224 research outputs found

    Comparison of PSDA and CCA detection methods in a SSVEP-based BCI-system

    Get PDF
    Using steady-state visually evoked potential (SSVEP) in brain-computer interface (BCI) systems is the subject of a lot of research. One of the most popular and widely used detection method is using a power spectral density analysis (PSDA). Lately there have been some new methods emerging, one of them is using canonical correlation analysis (CCA) which seems to have some promising improvements and advantages compared to traditional SSVEP detection methods, like better signal-to-noise ratio (SNR), lower inter-subject variability and the possibility to use harmonic frequencies, i.e., a serie of frequencies which have the same fundamental frequency. In this research two different SSVEP detection methods, one using PSDA and one using CCA are compared. The results show that the CCA-based detection method performs significantly better than the PSDA-based detection method. The increase of performance can in particular be seen when using harmonic frequencies. While the PSDA-based detection method has difficulties detecting harmonic frequencies, the CCA-based detection method is able to detect harmonic frequencies

    Data Analytics in Steady-State Visual Evoked Potential-based Brain-Computer Interface: A Review

    Get PDF
    Electroencephalograph (EEG) has been widely applied for brain-computer interface (BCI) which enables paralyzed people to directly communicate with and control of external devices, due to its portability, high temporal resolution, ease of use and low cost. Of various EEG paradigms, steady-state visual evoked potential (SSVEP)-based BCI system which uses multiple visual stimuli (such as LEDs or boxes on a computer screen) flickering at different frequencies has been widely explored in the past decades due to its fast communication rate and high signal-to-noise ratio. In this paper, we review the current research in SSVEP-based BCI, focusing on the data analytics that enables continuous, accurate detection of SSVEPs and thus high information transfer rate. The main technical challenges, including signal pre-processing, spectrum analysis, signal decomposition, spatial filtering in particular canonical correlation analysis and its variations, and classification techniques are described in this paper. Research challenges and opportunities in spontaneous brain activities, mental fatigue, transfer learning as well as hybrid BCI are also discussed

    Bacteria Hunt: A multimodal, multiparadigm BCI game

    Get PDF
    Brain-Computer Interfaces (BCIs) allow users to control applications by brain activity. Among their possible applications for non-disabled people, games are promising candidates. BCIs can enrich game play by the mental and affective state information they contain. During the eNTERFACE’09 workshop we developed the Bacteria Hunt game which can be played by keyboard and BCI, using SSVEP and relative alpha power. We conducted experiments in order to investigate what difference positive vs. negative neurofeedback would have on subjects’ relaxation states and how well the different BCI paradigms can be used together. We observed no significant difference in mean alpha band power, thus relaxation, and in user experience between the games applying positive and negative feedback. We also found that alpha power before SSVEP stimulation was significantly higher than alpha power during SSVEP stimulation indicating that there is some interference between the two BCI paradigms

    Assessing the feasibility of online SSVEP decoding in human walking using a consumer EEG headset.

    Get PDF
    BackgroundBridging the gap between laboratory brain-computer interface (BCI) demonstrations and real-life applications has gained increasing attention nowadays in translational neuroscience. An urgent need is to explore the feasibility of using a low-cost, ease-of-use electroencephalogram (EEG) headset for monitoring individuals' EEG signals in their natural head/body positions and movements. This study aimed to assess the feasibility of using a consumer-level EEG headset to realize an online steady-state visual-evoked potential (SSVEP)-based BCI during human walking.MethodsThis study adopted a 14-channel Emotiv EEG headset to implement a four-target online SSVEP decoding system, and included treadmill walking at the speeds of 0.45, 0.89, and 1.34 meters per second (m/s) to initiate the walking locomotion. Seventeen participants were instructed to perform the online BCI tasks while standing or walking on the treadmill. To maintain a constant viewing distance to the visual targets, participants held the hand-grip of the treadmill during the experiment. Along with online BCI performance, the concurrent SSVEP signals were recorded for offline assessment.ResultsDespite walking-related attenuation of SSVEPs, the online BCI obtained an information transfer rate (ITR) over 12 bits/min during slow walking (below 0.89 m/s).ConclusionsSSVEP-based BCI systems are deployable to users in treadmill walking that mimics natural walking rather than in highly-controlled laboratory settings. This study considerably promotes the use of a consumer-level EEG headset towards the real-life BCI applications

    A Brain-Controlled Vehicle System Based on Steady State Visual Evoked Potentials

    Get PDF
    In this paper, we propose a human-vehicle cooperative driving system. The objectives of this research are twofold: (1) providing a feasible brain-controlled vehicle (BCV) mode; (2) providing a human-vehicle cooperative control mode. For the first aim, through a brain-computer interface (BCI), we can analyse the EEG signal and get the driving intentions of the driver. For the second aim, the human-vehicle cooperative control is manifested in the BCV combined with the obstacle detection assistance. Considering the potential dangers of driving a real motor vehicle in the outdoor, an obstacle detection module is essential in the human-vehicle cooperative driving system. Obstacle detection and emergency braking can ensure the safety of the driver and the vehicle during driving. EEG system based on steady-state visual evoked potential (SSVEP) is used in the BCI. Simulation and real vehicle driving experiment platform are designed to verify the feasibility of the proposed human-vehicle cooperative driving system. Five subjects participated in the simulation experiment and real the vehicle driving experiment. The outdoor experimental results show that the average accuracy of intention recognition is 90.68 ± 2.96% on the real vehicle platform. In this paper, we verified the feasibility of the SSVEP-based BCV mode and realised the human-vehicle cooperative driving system.Fil: Zhang, Zhao. Civil Aviation University Of China; ChinaFil: Han, Shuning. Universitat de Vic - Universitat Central de Catalunya ; EspañaFil: Yi, Huaihai. China University Of Geosciences; ChinaFil: Duan, Feng. Nankai University; ChinaFil: Kang, Fei. Maebashi Institute Of Technology; JapónFil: Sun, Zhe. Riken; JapónFil: Solé Casals, Jordi. Universitat de Vic - Universitat Central de Catalunya; España. Nankai University; China. University of Cambridge; Reino UnidoFil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina. Nankai University; Chin

    Practical Brain Computer Interfacing

    Get PDF
    A brain-computer interface (BCI) is a communication system that enables users to voluntary send messages or commands without movement. The classical goal of BCI research is to support communication and control for users with impaired communication due to illness or injury. Typical BCI applications are the operation of computer cursors, spelling programs or external devices, such as wheelchairs, robots and neural prostheses. The user sends modulated information to the BCI by engaging in mental tasks that produce distinct brain patterns. The BCI acquires signals from the user's brain and translates them into suitable communication. This dissertation aims to develop faster and more reliable non-invasive BCI communication based on the study of users learning process and their interaction with the BCI transducer. To date, BCI research has focused on the development of advanced pattern recognition and classification algorithms to improve accuracy and reliability of the classified patterns. However, even with optimal detection methods, successful BCI operation depends on the degree to which the users can voluntary modulate their brain signals. Therefore, learning to operate a BCI requires repeated practice with feedback that engages learning mechanisms in the brain. In this work, several aspects including signal processing techniques, feedback methods, experimental and training protocols, demographics, and applications were explored and investigated. Research was focused on two BCI paradigms, steady-state visual evoked potentials (SSVEP) and event-related (de-)synchronization (ERD/ERS). Signal processing algorithms for the detection of both brain patterns were applied and evaluated. A general application interface for BCI feedback tasks was developed to evaluate the practicability, reliability and acceptance of new feedback methods. The role of feedback and training was fully investigated on studies conducted with healthy subjects. The influence of demographics on BCIs was explored in two field studies with a large number of subjects. Results were supported through advanced statistical analysis. Furthermore, the BCI control was evaluated in a spelling application and a service robotic application. This dissertation demonstrates that BCIs can provide effective communication for most subjects. Presented results showed that improvements in the BCI transducer, training protocols, and feedback methods constituted the basis to achieve faster and more reliable BCI communication. Nevertheless, expert assistance is necessary for both initial configuration and daily operation, which reduces the practicability of BCIs for people who really need them

    Development of a practical and mobile brain-computer communication device for profoundly paralyzed individuals

    Full text link
    Thesis (Ph.D.)--Boston UniversityBrain-computer interface (BCI) technology has seen tremendous growth over the past several decades, with numerous groundbreaking research studies demonstrating technical viability (Sellers et al., 2010; Silvoni et al., 2011). Despite this progress, BCIs have remained primarily in controlled laboratory settings. This dissertation proffers a blueprint for translating research-grade BCI systems into real-world applications that are noninvasive and fully portable, and that employ intelligent user interfaces for communication. The proposed architecture is designed to be used by severely motor-impaired individuals, such as those with locked-in syndrome, while reducing the effort and cognitive load needed to communicate. Such a system requires the merging of two primary research fields: 1) electroencephalography (EEG)-based BCIs and 2) intelligent user interface design. The EEG-based BCI portion of this dissertation provides a history of the field, details of our software and hardware implementation, and results from an experimental study aimed at verifying the utility of a BCI based on the steady-state visual evoked potential (SSVEP), a robust brain response to visual stimulation at controlled frequencies. The visual stimulation, feature extraction, and classification algorithms for the BCI were specially designed to achieve successful real-time performance on a laptop computer. Also, the BCI was developed in Python, an open-source programming language that combines programming ease with effective handling of hardware and software requirements. The result of this work was The Unlock Project app software for BCI development. Using it, a four-choice SSVEP BCI setup was implemented and tested with five severely motor-impaired and fourteen control participants. The system showed a wide range of usability across participants, with classification rates ranging from 25-95%. The second portion of the dissertation discusses the viability of intelligent user interface design as a method for obtaining a more user-focused vocal output communication aid tailored to motor-impaired individuals. A proposed blueprint of this communication "app" was developed in this dissertation. It would make use of readily available laptop sensors to perform facial recognition, speech-to-text decoding, and geo-location. The ultimate goal is to couple sensor information with natural language processing to construct an intelligent user interface that shapes communication in a practical SSVEP-based BCI

    A portable EEG-BCI framework enhanced by machine learning techniques

    Get PDF
    Brain Computer Interfaces (BCIs) allow direct communication between the human brain and external devices through the processing and interpretation of brain signals. Indeed, BCI represents the ultimate achievement in human-machine interaction, eliminating all the intermediate physical steps between the intention of an action and its implementation. Electroencephalography (EEG) plays a key role in BCIs being the least invasive technique for capturing brain electrical activity. However, high performance devices turn out to be uncomfortable and of unpractical use outside dedicated facilities, mainly due to the use of many electrodes. Conversely, single-channel EEG devices made of fewer electrodes provide weak and noisy signals difficult to interpret. In this PhD thesis, a portable BCI prototype enhanced by machine learning techniques for the classification of brain signals — and in particular of Steady State Visual Evoked Potentials (SSVEPs) — is proposed. The current study embraces the design, realization, characterization, and optimization of a BCI built on top of a cost-effective single-channel EEG device. The results have been validated both in offline and online sessions thanks to the collaboration of volunteers equipped with the given prototype. Due to its usability, the proposed framework may broaden the range of state-of-the-art BCI applications
    corecore