5 research outputs found

    A flexible and adaptive Simpler GMRES with deflated restarting for shifted linear systems

    Get PDF
    In this paper, two efficient iterative algorithms based on the simpler GMRES method are proposed for solving shifted linear systems. To make full use of the shifted structure, the proposed algorithms utilizing the deflated restarting strategy and flexible preconditioning can significantly reduce the number of matrix-vector products and the elapsed CPU time. Numerical experiments are reported to illustrate the performance and effectiveness of the proposed algorithms.Comment: 17 pages. 9 Tables, 1 figure; Newly update: add some new numerical results and correct some typos and syntax error

    A New Implementation of GMRES Using Generalized Purcell Method

    Get PDF
    In this paper, a new method based on the generalized Purcell method is proposed to solve the usual least-squares problem arising in the GMRES method. The theoretical aspects and computational results of the method are provided. For the popular iterative method GMRES, the decomposition matrices of the Hessenberg matrix is obtained by using a simple recursive relation instead of Givens rotations. The other advantages of the proposed method are low computational cost and no need for orthogonal decomposition of the Hessenberg matrix or pivoting. The comparisons for ill-conditioned sparse standard matrices are made. They show a good agreement with available literature

    A note on parallel preconditioning for the all-at-once solution of Riesz fractional diffusion equations

    Full text link
    The pp-step backwards difference formula (BDF) for solving the system of ODEs can result in a kind of all-at-once linear systems, which are solved via the parallel-in-time preconditioned Krylov subspace solvers (see McDonald, Pestana, and Wathen [SIAM J. Sci. Comput., 40(2) (2018): A1012-A1033] and Lin and Ng [arXiv:2002.01108, 17 pages]. However, these studies ignored that the pp-step BDF (p≥2p\geq 2) is not selfstarting, when they are exploited to solve time-dependent PDEs. In this note, we focus on the 2-step BDF which is often superior to the trapezoidal rule for solving the Riesz fractional diffusion equations, but its resultant all-at-once discretized system is a block triangular Toeplitz system with a low-rank perturbation. Meanwhile, we first give an estimation of the condition number of the all-at-once systems and then adapt the previous work to construct two block circulant (BC) preconditioners. Both the invertibility of these two BC preconditioners and the eigenvalue distributions of preconditioned matrices are discussed in details. The efficient implementation of these BC preconditioners is also presented especially for handling the computation of dense structured Jacobi matrices. Finally, numerical experiments involving both the one- and two-dimensional Riesz fractional diffusion equations are reported to support our theoretical findings.Comment: 18 pages. 2 figures. 6 Table. Tech. Rep.: Institute of Mathematics, Southwestern University of Finance and Economics. Revised-1: refine/shorten the contexts and correct some typos; Revised-2: correct some reference
    corecore