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Abstract 

 
In this paper, a new method based on the generalized Purcell method is proposed to solve the 

usual least-squares problem arising in the GMRES method. The theoretical aspects and 

computational results of the method are provided. For the popular iterative method GMRES, the 

decomposition matrices of the Hessenberg matrix is obtained by using a simple recursive relation 

instead of Givens rotations. The other advantages of the proposed method are low computational 

cost and no need for orthogonal decomposition of the Hessenberg matrix or pivoting. The 

comparisons for ill-conditioned sparse standard matrices are made. They show a good agreement 

with available literature. 

 

Keywords:  Generalized Purcell method; Krylov subspace methods; weighted minimal      

residual method; generalized Purcell minimal residual method; Ill-conditioned 

problems 

 

MSC 2010 No.: 65F10; 15A23; 65F25 

 

1

Rahmani and Momeni-Masuleh: A New Implementation of GMRES Using Generalized Purcell

Published by Digital Commons @PVAMU, 2013

http://pvamu.edu/aam
mailto:Rahmanimr@yahoo.com
mailto:momeni@shahed.ac.ir


250                                                                                     Morteza Rahmani and Sayed Hodjatollah Momeni-Masuleh 

                                                                                                                                                                                                                                                                                                                                                                                                                                                          
 

1. Introduction 
 

The generalized minimal residual (GMRES) method is a popular iterative method for solving a 

linear system of  equations for the  variables, which can be written in the form 

 

. (1) 

  

This method is based on Arnoldi’s process (Arnoldi, 1951), which is a version of the Gram-

Schmidt method tailored to Krylov subspaces  i.e., 

 

. (2) 

  

The construction of the subspace  starts with an initial guess  and generates an 

approximate solution such that 

 

. (3) 

 

Starting with the normalized right-hand side  as a basis for , Arnoldi's 

process recursively builds an orthonormal basis for  by orthogonalizing the vector 

 from  to the previous space , i.e., 

 

, 

 

where . The new basis vector is defined as . If we collect the 

orthonormal basis vectors for  in a matrix form, say , then the 

decomposition associated with Arnoldi's process is ,  where  is a 

-by-  upper Hessenberg matrix. Here, it should be noted that  

 

Every solution  in the context of the linear least squares problem (3) starting with 

 implies that for some  we have  and 

  

 

 

 

(4) 

 

 

where  and  is the first vector of the normal basis of . A classical way to solve 

Equation (4) is to decompose the matrix  into  using Givens rotations (Saad and Schultz, 

1986) or Householder transformations (Walker, 1988), where  is a -by-  orthonormal 

matrix and  is a -by-  upper rectangular matrix. Then we have 

 

 

 

(5) 
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where . Since the last row of  is zero, the solution of Equation (5) is obtained 

by solving an upper triangular system of linear equations which is a deflated matrix results from 

removing the last row of the matrix R and the last component of the vector . 

 

Lemma 1.  
 

Let the last row of  in Equation (4) be zero, i.e., . Then  is the exact 

solution to . 

 

Lemma 1 shows that for a consistent linear system of equations , the exact solution will 

be obtained in at most, after  steps. It is well known that the residual norms are monotonically 

decreasing with respect to . 

 

As the performance of GMRES method is expensive both in memory cost and complexity, one 

can often use its restarted version, so-called GMRES(k) method, in which the  is 

restricted to be fixed dimension  and Arnoldi's process is confined using the latest iterate  as 

a new initial approximation  for the restart. A good introduction to GMRES method 

may be found in the review article of Simoncini and Szyld (2007). Details on the theory and its 

implementation may be found in the article of Saad and Schultz (1986) and the monograph of 

Stoer and Bulirsch (2002). Recently, Bellalij et al. (2008) have established the equivalence of the 

approximation theory and the optimization approach to solving a min-max problem that arises in 

the convergence studies of the GMRES method and Arnoldi's process for normal matrices. 

Jiránek et al. (2008) analyzed the numerical behavior of several minimum residual methods, 

which are mathematically equivalent to the GMRES method. Gu (2005) and Gu et al. (2003) 

presented a variant of GMRES(k) augmented with some eigenvectors for the shifted systems. 

Niu et al. (2010) presented an accelerating strategy for weighted GMRES(k) (WGMRES(k)) 

method. 

 

In addition, theoretical comparison of the Arnoldi's process and GMRES method, singular and 

nonsingular case of matrices, their breaks down and stagnation are discussed by Brown (1995) 

and Smoch (1999). Effort has been made to replace, by alternative methods, the rotations of 

Givens to improve speed, accuracy, and memory requirements of the GMRES method. Ayachour 

(2003) tried to reduce computational costs and storage requirements, but still needed to compute 

, in which  is formed by ignoring the first row of . 

 

In this paper, instead of  factorization for solving the problem (4) a novel method based on 

the generalized Purcell (GP) method (Rahmani and Momeni-Masuleh, 2009) is presented. From 

a theoretical point of view, the proposed method is totally, different from Ayachour’s method 

(2003). We analyze and compare the proposed method with GMRES(k) and WGMRES(k) 

methods with some challenges. The method has the luxury of not using Givens rotations unlike 

previous methods; it has no need to use orthogonal decomposition and moreover its 

computational costs are low. Especially when compared to Ayachour's method. The 

decomposition matrices of the Hessenberg matrix obtain from a simple and fast recursive 

relation. 
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The paper is organized as follows. In Section 2 the theoretical aspects of GP method is discussed. 

The Generalized Purcell minimal residual (GPMRES) method and the weighted GPMRES 

(WGPMRES) method are introduced. The theoretical analyses and the computational complexity 

are presented in Section 3. Section 4 provides four examples of standard sparse ill-conditioned 

matrices that are solved by the proposed method. In Section 5, we draw conclusions and give 

directions for future work. 

 

2. GP Method for Minimal Residual 
 

In this section, we explain the  method that gives a unique decomposition of a given -by-  

matrix  into matrices  and , in which  is a lower triangular matrix and  is a nonsingular  

matrix. Let , for , denote the i-th row vector of matrix  and define 

 

 
 

where  is the i-th standard basis in . We construct a sequence of matrices , each of which 

is a basis for , from the matrix  using matrix . In the step , suppose that we have 

 

. 

 

To obtain the matrix , the vectors for  are constructed from a linear 

combination of  and  such that  will be orthogonal to the  of . 

To do this, we define 

 

,      , (6) 

 

where 

 

 , 
(7) 

 

resulting in a compact form 

 

. (8) 

 

It is clear that the matrix  is a lower triangular matrix. Note that the matrix  is an 

upper triangular matrix whose all-diagonal entries are equal to 1 which implies that  is 

invertible. By setting  to the inverse of , the decomposition process is complete. 

 

Benzi and Meyer (1995) derived the same results up to this point. Now, we present the 

characteristics of matrices  and . 
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Lemma 2.  

 

The vector  is linearly dependent on vectors  if, for n, we have: . 

 

Proof:  
 

Regarding the decomposition process of  we have 

 

 (9) 

 

Since  and by hypothesis  for  so  

which completes the proof. 

 

Lemma 2 shows that we can find linearly dependent vectors and that the th element of 

matrix is zero. In this case we set apart , set  and continue the process to . 

Therefore, there will be no a failed state in the process of GP method. 

 

Theorem3.  

 

For , every vector in  can be expressed as a unique linear combination of vectors 

in , i.e.,  is a basis for . 

 

Proof:  

 

The proof is by induction on . The statement is true for . Let the vectors of  be 

linearly dependent. It means that are linearly dependent. Therefore, for 

some nonzero scalars , we have . Thanks to (6) we have 

 

  (10)  

 

where for  and . Using the induction hypothesis gives 

, which is a contradiction. 

 

Corollary 4.  

 

Every , for  is invertible. 

 

To avoid dividing by zero in relation (7), we may select column vector such that 

 

, (11) 

 

or column vector  such that 
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. (12) 

 

The operations (11) and (12) are called row pivoting and column pivoting, respectively. 

 

Theorem 5.  

 

In the case of the row pivoting method, suppose that  be the computational value of ,  be a 

least upper bound of the computation error for ,  be the relative computation error of  

and   . Then is less than or equal to  . 

 

Proof:  

 

By the theorem hypothesis and relation (7) we have 

 

. 

 

Let , for all . Then 

 

     

 

Therefore, the vector  must satisfy the recurrence 

 

 

 
and as a result 

 

 

 

or 

 

. 

 

Lemma 6.  

 

The complexity of Purcell method is  (Rahmani, and Momeni-Masuleh, 2009). 
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Lemma 6 gives an upper bound for the computational complexity. As one can see in the next 

section, the nature of and optimized operations allow us to have a low computational 

complexity (less than that given in Lemma 6). 

 

 

3.  GPMRES and WGPMRES Methods 
 

In this section, we intend to propose the GPMRES method based on previous section for solving 

the least squares problem (4). 

 

Let matrix be the transpose of Hessenberg matrix , which is produced by Arnoldi's process. 

Here  has the following form 

 

. 

 

We decompose the matrix  in to  using the GP method, where the matrix  is a -

by-  lower triangular matrix and E is a -by-  matrix. By Theorem 3, E is nonsingular 

and its columns span . 

 

Decomposition is accomplished in steps, in which we rectify such that 

 

. (13) 

 

Step l: Suppose that  is given and has the following form 

 

 

 

and that  To have a simple form of   is swapped by . Using the GP method 

gives 

 

    (14) 

 

where 

 

 
   (15) 

 

in which  is the i-th row vector of . Since , for , the 

coefficients  are all zero and therefore , which implies that 

 

7

Rahmani and Momeni-Masuleh: A New Implementation of GMRES Using Generalized Purcell

Published by Digital Commons @PVAMU, 2013



256                                                                                     Morteza Rahmani and Sayed Hodjatollah Momeni-Masuleh 

                                                                                                                                                                                                                                                                                                                                                                                                                                                          
 

 

 

Finally, at step  one can get 

 

,    (16) 

 

where E is in the form of a -by- companion matrix. Note that by expanding the matrix 

 along the first row, we have  which implies that is invertible. 

 

As a result, according to the decomposition we get 

 

 

 

(17) 

 

Remark 1.  

 

It is easy to see that 

 

.    (18) 

 

Regarding to (13), we have 

 

 
 

where . Now we have 

 

 

   (19) 

 

Theorem 7.  

 

Suppose that  and  are given by (16) and (18), respectively. Then, 

 

 , 

 

and for  we have 

 

. 

 

Proof:  

 

For a nonsingular matrix  and for every  we get . Since , we have 
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 , 

 

for  the proof is straightforward. 

 

Theorem 7 leads to the trivial minimal residual solution . In order to avoid this case, here 

we will give a non-trivial minimal residual solution with a lower bound less than . At first we 

normalize  and denote it by , where 

 

 

 

   (20) 

 

Then, the vectors , using GP method, generate the vectors which 

are perpendicular to . 

 

Setting , it is easy to show that , where 

 

 ,  

 

in which . In other words, 

 

 . 
   (21) 

 

One can see that 

 

 . 

 

Therefore, 

, 

and 
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Then we have 

 

  .    (22) 

 

Due to the definition of matrix B we know that , thus, 

 

, 

 

and 

 

. 

 

Since , Gershgorin's theorem provides 

 

 , 

 

which shows that the 2-norm of  is bounded. 

 

Theorem 8.  

 

Suppose that,  and  are given by (21) and (18), respectively and  is nonsingular. Then, 

 

 , 

 

and for  we have 

 

 
 

Proof:  

 

On account of 

 

   

 

one can see that 

 

  

 

as  is nonsingular, there exists a unique nonzero solution for  which minimize 
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, 

 

and the minimum at this case is equal to . 

 

Corollary 9. 

 

Under the assumptions of Theorem 8, we have 

 

  

 

Remark 2.  
 

It is noticeable that GPMRES solution to the problem both in method and in results is different 

from that of GMRES method. Of course, if  then GPMRES results are the same as 

GMRES, but still in this case, theoretically, the sequence of  is decreasing. When the  is 

less than 1, GPMRES results are better than those of GMRES. 

 

Hereafter, we will refer to the above process of finding  as GPMRES method. We can use 

GPMRES method iteratively. The iterative version, termed by GPMRES(k), for solving  

is summarized in Table 1. 

 

Table 1: GPMRES(k) method 

1. Choose . 

2. Compute  and let , 

Iterate: for  

 

 

 
 

 

 

 

3. Construct  and  using Eqs. (17) and (20), respectively. 

4. Form the approximate solution: 

  

 

 
where  

 

5. If  then stop, else define  and go to step 2. 
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3.1. GPMRES Properties 

 

Theorem 10.  

 

Let  be an initial guess. Define 

 

 , 
 

and 

 

  
 

where  is the approximate solution obtained from the ith step of the GPMRES method. Then, 

 

. 
 

In addition, equality can happen only if  or . 

 

Proof:  

 

It can be shown that 

 

 . 

 

Substituting  in (22), leads to 

 

   

   (23) 

 

Regarding Equation (20), if  then  Otherwise  only if . In 

addition, equality can happen if  . 

 

By assuming  and  for in the same manner, we have 

 

 . 

 

An important consequence of this theorem is that 

 

 . 

 

As a result, the stopping criteria of the GPMRES method can be chosen as  or . In 

the latter case, one can iterate GPMRES method to obtain the desired solution to the problem in 

12
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Equation (1). In some steps if  is happened, it shows that we cannot go further and the 

approximate solution at that step is the best one with the GPMRES method. 

 

Theorem 11.  

 

Suppose that in step  of GPMRES method we have  and . Then the stagnation 

of the residual norm of GPMRES method will occur for the linear system of Equation (1). 

 

Proof: 

 

By assumption, Equation (20) yields . The conclusion of the Theorem follows from 

Equation (23) and the proof is complete. 

 

Furthermore, according to Equation (17) we get 

 

 , 
 

or 

 

 . 

 

Hence, 

 

 . 
 

 

Remark 3.  
 

In GPMRES method, unlike Ayachour's method (Ayachour, 2003), in order to get the solution 

for the case of , there is no for any treatment. This situation is explained in the next 

theorem. 

 

Theorem 12.  

 

In the case of  , GPMRES method easily reaches the exact solution . 

 

Proof:  

 

Suppose that . Then, the vector  is orthogonal to the vector  and there is no 

need to replace  by . Hence  and obviously , where  is the same 

as  except for the entry , which is 

 

 . 

 

Therefore, 
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  .  (24) 

 

Now, let  , where  is the last column of  . Then, 

 

. 
 

Thus,  is the minimum solution to the problem (19) and  is the exact solution 

of . 

 

 

3.2. WGMRES Method 

 

Suppose that  be an arbitrary diagonal matrix with , for 

. For any vectors , the D-scalar product is defined as 

 

 , 

 

and the associated  D-norm is given by 

 

 . 
 

The WGMRES method can be derived from a weighted Arnoldi’s process (Essai, 1998). The 

only difference between GMRES and WGMRES is that using the D-norm instead of a 2-norm 

for computing the and . Similarly, the WGPMRES method can be derived easily from 

GPMRES, in which the  and  are computed using the D-norm. 

 

3.3.  Computational Complexity 

 

In order to calculate the number of operations in GPMRES method, consider the 

 

 
 

be the column-by-column representation of matrix . As we know GPMRES method only 

requires to compute 

 

 . 

 

This is accomplished without explicit storage of  , by calculating the normalized vector  

and storage of  and . 

 

The computational cost in performance of the one step of GPMRES is  

multiplications, while in GMRES method by using Givens rotations the computational cost is 

 multiplications while Ayachour's method (Ayachour, 2003) needs  

14
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multiplications. The cost of the GMRES method can vary significantly, if we use QR 

decomposition. 

 

4.  Numerical Results 
 

In order to elucidate the theoretical results of the GPMRES (k) and WGPMRES (k) methods four 

examples are presented. In all the examples, the initial vector  is zero and the result of every 

inner iteration  is selected as initial vector for next inner iteration . To decompose in 

GMRES(k) or WGPMRES(k), instead of the Givens rotations, the standard QR decomposition 

algorithm from MATLAB version 7 is used. All example matrices are obtained from the Matrix 

Market (Website, 2010) and computations, including GMRES(k) and WGMRES(k), are 

accomplished using our written MATLAB codes. 

 

Example 1: Consider the linear system of equations , in which  is the ill-conditioned 

matrix 

 

 ) 

 

and . The normwise backward error  for GPMRES(k), GMRES(k) 

and Ayachour's method, which is termed by GMRES-Aya are plotted in Figure 1. In comparison 

to the RB-SGMRES and GCR methods (Jiránek et al., 2008, Figure 3.5), the results show that 

the GPMRES(k), GMRES(k) and GMRES-Aya converge to the log of normwise backward error 

less than  at iteration number before , while the RB-SGMRES and GCR methods 

reach the same value at . Furthermore, GPMRES(k) gives more accurate approximate 

solution than the others. 

 

Example 2: Consider the matrix 

 

 
 

and  is equal to the left singular vector corresponding to the smallest singular value of . The 

backward error  for GPMRES(k), GMRES(k) and GMRES-Aya are shown in 

Figure 2. In comparison to the adaptive Simpler GMRES (Jiránek Rozložník, 2010, Figure 

5) results show that GPMRES(k) converges to the log of backward error less than  at 

iteration number , while the log of backward error of adaptive Simpler GMRES for 

iteration number  is at most . Here, again GPMRES(k) method gives better results 

than the others. 

 

Example 3: Consider the matrix  and . The log of backward 

error for GPMRES(k), GMRES(k) and GMRES-Aya are presented in Figure 3. The 

results show that the log of backward error for GMRES-Aya and GMRES(k) are same 

as the log of backward error of the adaptive Simpler GMRES while GPMRES(k) 

method has less log of backward error than 10
-20

. Also GMRES(k), GMRES-Aya and 

adaptive Simpler GMRES (Jiránek and Rozložník, 2010, Figure 3) cannot converge to 

less than10
-17

. 
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Example 4: In this example, we test the matrix memplus whose size is  with  non-

zero entries. Here, WGPMRES(k) is tested and compared with the WGMRES(k) (Niu, Lu, and 

Zhou, 2010) and the weighted GMRES-Aya (WGMRES-Aya) methods. The residual norm 

(  for the WGPMRES(k), WGMRES(k) and WGMRES-Aya methods are presented in 

Figure 4. The results show that the residual norm for the WGMRES-Aya and the WGMRES(k) 

are the same as the residual norm of WGPMRES(k) up to nearly 30 iterations for , while 

the WGPMRES(k) gives better residual norm for iteration number bigger than 45. 

 

5.  Conclusion 
 

A new iterative method based on GP method for the solution of large, sparse, and non-symmetric 

systems of linear equations is proposed. The GPMRES(k) method does not need orthogonal 

decomposition of Hessenberg matrix. In comparison to some fast implementation methods for 

the GMRES like GMRES-Aya, the proposed method has smaller computational cost, easy 

implementation and no need to any further treatment for the case of . Also, the 

stagnation case can be identified by checking the .The convergence of the method to minimal 

residual is obvious based on theoretical discussion and depends strongly on  which is less than 

1. Our experiences show that the performance of GPMRES(k) method for solving ill-conditioned 

problems, is equivalent or even has lower residual norm error in comparison to the improved 

versions of GMRES method such as the Simpler GMRES, the adaptive version of the Simpler 

GMRES, the GMRES-Aya(k) and the WGMRES(k) methods or the WGMRES-Aya(k) method. 

Further work is needed to investigate the impact of  for accelerating convergence of the 

restarted GPMRES(k) method and improving the proposed method for augmented restarted 

WGPMERS(k). 

 
Figure 1. The log normwise backward error of  solved by GPMRES (k), 

GMRES(k) and GMRES-Aya methods.  is STEAM1 matrix and 
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Figure 2. The log backward error for  solved by GPMRES(k), GMRES(k) 

and GMRES-Aya methods.  is matrix  and  is the left 

singular vector corresponding to the smallest singular value of matrix   
 

 
Figure 3. The log backward error of  solved by GMRES(k),GMRES(k) and 

GMRES-Aya methods.  is matrix  and  
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Figure 4. The log residual norm of  solved by WGPMRES(15), WGMRES 

(15) and WGMRES-Aya (15) methods for the matrix memplus 
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