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a b s t r a c t

In this paper, two efficient iterative algorithms based on the Simpler GMRES method are
proposed for solving shifted linear systems. To make full use of the shifted structure, the
proposed algorithms utilizing the deflated restarting strategy and flexible precondition-
ing can significantly reduce the number of matrix–vector products and the elapsed CPU
time. Numerical experiments are reported to illustrate the performance and effectiveness
of the proposed algorithms.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

In this study, we are interested in efficient simultaneous solutions of the following large shifted linear systems:

(A + αjI)x(αj) = b, j = 1, . . . , s. (1.1)

In general, A ∈ Cn×n is non-singular and non-Hermitian, αj ∈ C is the shift such that A + αjI is also non-singular, and αj
varies in a wide range; the right-hand side b ∈ Cn is fixed. Usually we take α1 = 0 as default; otherwise, Eq. (1.1) can
be reset after a shift α1. The first linear system is called the seed system, and others are the add systems. Such problem
occurs in many scientific and engineering applications, such as structural dynamics [1,2], quantum chromodynamics [3],
web search ranking [4], control theory [5,6] and so on. Therefore, there is a strong need for establishing efficient solutions
of Eq. (1.1).

Many traditional methods (such as direct and iterative linear systems solvers) for the above problem are to solve
(A+ αjI)x(αj) = b for each αj, this trick can be quite expensive and prohibited when s and n are large. Fortunately, owing
to the shift-invariance property of Krylov subspace, the Krylov subspace methods can solve Eq. (1.1) simultaneously [7].
That is, the Krylov subspace holds that

Km(A, b) = Km(A + αjI, b), ∀αj ∈ C.

Hence, all approximate solutions for (1.1) can be sought in a single space generated by the matrix A with the vector b.
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The GMRES algorithm [8] is such a famous Krylov subspace method that it calculates the basis for Kk(A, b) by Arnoldi
process with the initial guess x0 = 0, hence the shifted system (1.1) can be solved cheaply if GMRES is performed
for it simultaneously [5]. However, since the residuals rm(αj) = b − (A + αjI)xm(αj) are not colinear, Km(A, rm) ̸=

Km(A + αjI, rm(αj)) with m being the restarting frequency. As a remedy, Frommer and Glässner have forced the residual
vectors to be colinear [9], then restarts can again solve Eq. (1.1) cheaply. There are many variants based on GMRES for
solving shifted linear systems. For instance, Gu, Zhang and Li proposed a variant of the restarted GMRES augmented with
some approximate eigenvectors for the shifted system (1.1), refer to [10] for details. Later, Gu improved the restarted
GMRES by augmenting the Krylov subspace with harmonic Ritz vectors for Eq. (1.1) [11]. By deflating eigenvalues for
matrices that have a few small eigenvalues, Darnell, Morgan and Wilcox [12] presented an improved GMRES method with
deflated restarting to accelerate the convergence. Gu, Zhou and Lin from another aspect of enhancing the convergence
speed, proposed a flexible preconditioned Arnoldi method that is needed to exactly solve a linear system with the
coefficient matrix A + σkI at the kth iteration, where σk is the precondition reference value that draws near αj. They also
showed that their proposed method is greatly faster than the traditional preconditioning strategies [13]. Saibaba, Bakhos
and Kitanidis have further extended the flexible preconditioning idea for solving generalized shifted linear systems arising
from oscillatory hydraulic tomography [14]. Sun, Huang and Jing et al. [15,16] promoted the block version of GMRES
method with deflated restarting for solving linear systems with multiple shifts and multiple right-hand sides. For other
related methods, refer oneself to some studies in [17–26] and references therein.

As a cheaper implementation of GMRES, the Simpler GMRES algorithm (SGMRES) is another famous Krylov subspace
method [27]. It runs the Arnoldi process to begin with Ar0 instead of r0, where r0 = b − Ax0. At each iteration, it only
requires to solve an upper-triangular least-squares problem rather than an upper Hessenberg least-squares problem of
GMRES, thus the SGMRES solver often spends less computational cost. Recently, Jing, Yuan and Huang applied the SGMRES
and its stable variant: adaptive SGMRES (Ad-SGMRES) to solve the shifted system (1.1) [28]. For dealing with the non-
colinearity of rm and rm(αj), Jing, Yuan and Huang provided a remedy by forcing rm(αj) ⊥ AKm(A, r0). Besides this advanced
point, at each iteration step, from the non-converged systems, they took the linear system with the maximum residual
norm as the seed system of the restart iteration.

However, in each cycle of the restarted methods, the convergence will slow down, since the dimension of the
Krylov subspace is limited [13,29–32], especially for the problem with A + αjI having small eigenvalues (in modulas).
The main reason is that at each cycle, the Krylov subspace does not contain good approximations of the eigenvectors
corresponding to such small eigenvalues. These make the thick-restarting and preconditioning techniques beneficial for
solving Eq. (1.1). Unfortunately, as far as we know, unlike the shifted GMRES, there are not so many improved strategies
applied to accelerate SGMRES for solving shifted linear systems (1.1). Thus, in this paper, we will first apply the flexible
preconditioning technique [33] to the Ad-SGMRES for solving shifted linear systems (1.1), then consider restarting the new
algorithm with the deflated restarting strategy introduced in [30,31]. The flexible preconditioning technique we used in
this paper is the inexact preconditioning [34] instead of exact which is used in [13]. The details will be located in Section 2.

The remainder of this paper is organized as follows. In Section 2, we first give a brief description of the adaptive
Simpler GMRES method (Ad-SGMRES), then present two variants of Ad-SGMRES for shifted linear system (1.1). Numerical
examples in Section 3 will illustrate the effectiveness of the proposed algorithms. In Section 4, the paper closes with some
conclusions.

2. A flexible and adaptive simpler GMRES algorithm with deflated restarting for shifted linear systems

In this section, applying the flexible preconditioning technique [14,33], we first derive a flexible adaptive Simpler
GMRES algorithm (FAd-SGMRES-Sh) for solving shifted linear systems (1.1) simultaneously. Then based on it, we thick-
restart the new algorithm by using the deflated restarting strategy [30,31,35]. Hence, a flexible and adaptive Simpler
GMRES algorithm with deflated restarting (FAd-SGMRES-DR-Sh) will be achieved for solving Eq. (1.1).

Before giving the new algorithms, we will first briefly review the adaptive Simpler GMRES method. By introducing a
threshold parameter ν ∈ [0, 1], Jiránek and Rozloz̆ník proposed the adaptive Simpler GMRES (Ad-SGMRES) [36], which is
more stable than the Simpler GMRES, for solving the linear system Ax = b. The following algorithm is just the practical
implementation of Ad-SGMRES.

Algorithm 1 (The Adaptive Simpler GMRES (Ad-SGMRES)).

1. Given the initial guess x0, a tolerance tol, a threshold parameter ν ∈ [0, 1], let m the maximal dimension of the
solving subspace, r0 = b − Ax0;

2. For k = 1, . . . ,m, do

(1) zk =

{ r0/∥r0∥2, if k = 1,
rk−1/∥rk−1∥2, if k > 1, and ∥rk−1∥2 ≤ ν∥rk−2∥2,

vk−1, otherwise.
(2) vk = Azk,
(3) for i = 1, . . . , k − 1

uik = vH
i vk, vk = vk − uikvi.

end
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(4) ukk = ∥vk∥2, vk = vk/∥vk∥2.
(5) ξk = vH

k rk−1, rk = rk−1 − vkξk, if ∥rk∥2 ≤ tol, then go to Step 3.

end
3. Let k be the final iteration number of Step 2, solve: yk = U−1

k [ξ1, . . . , ξk]
H . Set xk = x0 + Zkyk.

In Algorithm 1, the definitions of Uk and Vk can be found in the next section.

2.1. Flexible preconditioning

Suppose r0 = b − Ax0 ̸= 0, where x0 is the initial guess. At kth iteration of Ad-SGMRES (stated in Algorithm 1) for
solving the seed system Ax = b, we have

AZk = VkUk, (2.1)

where Zk = [z1, . . . , zk] ∈ Cn×k is the basis of Kk(A, r0), Vk = [v1, . . . , vk] ∈ Cn×k is the orthogonal basis of AKk(A, r0),
Uk = [uij] ∈ Ck×k, i, j = 1, . . . , k is upper triangular, so Uk is non-singular because the coefficient matrix A is non-singular.

In [13], Gu, Zhou and Lin proposed a flexible preconditioning strategy for GMRES that it is needed to exactly solve a
linear system with the coefficient matrix A + σkI at the kth iteration, and it will cost a lot of time especially for large
size problems. In this section, we will use the inexact flexible preconditioning [33,34,37] instead of exact. It is known
that the traditional right preconditioning is applied to solve a modified system such as AM−1(Mx) = b, where AM−1

is well conditioned. The inexact flexible preconditioning is actually a modification to the right preconditioning, i.e., Mk
replaces M , so that inexact solver can be used. Based on such ideas, at each kth iteration, we set wk = M−1

k zk, where Mk
is a variable preconditioner. Denote Wk = [w1, . . . , wk], obviously, the columns of Wk may not span a Krylov subspace.
For the absence of misunderstanding, we still use notions Vk and Uk. The relation (2.1) can be rewritten in the following
matrix equation:

AWk = VkUk. (2.2)

For seed system, we seek the approximate solution xk = x0 + Wkyk in the affine subspace x0 + span{Wk}, yk ∈ Ck is a
vector to be determined. Meanwhile, we seek the approximate solution xk(αj) = x0(αj) + Wkyk(αj) in the affine subspace
x0(αj) + span{Wk} for add systems, where yk(αj) ∈ Ck is a vector to be determined. For the add systems, we have

(A + αjI)Wk = AWk + αjWk

= VkUk + αjWk.

Since for Wk cannot be expressed by Vk, therefore, similar as in SGMRES [27], there exists no Uk(αj) for the add systems
to keep a similar relation to (2.2). Hence, it is impossible to force the residual vectors rk(αj) to be colinear to rk.

For the seed system Ax = b, since the orthogonal condition is rk ⊥ span{AWk}, i.e., rk ⊥ span{Vk}, then using (2.2), we
get

0 = VH
k (b − Axk)

= VH
k (r0 − AWkyk)

= VH
k r0 − Ukyk,

(2.3)

and
rk = b − Axk

= r0 − VkUkyk

= r0 − VkVH
k r0

= rk−1 − vkξk,

(2.4)

where ξk = vH
k r0 = vH

k rk−1. Thus (2.3) can be rewritten as

[ξ1, . . . , ξk]
H

= Ukyk. (2.5)

Similar to the strategy in [28], for the add systems, we require the residual vector rk(αj) = b − (A + αjI)xk(αj) being
orthogonal to span{AWk}, together with (2.2), we have

0 = VH
k [b − (A + αjI)xk(αj)]

= VH
k (r0(αj) − (AWk + αjWk)yk(αj))

= VH
k r0(αj) − (Uk + αjVH

k Wk)yk(αj).

(2.6)
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Thus, after solving (2.5) and (2.6) to obtain yk and yk(αk), the approximate solution of (1.1) is immediately accessed, and
then

rk(αj) = r0(αj) − (AWk + αjWk)yk(αj) = r0(αj) − (VkUk + αjWk)yk(αj). (2.7)

With the same seed system selection strategy in [28,38], we summarize our flexible and adaptive Simpler GMRES for
solving shifted linear systems (FAd-SGMRES-Sh) in Algorithm 2. If the α1 in seed system is not zero, we can reset

A .
= A − α1I,

αj
.
= αj − α1,

thus we take α1 = 0 as default.

Algorithm 2 (A Flexible and Adaptive Simpler GMRES for Shifted Linear Systems (Fad-SGMRES-Sh)).

1. Start: Given the initial guess x0(αj), a tolerance tol, a threshold parameter ν ∈ [0, 1], letm be the maximal dimension
of the solving subspace, r0(αj) = b − Ax0(αj);

2. Select seed system: At the first iteration (after the second iteration), for all systems (for non-converged systems),
find ss ∈ {1, . . . , s}, where s is adjusted by the number of non-converged systems, such that

∥r0(αss)∥2 = max
1≤j≤s

∥r0(αj)∥2.

Re-order r0(α1), . . . , r0(αs), so that the residual of the seed system is placed in the first place. Thus, after re-ordering,
ss = 1;

3. Iterate: for k = 1, . . . ,m, do

(1) zk =

{ r0/∥r0∥2, if k = 1,
rk−1/∥rk−1∥2, if k > 1, and ∥rk−1∥2 ≤ ν∥rk−2∥2,

vk−1, otherwise.
(2) wk = M−1

k zk,
(3) vk = Awk,
(4) for i = 1, . . . , k − 1

uik = vH
i vk, vk = vk − uikvi.

end
(5) ukk = ∥vk∥2, vk = vk/ukk.
(6) ξk = vH

k rk−1, rk = rk−1 − vkξk, if ∥rk∥2 ≤ tol, then go to Step 4.

end
4. Let k be the final iteration number of Step 3.

For seed system, solve (2.5);
For add systems, j = 2, . . . , s, solve (2.6), and update rk(αj) using (2.7);

5. Set xk(αj) = x0(αj) + Wkyk(αj), j = 1, . . . , s. For the non-converged systems, reset r0(αj) = rk(αj), x0(αj) = xk(αj),
j = 1, . . . , s, go to step 2.

Some remarks of the implementation details for FAd-SGMRES-Sh are as follows.

Remark 1. In Step 3, Mk is the flexible preconditioner in the kth step. To get the effect of preconditioning, Mk is usually
selected to be the matrix near A. In our algorithm, we choose to solve Awk = zk inexactly for the process wk = M−1

k zk.
There are many choices of inexact solvers, such as ILU [39], IHSS [40], IGMRES [39], ISOR [39], IQR [41], and so on. In
numerical examples section, we select IGMRES with 10 iterations as the preconditioner.

Remark 2. In Step 4, for add systems, the matrix Uk + αjVH
k Wk is generally not upper triangular. Because we usually

choose a small value m ≪ n, such as 20, thus for the solving step VH
k r0(αj) = (Uk + αjVH

k Wk)yk(αj), the MATLAB function
‘‘\’’ can be directly used to get yk(αj). In addition, from (2.7), we can see the update of the residual vectors will also
cost some time. Consequently, for solving add systems, similar to SGMRES [28], FAd-SGMRES-Sh may not be faster than
GMRES [17]. But fortunately, for seed system, due to without solving an upper Hessenberg least-square problem, and with
inexact preconditioning, FAd-SGMRES-Sh is much faster than SGMRES, GMRES and FGMRES [13], especially for large-scale
problems. Numerical experiments will illustrate the effect later.

2.2. Thick-restarting

Actually, some inexact preconditioned systems may still encounter the issues with small eigenvalues, thus it is
necessary to consider to restart Algorithm 2 with the deflated restarting strategy [35,42,43]. Our aim is to improve the
convergence of FAd-SGMRES-Sh by using the spectral information of the preconditioned seed system at restart. There are
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two keys involved. The first is how to compute the spectral information at each restart. The second is how to apply these
information with a low computation cost at restart.

In fact, we use the harmonic Ritz value information of the seed system Ax = b at each restart. That is required, after
one cycle, the harmonic Ritz pair (λi, qi ≡ Wmgi) of A in span{Wm} and orthogonal to span{AWm} satisfying [44]:

AWmgi − λiWmgi ⊥ span{AWm} ⇔ (VmUm)H (AWmgi − λiWmgi) = 0.

From (2.2), and Um non-singular, the above equation is equivalent to

Umgi = λiVH
mWmgi. (2.8)

Consequently, the harmonic Ritz pairs can be calculated at each iteration of FAd-SGMRES-Sh. Let (λi, gi), i = 1, . . . , e(e ≤

m) are the eigenpairs of the reduced generalized eigenvalues problem (2.8). Set Ge = [g1, . . . , ge], suppose that PeLe = Ge
is the QR decomposition of Ge, where matrix Pe = [p1, . . . , pe] ∈ Ck×e is orthogonal. Postmultiplying (2.2) by Pe yields

AWmPe = VmUmPe. (2.9)

Let UmPe = P̂eUnew
e be the QR decomposition, then from (2.9) we have

AWmPe = VmP̂eUnew
e .

Define W new
e = WmPe and V new

e = VmP̂e, then we obtain

AW new
e = V new

e Unew
e ,

where V new
e ∈ Cn×e is orthogonal, Unew

e ∈ Ce×e is upper triangular. Let We = W new
e , Ve = V new

e and Ue = Unew
e . To

establish Eq. (2.2) for the current cycle, the flexible and adaptive Simpler GMRES with deflated restarting executes the
remaining (m − e) steps with wi = M−1

i zi(e + 1 ≤ i ≤ m) where Mi is the flexible preconditioner and

zi =

{ re/∥re∥2, if i = e + 1,
ri−1/∥ri−1∥2, if i > e + 1 and ∥ri−1∥2 ≤ ν∥ri−2∥2,

vi−1, otherwise.

After each cycle of the new algorithm, we restart the algorithm by setting xnew0 (αj) = xm(αj) and rnew0 (αj) = rm(αj). We
use the symbols such as xnewm (αj), rnewm (αj), W new

m , V new
m and Unew

m for current cycle to distinguish the ones from the last
cycle.

For the seed system, after one cycle of FAd-SGMRES-Sh, from (2.4), we have

rnew0 = rm = r0 − VmVH
m r0,

and

rnewe = rnew0 − V new
e (V new

e )Hrnew0 .

Note that

(V new
e )Hrnew0 = P̂H

e V
H
m (r0 − VmVH

m r0) = 0.

Thus

rnewe = rnew0 , ξ new
i = (vnew

i )Hrnew0 = 0, i = 1, . . . , e,

then from (2.3) and (2.4), we need to solve

Unew
m ynewm = [0, . . . , 0, ξ new

e+1 , . . . , ξ new
m ]

T , (2.10)

where ξ new
i = (vnew

i )Hrnew0 = (vnew
i )Hrnewi−1 , i = e + 1, . . . ,m, and update

rnewi = rnewi−1 − vnew
i ξ new

i . (2.11)

For add systems, from (2.6) we can get

(V new
e )Hr0(αj)new = P̂H

e V
H
m rm(αj) = 0,

thus,

(V new
m )Hr0(αj)new = [0, . . . , 0, ξe+1(αj)new, . . . , ξm(αj)new]

T ,

where ξi(αj)new = (vnew
i )Hr0(αj)new , i = e + 1, . . . ,m. Consequently, from (2.6), we need to solve

[0, . . . , 0, ξe+1(αj)new, . . . , ξm(αj)new]
T

= (Unew
k + αj(V new

k )HW new
k )yk(αj)new, (2.12)

and we still exploit (2.7) to update the residual vector. Now it is ready to present the main algorithm of this paper.
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Table 1
Main computational costs per cycle for GMRES-Sh, Ad-SGMRES-Sh and FAd-SGMRES-Sh.

GMRES-Sh Ad-SGMRES-Sh FAd-SGMRES-Sh

mv m m m

Dot products m(
m∑

k=1
(k − 1) + 1) m(

m∑
k=1

(k − 1) + 1 + s) m(
m∑

k=1
(k − 1) + 1 + s)

saxpy m(
m∑

k=1
(k − 1) + 1) + m + s m(

m∑
k=1

(k − 1) + 1) + 2s m(
m∑

k=1
(k − 1) + 1) + 2s

opMk 0 0 m
Vector updates m + s + 1 2m + 2s 2m + 2s
G-p 0 0 0

Algorithm 3 (A Flexible and Adaptive Simpler GMRES with Deflated Restarting for Shifted Linear Systems (Fad-SGMRES-DR-Sh)).

1. Start: Given the initial guess x0(αj), an integer e, a tolerance tol, a threshold parameter ν ∈ [0, 1], let m the maximal
dimension of the solving subspace, r0(αj) = b − x0(αj);

2. Select seed system: At the first iteration (after the second iteration), for all systems (for non-converged systems),
find ss ∈ {1, . . . , s}, where s is adjusted by the number of non-converged systems, such that

∥r0(αss)∥2 = max
1≤j≤s

∥r0(αj)∥2.

Re-order r0(α1), . . . , r0(αs), so that the residual of the seed system is placed in the first place. Thus, after re-ordering,
ss = 1;

3. Apply one cycle of FAd-SGMRES-Sh to the seed system Ax = b, generate Wm, Vm, Um, xm, and rm;
4. Compute the eigenvalues and eigenvectors of the generalized eigenvalue problem (2.8) by using the QZ algorithm.

Let g1, . . . , ge be the eigenvectors corresponding to the e smallest eigenvalues of (2.8). Set Ge = [g1, . . . , ge], and
compute the QR decompositions of Ge and UmPe: Ge = PeLe, UmPe = P̂eUnew

e . Let W new
e = WmPe and V new

e = VmP̂e.
5. Let We = W new

e , Ve = V new
e , Ue = Unew

e , and x0 = xm, r0 = rm, re = r0;
6. Iterate: for k = e + 1, . . . ,m, do

(1) zk =

{ re/∥re∥2, if k = e + 1,
rk−1/∥rk−1∥2, if k > e + 1, and ∥rk−1∥2 ≤ ν∥rk−2∥2,

vk−1, otherwise.
(2) wk = M−1

k zk,
(3) vk = Awk,
(4) for i = 1, . . . , k − 1

uik = vH
i vk, vk = vk − uikvk.

end
(5) ukk = ∥vk∥2, vk = vk/∥vk∥2.
(6) ξk = vH

k rk−1, rk = rk−1 − vkξk, if ∥rk∥2 ≤ tol, then go to Step 7.
end

7. Let k be the final iteration number of Step 6.
For seed system, solve (2.10);
For add systems, j = 2, . . . , s, solve (2.6), and update rk(αj) using (2.7);

8. Set xk(αj) = x0(αj) + Wkyk(αj), j = 1, . . . , s. For the non-converged systems, reset r0(αj) = rk(αj), x0(αj) = xk(αj),
j = 1, . . . , s, go to step 2.

In the end of this section, it is meaningful to evaluate the computational costs in a generic cycle of GMRES-Sh, Ad-
SGMRES-Sh, FAd-SGMRES-Sh and FAd-SGMRES-DR-Sh, where the detailed pseudo-codes of GMRES-Sh and Ad-SGMRES-Sh
are to be found in [28]. The comparisons are presented in Tables 1 and 2. Here, we denote ‘‘mv’’ the number of matrix–
vector products. ‘‘opMk ’’ denotes the number of the preconditioning process M−1

k zk in one cycle, ‘‘vector updates’’ denotes
the number of vectors that need to be updated in one cycle. We also write down the number of generalized eigenvalue
problems by ‘‘G-p’’ in one cycle.

3. Numerical results

In this section, numerical comparisons are made for GMRES-Sh [17], Ad-SGMRES-Sh [28], FGMRES-Sh [13], GMRES-
DR-Sh [43], FAd-SGMRES-Sh and FAd-SGMRES-Dr-Sh according to the number of outer matrix–vector products (referred
to as mv), and the elapsed CPU time in seconds (referred to as cpu). We set the stopping criterion as

∥b − (A + αjI)xk(αj)∥2

∥b∥2
< 1e − 6, j = 1, 2, . . . , s.



H.-X. Zhong and X.-M. Gu / Computers and Mathematics with Applications 78 (2019) 997–1007 1003

Table 2
Main computational costs per cycle for the 1st cycle and the other cycle of FAd-SGMRES-DR-Sh.

FAd-SGMRES-DR-Sh (1st cycle) FAd-SGMRES-DR-Sh (other cycle)

mv m m − e

Dot products m(
m∑

k=1
(k − 1) + 1 + s) (m − e)(

m∑
k=1

(k − 1) + 1 + s)

saxpy m(
m∑

k=1
(k − 1) + 1) + 2s (m − e)(

m∑
k=1

(k − 1) + 1) + 2s

opMk m m − e
Vector updates 2m + 2s 2m + 2s
G-p 1 1

Table 3
The test matrices used in Example 3.1.
Matrix ID Matrix name Size Nonzeros Problem domain

1 add20 2,395 13,151 Circuit simulation
2 bidiag1 1,000 1,999 Academic
3 bidiag2 1,000 1,999 Academic
4 cdde1 961 4,681 Computational fluid dynamics
5 epb1 14,734 95,053 Thermal
6 sherman4 1,104 3,786 Computational fluid dynamics
7 wang1 2,903 19,093 Semiconductor device
8 wang4 26,068 177,196 Semiconductor device
9 young1c 841 4,089 Acoustics

10 young2c 841 4,089 Acoustics

The bold values in the following tables indicate the fastest in the terms of cpu. The numerical results are obtained by using
MATLAB R2014a (64 bit) on an PC-Intel Core i5-6200U, CPU 2.4 GHz, 8 GB RAM with machine epsilon 10−16 in double
precision floating point arithmetic.

Example 3.1. We consider the same matrices used in [28]. These matrices are from the University of Florida Sparse
Matrix Collection and Example 1 in [45]. Table 3 lists the matrices with their information. Here bidiag1 and bidiag2 are
bidiagonal matrices with super-diagonal entries being all one. The diagonal elements of bidiag1 are 0.1, 1, 2, 3, . . . , 999,
and the ones of bidiag2 are 1, 2, 3, . . . , 1000. All the initial vectors are zero in all examples. The right-hand side b is
generated by the MATLAB code randn(n, 1), where n is the dimension of A. The shift parameters are α = 0, 0.4, 2. For
FAd-SGMRES-Sh and FAd-SGMRES-DR-Sh, the flexible preconditioner is chosen as running 10 steps of the un-restarted
GMRES algorithm [8]. The same strategy is used in Example 3.2. For FGMRES-Sh, we use LU decomposition to exactly
solve (A+σi)w = v in the preconditioning process. Similar to the work [13], we select the same σ1 = 0.5 in the first m/2
steps, in the last m/2 steps for the same σ2 = 1. Thus, the LU decomposition of A+ σiI need to save for using in the first
and last m/2 steps of each cycle. The same strategy is also used in Example 3.3.

In Table 4, we reported the mv(cpu) of each algorithm for listed matrices with size smaller than 1000, and the
dimension of the approximate subspace in each cycle is set asm = 10, µ = 0.9. For FAd-SGMRES-Dr-Sh, e is the number of
harmonic eigenvectors retained from the previous cycle. We compare two cases, i.e., e = 3, 6. In Table 5, for comparison,
we set m = 20 and e = 5, 10, 15, with µ = 0.9, and the matrices size are all larger than 1000. In all tables, ‘‘†’’ denotes
that the algorithm fails to converge even after using 10000 outer matrix–vector products.

As seen from Tables 4 and 5, for smaller matrices except for cdde1, FGMRES-Sh is the best solver among these
algorithms, which is inseparable from the exact solution of (A+σk)w = v during the preconditioning process. But for the
larger matrices, especially for wang4 whose size is 26068, the exact solving process of FGMRES-Sh obviously became a
time-consuming obstacle, while FAd-SGMRES-DR-Sh performs best. It also can see for FAd-SGMRES-DR-Sh with different
values e, in some examples, e.g., epb1 in Table 5, even the number mv is smaller, but the elapsed CPU time is larger, this
is because when using the harmonic Ritz value information, we need to compute a generalized eigenvalue problem (2.8)
and sort these eigenvalues; thus if the eigenvectors number e is larger, the elapsed CPU time for the previous procedure
may be larger too. Thus, it is important to choose appropriate m and e. For some matrices, such as bidiag2, cdde1, add20
and sherman4, we can see the number mv of FAd-SGMRES-DR-Sh is not much less than FAd-SGMRES-Sh, even equal to
each other, this is because after preconditioning, the small eigenvalue problems of these matrices are well controlled, thus
the effect of deflated restarting is not obvious, whereas the other matrices still need the deflated restarting. Consequently,
for large and difficult problems, FAd-SGMRES-DR-Sh still performs better than the other mentioned algorithms.

Example 3.2. In this example, we apply our algorithms to solve quantum chromodynamics (QCD) problems with multiple
shifts, which is one of the most time-consuming supercomputer applications. Di, 1 ≤ i ≤ 14 are denoted the complex
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Table 4
Convergence behaviors of GMRES-Sh, Ad-SGMRES-Sh, FGMRES-Sh, FAd-SGMRES-Sh, GMRES-DR-Sh and
FAd-SGMRES-DR-Sh with tol = 1e − 6, m = 10 and µ = 0.9.
Method mv(cpu), m = 10, µ = 0.9

bidiag1 bidiag2 cdde1 young1c young2c

GMRES-Sh 4678(0.36) 513(0.06) † † †
Ad-SGMRES-Sh 4678(0.34) 513(0.06) 9569(1.00) † †
FGMRES-Sh 7(0.02) 7(0.01) 118(0.07) 12(0.13) 11(0.12)
FAd-SGMRES-Sh 54(0.04) 35(0.03) 21(0.06) 627(0.73) 615(0.72)
GMRES-DR-Sh 351(0.81) 258(0.05) 174(0.10) † †e = 3
GMRES-DR-Sh 373(0.10) 240(0.06) 169(0.06) † †e = 6
FAd-SGMRES-DR-Sh 39(0.02) 32(0.02) 19(0.06) 231(0.34) 230(0.34)e = 3
FAd-SGMRES-DR-Sh 41(0.03) 32(0.02) 19(0.04) 193(0.25) 178(0.24)e = 6

Table 5
Convergence behaviors of GMRES-Sh, Ad-SGMRES-Sh, FGMRES-Sh, FAd-SGMRES-Sh, GMRES-DR-Sh and
FAd-SGMRES-DR-Sh with tol = 1e − 6, m = 20 and µ = 0.9.
Method mv(cpu), m = 20, µ = 0.9

add20 epb1 sherman4 wang1 wang2

GMRES-Sh 1231(0.32) 1300(1.17) 548(0.17) 1049(0.33) †
Ad-SGMRES-Sh 1231(0.27) 1310(1.70) 548(0.10) 894(0.24) †
FGMRES-Sh 635(11.39) 1099(9.74) 14(0.07) 295(1.38) 3161(268.17)
FAd-SGMRES-Sh 55(0.10) 72(0.59) 23(0.05) 51(0.12) 148(2.30)
GMRES-DR-Sh 629(0.27) 601(1.89) 134(0.09) 473(0.25) 1162(7.05)e = 5
GMRES-DR-Sh

† 591(2.30) 130(0.04) 496(0.23) †e = 10
GMRES-DR-Sh

† † 136(0.06) † †e = 15
FAd-SGMRES-DR-Sh 56(0.11) 63(0.58) 23(0.06) 44(0.11) 80(1.25)e = 5
FAd-SGMRES-DR-Sh 55(0.08) 63(0.59) 23(0.02) 44(0.07) 76(1.26)e = 10
FAd-SGMRES-DR-Sh 56(0.09) 63(0.70) 23(0.01) 44(0.08) 79(1.50)e = 15

matrices downloaded fromMatrix Market.3 These Di are discretizations by the Dirac operator used in numerical simulation
of quark behavior at different physical temperatures [3,18]. For each Di, we take Ai = ( 1

kc
+10−3)I−Di as the base matrix,

where kc is the critical value such that for 1
kc

< 1
k < ∞, the matrix 1

k I − Di is real-positive. Table 6 lists the matrices
Di with their information. Moreover, the right-hand side b = ones(length(A), 1), and the initial guess in each example
is zero vector. We take [0.0001, 0.0002, . . . , 0.0004, 0.001, 0.002, . . . , 0.004, 0.01, 0.02, . . . , 0.04] as the set of shifted
values αj. It is shown from Fig. 1 that the eigenvalues of base matrix A1 are in the right-half of the complex plane, but
partially surround the origin [12].

For seed matrices A1−A7, we set m = 10, µ = 0.9, and e = 3, 6. Table 7 gives the results of the considered algorithms.
From Table 7, it can be seen that GMRES-DR-Sh does not converge for each matrix, and FGMRES-Sh costs too much time,
whereas FAd-SGMRES-DR-Sh performs best; this implies that after adding inexact preconditioning and then deflating the
small eigenvalues can accelerate the convergence. In Table 8, we compare the other algorithms besides FGMRES-Sh and
GMRES-DR-Sh, and we set m = 20, µ = 0.9, e = 5, 10, 15 for seed matrices A8 − A14. As seen from Tables 7 and 8,
FAd-SGMRES-DR-Sh performs better than the other algorithms for most examples with deflating the small eigenvalues
(in modulas). It is also known that the appropriate choice of m and e is important for FAd-SGMRES-DR-Sh, which will be
subject to further investigations in the future.

Example 3.3. As we know, preconditioning is the critical point that effects the convergence of iteration methods
directly [39]. However, different preconditioners will make different effects. In this example, some numerical results of
FAd-SGMRES-Sh with different preconditioners are reported. We select ILU and IGMRES [39], and then denote the two
algorithms by FAd-SGMRES-Sh(ILU) and FAd-SGMRES-Sh(IGMRES), respectively. At the same time, we also execute the
flexible preconditioned GMRES with LU decomposition (FGMRES-Sh(LU)) [13] for comparison. All the matrices used in

3 Refer to the website: http://math.nist.gov/MatrixMarket/.

http://math.nist.gov/MatrixMarket/
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Fig. 1. The eigenvalues distribution of A1 .

Table 6
The matrices Di used in Example 3.2.
Matrix ID Denotation Matrix name Size Nonzeros kc
1 D1 CONF5.0-00L4X4-1000 3,072 119,808 0.20611
2 D2 CONF5.0-00L4X4-1400 3,072 119,808 0.20328
3 D3 CONF5.0-00L4X4-1800 3,072 119,808 0.20265
4 D4 CONF5.0-00L4X4-2200 3,072 119,808 0.20235
5 D5 CONF5.0-00L4X4-2600 3,072 119,808 0.21070
6 D6 CONF6.0-00L4X4-2000 3,072 119,808 0.17968
7 D7 CONF6.0-00L4X4-3000 3,072 119,808 0.16453
8 D8 CONF5.4-00L8X8-0500 49,152 1,916,928 0.17865
9 D9 CONF5.4-00L8X8-1000 49,152 1,916,928 0.17843

10 D10 CONF5.4-00L8X8-1500 49,152 1,916,928 0.17689
11 D11 CONF5.4-00L8X8-2000 49,152 1,916,928 0.17835
12 D12 CONF6.0-00L8X8-2000 49,152 1,916,928 0.15717
13 D13 CONF6.0-00L8X8-3000 49,152 1,916,928 0.15649
14 D14 CONF6.0-00L8X8-8000 49,152 1,916,928 0.15623

Table 7
Convergence behaviors of Ad-SGMRES-Sh, FAd-SGMRES-Sh and FAd-SGMRES-DR-Sh with n = 3072, tol = 1e − 6,
m = 10 and µ = 0.9.
Method mv(cpu), m = 10, µ = 0.9

A1 A2 A3 A4 A5 A6 A7

GMRES-Sh 812(0.56) 315(0.36) 634(0.57) 384(0.40) 564(0.53) 2357(1.78) 176(0.26)
Ad-SGMRES-Sh 812(0.86) 315(0.36) 634(0.70) 384(0.44) 564(0.62) 2357(2.53) 176(0.22)
FGMRES-Sh 6(21.67) 6(32.21) 5(21.91) 6(32.19) 6(21.60) 4(21.30) 4(21.56)
FAd-SGMRES-Sh 105(0.71) 60(0.46) 64(0.50) 63(0.46) 84(0.62) 70(0.49) 23(0.21)
GMRES-DR-Sh

† † † † † † †e = 3
GMRES-DR-Sh

† † † † † † †e = 6
FAd-SGMRES-DR-Sh 80(0.57) 54(0.42) 56(0.42) 57(0.42) 71(0.51) 52(0.39) 23(0.21)e = 3
FAd-SGMRES-DR-Sh 74(0.50) 51(0.35) 53(0.35) 56(0.37) 70(0.49) 48(0.31) 23(0.16)e = 6

the above two examples are considered in our experiments, and record the typical results in Table 9. Here iter denotes
the iteration number of Arnoldi process.

As seen from Table 9, FGMRES-Sh(LU) and FAd-SGMRES-Sh(ILU) show almost the same performance for each matrices.
Especially for smaller size matrices, both are performing better than FAd-SGMRES-Sh(IGMRES). However, for large-scale
matrices, FAd-SGMRES-Sh(IGMRES) will be the best solver. This is because the inner loop of FGMRES-Sh(LU) becomes
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Table 8
Convergence behaviors of Ad-SGMRES-Sh, FAd-SGMRES-Sh and FAd-SGMRES-DR-Sh with n = 49152,
tol = 1e − 6, m = 20 and µ = 0.9.
Matrix mv(cpu), m = 20, µ = 0.9

Ad-SGMRES-Sh FAd-SGMRES-Sh FAd-SGMRES-DR-Sh

e = 5 e = 10 e = 15

A8 872(18.71) 105(12.11) 95(11.27) 94(11.70) 92(12.90)
A9 584(12.90) 79(9.47) 77(9.10) 76(9.48) 76(10.93)
A10 471(10.34) 72(8.46) 71(8.50) 69(8.41) 69(9.38)
A11 431(9.61) 71(8.32) 72(8.66) 71(8.80) 71(9.75)
A12 659(15.11) 53(6.63) 50(6.06) 50(5.94) 50(6.31)
A13 1010(21.72) 54(6.27) 51(5.94) 52(6.18) 51(6.61)
A14 648(13.69) 54(6.13) 49(5.63) 49(5.83) 49(6.19)

Table 9
Convergence behaviors of FGMRES-Sh(LU), FAd-SGMRES-Sh(ILU) and FAd-SGMRES-Sh(IGMRES) with
tol = 1e − 6, m = 20, µ = 0.9, α = [0, 0.4, 2], and σ1 = 0.5, σ2 = 1.
Matrix iter(cpu), m = 20, µ = 0.9

FGMRES-Sh(LU) FAd-SGMRES-Sh(ILU) FAd-SGMRES-Sh(IGMRES)

bidiag1 8(0.33) 3(0.06) 42(0.09)
sherman4 14(0.07) 17(0.16) 24(0.10)
wang4 1181(199.68) 1241(2433.90) 117(1.88)
young1c 11(0.15) 13(0.16) 299(0.41)
young2c 10(0.03) 13(0.11) 265(0.31)

time-consuming to exactly solve a linear system with the coefficient matrix A + σiI using the LU decomposition, and
the saving of the LU decomposition is another big cost. For FAd-SGMRES-Sh(ILU), although there is no storage about
the LU decomposition, but in each cycle, it needs to calculate the incomplete LU decomposition of A and solving two
sparse triangular linear systems, these are still both flaws. While for FAd-SGMRES-Sh(IGMRES), 10 steps of the inexact
GMRES will not cost too much time. Consequently, for smaller size matrices, it is better to use FGMRES-Sh(LU) and FAd-
SGMRES-Sh(ILU) to solve shifted systems, and it is best to use FAd-SGMRES-Sh(IGMRES) for solving some large-scale
shifted systems.

4. Conclusions

In the present paper, we established two iterative algorithms based on the Simpler GMRES for solving shifted linear
systems simultaneously, namely FAd-SGMRES-Sh and FAd-SGMRES-DR-Sh. Moreover, these variants can be regarded as
two improvements of Ad-SGMRES-Sh, which is recently proposed by Jing, Yuan and Huang in [28]. The resultant algo-
rithms converge in less matrix–vector products than the other related solvers (GMRES-Sh, Ad-SGMRES-Sh, FAd-GMRES-Sh,
and GMRES-DR-Sh), especially for large problems. Furthermore, although the cost per iteration of FAd-SGMRES-Sh and
FAd-SGMRES-DR-Sh is higher, in our numerical experiences, the overall execution time is still lower. In addition, the
FAd-SGMRES-DR-Sh performs better than FAd-SGMRES-Sh when the coefficient matrix of the seed system has many
eigenvalues close to the origin as verified by numerical experiments. In conclusion, the proposed algorithms can be
recommended as two efficient tools for solving shifted linear systems.

As an outlook for the future, the advanced development of preconditioning strategies (such as the polynomial
preconditioning [6,21], the nested iterative technique [46] and other preconditioning strategies [22,47]) for solving shifted
linear systems remains a meaningful topic for further research.
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