift in the characteristics of the encoder

signals. The second RBFNN stage serves to derive high order sinusoids from the cor-

rected signals from the first stage, based on which a series of high frequency binary

pulses can be converted which, in turn, can be readily decoded by standard servo

controllers. Factors affecting the limit and accuracy of interpolation will be discussed

in the chapter. Simulation and experimental results are provided to highlight the

principles and practical applicability of the proposed method. The main strength of

the proposed approach, as compared to the other current approaches, is its adaptive

nature to correct and interpolate the encoder signals. It is also simple to implement

the interpolation and correction features of the proposed approach to existing control

structures. There is no need for additional hardware. Although the look-up table

method [26] may give similar results as the proposed approach, there is much saving

in memory storage requirement using the proposed approach. Obtaining the sinu-

soidal encoder signals is integral to the successful implementation of the proposed

approach. In some encoders, these sinusoidal encoder signals are not available due to

constraints in their mechanical design.

2.2 The RBF Neural Network

The RBFNN is commonly used for the purpose of modeling uncertain and nonlinear

functions. Utilizing the RBFNN for modeling purposes can be seen as an approx-

imation problem [19] in a high-dimensional space. Consider the RBFNN, which is

depicted as a two-layered processing structure in Figure 2.1. The hidden layer con-
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sists of an array of computing units, i.e., φ1, φ2, ..., φN . These hidden units provide

a set of functions of the input vectors (i.e., x1, x2, ..., xJ ) as they are expanded into

the higher dimension hidden-unit space. The mapping from the input vectors to the

outputs of the hidden units is nonlinear, whereas the mapping from the outputs of

the hidden units to the final output of the RBFNN is linear.

The general mapping function [18] of the RBFNN can be represented by:

f(x̄) =
N∑

i=1

wiφi(x̄), (2.1)

φi(x̄) = exp(−||x̄ − ci||2
2σ2

i

), (2.2)

where φi(x̄) denotes the basis function and x̄ = [x1, x2, .., xJ ]T . Each hidden unit

contains a parameter vector called a center (ci), and it calculates a squared distance

between the center and the input vector (x̄). The result is then divided by the width

(σi) and passed through an exponential function. The second layer of the RBFNN

acts as a summer with a set of weights, i.e., w1, w2, ..., wN . The free variables that

needs to be tuned are the weights wi’s, the centers ci’s and the widths σi’s. The

reader may refer to ([17]-[20]) for more examples and applications of the RBFNN.

2.3 Principles of Proposed Interpolation Approach

The overall configuration of the two-stage RBFNN is shown in Figure 2.2. It consists

of two stages; the precompensation stage and the interpolation stage. The inputs

to the precompensation stage are the quadrature signals direct from the encoders ū1
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Figure 2.1: Structure of a two-layered RBFNN.

Figure 2.2: Overall configuration of the two-stage RBFNN.
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and ū2. The outputs of the precompensation stage are fed as inputs to the interpola-

tion stage. The outputs from the interpolation stage are the higher order sinusoids,

sin(nα) and cos(nα), where n refers to the order of interpolation.

Each of the two stages has the configuration of a two-layered RBFNN as shown

in Figure 2.1. The precompensation stage corrects the errors in the raw encoder sig-

nals. An adaptation algorithm is used to refine the correction process, since the error

characteristics in the raw signals exhibit a tendency to drift from time to time. An

online batch updating process is used to update the RBFNN for the precompensa-

tion stage whenever a new batch of M time samples of the signals becomes available.

The updating process is based on the modified Recursive Least Squares (RLS) algo-

rithm [21]. The adaptation algorithm proposed here is different from RLS in that

time averages of the input signals is not used in the proposed algorithm. Unlike the

RLS, the proposed algorithm is independent of the stochastic properties of the input

signsls. The interpolation stage is used to derive the high order sinusoids based on

the corrected signals forthcoming from the precompensation stage.

For both stages, the objective may be described as follows:

Given a set of W different points in a p dimensional input space, {i.e.,xt ∈ �p, t =

1, 2, .., W} and a corresponding set of W points in a q dimensional output space,

{i.e.,dt ∈ �q, t = 1, 2, .., W}, the goal is to find a mapping function � : �p → �q

that fulfills the relationship, such that

�(xt) = dt, t = 1, 2, ..., W. (2.3)
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For the precompensation stage (Figure 2.2), the mapping function will map the raw

encoder signals (ū1, ū2) to the corrected ones (u1, u2) which in turn become the inputs

to the interpolation stage. For the interpolation stage, the mapping function will

fulfill the map from u1 and u2 to the higher-order sinusoids r1 and r2 respectively.

A reference mark is available on most encoders. This reference mark modulates a

reference output signal uref from the encoder once per mechanical revolution.

2.3.1 Precompensation Stage

Commonly encountered errors in the encoder signals include mean, phase offsets,

amplitude deviation and waveform distortion. To reduce interpolation errors, it is

necessary to correct these errors prior to interpolation. This section will describe how

these error components can be corrected in an adaptive manner in the precompensa-

tion stage of the RBFNN of Figure 2.2. As mentioned earlier, an adaptive approach

is useful for this purpose, since the error characteristics in the raw encoder signals

can drift with time.

Ideally, the quadrature encoder signals (denoted by u1 and u2 respectively) are

identical sinusoidal signals displaced by a phase of π/2 with respect to each other,

described by:

⎧⎪⎨
⎪⎩

u1 = A cos α

u2 = A sin α
(2.4)

where α denotes the instantaneous phase and A denotes the amplitude of the sig-

nals. If there is no waveform distortion, the general equations relating the ideal and

practical encoder signals can be obtained according to Heydemann’s method [8],
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⎧⎪⎨
⎪⎩

ū1 = u1 + m1

ū2 = A1 cos(α−ε)
G

+ m2

(2.5)

where ml and m2 are the mean values of the signals and ε is the phase shift. ū1 and ū2

are values obtained from the encoder. G = A1

A2
and A1, A2 are the actual amplitudes

of the encoder signals. The offset parameters m1, m2, ε and G can be estimated using

a least squares estimation method operating on the raw signals.

Using a two-layered RBFNN, this correction can be easily accomplished as a map-

ping from raw signals to ideal signals. In addition, unlike the Heydemann’s method,

waveform distortion can be addressed directly in the mapping function. To enable

the precompensation stage of the RBFNN to adaptively fine-tune its parameters in

concert with possible variation in the error characteristics, an adaptation algorithm is

necessary. The adaptation algorithm used here is a modified version of the Recursive

Least Squares algorithm [21]. The parameters of the RBFNN are updated in the

Lyapunov sense so that the error in (2.6) can converge to zero asymptotically. The

following algorithm is used to update the parameters of the RBFNN. The tuning of

the other parameters in the RBFNN, e.g., the centers ci’s and widths σi’s, follows a

similar procedure as shown below for the weight vector W .

For the kth frame (batch) of data

ej
i(k) = dj

i − uj
i(k),

Ej(k) =

∑M
i=1(ej

i)2(k)

M
,

uj
i(k) =

N∑
r=1

wrj(k)φi
rj(ūj

i(k)),

φi
rj(ūj

i(k)) = exp[−‖ ūj
i(k) − cj(k) ‖2

2σj(k)2
],
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Wj(k) = [w1j(k) w2j(k) .... wNj(k)]T ,

Φi
j(k) = [φi

1j(ūj
i(k)) φi

2j(ūj
i(k)) .... φi

Nj(ūj
i(k))]T , (2.6)

where

Wj(k) = Wj(k − 1) + δi
j(k)λi

j(k), (2.7)

δi
j(k) =

Φi
j(k)

‖ Φj(k) ‖2

[
1 − ρ

ei
j(k − 1)

| λi
j(k) |

]
, (2.8)

λi
j(k) = di

j − W T
j (k − 1)Φi

j(k), (2.9)

for i = 1, 2, ..., M ; 0 ≤ ρ < 1 and j = 1, 2.

As mentioned earlier, the free parameters of the RBFNN are trained using a batch

mode of updating. One kth frame represents M data points. That is to say, when

every M data points are collected by the system, the free parameters of the precom-

pensation stage are updated using (2.7). The convergent properties of the algorithm

will be presented in the following. Suppose the Lyapunov energy function is chosen

as:

V(k) = Ej(k). (2.10)

Therefore,

∆V(k) = V(k) − V(k-1)

= Ej(k) − Ej(k − 1)

=

∑M
i=1[ej

i]2(k)

M
− Ej(k − 1)
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=
1

M

M∑
i=1

(dj
i − uj

i(k))2 − Ej(k − 1)

=
1

M

M∑
i=1

(dj
i − Wj

T (k)Φj
i(k))2 − Ej(k − 1)

=
1

M

M∑
i=1

(dj
i − W T

j (k − 1)Φj
i(k) − λiT

j (k)δiT

j (k)Φj
i(k))2 − Ej(k − 1)

=
1

M

M∑
i=1

(λiT

j (k)(1 − δiT

j (k)Φj
i(k)))2 − Ej(k − 1). (2.11)

Substituting (2.9) to (2.11),

∆V(k) =
1

M

M∑
i=1

(ρei
j(k − 1))2 − Ej(k − 1) (2.12)

= − 1

M
[1 − ρ2]Ej(k − 1)

< 0.

Therefore, following the Lyapunov theory on stability ([22] and [23]), the approxi-

mation error (2.6) is stable and will converge to within a hypersphere centered at

origin with radius τ , where τ is a small value. Figure 2.3 shows the fundamental

encoder signals before and after the precompensation stage of the RBFNN. The var-

ious error components underlying in the raw fundamental signals would have been

corrected for after this stage. The subsequent interpolation stage will only deal with

ideal sinusoidal signals.

During the adaptive training phase of the RBFNN, the correct sine and cosine

waves d1 and d2 have to be fed to the parameter adaptation algorithm as shown in

Figure 2.2. These 2 signals have to be synchronized with the raw encoder signals ū1

and ū2 in order to feed the correct input-output pair to the adaptation algorithm.

28



Consider one raw encoder signal ūi
1, the input-output pair for one frame is {(ū1

1,

d1
1),(ū

2
1, d2

1), ..., (ūM
1 , dM

1 ) }.

To sum up the training procedure for the precompensation stage, the free parame-

ters, i.e., weight vector W , the centers ci’s and the width of centers σi’s, are updated

according to (2.7). The updating of the above mentioned variables is continued until

the error function E is below a preset threshold or negligibly small value. The vari-

ables are guaranteed to converge to the ‘ideal’ values as derived in (2.11). The ‘ideal’

values are defined as those which provide the error E as below a preset threshold or

negligibly small value. The updating of the free parameters of the RBFNN for the

precompensation stage is done adaptively in a batch pattern manner.

Figure 2.3: Encoder signals before and after the precompensation stage.
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2.3.2 Interpolation Stage

The inputs to the interpolation stage are u1 and u2 from the precompensation stage.

The outputs from the interpolation stage are the instantaneous values of the higher

order sinusoids, i.e., r1 and r2. The output is dependent on the order of interpolation

n. The RBFNN is used to fulfill this mapping. The network is trained offline, where

the weights ω′
i’s and the centers c′i’s of the RBFNN are the free parameters to be tuned.

As the order of interpolation increases, the memory requirements of the network also

increases accordingly, since the mapping function �(.) will become more complicated.

Thus, more computing units φ′
i’s, subsequently more weights w′

i’s to be tuned, are

needed to implement the interpolation.

To reduce the memory requirements of this single-stage RBFNN, it is useful to

minimize the level of redundancy within the RBFNN. To this end, it is noted that

there is a strong degree of symmetry in a pure sinusoid. By considering only a quarter

of the full sinusoid, the mapping function �(.) between the absolute value of the inputs

(|u1| and |u2|) and the absolute value of the higher order sinusoid outputs (r1 and r2)

can be fully represented. The sign of the higher order sinusoids can be subsequently

restored by inferring the signs of u1 and u2, according to the schedule below.

u1
i(k) u2

i(k) Range Output

u1
i(k) ≥0 → u2

i(k) ≥0 0∼ π/2 → r1
i(k)

→ r2
i(k)

→ u2
i(k) <0 π/2 ∼ π → r1

i(k)

→ −r2
i(k)

u1
i(k) <0 → u2

i(k) ≥0 3π/2 ∼ 2π → −r1
i(k)
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→ r2
i(k)

→ u2
i(k) <0 π ∼ 3π/2 → −r1

i(k)

→ −r2
i(k)

There are many different techniques available to tune the parameters of the

RBFNN. They include the ‘Fixed-centers-selected-at-random’, ‘Self-organized selection-

of-centers’ and ‘Supervized-selection-of-centers’. The reader is referred to ([17]-[19])

for more detailed discussions of the available tuning techniques. In this chapter, the

technique adopted to tune the parameters of the RBFNN is the ‘Supervized-selection-

of-centers’ [17], where the parameters undergo a supervized batch learning process

using error-correction learning, i.e. gradient descent procedure. The main objective

of the supervized learning process is to minimize the value of the cost function:

ξi
j(e) =

1

2

I∑
i=1

(vi
j(e))

2, (2.13)

where I is the number of data points in one period of ui
j used to tune the parameters

in the eth epoch, and vi
j(e) is the error signal between the desired and actual output

values of the RBFNN, defined as:

vi
j(e) = zi

j − ri
j(e), (2.14)

where zi
j and ri

j(e) (where i = 1, .., I; j = 1, 2) are the desired output and the actual

RBFNN output respectively. The desired output values zi
1 and zi

2 are obtained from

the amplitudes of the ideal mathematical functions of the higher orders of sine and
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cosine respectively.

For the eth epoch,

rj
i(e) =

N∑
r=1

w′
rj(e)φ

i
rj(uj

i(e)),

φi
rj(uj

i(e)) = exp[−‖ uj
i(e) − c′j(e) ‖2

2σ′
j(e)

2
],

W ′
j(e) = [w′

1j(e) w′
2j(e) .... w′

Nj(e)]
T ,

Φi
j(e) = [φi

1j(uj
i(e)) φi

2j(uj
i(e)) .... φi

Nj(uj
i(e))]T . (2.15)

The following algorithm is used to update the parameters of the RBFNN for the

interpolation stage in an offline manner. The tuning of the other parameters in the

RBFNN for the interpolation stage, e.g., the centers c′i’s and the widths σ′
i’s, follow

a similar procedure as shown below for the weight vector W ′. There is no need to

adaptively update the parameters of the RBFNN for the interpolation stage because

the RBFNN mapping function for this stage remains unchanged.

The updating of the weights are as follows:

W ′
j(e) = W ′

j(e − 1) + η

∑I
i=1 vj

i(e)uj
i(e)

2I
, (2.16)

where η is a constant.

To sum up the training procedure for the interpolation stage, the free parameters,

i.e., weight vector W ′, the centers c′i’s and the width of centers σ′
i’s, are updated

according to (2.16). The above mentioned variables is trained offline until the error

function ξ is below a preset threshold or negligibly small value. The free parameters
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are made to converge to the ‘ideal’ values. The ‘ideal’ values are defined as those

which provide the error ξ as below a preset threshold or negligibly small value. The

updating process of the free parameters of the RBFNN for the interpolation stage is

done offline in a batch pattern manner.

2.3.3 Conversion to Binary Pulses

In order for the encoder signals to be received by a general purpose incremental

encoder interface, the quadrature sinusoidal signals may be converted to a series

of binary pulses. An analog comparator may be used to transform the high order

sinusoids into pulses. As shown in Figure 2.4, the comparator will simply switch the

pulse signals when the associated sinusoidal signal crosses zero. The rest of the analog

information will not be used.

Figure 2.4: Conversion to binary pulses using a comparator.

Alternatively, this transformation can be done within the RBFNN. The sin(nα)

and cos(nα) values can be converted into binary values A and B respectively, by

training the RBFNN to conform to the following equations:
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Figure 2.5: Quadrature sinusoidal signal decoding.

⎧⎪⎨
⎪⎩

A = 1, sin(nα) ≥ δ

A = −1, sin(nα) ≤ −δ
(2.17)

⎧⎪⎨
⎪⎩

B = 1, cos(nα) ≥ δ

B = −1, cos(nα) ≤ −δ
(2.18)

Thus, A and B, which are quadrature square signals, can be generated directly (Figure

2.5). δ can be 0 or a small value set according to the threshold of measurement noise.

2.3.4 Direct Conversion to Digital Position

The pulse outputs can also be easily converted into digital position values, which can

be directly used for control purposes without further computations. This is especially

true if the aforementioned interpolation is integrated into a general digital controller.
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Alternatively, the encoder card can be made PC-bus based and the general motion

controller can acquire the digital position value directly from the register or shared

memory. In this case, the D/A converters for the encoder card are not required.

2.4 Simulation and Experimental Study

In this section, simulation and experimental results to illustrate the performance of

the online adaptive correction and interpolation approach will be presented. In the ex-

periment, raw data is acquired from a linear encoder (model: Heidenhein LIP481A)

attached to the slide of a linear motor. A piezoelectric linear motor (Figure 2.6)

manufactured by Nanomotion is used as the test platform. The linear motor is

mounted on a single axis linear stage manufactured by Steinmeyer. Table 1 shows

the specifications of the stage and the motor. These raw signals are then fed to a

dSPACE controller with a high-speed A/D card, on which the RBF-based algorithms

are implemented. The raw signals are accordingly precompensated and interpolated

to higher order sinusoids. Figures 2.7 and 2.8 show the interpolation results with

n= 64 and 4096 respectively. Figure 2.9 shows the interpolated encoder signals con-

verted to pulses with n= 4096. The pulses are scaled to different applitudes for easy

observation. The parameters of the RBFNN are initialized to random values. The

RBFNNs for the precompensation and the interpolation stage are first trained offline

using training data. During the normal operations of the system, the RBFNN for

the precompensation stage is then fine-tuned using the online adaptation algorithm

discussed in the previous section.
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2.4.1 Simulation Study

To highlight the proposed approach to the precision and accuracy of position mea-

surements, a simulation study is performed. A precise step reference signal (Figure

2.10) and a sinusoidal reference signal (Figure 2.11) is applied to the piezoelectric lin-

ear motor in two separate stages. The amplitude of the step signal and the sinusoidal

signal is 1.005cm. The well-known PID controller is used to control the piezoelectric

linear motor. The positioning and tracking performances of the piezoelectric linear

motor with a step reference signal and a sinusoidal reference signal are shown in Fig-

ures 2.12 and 2.14 respectively. A close-up view of Figure 2.12 is shown in Figure

2.13. It can be observed that with interpolation of encoder signals, the tracking and

positioning performances of the controller are greatly improved. Interpolation of the

encoder signals increases the precision and accuracy of position measurements of the

system.

2.4.2 Experimental Study

For the experimental study, the same precise step reference signal (Figure 2.10) and

sinusoidal reference signal (Figure 2.11) is applied to the piezoelectric linear motor in

two stages. The well-known PID controller is used for this experimental study. With

the step reference input signal, the positioning performance of the PID controller (with

and without interpolation of the encoder signals) is shown in Figure 2.15. In a similar

manner, Figure 2.16 demonstrates the tracking performance of the PID controller

(with and without interpolation of the encoder signals). The error convergence rate

of the RBFNN for the precompensation stage and the interpolation stage are shown in
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Figures 2.17 and 2.18. As similar to the simulation study, it can be observed that with

interpolation of encoder signals, the precision and accuracy of position measurements

of the system are increased. Interpolation of encoder signals smoothens the tracking

error and reduces the steady state error.

The parameters of the RBFNN for the interpolation stage adapt themselves con-

tinuously to changes in the raw encoder signals, in the presence of noise. As can be

seen, the network converges sufficiently fast enough to provide the adaptive nature of

the interpolation system. A total of about 32 and 50 basis functions (i.e., computing

units) are used for the precompensation and interpolation stage, respectively. The

value of η in (2.16) is preset at 0.0001.

The effectiveness of the RBFNN for interpolation is determined by the general-

ization property of the trained network ([24] and [25]). This is even more critical for

applications involving high precision motion. A network that is designed to gener-

alize well will produce a correct input-output mapping even when the test data is

different from the data used to train the network. The network may end up fitting

misleading changes due to noise in the training data, resulting in poor generalization.

According to [25], as long as the standard deviation of the noise is large as compared

to the sample spacing of the data points, an approximation to the mapping function

� of the RBFNN can be obtained, in the face of noise. Thus, the RBFNNs used in

this chapter are fed with test data to train them adaptively. This can be seen as a

recursive process in the batch updating of the free parameters of the RBFNNs.

As can be clearly seen in the simulation and experimental studies, the proposed

approach improves the tracking and positioning performance of the controller, with

fast speed. Although the look-up table method [26] may give similar results as the
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proposed approach, there is much saving in memory storage requirement using the

proposed approach. It should be stressed here that given the same constraints on

available memory size, the proposed approach in this chapter is superior, as compared

to the look-up table method. Obtaining the sinusoidal encoder signals is integral to

the successful implementation of the proposed approach. In some encoders, these

sinusoidal encoder are not available due to constraints in their mechanical design.

There are advantages associated with this approach when compared to the look-

up table approach [26], in the use of storage memory and execution speed. Under

the proposed approach, it is only necessary to reserve memory space for storing the

parameters (i.e., the weights and centers) of the RBFNNs. The number of data points

used to train the RBFNNs for the precompensation stage and the interpolation stage

is the number of weights required in the RBFNN. In the experimental study, only

seven points are required to map a complete sine or cosine function (Figure 2.19)

when the redundancy present is eliminated. For order of interpolation n = 16, a

total of 308 data points (i.e., 25.5kBytes of memory space) are needed for the RBF

approach, while a total of 12, 888 data points (i.e., 1068kBytes of memory space) are

needed for a look-up table method. With a lesser demand on memory storage space,

the execution speed of the RBF approach is also much increased, i.e., about 42 times

faster as compared to the look-up table method. Besides these, maintenance of the

table is much of a hassle, especially in a common shopfloor which have many similar

setups. Reconfiguring the correction and interpolation parameters of the RBFNN

using the proposed approach is simple and fast.

Table 1 : Specifications of Piezoelectric Linear Motor
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Figure 2.6: Test platform: Piezoelectric linear motor.

Travel Velocity (Max) Resolution Output force (Max)

200mm 250 mm/s 0.1µm 40N

2.5 Conclusions

An adaptive online approach for the correction and interpolation of quadrature en-

coder signals has been developed, suitable for application to precision motion control

systems. It is based on the use of a two stage double-layered RBFNN. The first

RBFNN stage is used to adaptively correct for the imperfections in the encoder sig-

nals such as mean, phase offsets, amplitude deviation and waveform distortion. The

second RBFNN stage serves as the inferencing machine to map the quadrature en-

coder signals to higher order sinusoids. Simulation and experimental results verify

the effectiveness of the RBF approach, compared to a look-up table approach.
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Figure 2.7: Encoder signals before and after interpolation, with n = 64.

Figure 2.8: Encoder signals before and after interpolation, with n = 4096.
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Figure 2.9: Encoder signals converted to pulses, with n = 4096.

Figure 2.10: Precise step reference function.
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Figure 2.11: Precise sinusoidal reference function.

Figure 2.12: Positioning performance of the linear piezoelectric linear motor with a

precise step reference input signal (Simulation study).
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Figure 2.13: Positioning performance of the linear piezoelectric linear motor with a

precise step reference input signal (More detailed figure).

Figure 2.14: Tracking performance of the linear piezoelectric linear motor with a

sinusoidal reference input signal (Simulation study).

43



Figure 2.15: Positioning performance of the linear piezoelectric linear motor with a

precise step reference input signal (Experimental study).

Figure 2.16: Tracking performance of the linear piezoelectric linear motor with a

sinusoidal reference input signal (Experimental study).
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Figure 2.17: Error convergence rate of the RBFNN for the precompensation stage

during the experimental study. (a) During the intial stage of the experiment (offline).

(b) After 1 hour of operation of the experiment (online).

Figure 2.18: Error convergence rate of the RBFNN for the interpolation stage during

the experimental study.
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Figure 2.19: Number of data points required to model the sine and cosine function

for the RBF approach.
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Chapter 3

Intelligent Control: Combined PID

and Adaptive Nonlinear Control

for Precision Motion Systems

3.1 Introduction

The PID controller has remained, by far, as the most commonly used controller in

practically all industrial control applications. The reason is that it has a simple struc-

ture which is easy to be understood by engineers. Over the years, many techniques

have been suggested for tuning of the PID parameters, such as the refined Ziegler-

Nichols method [27], the gain-phase margin method [28], an optimization method [29],

and one based on the Internal Model Control [30]. Among them, the model-based

tuning methods appear to be very encouraging [31]. However, the limitations of PID

control rapidly become evident when applied to more complicated systems such as

those with a time-delay, poorly damped, nonlinear and time-varying dynamics. For

these processes, nonlinear adaptive control may be necessary to achieve good control
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performance. Recently, a nonlinear PD control scheme has been developed for a robot

tracking application [32]. Based on a first-order model, a nonlinear PI control has

also been proposed by Huang et al. [33].

One enabling technology which has made these and more modern applications

possible is the advance and development in precision mechanisms and motion con-

trol. An increasing number of the precision motion systems today, general purpose

or application specific, are based on the use of DC permanent magnet linear motors

(PMLM) [34] for the main reason that among the electric motor drives available, the

PMLMs are probably the most naturally akin to applications involving high speed and

high precision motion control. The increasingly widespread industrial applications of

PMLMs in various semiconductor processes, precision metrology and miniature sys-

tem assembly are self-evident testimonies of the effectiveness of PMLMs in addressing

the high requirements associated with these application areas. The main benefits of a

PMLM include the high force density achievable, low thermal losses and, most impor-

tantly, the high precision and accuracy associated with the simplicity in mechanical

structure. Unlike rotary machines, linear motors require no indirect coupling mecha-

nisms as in gear boxes, chains and screws coupling. This greatly reduces the effects

of contact-type nonlinearities and disturbances such as backlash and frictional forces,

especially when they are used with aerostatic or magnetic bearings. However, the

advantages of using mechanical transmission are also consequently reduced due to

other problems that arise, such as the inherent ability to reduce the effects of model

uncertainties and external disturbances [35]. An adequate reduction of these effects,

either through a proper physical design or via the control system, is of paramount

importance in order to achieve the end objectives of robust, high speed and high
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precision motion control.

There are several important challenges to the precision motion control system.

First, the measurement system must be capable of yielding a very fine resolution

in position measurements. Today, laser interferometers can readily yield a measure-

ment resolution of down to one nanometer. Where cost is a concern, a high grade

analog optical encoder in conjunction with an efficient interpolator can be used to

provide sub-micrometer resolution measurements [8]. In the latter case, interpolation

factors of up to 4096 times have been reported. This will effectively yield a resolu-

tion in the nanometer regime, given the fine scales manufacturing tolerance currently

achievable. However, one should be cautious of interpolation errors associated with

limited wordlength A/D operations, and imperfect analog encoder waveform with

mean, phase offsets, noise as well as non-sinusoidal waveform distortion. An intelli-

gent instrumentation approach capable of adaptive online correction and interpolation

of quadrature encoder signals using neural networks is discussed in Chapter 2.

Secondly, the control electronics must have a sufficient bandwidth to cope with

the high encoder count frequency associated with high speed motion on one hand,

and a sufficiently high sampling frequency to circumvent anti-aliasing pits when mo-

tion is at a very low speed. Consequent of these requirements, the control algorithms

must also be efficient enough to be executed within each time sample, and yet possess

sufficient capacity to provide precision motion tracking and rapid disturbance sup-

pression. This calls for a good weighted selection of efficient control components to

address not only the specific dynamics of the servo system in point, but also exogenous

disturbances arising from the application, including load changes, and drives-induced

electro-magnetic interference.
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Thirdly, the geometrical imperfections of the mechanical system should be ade-

quately accounted for in the control system, if absolute positioning accuracy is crucial

to the application concerned [36]. A 3D cartesian machine, for example, has 21 pos-

sible sources of geometrical errors (linear, angular, straightness, orthogonality errors

from the 3 axes combined). Yet, many control engineers may evaluate positional

accuracy solely with respect to encoder measurements, assuming ideal geometrical

properties of the mechanical system. This assumption can lead to drastic and unde-

sirable consequences when a high absolute positioning accuracy of the end object (e.g.

machine tool) is required, since a very small tracking error with respect to encoder

counts can be magnified many times over, when verified and calibrated in terms of

absolute accuracy using a laser interferometer. These errors, arising from geometrical

imperfections, can be calibrated and compensated for, if they are repeatible. The

present common mode to deal with this problem is to build a look-up table model

of the geometrical errors. The table maps an encoder reported position into the ac-

tual absolute position, and it can thus be used as the basis for geometrical offset

compensation. Further work on this is discussed in Section 5.2.

In high precision motion control applications, vibrations induced from the me-

chanical system should be minimized as far as possible. Ideally, this calls for a highly

rigid mechanical design, active damping and stable support structures. An intelligent

vibration monitoring and control approach is elaborated in Chapter 4. This chapter

will attempt to address the abovementioned challenges. The various selected control

components, which constitutes the final overall strategy, will be discussed. Simulation

and experimental results are provided to illustrate the effectiveness of the proposed

control scheme.
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3.2 Overall Control Strategy

The overall control structure is shown in Figure 3.1. The overall control signal is

u(t) = uFF (t) + uPID(t) + uadapt(t), (3.1)

where uFF (t), uPID(t) and uadapt(t) are the control signals provided by the feedfor-

ward controller, the PID feedback controller and the adaptive nonlinear controller

respectively. uadapt(t) includes the compensation due to ripple and disturbance ob-

server.

Figure 3.1: Overall structure of control system

In what follows, the purpose and design of each component depicted in Figure 3.1

will be elaborated. Since the design of several of these components will be based on a

model of the PMLM, the initial part of this section will attempt to provide a concise

system description of PMLM-based servo systems.
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3.2.1 Mathematical Model

The dynamics of a servo-mechanical system can be described using a nonlinear math-

ematical model:

u(t) = Keẋ + Ri(t) + Ldi(t)/dt, (3.2)

f(t) = Kf i(t), (3.3)

f(t) = mẍ(t) + f̄fric(ẋ) + f̄load(t), (3.4)

where u(t) and i(t) are the time-varying motor terminal voltage and armature current

respectively; x(t) is the motor position; f(t) and f̄load are the developed force and the

applied load force respectively. f̄fric denotes the frictional force present. The physical

significance of the other physical parameters are elaborated in [37].

Since the electrical time constant is much smaller than the mechanical one, the

delay of electrical response can be ignored. With this simplification, the following

equation can be obtained (see [38]):

ẍ = (−KfKe

R
ẋ +

Kf

R
u(t) − f̄fric − f̄load)/m. (3.5)

Let

a = −KfKe

mR
, (3.6)

b =
Kf

mR
, (3.7)

ffric =
1

m
f̄fric, (3.8)

fload =
1

m
f̄load. (3.9)

Thus, the following equivalent model is:

ẍ = aẋ + bu − ffric − fload. (3.10)
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The PMLM model includes the dominant linear model and extraneous nonlinear

effects. Among the many extraneous effects present, the two prominent nonlinear

effects associated with PMLM are due to ripple and frictional forces, arising from

the magnetic structure of PMLM and other physical imperfections. Figure 3.2 de-

picts a block diagram model of the motor, including explicitly the various exogenous

disturbance signals present.

Figure 3.2: Model of PMLM.

3.2.2 Force Ripples

The thrust force transmitted to the translator of a PMLM is generated by a sequence

of attracting and repeling forces between the poles and the permanent magnets when

a current is applied to the coils of the translator. In addition to the thrust force,

parasitic ripple forces are also generated in a PMLM due to the magnetic structure

of PMLM. This ripple force exists in almost all variations of PMLM (flat, tubular,

moving-magnet and etc.), as long as a ferromagnetic core is used for the windings.

The two primary components of the force ripple are the cogging (or detent) force

and the reluctance force. The cogging force arises as a result of the mutual attraction
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between the magnets and iron cores of the translator. This force exists even in the

absence of any winding current and it exhibits a periodic relationship with respect

to the position of the translator relative to the magnets. Cogging manifests itself by

the tendency of the translator to align in a number of prefered positions regardless

of excitation states. There are two potential causes of the periodic cogging force in

PMLMs, resulting from the slotting and the finite length of iron-core translator. The

reluctance force is due to the variation of the self-inductance of the windings with

respect to the relative position between the translator and the magnets. Thus, the

reluctance force also has a periodic relationship with the translator-magnet position.

Collectively, the cogging and reluctant force constitute the overall force ripple

phenomenon. Even when the PMLM is not powered, force ripples are clearly existent

when the translator is moved along the guideway. There are discrete points where

minimum/maximum resistance is experienced. At lower velocity, the rippling effects

are more fully evident due to the lower momentum available to overcome the magnetic

resistance.

Due to the direct-drive principle behind the operation of a linear motor, the force

ripple has significant effects on the position accuracy achievable and it may also

cause oscillations and yield stability problems, particularly at low velocities or with

a light load (low momentum). The ripple periodicity has a fixed relationship with

respect to position, but the amplitude can vary with velocity. Figure 3.3 shows the

real-time open-loop step response of a tubular type PMLM manufacturing by Linear

Drive, UK. Figure 3.4 shows the velocity-position characteristics of the PMLM with

different step sizes (i.e., different steady-state velocity). Interesting observations may

be inferred from these responses. First, the ripple period is independent of the step
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size (i.e., independent of the velocity), but is has a fixed relationship with respect to

position. Secondly, the ripple amplitude is dependent on both position and velocity.

At a higher velocity, the ripple amplitude decreases compared to when the motor is

run at a lower velocity when the full dosage of ripple effects is experienced.

A first order model for the force ripple can be described as a periodic sinusoidal

type signal:

Fripple(x) = A(x) sin(ωx + φ), (3.11)

where A(x) reflects the dependence of the ripple amplitude on x. Higher harmonics

of the ripple may be included in higher order models.

Figure 3.3: Open-loop step response of a PMLM.

3.2.3 Friction

Friction is inevitably present in nearly all moving mechanisms, and it is one major ob-

stacle to achieving precise motion control. Several characteristic properties of friction
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Figure 3.4: Graphs of velocity against position for different step sizes.

have been observed, which can be broken down into two categories: static and dy-

namic. The static characteristics of friction, including the stiction friction, the kinetic

force, the viscous force, and the Stribeck effect, are functions of steady state velocity.

The dynamic phenomena include pre-sliding displacement, varying breakaway force,

and frictional lag. Many empirical friction models [39] have been developed which

attempt to capture specific components of observed friction behavior, but generally it

is acknowledged that a precise and accurate friction model is difficult to be obtained

in an explicit form, especially for the dynamical component.

The frictional force affecting the movement of the translator can be modeled as a

combination of Coulomb and viscous friction [39] as:

ffric = [fc + fv|ẋ|]sgn(ẋ) + δffric, (3.12)

where fc is the minimum level of Coulomb friction and fv is associated with the vis-
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cosity constant. δffric denotes possible directional bias associated with the Coulomb

friction. For loading effects which are independent of the direction of motion, fload

can be described as:

fload = flsgn(ẋ) + δfload, (3.13)

where δfload denotes possible directional bias associated with the load which is the

case when the load is transported in a direction aligned with gravitational force and

fl is a constant inertial friction due to the load. Cumulatively, the frictional and load

force can be described as one external disturbance F , given by:

F = [f1 + f2|ẋ|]sgn(ẋ) + δf, (3.14)

where f1 = fl + fc, f2 = fv and δf = δffric + δfload. Figure 3.5 graphically illustrates

the characteristics of F . The effects of friction can be greatly reduced using high

quality bearings such as aerostatic or magnetic bearings.

Figure 3.5: F-ẋ characteristics.
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3.2.4 Feedforward Control

The design of the feedforward control component is relatively straightforward, as

compared to the other components in the overall control configuration (Figure 3.1).

One point to note is that the reference position trajectory must be continuous and

twice differentiable, otherwise a pre-compensator to filter the reference signal will be

necessary. The only parameters required for the design of the feedforward control are

the parameters of the second-order linear model.

Additional feedforward terms may be included for direct compensation of the

nonlinear effects, if the appropriate models are available. For example, if a good

signal model of the ripple force is available (3.11), then an additional static term in

the feedforward control signal uFF = R
Kf

Fripple(xd) can effectively compensate for the

ripple force.

In the same way, a static friction feedforward pre-compensator can be installed

if a friction model is available. In [40], an efficient way of friction modeling using

relay feedback is proposed where a simple friction model (incorporating Coulomb

and viscuous friction components) can be obtained automatically. This model can

be used to construct an additional feedforward control signal, based only on the

reference trajectories. In addition, if the motion control task is essentially repetitive,

an iteratively refined additional feedforward signal can further reduce any control-

induced tracking error. A possible scheme based on iterative learning control (ILC)

can be found in [41] and [42]. The basic idea in ILC is to exploit the repetitive nature

of the tasks as experience gained to compensate for the poor or incomplete knowledge

of the system model and the disturbances. Essentially, the ILC structure includes a
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feedforward control component which refines the feedforward signal to enhance the

performance of the next cycle based on previous cycles. A block diagram of the ILC

scheme is depicted in Figure 3.6.

Figure 3.6: Iterative Learning Control

Characteristic of all feedforward control schemes, the performance is critically

dependent on the accuracy of the model parameters. Therefore, feedforward control

is usually augmented with suitable feedback control schemes, for example PID control.

3.2.5 PID Feedback Control

In spite of the advances in mathematical control theory over the last fifty years,

industrial servo control loops are still essentially based on the three-term PID con-

troller. The main reason is due to the widespread field acceptance of this simple

controller which has been effective and reliable in most situations when adequately

tuned. Some complex and advanced controllers have fared less favourably under
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practical conditions, despite the higher costs associated with implementation and the

higher demands in control tuning, as compared to PID controller. It is very diffi-

cult for operators unfamiliar with advanced control to adjust the control parameters.

Given these uncertainties, there is little surprise that PID controllers continue to be

manufactured by the hundred thousands yearly and still increasing. In the composite

control system, PID is used as the feedback control term. While the simplicity in a

PID structure is appealing, it is also often proclaimed as the reason for poor control

performance whenever it occurs. In this design, advanced optimum control theory is

applied to tune PID control gains. The PID feedback controller is designed using the

Linear Quadratic Regulator (LQR) technique for optimal and robust performance

of the nominal system. The feedforward plus feedback configuration is often also

referred to as a two-degree-of-freedom (2-DOF) control.

The nominal portion of the system (without uncertainty) is given by:

ẋ(t) = ax(t) + buPID(t), (3.15)

where a and b are the system’s parameters defined in (3.6) and (3.7), and

uPID = kx1 + kd1x2 + kd2x3, (3.16)

where k, kd1 and kd2 are constants; x1, x2 and x3 are the state variables. This is a

PID control structure which utilizes a full-state feedback. The optimal PID control

parameters are obtained using the LQR technique that is well known in modern

optimal control theory and it has been widely used in many applications. It has a

very nice robustness property, i.e., if the process is of single-input and single-output,
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then the control system has at least a phase margin of 60 degree and a gain margin of

infinity. Under mild assumptions, the resultant closed-loop system is always stable.

This attractive property appeals to the practitioners. Thus, the LQR theory has

received considerable attention since 1950s.

The PID control is given by:

uPID = −(r0 + 1)BT Px(t), (3.17)

where P is the positive definite solution of the Riccati equation:

AT P + PA − PBBT P + Q = 0, (3.18)

and Q = HT H where H relates to the states weighting parameters in the usual

manner. A and B refer to the system matrices [43]. Note that r0 is independent of

P and it is introduced to weigh the relative importance between control effort and

control errors. Note for this feedback control, the only parameters required are the

parameters of the second-order model and a user-specified error weight r0.

Where other state variables are available (e.g. velocity, acceleration and etc.), a

full state feedback controller may also be used for the feedback control component.

The implementation of such a scheme on PMLMs can be found in [43]. Adaptive and

robust control has also been investigated in a previous study as an alternative to the

PID feedback control, where the feedback control signal is adaptively refined based

on parameter estimates of the nonlinear system model, using prevailing input and

output signals. The achievable performance is highly dependent on the adequacy of

the model, and the initial parameter estimates. Furthermore, full adaptive control

schemes can greatly drain the computational resources available. More details on

adaptive and robust control schemes for precision motion control are provided in [44].

61



3.2.6 Ripple Compensation

From motion control viewpoints, force ripples are highly undesirable, but yet they are

predominantly present in PMLMs. They can be minimized or even eliminated by an

alternative design of the motor structure or spatial layout of the magnetic materials

such as skewing the magnet, optimizing the disposition and width of the magnets

and etc. These mechanisms often increase the complexity of the motor structure.

PMLM, with a slotless configuration is a popular alternative since the cogging force

component due to the presence of slots is totally eliminated. Nevertheless, the motor

may still exhibit significant cogging force owing to the finite length of the iron-core

translator. Finite element analysis confirms that the force produced on either end

of the translator is sinusoidal and unidirectional. Since the translator has two edges

(leading and trailing edges), it is possible to optimize the magnet length so that the

two sinusoidal force waveform of each edge cancel out each other. However, this

would again contribute some degree of complexity to the mechanical structure. A

more practical approach to eliminate cogging force would be to adopt a sleeve-less or

an iron-less design in the core of the windings. However, this approach results in a

highly inefficient energy conversion process with a high leakage of magnetic flux due to

the absence of material reduction in the core. As a result, the thrust force generated

is largely reduced (typically by 30 % or more). This solution is not acceptable for

applications where high acceleration is necessary. In addition, iron-core motors, which

produce high thrust force, are ideal for accelerating and moving large masses while

maintaining stiffness during the machining and processing operations.

In this section, a simple approach will be developed which is based on the use of a

62



dither signal as a “trojan horse” to cancel the effects of force ripples. The construction

of dither signal requires knowledge of the characteristics of force ripples which can be

obtained from simple step experiments. For greater robustness, real-time feedback of

motion variables can be used to adaptively refine the dither signal characteristics.

It is assumed that the force ripple can be equivalently viewed as a response to a

virtual input described in the form of a periodic sinusoidal signal:

uripple = A(x) sin(ωx + φ) = A1(x) sin(ωx) + A2(x) cos(ωx). (3.19)

The dither signal is thus designed correspondingly to eradicate this virtual force as:

uAFC = a1(x(t)) sin(ωx) + a2(x(t)) cos(ωx). (3.20)

Perfect cancellation will be achieved when

a1
∗(x) = −A1(x), a2

∗(x) = −A2(x). (3.21)

Feedforward compensation schemes are well-known to be sensitive to modeling errors

which inevitably result in significant remnant ripples. An adaptive approach is thus

adopted so that a1 and a2 will be continuously adapted based on desired trajectories

and prevailing tracking errors.

Let

a =

⎡
⎢⎣ a1(x)

a2(x)

⎤
⎥⎦ , θ =

⎡
⎢⎣ sin(ωx)

cos(ωx)

⎤
⎥⎦ , a∗ =

⎡
⎢⎣ −A1(x)

−A2(x)

⎤
⎥⎦ . (3.22)

The system output due to AFC is then given by:

xa = P [a − a∗]T θ, (3.23)
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where P denotes the system.

(3.23) falls within the standard framework of adaptive control theory. Possible update

laws for the adaptive parameters will therefore be:

ȧ1(x(t)) = −ge sin(ωx), (3.24)

ȧ2(x(t)) = −ge cos(ωx), (3.25)

where g > 0 is an arbitrary adaptation gain.

Differentiating (3.24) and (3.25) with respect to time, it follows

ȧ1(t) = −geẋd sin(ωx), (3.26)

ȧ2(t) = −geẋd cos(ωx). (3.27)

In other words, the adaptive update laws (3.26) and (3.27) can be applied as an

adjustment mechanism such that a1(t) and a2(t) in (3.20) converge to their true

values. Full details on this adaptive ripple compensation scheme are provided in [45].

3.2.7 Disturbance Observer

The achievable performance of PMLMs is also unavoidably limited by the amount

of disturbances present. These disturbances may arise due to load changes, system

parameter perturbation owing to prolonged usage, measurement noise and high fre-

quencies generated from the amplifiers (especially when a Pulse Width Modulated

(PWM) amplifier is used), or inherent nonlinear dynamics such as the force ripples

and frictional forces mentioned. Incorporating a higher resolution in the measure-

ment system via the use of high interpolation electronics on the encoder signals can
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only achieve improvement in positioning accuracy to a limited extent. Thereafter,

the amount of disturbances present will ultimately determine the achievable per-

formance. In this subsection, this important issue of disturbance compensation for

precision motion control systems will be addressed.

Figure 3.7 shows the block diagram of the “Disturbance Observer” part of the

proposed control system which uses an estimate of the actual disturbance, deduced

from a disturbance observer, to compensate for the disturbances. r, u, ξ, y, d and d̂

denote the reference signal, control signal, measurement noise, system output, actual

and estimated disturbance respectively. The disturbance observer, shown demarcated

within the dotted box in Figure 3.7, estimates the disturbance based on the output

x and the control signal u. P denotes the actual system. Pn denotes the nominal

system which can be generally described by:

Pn =
a0

sl(sm−l + a1sm−l−1 + ... + am−l−1s + am−l)
, (3.28)

where Pn is a m-th order system and has l poles at the origin. For example, a third

order model, i.e., l = 1, m = 3, will be used

Pn =
a0

s(s2 + a1s + a2)
. (3.29)

The disturbance observer incorporates the inverse of the nominal system, and thus a

low pass filter F is required to make the disturbance observer proper and practically

realizable. For the choice of a third order model Pn, a suitable filter is

F (s) =
f3

s3 + f1s2 + f2s + f3
, (3.30)

where f1, f2 and f3 can be adjusted to satisfy a satisfactory compromise between

65



tracking and disturbance rejection. [46] and [47] give the full details of the disturbance

observer scheme.

Figure 3.7: Control system with disturbance observer.

3.2.8 Vibration Control and Monitoring

Mechanical vibration in machines and equipment can occur due to many factors,

such as unbalanced inertia, bearing failures on turbines, motors, generators, pumps,

drives, turbofans, etc, poor kinematic design resulting in a non-rigid support struc-

ture, component failure and/or operations outside prescribed load ratings. The ma-

chine vibration signal can be typically characterised as a narrow-band interference

signal anywhere in the range from 1 Hz to 500kHz. To prevent equipment damage

from the severe shaking that occurs when machines malfunction or vibrate at res-

onant frequencies, a filter which terminate signal transmission at these frequencies

will be very useful. When the machine is used to perform highly precise positioning
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functions, undue vibrations can lead to poor repeatibility properties, impeding any

systematic error compensation effort. This results directly in a loss of precision and

accuracy achievable. Two different approaches to control and monitor the undesir-

able vibrations are elaborated in Chapter 4. One possible approach is to design an

adaptive notch filter to suppress the vibrations.

3.3 Robust Nonlinear PID Control

In this section, the development of the proposed control scheme will be described

systematically in detail. Firstly, define the tracking error e(t) = xd(t) − x(t) and

write (3.10) as

ë = aė − bu + ffric + fload + ẍd − aẋd. (3.31)

Let d = −(fload + ẍd − aẋd)/b and f(x, ẋ) = −(ffric + fripple)/b and

ë = aė − bu − b[f(x, ẋ) + d]. (3.32)

Assumption 2.1: It is assumed that the desired trajectories xd, ẋd, ẍd are bounded.

Thus, it can be concluded that d is bounded, i.e.,

|d| < dM , (3.33)

since dM is bounded.

Since d
dt

∫ t
0 e(τ)dτ = e, let the system’s variables be z = [

∫ t
0 e(τ)dτ e ė]T . Then,

(3.32) can be put into the following equivalent state equation:

ż = Az + Bu + B[f(x, ẋ) + d], (3.34)
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A =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0

0 0 1

0 0 a

⎤
⎥⎥⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎢⎢⎣

0

0

−b

⎤
⎥⎥⎥⎥⎥⎦ . (3.35)

For the nominal system

ż = Az + Bu, (3.36)

the nominal control law unom = Kz which is the standard PID control to guarantee

uniform stability for the nominal system is proposed.

However, in order to compensate the effects of f(x, ẋ) which may possibly induce

instability problems, it is possible to augment the nominal control signal with an

additional signal to cancel the nonlinear terms. To this end, the RBFNN may be

used to model f(x, ẋ). An additional control signal is thus provided by the RBFNN

to compensate for the effects of f(x, ẋ). The main property of a RBFNN used here

for estimation purposes is the function approximation property ([48]-[50]).

Since f(x, ẋ) is a nonlinear smooth function (unknown), it may be represented by a

RBFNN with constant ‘ideal’ weights wi, i = 0, 1, 2, ..m and a sufficient number of ba-

sis functions φ(·) on the compact set Ω = {X| ||Xd−X|| ≤ M} where Xd = [xd, ẋd]
T .

Thus,

f(x, ẋ) =
m∑

i=0

wiφi(ciX) + ε, (3.37)

where ε is the RBFNN approximation error satisfying |ε| ≤ εM with constant εM , and

φi(ciX) is given by

φi(ciX) = exp(−||X − ci||2
2σ2

i

), (3.38)
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where ci is a 2-dimensional vector representing the center of the ith basis function,

and σj is the variance representing the spread of the basis function. In general, the

RBF basis parameters ci and ideal RBF weights w∗
i are unknown and need to be

estimated in the control design. Note that the set Ω and the bounding constant εM

can be arbitrarily large.

f(x, ẋ) = W TΦ(CT X̄) + ε, (3.39)

where W = [w0, w1, ..., wm]T , Φ = [φ0, φ1, ..., φm]T , X̄ = [XT , 1]T .

Let Ŵ , Ĉ be estimates of the ideal W and C. Define the estimation errors as

W̃ = W − Ŵ , C̃ = C − Ĉ. (3.40)

Then, applying the same approach of [51] and [52]:

Φ̃ = Φ − Φ̂ = Φ(CT X̄) − Φ(ĈX̄). (3.41)

The Taylor series expansion for a given X̄ may be written as:

Φ(CT X̄) = Φ(ĈT X̄) + Φ
′
(ĈT X̄)C̃T X̄ + O(C̃T X̄)2. (3.42)

Then

W TΦ(CT X̄) − Ŵ T Φ(ĈX̄) = W̃ T [Φ(ĈT X̄) − Φ
′
(ĈT X̄)ĈT X̄]

+Ŵ T Φ
′
(ĈT X̄)C̃T X̄ + du, (3.43)

where

du = W̃ TΦ
′
(ĈT X̄)CT X̄ + W T O(C̃T X̄)2. (3.44)
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Since Φ is the RBF function, every element of Φ(CT X̄) − Φ(ĈT X̄) is bounded by

2M . Thus,

|du| ≤ ||C||F ||X̄Ŵ TΦ
′
(ĈT X̄)||F + ||W ||||Φ′

(ĈT X̄)ĈT X̄|| + 2M |W |1 (3.45)

In this subsection, a combined control law constituting PID control and an adaptive

control (provided by the RBFNN) is proposed. The control structure is as shown

in Figure 3.8. The nominal system can be made asymptotically stable by properly

choosing the PID parameters while the uncertain term can be compensated by the

RBFNN. Thus, considering the system (3.34), the control input is given by

u = Kz − f̂(x, ẋ) − sgn(zT PB)d̂, (3.46)

where Kz is standard PID control and f̂(x, ẋ) is the RBF functional estimate of

f(x, ẋ) given by

f̂(x, ẋ) =
m∑

i=0

ŵiφi(x, ẋ), (3.47)

where ŵi is the estimate of the ideal weighting w∗
i , and sgn(zT PB)d̂ is a robustifica-

tion term which provides robustness in the face of bounded disturbances.

For PID control, much work has been done in this area. In principle, the exist-

ing PID tuning methods, such as the gain and phase margin method, dominant pole

method [53], and many other methods, can be employed for this purpose. Since the

PID controller can be designed to ensure nominal stability for the dominant model,
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the following Lyapunov equation holds:

(A + BK)T P + P (A + BK) = −I. (3.48)

Let Ā = A + BK. The following controller is proposed

u = Kz − Ŵ T Φ(ĈT X̄) + uc, (3.49)

where uc is a compensator used to reject the effect of disturbances. Here, uc is

designed as

uc = −[ĉf ||X̄Ŵ TΦ
′
(ĈT X̄)||F + ĉw||Φ′

(ĈT X̄)ĈT X̄|| + ĉd]sgn(zT PB). (3.50)

For the weights of the RBFNN function and robustifying term, consider the following

tuning rules

˙̂
W = Γw[Φ(ĈT X̄) − Φ

′
(ĈT X̄)ĈT X̄]zT PB, (3.51)

˙̂
C = ΓcX̄Ŵ T Φ

′
(ĈT X̄)zT PB, (3.52)

˙̂cf = r||X̄Ŵ TΦ
′
(ĈT X̄)||F |zT PB|, (3.53)

˙̂cc = r||Φ′
(ĈT X̄)ĈT X̄|||zT PB|, (3.54)

˙̂cd = r|zT PB|, (3.55)

where Γw, Γc, and r > 0.

With this controller, the system (3.34) can be written as

ż = Āz + B[W T Φ(CT X̄) − Ŵ TΦ(ĈX̄)] + B(uc + d + ε)

= Āz + B{W̃ T [Φ(ĈT X̄) − Φ
′
(ĈT X̄)ĈT X̄] + Ŵ T Φ

′
(ĈT X̄)C̃T X̄}

+B(uc + du + d + ε). (3.56)
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Theorem 3.1. The plant (3.34) with controller (3.49), PID control and adaptive laws

(3.51)-(3.55), is stable in that all the signals in the closed-loop system are bounded.

In addition, limt→∞ ||z(t)|| = 0.

Proof. Consider the following Lyapunov function candidate:

V = V0 + V1 = zT Pz + W̃Γ−1
w W̃ + tr(C̃T Γ−1

c C̃) +
1

r
[c̃2

f + c̃2
w + c̃2

d], (3.57)

where

V0 = zT Pz, (3.58)

V1 = W̃Γ−1
w W̃ + tr(C̃TΓ−1

c C̃) +
1

r
[c̃2

f + c̃2
w + c̃2

d]. (3.59)

Taking the time derivative of V along the solution of (3.56), it can be shown that

V̇0 = −zT z + 2zT PBW̃ T [Φ(ĈT X̄) − Φ
′
(ĈT X̄)ĈT X̄] + 2zT PBŴ TΦ

′
(ĈT X̄)C̃T X̄

+2zT PB(uc + du + d + ε). (3.60)

Note that

2zT PB(uc + du + d + ε) ≤ 2zT PBuc + 2|zT PB||du| + 2|zT PB|(dM + εM)

≤ 2zT PBuc + 2|zT PB|||C||F ||X̄Ŵ TΦ
′
(ĈT X̄)||F

+2|zT PB|||W ||||Φ′
(ĈT X̄)ĈT X̄||

+2|zT PB|(dM + εM + 2|W |1). (3.61)

Let cf = ||C||F , cw = ||W || and cd = dM + εM + 2|W |1. Then, applying the compen-

sator uc,

2zT PB(uc + du + d + ε) ≤ 2zT PBuc + 2|zT PB|cf ||X̄Ŵ TΦ
′
(ĈT X̄)||F

+2|zT PB|cw||Φ′
(ĈT X̄)ĈT X̄|| + 2|zT PB|cd
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≤ 2|zT PB|(c̃f ||X̄Ŵ T Φ
′
(ĈT X̄)||F

+c̃w||Φ′
(ĈT X̄)ĈT X̄|| + c̃d)

= 2[c̃f ||X̄Ŵ TΦ
′
(ĈT X̄)||F + c̃w||Φ′

(ĈT X̄)ĈT X̄|| +

c̃d]|zT PB|. (3.62)

Thus,

V̇0 ≤ −zT z + 2zT PBW̃ T [Φ(ĈT X̄) − Φ
′
(ĈT X̄)ĈT X̄] + 2zT PBŴ TΦ

′
(ĈT X̄)C̃T X̄

+2[c̃f ||X̄Ŵ TΦ
′
(ĈT X̄)||F + c̃w||Φ′

(ĈT X̄)ĈT X̄|| + c̃d]|zT PB|. (3.63)

Note that zT PB is a scalar. For V̇ ,

V̇ ≤ −||z||2 − 2W̃ T Γ−1
w

˙̂
W + 2W̃ T [Φ(ĈT X̄) − Φ

′
(ĈT X̄)ĈT X̄]zT PB

−2tr(C̃T Γ−1
c

˙̂
C) + 2Ŵ TΦ

′
(ĈT X̄)C̃T X̄zT PB

−2

r
c̃f

˙̂cf + 2c̃f ||X̄Ŵ T Φ
′
(ĈT X̄)||F |zT PB| − 1

r
2c̃w

˙̂cw

+2c̃w||Φ′
(ĈT X̄)ĈT X̄|||zT PB| − 2

r
c̃d

˙̂cd + c̃d|zT PB|

≤ −||z||2 + 2{−W̃ TΓ−1
w

˙̂
W + [Φ(ĈT X̄) − Φ

′
(ĈT X̄)ĈT X̄]zT PB}

+2trC̃T [−Γ−1
c

˙̂
C + X̄Ŵ T Φ

′
(ĈT X̄)zT PB]

+2c̃f [−1

r
˙̂cf + ||X̄Ŵ T Φ

′
(ĈT X̄)||F |zT PB|] + 2c̃w[−1

r
˙̂cw

+||Φ′
(ĈT X̄)ĈT X̄|||zT PB|]

+2c̃d[−1

r
˙̂cd + |zT PB|]. (3.64)

Substituting the RBFNN weights’ and parameters’ update laws (3.51)-(3.54) into

(3.64) yields

V̇ ≤ −||z||2. (3.65)
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This implies that all the signals of the closed-loop system are uniformly bounded.

From (3.56) and the fact that X̄, Φ, ε, d are bounded and the system parameters

are bounded, it follows that ||ż||2 is bounded. (3.65) and the definiteness of V imply

that

∫ ∞

0
||z|2dt ≤

∫ ∞

0
−V̇ (τ)dτ + const. (3.66)

This implies that ||z||2 ∈ L2. Applying Barbalat’s lemma, it can be obtained that

lim
t→∞ ||z||2 = 0. (3.67)

The proof is completed.

Remark 3.1. The RBFNN reconstruction error ε is a critical quality to meet Theo-

rem 2.1, representing the minimum possible deviation between the unknown function

f(x, ẋ) and the function estimation f̂(x, ẋ). In general, increasing the RBFNN node

number reduces the RBF reconstruction error.

Remark 3.2. The proposed controller differs from the controller of Lewis et al. [51]

and Zhang et al. [52]. This controller can achieve an error approaching zero, while

their controllers can achieve the error approaching to a small region.

Theorem 3.1 relates only to the asymptotic performance requirement in the closed-

loop system, no transient performance is discussed. In practical applications, tran-

sient performance can be even more important. To this end, the following theorem is

proposed.
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Theorem 3.2. For the closed-loop system (3.56), then the tracking error bound

on the L2 norm is

||z||2 ≤
√

λmax(P )||z(0)|| + 1√
λmin(Γw)

||W̃ (0)|| + 1√
λmin(Γc)

||C̃(0)||

+
1√
r
(|c̃f(0)| + |c̃w(0)| + |c̃d(0)|). (3.68)

Proof. From (3.65),

V̇ ≤ −||z||2. (3.69)

It follows that

||z||2 ≤ −V̇ . (3.70)

Since V = zT Pz+W̃Γ−1
w W̃ + C̃T Γ−1

c C̃ + 1
r
[c̃2

f + c̃2
w + c̃2

d] is non-increasing and bounded

from below by zero, it will be limited as t → ∞, so that

||z||2 =
∫ ∞

0
||z(τ)||2dτ ≤ −

∫ ∞

0
V̇ (τ)dτ

= V (0) − V (∞) ≤ V (0)

= zT (0)Pz(0) + W̃ (0)Γ−1
w W̃ (0) + C̃T (0)Γ−1

c C̃(0)

+
1

r
[c̃f(0)2 + c̃w(0)2 + c̃d(0)2]

≤ λmax(P )||z(0)||2 +
1

λmin(Γw)
||W̃ (0)||2 +

1

λmin(Γc)
||C̃(0)||2

+
1

r
[c̃f(0)2 + c̃w(0)2 + c̃d(0)2], (3.71)

which implies (3.68).

Remark 3.3. Theorem 3.2 provides some methods for improving the transient per-

formance. 1) The non-zero initial parameter error of W ∗
i − Wi(0) may increase the
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error bound. However, with a NN trained offline, the initial error can be reduced. 2)

Large adaptation gains Γw, Γc, r which attenuate the effects of initial parameter error

is vital for good L2 performance.

Figure 3.8: Control structure.

3.4 Simulation and Experimental Study

In this section, a simulation and experimental study is provided to demonstrate the

performance of the proposed algorithms on mechanical systems. A piezoelectric linear

motor (Figure 2.6) as similar to the one used in the previous chapter is used as the

test platform for this experimental study. The motor is modeled as a nonlinear differ-

ential equation as given in (3.5), with Kf = 8N/V olt, Ke = 144Ns/m, M = 5.3kg,

and R = 1.5Ω.

The nominal plant model (ignoring frictional force ffric in (3.12)) in (3.5) may also

be expressed as

Gp(s) =
kp

s(Tps + 1)
, (3.72)
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where kp, Tp are the model parameters.

The nominal model of the plant is first identified offline using a relay feedback method

[50]. The model parameters in (3.72) are identified as kp = 4.3823e5, Tp = 0.009. Us-

ing the dual relay feedback method ([35] and [54]), the friction parameters in (3.12)

are identified as f1 = 0.0064, f2 = 8.2876e − 5 and δf = 0.381. Using these system

parameters, a PID feedback controller can be commissioned. The controller can be

designed based on a wide range of well-developed PID tuning methodologies [50]. The

desired displacement trajectory is shown in Figure 3.9. A main consideration of the

trajectory selected is that it has to be first-order integrable and differentiable. One

of the strengths of the proposed method is that only a stable set of PID parameters

(which can be easily obtained using the norminal plant model) is required. In the

simulation example, only one or two relay experiments are performed to obtain the

PID parameters.

For simulation purposes, three cases (i.e., Case 1 : PID controller on the nomi-

nal plant (without considering the frictional force); Case 2 : PID controller on the

full nonlinear plant; Case 3 : Combined PID/adaptive controller on the full nonlin-

ear plant) are considered. The simulation results of the tracking performance in all

three cases are shown in Figure 3.10. For the adaptive controller, 40 nodes are used

in the RBFNN. As seen in Figure 3.10, the combined PID and adaptive controller

exhibits good learning capabilities and convergence properties while performing the

tracking tasks. The displacement error is much reduced when the adaptive controller

is commissioned in the full nonlinear system. The effect of including the frictional
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force in the simulation model is evident in that the displacement error is increased,

as compared to the case with just the nominal plant. The PID controller alone is

not adequate for the motion tracking purposes. The adaptive controller provides the

major portion of the control action.

An actual experimental study is conducted on the actual piezoelectric platform.

The same desired displacement trajectory as shown in Figure 3.9 is used in this

experimental study. The tracking performance of the PID controller alone is shown

in Figure 3.11. With the additional adaptive controller applied to the full nonlinear

system, the tracking performance of the combined PID and adaptive controller is

shown in Figure 3.12.

As the desired trajectory is repetitive in nature, the forward and backward linear

motion of the moveable translator along the motor stage is shown in Figures 3.11 and

3.12. With PID controller alone, the amplitude of the displacement error remains

fairly constant at about 120 µm. There is just a change of sign in the displacement

error as the translator moves from the forward motion and back. It can be observed

that there is a step-like increase in the displacement error as the translator changes

its direction of motion. This is due largely to the frictional forces [39], which includes

viscous and Coulomb friction, at work. Combining the efforts of the RBFNN and PID

controller, the displacement error (Figure 3.12) is greatly reduced. There is an initial

spike-like increase in the displacement error as the translator changes its direction of

motion. But the RBFNN is able to clamp down on the displacement error for the

rest of the motion, until the translator changes its direction of motion again. For

the adaptive controller, 30 nodes are used in the RBFNN in this experimental study.

The results of the experimental study is consistent with that of the simulation study.
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The combined PID and adaptive controller achieves good tracking performance, in

the face of strong nonlinearities in the system.

Figure 3.9: Desired trajectory.

3.5 Conclusions

This chapter has considered the development of a new PID/adaptive controller for

precision motion systems. The second-order model is used as the nominal dominant

model for the design of the PID controller, and an adaptive component designed

based on a RBFNN provides for the possibility of performance enhancement when

the feedback control alone is inadequate to cope with uncertain nonlinear phases.

The effectiveness of the proposed control scheme is highlighted in the simulation and

experimental study.
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Figure 3.10: Comparison of the displacement error in all 3 cases. (dash line)Case 1:

PID controller on the nominal plant; (+)Case 2: PID controller on the full nonlinear

system; (full line)Case 3: Combined PID/adaptive controller on the full nonlinear

system.

Figure 3.11: Tracking performance of the PID controller on the actual piezoelectric

motor.
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Figure 3.12: Tracking performance of the combined PID/adaptive controller on the

actual piezoelectric motor.
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Chapter 4

Intelligent Monitoring: Monitoring

and Suppression of Vibration in

Precision Motion Systems

4.1 Introduction

Mechanical vibration in machines and equipment can occur due to many factors, such

as unbalanced inertia, bearing failures in rotating systems such as turbines, motors,

generators, pumps, drives and turbofans, poor kinematic design resulting in a non-

rigid and non-isolating support structure, component failure and/or operation outside

prescribed load ratings. The machine vibration signal can be typically characterized

as a narrow-band interference signal anywhere in the range from 1 Hz to 500kHz. A

real-time monitoring and control device will be very useful to prevent equipment dam-

age from the severe shaking that occurs when a machine malfunctions or vibrates at a

resonant frequency. When the machine is used to perform highly precise positioning

functions, undue vibrations can lead to poor repeatibility properties, impeding any
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effort for systematic error compensation. This results directly in a loss of achievable

precision and accuracy.

This chapter addresses two approaches to deal with mechanical vibrations in pre-

cision motion systems. The first approach utilizes an adaptive notch filter (narrow-

bandstop filter) to identify the resonant frequencies and suppress any signal transmis-

sion into the system at these frequencies. The adaptive notch filter can be directly

incorporated into the control system. The second approach uses a real-time analyzer

to detect excessive vibration based on which appropriate actions can be taken, say

to provide a warning or corrective action. This second approach can be implemented

independently of the control system and as such can be applied to existing equip-

ment without modification of the normal mode of operation. A signature is derived

from the vibration signal acquired using an accelerometer that is attached to the

machine under normal operating conditions. A pattern recognition template is used

to compare real-time vibration signal against the normal-condition signature and an

alarm can be activated when the difference deviates beyond an acceptable threshold.

Rectification actions can be invoked before damage is done to the machine.

4.2 Adaptive Notch Filter

The task of eliminating/suppressing undesirable narrow-band frequencies can be ef-

ficiently accomplished using a notch filter (also known as a narrow band-stop filter).

The filter highly attenuates a particular frequency component and leaves the rest

of the spectrum relatively unaffected. An ideal notch filter has a unity gain at all

frequencies except in the so-called null frequency band, where the gain is zero. A
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single-notch filter is effective in removing a single frequency or a narrow-band in-

terference; a multiple-notch filter is useful for the removal of multiple narrow-bands

which would be necessary in applications requiring cancellation of harmonics. Digital

notch filters are widely used to retrieve sinusoids from noisy signals, eliminate sinu-

soidal disturbances, and track and enhance time-varying narrow-band signals with

wide-band noise. They have found extensive use in the areas of radar, signal process-

ing, communications, biomedical engineering, and control/instrumentation systems.

To create a null band in the frequency response of a digital filter at a normalized

frequency β0, a pair of complex-conjugate zeros can be introduced on the unit circle

at phase angles ±β0 respectively. The zeros are defined as:

z1,2 = e±jβ0 = cos β0 ± j sin β0, (4.1)

where the normalized null frequency β0 is defined as:

β0 = 2π
f0

fs
. (4.2)

Note that fs is the sampling frequency in Hz (or rad/s) and f0 is the notch frequency

in Hz (or rad/s). This yields a Finite Impulse Response (FIR) filter given by the

z-transform transfer function:

H(z) = 1 − 2 cosβ0z
−1 + z−2. (4.3)

A FIR notch filter has a relatively large notch bandwidth, which means that the

frequency components in the neighbourhood of the desired null frequency are also

severely attenuated as a consequence. The frequency response can be improved by
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introducing a pair of complex-conjugate poles. The poles are placed inside the circle

with a radius of α at phase angles ±β0. The poles are defined as

p1,2 = αe±jβ0 = α(cosβ0 ± j sin β0), (4.4)

where one requires α ≤ 1 for filter stability, and (1 − α) is the distance between the

poles and the zeros.

The poles introduce a resonance in the vicinity of the null frequency, thus reduc-

ing the bandwidth of the notch. The transfer function of the filter is given by:

H(z) =
(z − z1)(z − z2)

(z − p1)(z − p2)
. (4.5)

Substituting the expression for zi and pi, and dividing throughout by z2, the resulting

filter has the following transfer function:

H(z) =
a0 + a1z

−1 + a2z
−2

1 + b1z−1 + b2z−2
, (4.6)

=
1 − 2 cosβ0z

−1 + z−2

1 − 2α cos β0z−1 + α2z−2
. (4.7)

Digitally, the filtered signal y is thus obtained from the raw signal u via the recursive

formula in the discrete time domain as follows:

y(n) = a0u(n) + a1u(n − 1) + a2u(n − 2) − b1y(n − 1) − b2y(n − 2), (4.8)

where the coefficients ai and bi are the same as those in (4.6) because z−1 corresponds

to the time-shift (delay through sampling period) operator.

The bandwidth and the Q-factor of the notch filter are respectively given by Fer-
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djallah et al. [55]:

BW =
2
√

2(1 − α2)

[16 − 2α(1 + α)2]
1
2

, (4.9)

Q = ω0
[16 − 2α(1 + α)2]

1
2

2
√

2(1 − α2)
. (4.10)

The filter transfer function H(z) has its zeros on the unit circle. This implies a zero

transmission gain at the normalized null frequency β0. It is interesting to note that

the filter structure (4.7) allows independent tuning of the null frequency and the 3-dB

attenuation bandwidth by adjusting β0 and α, respectively. The performance of the

notch filter depends on the choice of the constant α, which controls the bandwidth

BW according to (4.9). The bandwidth, which is a function of the distance of the

poles and zeros (1−α), narrows when α approaches unity. Clearly, when α is close to

1, say α = 0.995, the corresponding transfer function behaves virtually like an ideal

notch filter.

Complete narrow-band disturbance suppression requires an exact adjustment of

the filter parameters to align the notches with the resonant frequencies. If the true

frequency of the narrow-band interference that is to be rejected is stable and known a

priori, a notch filter with fixed null frequency and fixed bandwidth can be used. How-

ever, if no information is available a priori or when the resonant frequencies drift with

time, the fixed notch may not coincide exactly with the desired null frequency, par-

ticularly if the bandwidth is too narrow (i.e. α ≈ 1). In this case, a tunable/adaptive

notch filter is highly recommended. In [56] and [57], it is proposed to adapt the null

bandwidth of the filter to accommodate the drift in frequency. In [58], it is suggested

that an active compensator be used to suppress the vibration signals. Kwan and

Martin [59] adapt the null frequency β0, while keeping the pole radii α constant. In
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other words, the parameters a1 and b1 of (4.6) are adjusted such that the notch will

center at the unwanted frequency while retaining the null bandwidth of the notch

filter.

4.2.1 Fast Fourier Transform (FFT)

The Discrete Fourier Transform (DFT) is a tool that links the discrete-time domain

to the discrete-frequency domain. It is a popular off-line approach widely used to

obtain the information about the frequency distribution required for the filter design.

However, the direct computation of DFT is prohibitively expensive in terms of re-

quired computation effort. Fortunately, FFT is mathematically equivalent to DFT,

but it is a more efficient alternative for implementation purposes (with a computa-

tional speed that is exponentially faster) and can be used when the number of samples

n is a power of two (which is not a serious constraint). For vibration signals where the

concerned frequencies drift with time, FFT can be continuously applied to the latest

n samples to update the signal spectrum. Based on the updated spectrum, the filter

characteristics can be continuously adjusted for notch alignment. The block diagram

of the adaptive notch filter which has been developed in the present work, with its

adjusting mechanism, is shown in Figure 4.1.

4.2.2 Simulation

There are many issues to consider in designing the notch filter. One of the main

consideration is system stability. The introduction of the notch filter should not affect

the overall stability of the system. Other considerations include filter consistency, i.e.,

filter performance should not degrade when the filter coefficients change slightly as
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Figure 4.1: Block diagram of the adaptive notch filter with adjusting mechanism.

a result of quantization and noise in the signal should not hurt the performance

of the filter, and filter performance, i.e., the filter should provide sufficient signal

discrimination or noise cancellation. In the case of the simulation and experimental

study here, the PID controller has to be retune to with the introduction of the notch

filter. It is shown in the simulation and experimental results that the introduction of

the notch filter does not affect the overall system stability.

Computer simulations have been carried out to explore the application of the

adaptive notch filter in suppressing undesirable frequency transmission in the control

system for a precision positioning system that uses permanent magnet linear motors

(PMLM). In one simulation, a sinusoidal trajectory is closely followed and an undesir-

able vibration signal is simulated, which drifts from a frequency of 500Hz in the first

cycle to a frequency of 1−5Hz in the second cycle of the trajectory. Figure 4.2 shows

the tracking performance of the precision machine without a notch filter. Figure 4.3

shows the performance when a fixed notch filter is used and Figure 4.4 shows the

performance with an adaptive notch filter. It is clearly evident that a time-invariant
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Figure 4.2: Simulation results without a notch filter: (a) Error (µm); (b) Desired

trajectory (µm); (c) Control signal (V).

narrow-band vibration signal can be effectively eliminated using just a fixed notch

filter. However, when the vibration frequencies drift, an adaptive notch filter is able

to detect the drift and align the notch to remove the undesirable frequencies with

only a short transient period.

4.2.3 Experiments

A notch filter is implemented in the control system of a Linear Drive tubular lin-

ear motor (LD3810) equipped with a Renishaw optical encoder having an effective

resolution of 1µm. The popular PID control is used in the controller. Figure 4.5

shows the performance of the PMLM when no filter is used. Figure 4.6 shows the

improvement in the control performance when the notch filter is incorporated into

the control system. Again, it is noted how a notch filter can be used in a practical
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Figure 4.3: Simulation results using a fixed notch filter: (a) Error (µm); (b) Desired

trajectory (µm); (c) Control signal (V).
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Figure 4.4: Simulation results using an adaptive notch filter: (a) Error (µm); (b)

Desired trajectory (µm); (c) Control signal (V).
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situation of motion control.
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Figure 4.5: Experimental results without a notch filter: (a) Error (µm); (b) Desired

trajectory (µm); (c) Control signal (V).

4.3 Real Time Vibration Analyzer

Another approach towards real time monitoring and analysis of machine vibration

([60] and [61]) is described in this section. The main idea behind this approach

is to construct a vibration signature based on pattern recognition of ‘acceptable’

or ‘healthy’ vibration patterns. The vibration analyzer can operate in three modes:

learning, monitoring, or diagnostic. The learning mode, to be initiated first, will yield

a set of vibration signatures based on which the monitoring and diagnostic modes will

operate. In the monitoring mode, with the machine under normal closed-loop control,

the analyzer only uses a naturally occuring vibration signal to deduce the condition
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Figure 4.6: Experimental results using a notch filter: (a) Error (µm); (b) Desired

trajectory (µm); (c) Control signal (V).

of the machine. No test excitation is deliberately added to the input signal of the

machine. More than one criterion may be used in the evaluation of the condition of

the machine, and in which case, a fusion approach would generate a combined output

(machine condition) based on the multiple inputs. In the diagnostic mode, explicit

input signals are applied to the machine and the output signal (vibration) is logged for

analysis with respect to the associated vibration signature. In what follows, the details

of the various components/functions of the analyzer will be described systematically.

The block diagram of the real-time vibration analyzer system that has been de-

veloped in the present work is shown in Figure 4.7. It consists of an accelerometer,

which is mounted on the machine to be monitored. The accelerometer measures a

multi-frequency vibration signal and transmits it to an intelligent DSP module, after
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performing appropriate signal conditioning. This module can be a standalone device,

or one integrated to a PC host. The vibration analysis algorithm is downloaded to

this DSP module. With this algorithm, it can now be established as to whether the

condition of the machine is within a pre-determined acceptable threshold. If the con-

dition is determined to be poor, the DSP module will trigger an alarm to the operator

who would enable a corrective action, or automatically activate a corrective action

(e.g., change the operating conditions of the machine, modify the paramenters of the

controller or shut down the machine).

Figure 4.7: Schematic diagram of the real-time vibration analyzer.

The construction of the real-time vibration analyzer is inexpensive and requires

only commercially available, low cost components. The installation can be easy and

simple, as the accelerometer is able to gather vibration signals, independent of the

machine’s own control system. Thus, there is no need to disrupt the operation of

the machine. In the prototype reported here, a DSP emulator board (TMS320C24x
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model) [62] from Texas Instruments is used as the standalone DSP module. This

C24x series emulator board is built around the F240 DSP controller, operating at

20MIPS with an instruction cycle time of 50ns. It is optimized for digital motor

control and conversion applications. Other key components supported on this DSP

module are ADCs, dual access RAM (DARAM), on-chip flash memory and RS-232

compatible serial port. The vibration analysis algorithm, which is described in the

sequel, will be downloaded to the DSP board after satisfactory evaluation and tests

on the PC. This DSP module and the accelerometer unit (with signal conditioning)

constitute the only hardware requirements of the real time vibration analyzer (see

Figure 4.7).

4.3.1 Learning Mode - Extracting the Vibration Signature

In the learning mode, the vibration signals, with the machine operating under nor-

mal conditions, are acquired by the accelerometer and stored in the DSP module. A

suitable vibration signature [63] is then extracted from the vibration signals. There

are many types of vibration signatures that are adequate for the purpose of machine

monitoring. For example, one form of vibration signature may be based on the am-

plitude of the vibration; another form may use a time series analysis of the vibration;

yet another form may employ the spectrum of the vibration which can be efficiently

obtained using the FFT algorithm. Regardless of the type, these vibration signatures

are dependent on the nature of the input signals driving the machine. For example, a

square wave input will produce a vibration spectrum which can be quite different from

that resulting from an input of a chirp signal (i.e., repeating sine wave of increasing

frequency) or a pure sinusoid. Thus, a particular input signal will produce a unique
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spectrum based on which a unique vibration signature can be derived. Multiple vi-

bration signatures corresponding to the natural vibrations of the machine (useful for

the monitoring mode), or corresponding to different input signals (useful for the di-

agnostic mode) can thus be captured for subsequent diagnosis and monitoring of the

machine.

4.3.2 Monitoring Mode

In the monitoring mode, the vibration signals are sampled periodically from the

machine to monitor the condition of the machine. No deliberate or additional input

signal is required, so the machine operation is not disrupted. The updated spectra

are analyzed against the relevant vibration signatures. The analysis and comparison

may be done in terms of the shift in frequency or amplitude of the spectrum, or a

combination of the two. For example, one evaluation criterion (EV) may be based on

the mean-square (ms) value of the error [63] between the current real-time vibration

spectrum and the vibration signature:

EV1 =

∑N
q=1(Sq − S∗

q )
2

M
, (4.11)

where Sq is the discretized current real-time vibration spectrum, S∗
q is the correspond-

ing vibration signature, q is the index for the data points, and M is the total number

of data points. Another EV may be formulated based on the difference in the am-

plitude of the current time series vibration pattern and its corresponding vibration

signature:
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EV2 =
max |Tq| − max |T ∗

q |
M

, (4.12)

where max |Tq| represents the highest amplitude of the current time series vibration

pattern Tq, max |T ∗
q | is the highest amplitude of its corresponding vibration signature

and |.| is the modulus operator. The amplitude is normalised here to be consistent

with the other EV s.

More than one evaluation criterion may be used in the determination of the ma-

chine condition. In this case, a fusion technique would be necessary. The key idea of

fusion is to associate the machine with a HEALTH attribute which is computed from

multiple evaluation criteria. These criteria are expected to influence, to a varying

degree, the HEALTH of the machine. The HEALTH attribute is thus an appropriate

function � of the various criteria (EVis); i.e.,

HEALTH = �(EV1, EV2, ..., EVn), (4.13)

where n refers to the number of criteria being evaluated.

A fuzzy weighted approach may be used to realize the � function as follows:

The HEALTH attribute is treated as a fuzzy variable (i.e., HEALTH ∈ [0, 1]). HEALTH = 0

will represent absolute machine failure while HEALTH= 1 represents a perfectly nor-

mal machine condition. This attribute may be computed from a fuzzy operation on a

combination of the evaluation criteria (EVis) obtained via an analysis of the vibration
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signals against their signatures. The final decision on the condition of the machine will

be derived from the HEALTH attribute. Zadeh [64] provides a comprehensive review

on fuzzy logic.

A Takagi and Sugeno [65] type of fuzzy inference is used in this chapter. Consider

the following p rules governing the computation of an attribute:

IF EVi1 IS Fi1 ⊗ ... ⊗ EVin IS Fin THEN ui = αi, i = 1...p. (4.14)

where ui ∈ (0, 1] is a crisp variable output representing the extent to which the ith

evaluation rule affects the final outcome. Thus, αi represents the weight of the ith

rule, with
∑

i α
i = 1, Fij represents the fuzzy sets in which the input linguistic vari-

ables (EVis) are evaluated, and ⊗ is a fuzzy operator which combines the antecedents

into premises.

The value of the attribute is then evaluated as a weighted average of the uis:

HEALTH =

∑p
i=1 ωiui∑p
i=1 ωi

, (4.15)

where the weight ωi implies the overall truth value of the premise of rule i for the

input and it is computed as:

ωi = Πn
j=1µFij

(EVij). (4.16)

where µFij
(EVij) is the membership function for the fuzzy set Fij related to the input

linguistic variable EVij (for the ith rule). For example, in this application, the evalu-

ation criterion (EVi) may be the maximum error (MAX ERR) and Fij may be the fuzzy
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set HIGH.

The membership function µHIGH(MAX ERR) may have the characteristic shown in Figure

4.8. The decision as to whether any corrective action that might be necessary could

then be based on a simple IF-THEN-ELSE formulation as follows:

IF HEALTH ≤ γ, THEN STRATEGY=TRIGGER ALARM

ELSE STRATEGY=CONTINUE TO MONITOR.

Here γ is interpreted as a threshold value. Suitable values for γ may be in the range

0.6 ≤ γ ≤ 0.9. Here, STRATEGY is stated to trigger an alarm to the operator

who will enable a corrective action, or automatically activate a corrective action

(e.g., change the operating conditions of the machine, modify the paramenters of the

controller or shut down the machine).

Under this framework, it is relatively easy to include additional criteria for analy-

sis and decision making on the system. The procedure will involve setting up of

the membership functions for the criterion, formulating the additional fuzzy rules

required, and adjusting the scaling parameters (the α terms in (4.14)) to reflect the

relative weight of the new criterion over the existing ones. In this manner in the

monitoring mode, foreboding trends can often be spotted long before the vibration

reaches a level that is seriously detrimental to the machine.

4.3.3 Diagnostic Mode

In the diagnostic mode, the current vibration signal corresponding to each input

signal (with standardized amplitude and frequency) is analyzed against the associated
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Figure 4.8: Membership function for the the input MAX ERR, µHIGH(MAX ERR).

signature (obtained earlier in the learning mode), depending on the type of machine.

Similar to the monitoring mode, there can be multiple evaluation criteria to be used in

the diagnostic mode, so that the fusion technique described earlier is also applicable.

The input signals applied to the machine have to be designed carefully so as to

yield as much information of the machine condition as possible in the operational

regime of interest. Two important considerations are in the choice of amplitude and

frequency.

Machines may have constraints in relation to the amount of travel that is possible.

Too large an amplitude for the input signal may be not be viable for the machine due

to the limit of travel or may even damage the machine. Also, the frequency range of

the input should be chosen so that it has most of its energy in the frequency bands

that are important for the system. Where input signals cannot be applied to the

system in the open-loop, the setpoint signal will serve as the input for the closed-loop

system since it may not be possible to directly access the system under closed-loop

control. Careful considerations of the mentioned issues will ensure that significant
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information can be obtained from the machine.

In this chapter, the input signals considered are square wave input (Figure 4.9),

chirp input (Figure 4.11) and sine wave input (Figure 4.13), standardized in amplitude

to 1V and frequency to 5 Hz. The corresponding vibration signatures are shown in

figures 4.10, 4.12 and 4.14, respectively.

Figure 4.9: Square wave input, with standardized amplitude of 1V and frequency of

5Hz.

4.3.4 Experiments

A shaker table (Figure 4.15) is used as the test platform for the experiments presented

here. The shaker table can be used to simulate machine vibrations and evaluate the

performance of for example, active inertial dampers. The shaker table is driven by a

high torque direct drive motor (which has a maximum torque of 1.11Nm, a maximum

design load of 11Kg and generates a maximum force of 175N). The maximum linear
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Figure 4.10: Vibration signature of the square wave input, with standardized ampli-

tude of 1V and frequency of 5Hz.

travel of the table is +/- 2cm.

The learning mode is first initiated to obtain the vibration signals with the shaker

table operating under normal conditions. It is assumed in the experiments that the

normal condition corresponding to the input is a square wave signal (with standard-

ized amplitude of 1V and frequency of 5Hz). For the purpose of implementing the

diagnostic mode, the vibration signals are also obtained for the input signals of the si-

nusoidal and chirp type, with standardized amplitude of 1V and frequency of 5Hz (See

figures 4.9 through 4.14 for the inputs and their corresponding vibration signatures).

A. Input Variables - Evaluation Criteria

Different types of EVs can be used as input variables for the determination of the

machine condition. For the present vibration analysis application, the input variables
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Figure 4.11: Chirp wave input, with standardized amplitude of 1V and starting fre-

quency of 5Hz.

chosen for the computation of the HEALTH attribute are:

A.I. Monitoring Mode

EV1 =

∑N
q=1(Ssq,q − S∗

sq,q)
2

M
,

EV2 =
(max |Tsq,q| − max |T ∗

sq,q|)2

M
,

EV3 =

∑M
q=1(Tsq,q − T ∗

sq,q)
2

M
, (4.17)

where Ssq,q and Tsq,q represent the vibration spectrum and the time-domain signal,

respectively, corresponding to a square wave input, and M is the number of time

series data points over an operational cycle. Hence, EV1 refers to the mean-square

deviation between the vibration spectrum and its signature, EV2 refers to the square

of the difference between the amplitude of the vibrational signal over one operational

cycle compared to its signature, and EV3 refers to the mean-square deviation between
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Figure 4.12: Vibration signature of the chirp wave input, with standardized amplitude

of 1V and starting frequency of 5Hz.

the vibration signal and its signature (time domain) over one operational cycle.

A.II. Diagnostic Mode

EV4 =

∑N
q=1(Ssq,q − S∗

sq,q)
2

M
,

EV5 =

∑N
q=1(Scp,q − S∗

cp,q)
2

M
,

EV6 =

∑M
q=1(Ssn,q − S∗

sn,q)
2

M
. (4.18)

Here cp denotes a chirp input signal and sn denotes a sine input signal.

For the monitoring mode, the input attributes are related only to the square in-

put, due to the assumption that the input signal, under normal operating conditions,

is the square wave signal (with standardized amplitude of 1V and frequency of 5Hz).
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Figure 4.13: Sine wave input, with standardized amplitude of 1V and frequency of

5Hz.

B. Evaluation Rules

The three rules for the computation of the HEALTH attribute are:

B.I. Monitoring Mode

IF EV1 IS LOW, THEN u=µ1,

IF EV2 IS SHORT, THEN u=µ2,

IF EV3 IS LOW, THEN u=µ3.

The values of the scaling parameters, i.e., α terms in (4.14), reflect the relative im-

portance of the fuzzy rules in the determination of the HEALTH of the machine. The

scaling values used are:

α1 = 0.7,
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Figure 4.14: Vibration signature of the sine wave input, with standardized amplitude

of 1V and frequency of 5Hz.

α2 = 0.2,

α3 = 0.1.

The respective membership functions are:

µi(EVi) = e−n(EVi)β

, i = 1...6.

where n and β are scaling factors for normalization of EVi. In this application,

they are selected to be n = 10 and β = 0.5.

B.II. Diagnostic Mode
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Figure 4.15: Test platform: the shaker table.

IF EV4 IS LOW, THEN u=µ4,

IF EV5 IS LOW, THEN u=µ5,

IF EV6 IS LOW, THEN u=µ6.

The scaling values used are:

α4 = 0.4,

α5 = 0.2,

α6 = 0.4.

Similar membership functions are used as for the monitoring mode.

The machine condition attribute HEALTH is then computed as in (4.15).
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C. Tests

C.I. Monitoring Mode

In the monitoring mode, the normal input signal (i.e., the square wave with stan-

dardized amplitude of 1V and frequency of 5Hz) is applied to the shaker table system.

At t = 5s, a sinusoidal signal (with amplitude 0.4V and frequency f = 5Hz) is also

applied to the system to simulate a fault arising in the machine. The time domain

signal of the machine (corresponding to the square input) is shown in Figure 4.16.

The spectrum of the machine before and after t = 5s are shown in figures 4.17 and

4.18, respectively. The vibration analysis algorithm is able to detect the fault in the

machine. Before the introduction of the fault, the HEALTH attribute of the shaker

table is found to be 0.98. After the introduction of the fault, the HEALTH attribute

falls to 0.63 which is below the threshold value (which is set at 0.7). As a result, the

alarm is triggered.

C.II. Diagnostic Mode

In the diagnostic mode, three input signals (i.e., sine, square, and chirp wave

with standardized amplitude and frequency) are selected to be applied to the shaker

table system. To simulate a fault arising at t = 5s, the input gain is increased by

a factor of 1.4 times at t = 5s. The time domain vibration signal of the machine

(corresponding to the chirp signal, with standardized amplitude of 1V and starting

frequency of 5Hz) is shown in Figure 4.19. The spectrum (corresponding to the chirp

signal) of the machine before and after t = 5s are shown in figures 4.20 and 4.21,

respectively. The time domain vibration signal of the machine (corresponding to the
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sinusoidal wave input, with standardized amplitude of 1V and frequency of 5Hz) is

shown in Figure 4.22. The spectrum (corresponding to the sinusoidal input) of the

machine before and after t = 5s are shown in figures 4.23 and 4.24, respectively.

The vibration analysis algorithm is able to detect the fault in the machine. Before

the introduction of the fault, the HEALTH attribute of the shaker table is found to

be about 0.97. After the introduction of the fault, the HEALTH attribute falls to 0.58

which is below the threshold value (which is set at 0.7). The alarm is triggered as a

result.

Figure 4.16: Time domain vibration signal corresponding to the square input, with

standardized amplitude of 1V and frequency of 5Hz (at t=5s, a fault is simulated).

4.3.5 Remote Monitoring and Control

Knowledge-Based (KB) control has become an important approach towards the re-

alization of intelligent control and expert systems. It has found wide ranging ap-

plications, including robot path planning ([66] and [67]), process supervision [68],
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Figure 4.17: Vibration signature corresponding to the square input, with standardized

amplitude of 1V and frequency of 5Hz.

Figure 4.18: Spectrum of machine corresponding to the square input (with standard-

ized amplitude of 1V and frequency of 5Hz) after fault occurs.
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Figure 4.19: Time domain vibration signal corresponding to the chirp input, with

standardized amplitude of 1V and starting frequency of 5Hz (at t=5s, a fault is

simulated).

Figure 4.20: Vibration signature corresponding to the chirp input, with standardized

amplitude of 1V and starting frequency of 5Hz.
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Figure 4.21: Spectrum of machine corresponding to the chirp input (with standardized

amplitude of 1V and starting frequency of 5Hz) after fault occurs.

Figure 4.22: Time domain vibration signal corresponding to the sinusoidal input, with

standardized amplitude of 1V and frequency of 5Hz (at t=5s, a fault is simulated).
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Figure 4.23: Vibration signature corresponding to the sinusoidal input, with stan-

dardized amplitude of 1V and frequency of 5Hz.

Figure 4.24: Spectrum of machine corresponding to the sinusoidal input (with stan-

dardized amplitude of 1V and frequency of 5Hz) after fault occurs.
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automation of manufacturing systems [69], fault detection and diagnosis [70], flight

control [71], control of biomedical systems [72], and intelligent instrumentation [73].

KB control systems can be viewed as intelligent control systems for complex dy-

namical systems which cannot be described crisply using mathematical models [74].

The knowledge-base is usually a rules-base, developed using knowledge-representation

mechanisms, such as frames, semantic nets, and causal diagrams [75]. The inference

mechanism in the KB controller uses sophisticated matching strategies to determine

which rules should be allowed to fire, including refraction, recency and priority-based

schemes, to reach a final decision. The knowledge-base essentially captures the ex-

perience of skilled operators, which is then used in the inferencing process so as to

emulate, in an automatic manner, the operations of a complex system as closely as

possible to what the most consistent and experienced experts would have done under

the same situations.

A KB control system comprises of a central intelligent controller (usually im-

plemented on a workstation or a high performance PC) with a knowledge-base, in-

strumented via a digital bus (such as the General Purpose Instrumentation Bus)

to front-end microprocessor-based controllers [1]. This central controller will be re-

ferred to as the expert controller henceforth in the chapter. The front-end controllers

gather real-time information of the system, and transmit them to the expert con-

troller. Through the knowledge-base, the expert controller will execute the inference

procedures to determine the best course of actions necessary. Commands will then be

transmitted to the front-end devices which will carry out the control actions. Clearly,

the main intelligence lies in the expert controller which is usually also the most costly

and sophisticated component of the overall system. The maximum operating distance
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from the expert controller to the front-end devices, depends on the type of bus used,

and the amount of noise interference affecting signal transmission [76]. Using a serial

bus (instead of a parallel bus), this distance can be increased, albeit still within the

local vicinity of the plant [77].

Many manufacturing processes are now widely distributed geographically, due to

economy-related factors in manufacturing and distribution. The layout of an en-

tire plant can now be rather extensive, spreading across continents in certain cases.

Therefore, it has become an important challenge to be able to optimize any synergy

opportunities in the operations of these distributed systems. In many cases, the same

set of processes to manufacture the same product (or to monitor the same process)

can be cloned over different plants. This requires close coordination and synchro-

nization of the distributed operations, as well as an efficient remote monitoring and

control facility in place. Thus, an extensive and ‘borderless’ approach towards the

dissemination of expert knowledge and coordination efforts to distributed points and

seamless integration of control strategies applied to distributed yet identical systems

is crucial to enhance overall efficiency and operational costs. The work in this chapter

is motivated by this observation.

In the proposed approach, the basic control configuration of the KB control system

remains the same. However, instead of the usual local bus instrumentation, the

expert controller is now connected via the Internet to the clients. The clients will

carry out the real-time operations necessary. The role of the expert controller is

more supervisory in nature. It makes the crucial decisions to operate the remote

pawn pieces to maximize a plantwide efficiency. Multiple front-end clients may be

connected to the expert controller at any one time, tapping on the widespread existing
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network of the Internet. In this chapter, the multi-access issue is resolved using the

datasocket technology [78]. DataSocket is an Internet programming technology that

simplifies data exchange between computers and applications and solves the common

problems of client-server applications. With the DataSocket, passing data over the

Internet, and responding to multiple users (client) can be achieved more efficiently,

without incurring the complexity of low-level TCP/IP programming. Moreover, the

speed of the data exchange between the various computers via datasocket technology

is faster and more stable, compared to the usual client-server data exchange via a

web browser.

An exemplary application in the remote monitoring and control of machines dis-

tributed over different locations, using a KB controller via the Internet, will be pre-

sented to further illustrate the principles of the proposed configuration. The hardware

architecture of the KB control system is shown in Figure 4.25. The knowledge-base

and the inference mechanism is located in the expert controller. The remote front-end

microprocessor-based controller is responsible for the real-time algorithmic control.

The real-time data of the system is collected by these front-end controllers and trans-

mitted via the Internet to the expert controller. These data are monitored and used

by the expert controller in conjunction with the knowledge-base. When an analysis

of the collected data is completed, the decisions of the expert controller are sent via

the Internet to update the front-end controllers.

The expert controller uses a web page with Datasocket reader components which

connect to the datasocket server, and which read the system information from the

front-end controllers. The operator can restart the front-end data acquisition appli-

cations or reboot the front-end controllers without having to reconnect to the expert
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Figure 4.25: KB control system via the Internet.

controller. The expert controller remains connected to the front-end controllers and

receives new data as soon as the front-end applications restart via the datasocket

server.

Web interactivity is an essential issue to be addressed for this remote monitoring

application, as the communication and data exchanges between the local controller

(from the remote user viewpoint) and the remote front-end controllers is an integral

aspect of the whole system. For this purpose, many different software architectures

(which provide a common linking platform for the local and remote front-end con-

trollers) can be feasible. One possible approach is to share real-time data between

116



the local controller and the remote front-end controllers using the Datasocket tech-

nology (Figure 4.26). Datasocket is a programming tool that enables the user to read,

write, and share data between applications and/or different data sources and targets.

Datasocket can access data in local files and data on HTTP and FTP servers. If

general purpose file I/O functions, TCP/IP functions, and FTP/HTTP requests are

used to transfer data, separate code for each protocol has to be written. However,

datasocket provides a unified API for these low-level communication protocols. Differ-

ent data sources can be accessed without writing different codes to support different

data formats and protocols, since the datasocket control converts data for transfer

and passes the actual values to the applications. To connect to a data source loca-

tion, a URL has to be specified. Datasocket also recognizes several existing schemes,

including HTTP, FTP, file (local files), and OPC. The Datasocket also has a scheme,

i.e., DSTP, for sharing live data through the Datasocket servers. Thus real-time

process monitoring, supervisory analysis of data and control can be achieved in this

configuration. In some cases, whereby the workload of a single expert controller for

the many front-end controllers may be too heavy, two or more expert controllers can

be implemented to distribute the workload. The expert controllers and the front-end

controllers will be all connected through the datasocket server.

Another possible way for data transfer across the Internet is to write applications

using low-level protocols, such as TCP/IP and User Datagram Protocol (UDP). Yet

another possible approach is to publish data through the web using a web-server (Fig-

ure 4.27). The method chosen for this monitoring application is using the Laboratory

Virtual Instrument Engineering Workbench (LabVIEW) web-server to publish data

on the web.
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The synergy of KB control with the Internet realizes all the main benefits associ-

ated with an Internet application for the KB control system. The operational span of

the KB control system is now virtually without constraints. The clients can operate

from anywhere with an Internet access. The intelligence concentrated in the expert

controller may be shared among multiple and distributed clients. Redundant expert

controllers for contingency purposes can be set up at different locations.

With the Internet, it also means that it is not necessary to set up a local bus system

to enjoy the benefits of a distributed control system. The information distribution,

coordination and centralized supervisory control features can be realised as long as

there are facilities to tap onto the Internet. Direct upgrading of the overall system

can be done on the expert controller, effecting all downstream applications efficiently.

With the Internet connection, it is also easy to tap on the machines manufacturers’

resources directly. It is possible to expand the interface for the front-end clients or

expert controller to wireless devices, including handphones and PDAs.

These advantages have direct positive implications in improving the efficiency of

distributed operations, thereby enabling plantwide optimization and costs savings.

4.4 Application Example: Expert Vibration Mon-

itoring System

To illustrate the effectiveness of the KB control via the Internet, an expert vibration

monitoring system for monitoring and control of machine vibrations is presented in

this section.
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Figure 4.26: Datasocket transfer method.

4.4.1 Operational Principles

The expert vibration monitoring system is able to continuously monitor the real-time

vibration patterns from multiple machines connected through the Internet. The sys-

tem operates in two modes: the learning and the monitoring mode. In the learning

mode, vibration signatures ([60] and [61]), representative of the health of the ma-

chines to be monitored, are first derived from the vibration signals of the machines

when operating under normal conditions. They are stored in the knowledge-base

of the expert controller. Accelerometers mounted on the machine directly provide

measurements of the vibration signals. Thus, this expert monitoring system may be

applied to existing machines, without much modifications necessary.

In the monitoring mode, pattern recognition templates are used to compare the

real-time vibration patterns measured from the monitored machines against the vibra-

tion signatures stored in the knowledge-base. The expert controller is able to generate

decisions on the well-beings of the machines, taking into considerations various criteria
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Figure 4.27: Web-server transfer method.

based on a fuzzy fusion technique. An alarm is activated when the difference devi-

ates beyond an acceptable threshold. Subsequently, rectification actions, to provide a

warning or automatic corrective action (e.g., changing the operating conditions of the

machine, modifying the parameters of the controller or shutting down the machine),

may be invoked before extensive damage is caused to the machine.

4.4.2 System Configuration

The configuration of the expert vibration monitoring system is shown in Figure 4.28.

It consists of accelerometers, which are mounted on the machines to be monitored.

The accelerometers, which serve as the interface between the machine and the front-

end controllers, measure the multi-frequency vibration signals and transmit these

signals to the data acquisition (DAQ) cards installed in the front-end controllers

which may be in the form of PCs, laptops, or even standalone DSP devices.

The expert controller contains the main intelligence and coordinates the entire

monitoring and control process. It can initiate the learning mode, when the machines
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Figure 4.28: Expert vibration monitoring system.

are operating normally. With the vibration signals acquired by the accelerometers and

transmitted to the server, it then derives suitable vibration signatures. Different types

of vibration signatures can be used. For example, one form of vibration signature

may be based on the amplitude of the vibration; another form may use a time series

analysis of the vibration; yet another form may employ the spectrum of the vibration

which can be efficiently obtained using the FFT algorithm. In the monitoring mode,

the expert controller will decide, based on comparing the actual vibration patterns

with the signatures of the machines, if an alarm should be raised. No deliberate or

additional input signal is required, so the machine operations are not disrupted.
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4.4.3 Inferencing Process

This inferencing process will be based on the rules in the knowledge-base. Here, the

actual vibration pattern is compared against the relevant vibration signatures. The

analysis and comparison may be done in terms of different evaluation criteria, such

as the shift in frequency or amplitude of the spectrum, or a combination of the two.

The same fusion technique as mentioned in Section 4.3.2 is used in the determination

of each of the machine’s condition, i.e., HEALTH attribute which is computed from

multiple evaluation criteria. A fuzzy weighted approach, similar to that mentioned

in Section 4.3.2, is used to realize the � function.

4.4.4 Experiments

Shaker tables (Figure 4.15) are used as the test platforms representing the machines.

Two shaker tables (named ShakerTableA and ShakerTableB) will be used for illus-

tration in the experiments.

A. Generation of the Vibration Signature

The learning mode is first initiated by the expert controller to obtain the vibration

signatures of the machines to be monitored under normal conditions. The normal

conditions are emulated as corresponding to specific input signals to the shaker. To

illustrate the different natures of machines, the normal input to ShakerTableA is

assumed to be pulse trains, and the normal input to ShakerTableB is assumed to be

chirp signals.
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B. Inferencing Process

Three evaluation criteria, as similar to (4.17), are used. The rules used for the compu-

tation of the HEALTH attribute are similar to that used in Section 4.3.4. The machine

condition attribute HEALTH is then computed as in (4.15).

C. Tests

A typical session begins at the expert server’s end. Upon successful authentication

(Figure 4.29) of the user, the control panel at the server side of the expert vibration

analyzer as shown in Figure 4.30 will appear. The top half and bottom half of the

control panel shows the signals for ShakerTableA and ShakerTableB respectively.

The user may initiate the learning or monitoring mode by clicking on one of the push

buttons on the top left side of the panel. Clicking on the ‘Start’ button will begin

any mode that has been selected. Whenever an alarm is triggered in the system,

the ‘Alarm’ LED near the right side of the panel will be lighted up. The chart area

on the left side of the panel displays the vibration signals (in time domain) that are

transmitted to the analyzer; whereas the chart area on the right side of the panel

displays the spectra of the vibration signals. Results and short messages to the user

will be displayed in the message box.

Figure 4.29: Authentication of the user for entry into the expert monitoring system.
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C.I. Learning Mode

The learning mode must first be invoked to obtain the vibration signatures associated

with the machines. These vibration signatures are then stored in the knowledge-base

of the expert vibration monitoring system. A snapshot of the control panel executing

the learning mode of the vibration analysis (to obtain the different signatures) is given

in Figure 4.30.

Figure 4.30: Learning mode - Vibration signatures of ShakerTableA and B.

C.II. Monitoring Mode

At time t = 5s, the input gain for ShakerTableA is increased by a factor of 1.5 times
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and the pulse input frequency is increased slightly to emulate a fault arising in the

machine (ShakerTableB is left unchanged). The snapshot (Figure 8) of the control

panel before t = 5s shows that both machines are ‘healthy’. Following the fault, as

shown in Figure 9, the snapshot shows that the vibration analysis algorithm (in the

expert controller end) is able to detect the fault occurring in ShakerTableA. Before

the introduction of the fault, the HEALTH attribute of ShakerTableA is 0.95. After the

introduction of the fault, the HEALTH attribute of ShakerTableA falls to 0.55 which

is below the threshold value (which is set at 0.6 for the monitoring mode). As a

result, the alarm for ShakerTableA is triggered. ShakerTableB, however, continues

to operate normally.

At time t = 14s, a sinusoidal input signal is used instead of the chirp input signal

for ShakerTableB to emulate an abnormal condition. Following the inference proce-

dures, the expert system concludes that a fault has also occurred at ShakerTableB

and the alarm for ShakerTableB is raised accordingly (Figure 4.33). The HEALTH

attribute of ShakerTableB falls from about 0.9 (before the fault is introdued) to 0.53

(after the fault is introduced). This value of HEALTH attribute is below the threshold

value (which has been set at 0.6).

Comparing Figures 4.31 and 4.33, it is shown that the vibration pattern of Shaker

TableB (in the frequency domain) is changed from an envelope shape (as shown in

Figure 4.31 before the fault is introduced) to a pure dominant spike (as shown in

Figure 4.33 after the fault is introduced). The fault is also reflected in the time

domain signals for ShakerTableB before (Figure 4.31) and after (Figure 4.33) the

fault is introduced. The vibration analysis algorithm (in the expert controller end)

is also able to detect the fault in ShakerTableB. ShakerTableA remains in the
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‘unhealthy’ range.

Figure 4.31: Monitoring mode - Snapshot of the expert vibration control panel before

any fault is emulated.

4.5 Conclusions

Two approaches to mitigate the damage caused by the mechanical vibrations in pre-

cision motion systems are developed. In the first approach, an adaptive notch filter

is employed to detect online the resonant frequencies in the vibration signal and to

adaptively position its notch so as to suppress the signals at these frequencies. In the
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second approach, a real-time analyzer, based on a fuzzy fusion technique, is used to

continuously monitor and compare the actual vibration patterns against a set of vi-

bration signatures. The vibration signal is acquired using an accelerometer mounted

on the machine. The approach can be applied to existing machines without mod-

ification, or disrupting the operation. Both computer simulations and experiments

using a prototype machine are carried out. The results illustrate the satisfactory

performance and the advantages associated with these approaches. The development

of a KB control system for remote monitoring and fault diagnosis of machines which

operates via the Internet has been developed in the chapter.
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Figure 4.32: Monitoring mode - Snapshot of the expert vibration control panel after

a fault is emulated on ShakerTableA.
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Figure 4.33: Monitoring mode - Snapshot of the expert vibration control panel after

a fault is emulated on ShakerTableB.
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Chapter 5

Conclusions

5.1 General Conclusions

With the progress of precision manufacturing, the increasing complexity of precision

motion systems coupled with the increasing demands in closed loop performance speci-

fications necessitates the use of more complex and sophisticated controllers. There are

much benefits to be gained by combining intelligent control with the well-established

tools in control theory to develop robust, high speed and high precision motion sys-

tems. In this thesis, intelligent control is combined with the well-established tools

in control theory to achieve advancements in intelligent instrumentation, control and

monitoring of precision motion systems.

Firstly, the thesis has presented an intelligent controller that performs adaptive

online correction and interpolation of quadrature encoder signals. In this chapter, a

two-stage RBFNN is employed to carry out concurrently the correction and interpo-

lation of encoder signals in real-time.

Subsequently, a new PID/adaptive controller for precision motion systems is devel-

oped. The second-order model is used as the nominal dominant model for the design
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of the PID controller, and an adaptive component designed based on a RBFNN pro-

vides for the possibility of performance enhancement when the feedback control alone

is inadequate to cope with uncertain nonlinear phases.

Lastly, two approaches to monitor and suppress mechanical vibrations in precision

motion systems are covered. The first approach utilizes an adaptive notch filter to

identify the resonant frequencies and suppress any signal transmission into the system

at these frequencies. The second approach uses a real-time analyzer to detect excessive

vibration based on which appropriate actions can be taken. To expand the scope of

vibration monitoring, an exemplary application concerning the remote monitoring

and control of machines distributed over different locations, using a knowledge-based

controller via the Internet, is presented.

The effectiveness of the proposed approaches is highlighted in the simulation and

experimental studies.

5.2 Recommendations for Future Work

As mentioned in Chapter 1, much benefits could be gained by combining intelligent

control with the well-established tools in control theory. In this perspective, ad-

vancements in system design and implementation can be made by exploring different

combinations of control theory and artificial intelligence. The aim is to design robust

and high performance precision motion systems, in the face of disturbances and other

uncertainties.
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5.2.1 Improvements in Intelligent Controllers

Considering the many works in the literature [1], it was shown that NNs and fuzzy

logic are complementary methodologies in the design and implementation of intelli-

gent systems. Hybrid controllers, involving NNs and fuzzy logic, have much potential

but yet to be explored for many purposes. It is known that NNs are useful as function

approximators because they do not require prior knowledge of the input data distri-

bution or the system. Thus, NNs can be used for the design of intelligent controllers

in precision motion systems, operating in uncertain and time-varying environments.

From a systems theoretic point of view, NNs can be considered as practically im-

plementable parametrizations of nonlinear maps from one finite-dimensional space

to another. Such networks are ideally suited to cope with all three categories of

difficulties encountered in complex control systems (i.e., computational complexity,

nonlinearity, and uncertainty). It is also known that they can approximate arbitrary

nonlinear maps. In certain situations, the knowledge of the plant is expressed in

linguistic terms. Fuzzy logic is thus a viable candidate. With a good understanding

of motion systems and its environment, many control methodologies are available in

the literature [35]. However, in some instances, the plant to be controlled may be

too complex and the physical processes in the system may not be fully understood.

Thus, the controller has to adapt itself to improve overall system’s performance while

maintaining stability. System identification needs to be commissioned in the system

to obtain a better understanding of the plant and its environment.

In view of the above, one of the future direction of research is to develop an

adaptive hierarchical neuro-fuzzy controller, with learning capabilities, for the iden-
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tification and control of precision motion systems. The higher levels of the network

will provide supervisory control of the lower levels to tackle the various control tasks

of the system.

5.2.2 Intelligent Geometrical Compensation using Support

Vectors

As precision engineering is poised to enter a nanotechnology regime, one of the key

challenges in achieving sub-micrometer technology positioning accuracy is to have effi-

cient geometrical error compensation. The key importance in achieving these results is

to have a good model for describing the overall errors, an accurate method for reading

the positioning errors, and a sound scheme to implement the control/compensation

algorithm. With a suitable error model structure on hand, the next issue in compen-

sating geometrical errors precision machine is on the actual implementation scheme of

the compensation software. Since it is virtually impossible to locate the geometrical

error at every particular location in the whole work space of the machine, only repre-

sentative points are calibrated. The intermediate points would have to be calculated.

The employed method must be fast since the control algorithm usually pass down a

stringent requirement on the sampling time. On the other hand, it must be accurate

to meet the minimum specifications of compensation. Till now, this is achieved by

means of a look-up table storing the positional errors at calibrated points. To calcu-

late the geometrical errors in between the points, linear interpolation is carried out.

For sub-micrometer positioning accuracy, a massive amount of memory is required to

store the look-up table which is not permissible in most servo controllers available in

the market. To solve this issue, mathematical modeling can be applied to derive a
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parametric error model offline from the calibrated points. Taking into consideration

the required precision and accuracy of the precision motion systems, the calculations

involved would be too rigorous.

One avenue for future research is to develop a support vector methodology ([79]-

[81]) to perform geometrical error compensation. The proposed approach is motivated

by the abovementioned problems with the look-up table and the other approaches in

the literature ([82]-[84]). A support vector regression (SVR) method can be used

as the model and thus, arbitrary nonlinear functions can be fitted to the calibrated

points. This model will serve as the basis for error compensation, thus dispensing with

the need for look-up tables. Furthermore, inter-point interpolation can be a nonlin-

ear one. The support vector machine (SVM), originated from the Statistic Learning

Theory ([79] and [80]), is mostly used in regression and classification applications.

The SVM is able to select the number of the basis functions systematically without

the curse of dimensionality and the number of data points available. The common

optimization problem of being trapped in local minimas is also avoided in SVM ap-

plications due to its fundamental Structural Risk Minimization (SRM) principle [80].

SVMs are believed to be able to generalize well on unseen data and overcome the prob-

lem of overfitting, considering the many outstanding results reported in the literature

([82]-[84]). All these attractive features suggest that SVMs are strong candidates for

regression purposes.

5.2.3 Improvements in Learning Capabilities of NN

The thesis has earlier presented an application of the RBFNN for the purpose of

adaptive online correction and interpolation of quadrature encoder signals. For this
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particular architecture of NN, the learning capability of the NN plays an important

role in its overall effectiveness. Current learning algorithms reported in the literature

[17] have their strengths and weaknesses. There is a need to improve on the learning

capabilities of the RBF network. One of the future focus of research is to design

an improved online backpropagation algorithm. It is well-known that the standard

error backpropagation training of a multilayer perceptron [17] may converge very

slowly (if at all) to a good local optimum. The convergence can be improved by

properly controlling the learning rate during the course of the training [85]. The

learning rate can be controlled in many ways, i.e., introducing a momentum term

in the weight update rule [86], normalizing the inputs before presenting them to the

network [87], using learning rates that are inversely proportional to the fan-in of the

node [88], adopting a conjugate gradient search [89] and etc. These techniques rely on

presumed properties of the cost function in the space of the network weights (e.g., a

quadratic form with a positive definite Hessian [90]). In applications where the multi-

layer perceptrons of a few hundred thousand weights have to be trained on millions

of examples, the central processing unit (CPU) time may become excessively large.

However, the convergence rate can be increased dramatically by simply moving to

online error backpropagation [91]. In view of these current literature on the learning

capability of NNs [1], there is a need to design a robust learning algorithm.

135



Author’s Publications

K.Z. Tang, K.K. Tan, C.W. De Silva, T.H. Lee and S.J. Chin, “Monitoring and

Suppression of Vibration in Precision Machines”, Journal of Intelligent and Fuzzy

Systems, 10, IOS Press, pp. 33-52, 2002.

K.K. Tan, K.Z. Tang, H. Dou and S. Huang, “Development of an integrated and open-

architecture precision motion control system”, Control Engineering Practice, 10(7),

pp. 757-772, 2002.

K.K. Tan and K.Z. Tang, “Interpolation of Quadrature Encoder Signals Using Radial

Basis Function”, IEEE Trans. on Control Systems Technology, accepted for publica-

tion, June 2004.

K.Z. Tang, H.L. Goh, K.K. Tan and T.H. Lee, “Knowledge-Based Control Via the

Internet”, International Journal of Control, Automation and Systems, Vol 2, No. 2,

June 2004, pp. 1-13.

K.Z. Tang, S.N. Huang, K.K. Tan and T.H. Lee, “Combined PID and Adaptive Non-

linear Control for Servo Mechanical Systems”, Mechatronics-The Science of Intelligent

Machines, Vol. 14, No. 6, June 2004, pp. 701-714.

K.K. Tan, K.Z. Tang, C.W. De Silva, T.H. Lee and K.C. Tan, “Application of Vi-

136



bration Sensing in Monitoring and Control of Machine Health”, 2001 IEEE/ASME

International Conference on Advanced Intelligent Mechatronics (AIM ’01), Como,

Italy, 2001.

K.K. Tan, K.N. Wang and K.Z. Tang, “Mechatronic Experiment on Remote Vi-

bration Monitoring and Fault Diagnosis via the Internet”, International Journal of

Engineering Education, 19(3), pp. 503-511, 2003.

T.H. Lee, S.N. Huang, K.Z. Tang, K.K. Tan and A. Al Mamun, “PID Control Incor-

porating RBF-Neural Network for Servo Mechanical Systems”, Proceedings on the

29th Annual Conference of the IEEE Industrial Electronics Society, November 2-6,

Virginia, USA, pp. 2789-2793, 2003.

K.Z. Tang, K.K. Tan, T.H. Lee and C.S. Teo, “Neural-based Correction and Inter-

polation of Encoder Signals for Precision Motion Control”, Proceedings of 8th IEEE

International Workshop on Advanced Motion Control, Kawasaki (Japan), pp. 499-

504, July 2003.

137



Bibliography

[1] Samad, T., Perspectives in Control Engineering : Technologies, Applications,

and New Directions, New York: IEEE Press, 2001.

[2] Vincent, T.L. and Grantham, W.J., Nonlinear and Optimal Control Systems,

New York: Wiley, 1997.

[3] Ge, S.S., Li, G.Y. and Lee, T.H., “Adaptive Control for a Class of Nonlinear

Discrete-Time Systems Using Neural Networks”, Proceedings of the 2001 IEEE

International Symposium on Intelligent Control, Mexico City, pp. 97-102, Sep-

tember 2001,

[4] Bellman, R., Adaptive Control Processes - A Guided Tour, Princeton, NJ: Prince-

ton University Press, 1961.

[5] Narendra, K.S. and Koditschek, D.E., “Intelligent control systems design”, NSF

Intelligent Control Initiative, 1992.

[6] Emerson Process Management homepage, http : //www.emersonprocess.com,

2004.

[7] GE Fanuc Automation homepage, http :

//www.geindustrial.com/cwc/gefanuc/index.html, 2004.

138



[8] Heydemann, P.L.M., “Determination and correction of quadrature fringe mea-

surement errors in interferometers”, Applied Optics, 20(19), pp. 26-38, October

1981.

[9] Birch, K.P., “Optical fringe subdivision with nanometric accuracy”, Precision

Engineering, 12(4), pp. 33-47, October 1990.

[10] Watanabe, K. and Yokote H., “A microstep controller of a DC servomotor”, IEEE

Trans. on Instrumentation and Measurement, 39(6), pp. 95-106, December 1990.

[11] Hagiwara, N. and Murase, H., “A method of improving the resolution and accu-

racy of rotary encoders using a code compensation technique”, IEEE Trans. on

Instrumentation and Measurement, 41(1), pp. 78-84, February 1992.

[12] Yokote, H. and Watanabe, K., “A hybrid digital and analog controller for DC

and brushless servomotors”, IEEE Trans. on Instrumentation and Measurement,

39(1), pp. 103-109, February 1990.

[13] Rene Mayer, J.R., “High resolution of rotary encoder analog quadrature signals”,

IEEE Trans. on Instrumentation and Measurement, 43(3), pp. 82-89, June 1994.

[14] Cheung, N.C. , “An innovative method to increase the resolution of optical en-

coders in motion servo systems”, Proceedings of IEEE 1999 International Con-

ference on Power ELectronics and Drive Systems, PEDS ’99, Hong Kong, pp.

797-800, July 1999.

[15] Madni, A.M., Jumper, M. and Malcolm, T., “An absolute high performance, self

calibrating optical rotary positioning system”, IEEE Proceedings of Aerospace

Conference 2001, 5, pp. 2363-2373, March 2001.

139



[16] ServoStar drives catalog and product updates

(http://www.motionvillage.com/training/handbook/feedback/sineencoders.html),

2003.

[17] Haykin, S., Neural Networks, A Comprehensive Foundation, USA: Prentice Hall

International Edition. 1994.

[18] Khana, T., Foundation of Neural Networks, New York: Addison Wesley, 1995.

[19] Wasserman, P., Neural Computing: Theory and Practice, New York: Van Nos-

trand, 1989.

[20] Zurada, J.M., Introduction to Artificial Neural Systems, USA: West Publishing

Company, 1992.

[21] Ljung, L., System Identification: Theory for the User, London: Prentice Hall

Inc., 2nd Edition, 1999.

[22] Huang, S., Tan, K.K., Tang, K.Z., Neural Network Control: Theory and Appli-

cations, England: Research Studies Press Ltd, 2004.

[23] Maciejowski, J.M., Multivariable Feedback Design, USA: Addison-Wesley, 1989.

[24] Broomhead, D.S. and Lowe, D., “Multivariable functional interpolation and

adaptive networks”, Complex Systems 2, pp. 321-355, 1988.

[25] Webb, A.R., “Functional approximation by feedforward networks: a least-

squares approach to generalization”, IEEE Trans. on Neural Networks, 5(3),

pp. 363-371, May 1994.

140



[26] Tan, K.K. and Zhou, H.X., “New interpolation method for quadrature encoder

signals”, IEEE Trans. on Instrumentation and Measurements, 51(5), pp. 1073-

1079, 2002.

[27] Hang, C.C., Astrom, K.J. and Ho, W.K., “Refinements of the Ziegler-Nichols

tuning formula,” in IEE Proceedings Part D, 138(2), pp. 111-118, 1991.

[28] Astrom, K.J. and Hagglund T., Automatic Tuning of PID Controllers, USA:

Research Triangle Park, Instrument Society of America, 1988.

[29] Shinskey, F.G., Process Control System: Application, Design and Tuning, 3rd

Edition. New York: McGraw-Hill, 1988.

[30] Rivera, D.E., Morari, M. and Skogestad S., “Internal model control for PID

controller design”, in Ind. Eng. Chem. Process Des. Dev., 25, pp. 252-265, 1986.

[31] Huang, H.P., Chen, C.L., Lai, C.W. and Wang, G.B., “Auto-tuning for model

based PID controllers”, in AIChE Journal, 42(9), pp. 2687-2691, 1996.

[32] Xu, Y., Hollerbach, J.M. and Ma, D., “A nonlinear PD controller for force and

contact transient control”, IEEE Control Systems, 15(1), pp. 15-21, 1995.

[33] Huang, S., Tan, K.K. and Lee, T.H., “A combined PID/adaptive controller for

a class of nonlinear systems”, Automatica, 37(4), pp. 611-618, 2001.

[34] Basak, A., Permanent-magnet DC Linear Motors, Monographs in Electrical and

Electronic Engineering, Oxford: Clarendon Press, 1996.

[35] Tan, K.K., Lee, T.H., Dou, H.F. and Huang, S.N., Precision Motion Control,

London: Springer-Verlag London Limited, 2001.

141



[36] Tan, K.K., Huang, S.N., and Seet, H.L., “Geometrical error compensation of

precision motion systems using radial basis functions”, IEEE Transactions on

Instrumentation and Measurement, 49(5), pp. 984-991, 2000.

[37] Tan, K.K, Lim, S.Y. and Huang, S.N., “Two-degree-of-freedom controller in-

corporating RBF adaptation for precision motion control applications”, in

IEEE/ASME International Conference on Advanced Intelligent Mechatronics

(AIM ’99), (Altanta, USA), pp. 848-853, 1999.

[38] Fujimoto, Y. and Kawamura, A., “Robust servo-system based on two-degree-of-

freedom control with sliding mode”, in IEEE Trans. on Industrial Electronics,

42(3), pp. 272-280, 1995.

[39] Armstrong-Helouvry, B., Dupont, P. and de Wit, C.C., “A survey of models,

analysis tools and compensation methods for the control of machines with fric-

tion”, Automatica, 30(7), pp. 1083-1138, 1994.

[40] Tan, K.K., Lee, T.H., Huang, S. and Jiang, X., “Friction modeling and adaptive

compensation using a relay feedback Approach”, IEEE Transactions on Indus-

trial Electronics, 48(1), pp. 169-176, 2001.

[41] Tan, K.K., Dou, H.F., Chen, Y.Q. and Lee, T.H., “High precision linear motor

control via artificial relay tuning and zero-phase filtering based iterative learn-

ing”, IEEE Transactions on Control Systems Technology, 9(2), pp. 244-253, 2001.

[42] Longman, R.W., “Designing iterative learning and repetitive controllers”. In Z.

Bien and Xu J.-X. eds, “Iterative Learning Control- Analysis, Design, Integration

and Application”, Kluwer Academic Publishers, pp. 107-145, 1998.

142



[43] Tan, K.K., Lim, S.Y., Lee, T.H. and Dou, H.F., “High precision control of linear

actuators incorporating acceleration sensing”, Robotics and Computer-Integrated

Manufacturing, 16, pp. 295-305, 2000.

[44] Tan, K.K., Huang, S.N., Lee, T.H., Chin, S.J., and Lim, S.Y., “Adaptive robust

motion control for precise trajectory tracking applications”, ISA Transactions,

40(1), pp. 57-71, 2001.

[45] Tan, K.K., Lee, T.H., Dou, H.F., and Lim, S.Y., “An adaptive ripple suppres-

sion/compensation apparatus for permanent magnet linear motors”, Technical

Report- Department of ECE, National University of Singapore, 2000.

[46] Yamada, K., Komada, S., Ishida, M., and Hori, T., “Analysis and classical con-

trol design of servo system using high order disturbance observer”, 23rd In-

ternational Conference on Industrial Electronics, Control and Instrumentation

IECON 97, Vol. 1, pp.4-9, 1997.

[47] Tan, K.K., Lee, T.H., Dou, H.F., and Chin, S.J., “PWM modeling and applica-

tion to disturbance observer-based precision motion control”, PowerCon 2000,

Perth, Australia, CD-format, 2000.

[48] Hornik, K., Stinchcombe, M. and White, H., “Multilayer feedforward networks

are universal approximators”, Neural Networks, 2, pp. 359-366, 1989.

[49] Fabri, S. and Kadirkamanathan, V., “Dynamic structure neural networks for

stable adaptive control of nonlinear systems”, IEEE Trans. on Neural Networks,

7(5), pp. 1151-1167, 1996.

143



[50] Tan, K.K., Wang, Q.G., Hang, C.C., and Hagglund, T., Advances in PID control,

London: Springer-Verlag London Limited, 1999.

[51] Lewis, F.L., Yesildirek, A., and Liu, K., “Multilayer neural-net robot controller

with guaranteed tracking performance”, IEEE Trans. on Neural Networks, 7(2),

pp. 388-398, 1996.

[52] Zhang, T., Ge, S.S. and Hang, C.C., “Design and performance analysis of a direct

adaptive controller for nonlinear systems”, Automatica, 35, pp. 1809-1817, 1999.

[53] Astrom, K.J. and Hagglund, T., PID controllers: Theory, Design and Tuning,

2nd edition. USA: Research Triangle Park, Instrument Society of America, 1995.

[54] Friman, M. and Waller, K.V., “A two-channel relay for autotuning”, Ind. Eng.

Chem. Res., 36, pp. 2662-2671, 1997.

[55] Ferdjallah, M. and Barr, R.E., “Adaptive digital notch filter design on the unit

circle for the removal powerline noise from biomedical signals”, IEEE Trans. on

Biomedical Engineering, 41(6), pp. 529-536, 1994.

[56] Ahlstrom, M.L. and Tompkins, W.J., “Digital filters for real-time ECG signal

processing using microprocessors”, IEEE Trans. on Biomedical Engineering, 32,

pp. 708-713, 1985.

[57] Glover, J.R. Jr., “Comments on digital filters for real-time ECG signal processing

using microprocessors”, IEEE Trans. on Biomedical Engineering, 34, pp. 962-

963, 1987.

144



[58] Bertran, E. and Montoro, G., “Adaptive suppression of narrow-band vibrations”,

5th International Workshop on Advanced Motion Control, pp. 288-292, 1998.

[59] Kwan, T. and Martin, K., “Adaptive detection and enhancement of multiple

sinusoids using a cascade IIR filter”, IEEE Trans. on Circuits and Systems,

36(7), pp. 937-947, 1989.

[60] Vierck, Robert K., Vibration Analysis, New York: Crowell, 1979.

[61] de Silva, Clarence W., Vibration: Fundamentals and Practice, USA: CRC Press

LLC, 2000.

[62] TMSS320C24x DSP Controllers Evaluation Module Technical References, USA:

Texas Instruments Inc., 1997.

[63] Ramirez, Robert W., The FFT Fundamentals and Concepts, Englewood Cliffs:

Prentice-Hall Inc, 1985.

[64] Zadeh, L.A.,“Outline of a new approach to the analysis of complex systems and

decision process”, IEEE Transactions on Systems, Man, and Cybernetics: Part

B, 3, pp. 28-44, 1973.

[65] Takagi, T. and Sugeno, M.,“Fuzzy identification of systems and its applications to

modelling and control”, IEEE Transactions on Systems, Man, and Cybernetics,

15, pp. 116-132, 1985.

[66] de Silva, C.W. and MacFarlane, A.G.J., “Knowledge-based control approach for

robotic manipulators”, Int. J. Control, Vol. 50, pp. 249-273, 1989.

145



[67] Luo, R.C., Lin, M.H., and Shen, S.H., “The developmment of object-oriented

knowledge base and adaptive motion planning for autonomous mobile robots”,

IEEE/RSJ Int. Conf. Intelligent Robots and Syst., USA, pp. 108-115, 2001.

[68] Wu, Q.M.J., Lee, M.F.R., and de Silva, C.W., “Intelligent 3-D sensing in au-

tomated manufacturing processes”, Joint 9th IFSA World Congress and 20th

NAFIPS International Conference, Vol. 1, pp. 334-339, 2001.

[69] Wang, X.G., Liu, W., Gu, L., Sun, C.J., Gu, C.E. and de Silva, C.W., “Develop-

ment of an intelligent control system for wood drying processes”, IEEE/ASME

International Conference on Advanced Intelligent Mechatronics, Vol. 1, pp. 371-

376, 2001.

[70] Vachtsevanos, G. and Davey, K., “Fault diagnosis for the space station thermal

control system using a hybrid analytic/intelligent approach”, Proc. IEEE ISIC,

pp. 54-58, 1987.

[71] Lea, R.K., Allen, R. and Merry, S.L., “A comparative study of control techniques

for an underwater flight vehicle”, International Journal of Systems Science, Vol.

30(9), Sept. 1999.

[72] Alhady, S.S.N., Venkatachalam, P.A. and Sulaiman, M., “Noiseless ECG moni-

toring system with integrated expert system”, 1st International Conference on

IEE Conf. Publ. No. 476, pp. 79-87, 2000.

[73] Ahlrichs, U., Paulus, D. and Niemann, H., “Integrating aspects of active vi-

sion into a knowledge-based system”, 15th International Conference on Pattern

Recognition, Vol. 4, pp. 579-582, 2000.

146



[74] de Silva, C.W. and MacFarlane, A.G.J., Knowledge-based Control Approach with

Application to Robots, Berlin: Springer-Verlag, 1989.

[75] Van Eck, P., Engelfriet, J., Fensel, D., Van Harmelen, F., Venema, Y. and

Willems, M., “A survey of languages for specifying dynamics: a knowledge en-

gineering perspective”, IEEE Trans. on Knowledge and Data Eng., 13(3), June

2001.

[76] Berge, J., Fieldbuses for Process Control, The Instrumentation, Systems and

Automation Society, 2002.

[77] Jordan, J.R., Serial Networked Field Instrumentation, Chichester, W. Sussex,

Eng., New York: John Wiley, 1995.

[78] National Instruments LabVIEW Internet Developers Toolkit Webpage,

http://www.natinst.com/labview/internet/, 2003.

[79] Girosi, F., “An equivalence between sparse approximation and support vector

machines”, Neural Computation, Vol. 10, pp. 1455-1480, 1998.

[80] Vapnik, V., The Nature of Statistical Learning Theory, Berlin: Springer-Verlag,

1995.

[81] Burges, C.J.C., “A tutorial on support vector machines for pattern recognition”,

Data Mining and Knowledge Discovery, Vol. 2, pp. 121-167, 1998.

[82] Drucker, H., Burges, C., Kaufman, L., Smola, A., and Vapnik, V., “Support vec-

tor regression machines”, Advances in Neural Information Processing Systems,

Vol. 9, pp. 151-161, 1997.

147



[83] Muller, K.R., Smola, A., Ratsch, G., Scholkopf, B., Kohlmorgen, J., and Vapnik,

V., “Predicting time series with support vector machines”, in Proceedings of

Artificial Neural Networks- ICANN’97, pp. 999-1004, 1997.

[84] Mukherjee, S.O., Osuna, E., and Girosi, F., “Nonlinear prediction of chaotic

time series using support vector machines”, Proceedings of the 1997 IEEE Signal

Processing Society Workshop, Neural Networks for Signal Processing, pp. 511-

520, 1997.

[85] Chan, L. and Fallside, F., “An adaptive training algorithm for backpropagation

networks”, Comput. Speech, Language, Vol. 2, pp. 205-218, 1987.

[86] Rumelhart, D., Hinton, G. and Williams, R., Parallel Distributed Processing:

Exploration of the Micro-Structure of Cognition, Cambridge, MA: MIT Press,

1986.

[87] Leung, H. and Zue, V., “Phonetic classification using multi-Layer perceptrons”,

IEEE Int. Conf. Acoust., Speech, Signal Processing, 1, Albuquerque, NM, pp.

525-528, April 1990.

[88] Plaut, D. and Hinton, G., “Learning sets of filters using back-propagation”,

Comput., Speech, Language, Vol. 2, pp. 35-61, 1987.

[89] Polak, E., Computational Methods in Optimization, New York: Academic, 1971.

[90] Golden, R., Mathematical Methods for Neural Network and Design, Cambridge,

MA: MIT Press, 1996.

148



[91] Bourlard, H. and Wellekens, C., “Links between markov models and multilayer

perceptrons”, IEEE Trans. Pattern Anal. Machine Intell., Vol. 12, pp. 1167-1178,

1990.

149


