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INTRODUCTION

Brain, in a way quite analogous to the universe, always fascinated humans.
Understanding the biological basis of the mental processes that allow us
to act, perceive, feel or learn is still a challenge. Although the earliest known
studies date back to the time of the ancient Egyptians, only in the twentieth
century the technological and scientific progress have provided investiga-
tive tools for a deeper understanding of the nervous system. The devel-
opment of such technologies has also opened the door to active use of
brain signals. Such devices, called Brain Computer Interfaces (BCIs), en-
able direct communication between the brain and external devices. The
idea is to record brain waves to define and implement an action using a
computer, without depending on the peripheral nervous system and mus-
culature. A typical BCI system is made up of several modules which in-
clude signal acquisition, preprocessing, feature extraction, classification
and control. Initial research regarding BCIs aimed to provide improved ca-
pabilities to impaired users, but, more recently, these techniques are gain-
ing attention also as new means to interact with computers and other de-
vices for healthy subjects too.
BCI is classified as an emerging technology with strongmarket interest, as
demonstrated by a research conducted by Allied Market Research which
estimated a market size of $1.46 billion in 2019 and is expected to reach
$3.85 billion by 2027. According to Gartner’s Hype Cycle for emerging tech-
nologies, BCI will reach its plateau of productivity in 5-10 years. The main
challenge is to improve its usability outside the laboratories, thus creat-
ing cost-effective, non-invasive but still high-performance devices. In this
regard, the most suitable approach is based on electroencephalography
(EEG).
EEG extracts brain information in the form of electrical potentials detected
through the use of electrodes positioned on the scalp, in a non-invasive
way, and is characterized by high flexibility and excellent spatial and tem-
poral resolutions. EEG-based BCIs are able to record both spontaneous
signals, generated voluntarily by users, and evoked signals, induced un-
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consciously by the influence of external stimuli. Among the various types
of evoked signals, Steady-State Visual Evoked Potentials (SSVEPs), pro-
duced in the visual cortex area when the subject observes periodic stimuli,
have attracted the interest ofmany researchers due to the high information
transfer rate and the little training requirement.
The main drawbacks in EEG-based BCIs are related to the type and num-
ber of electrodes used for acquisition. The so called wet electrodes offer
better signal quality, but require user maintenance as they dry quickly. Dry
electrodes, on the other side, do not require extra intervention, but provide
a weaker, noisy signal very sensitive to the environment. A large number
of electrodes can compensate for signal weakness, but would not be com-
fortable and of practical use.

In this work, a single-channel BCI prototype based on EEG and SSVEP
signals is presented, addressing the described challenges and providing
solutions based onmachine learning techniques. Specifically, the research
is aimed at the realization, characterization and optimization of a BCI hav-
ing the following characteristics:

1. Ease of use: The system should be up and running quickly, with little
or no need for physical device configuration or user intervention.

2. Single-channel: The device may be worn for a long time. Using a sin-
gle channel with a few dry electrodes is less bulky and more flexible
and comfortable.

3. Fast training: There are several devices where the training may re-
quire a very long time (days or weeks) resulting very frustrating for
the end user.

4. Fast response: In order to be of practical use, the system should pro-
vide a control command within few seconds.

5. Cost-effective: The device must be accessible to everyone.

6. Low power consumption: Since the proposed prototype is wearable,
it requires a rechargeable battery. For this reason the components
must be chosen with the lowest possible energy consumption.

The listed requirements can be thought as the core features for aminimum
viable product. Although the isolated characteristics have beenmet in liter-
ature, there are currently no BCI frameworks, to the best of my knowledge,
that satisfy them all.
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The thesis roadmap is organized in five chapters.
In the first chapter the readerwill become familiarwith the physiology of the
brain, the associated signals and the main acquisition techniques. The es-
sential elements of a BCI system and the combined use of machine learn-
ing are introduced, as well as possible applications.
In the second chapter the developedEEG-basedBCI prototype is presented,
from the concept design, to the hardware realization up to the integration
of the firmware.
The characterization, optimization and validation of the prototype is re-
ported in chapter 3.
In chapter 4, some applications of the developed prototype are presented.
Finally, the thesis concludes with various considerations on the potential
of the novel framework.
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Chapter 1

BRAIN COMPUTER INTERFACES

The advance in the neuroscience field is dictated by the technological progress
and, so far, a great variety of cerebral activities have been successfully as-
sociated to precise tasks and behaviors. This allowed to develop specific
monitoring systems to detect brain dysfunctions, on one hand, and con-
trolling systems to translate brain activities into external commands on the
other hand. Instruments capable of transforming brain signals directly into
commands go under the name of Brain Computer Interfaces (BCI).
Before describing the acquisition techniques of brain signals, it is appropri-
ate to analyze the origins and the mechanisms underlying the generation
of such signals.
This chapter gives a brief introduction to the human brain, following with a
description of themain neuroimaging and readoutmethods, with their pros
and cons. Finally, a description of the key elements of BCI systems, their
classification and possible applications in different areas are provided.

1.1 A description of the human brain

The brain is the center of a highly specialized system aimed at managing
actions and sensory information dispatching signals to and from various
regions of the body. It is part of amore general structure known as nervous
system which could be generally divided into two main parts: the central
nervous system (CNS) and the peripheral nervous system (PNS). The for-
mer comprises the brain and the spinal cord and coordinates the infor-
mation coming from both the external environment, through sight, taste,
hearing, touch and smell, and from the body internal system. The latter
consists of nerves and ganglia and serves as a relay between the CNS and
the rest of the body.
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Fig. 1.1: Top: Anatomy of a neuron.
Bottom: First intracellular
measurement of an action potential
[1].

The fundamental unit of the nervous
system is the neuron, a special cell
that can actively process electrical sig-
nals. The main elements that char-
acterize a neuron are shown in Fig
1.1. Starting from the main cell body,
called soma, cytoplasmic extensions
originate. Input-type extensions are
called dendrites. They are sensitive to
environmental alterations or to the ac-
tivities of neighboring cells and prop-
agate electrical signals towards the
soma. In particular conditions, gen-
erally a threshold process, the neuron
generates an impulse known as action
potential, which propagates through
a single output extension, the axon,
that takes care to transmit informa-
tion to different neurons, muscles and
glands through the synaptic termina-
tions. From a physiological point
of view, action potentials represent a
modification of the neuron’s membrane conductance. In stationary con-
ditions, the potential difference between the inside and outside of the cell
membrane is on average −70 mV , due to the different concentration of
intra- and extra- membrane ions (in particular Na+ and K+). The flux
of ions across the cell membrane is regulated by glyco-protein macro-
moloecules known as ion channels. In neurons, the ion channels are nor-
mally closed and do not allow the passage of ions. If an adequate stimulus
causes a change in the membrane potential above a critical value then the
channels open allowing the transition of ions across themembrane, i.e., the
membrane conductance increases and the action potential is triggered. An
example of an action potential observed with an oscilloscope is shown in
Fig. 1.1. The whole process takes place in few milliseconds.
The human brain approximately contains 21 − 26 × 1012 neurons [2], or-
ganized in an apparent chaotic network capable of processing extremely
complex information. Two main regions can be identified in the brain: the
cerebral cortex, responsible for high level functions such as reasoning, lan-
guage processing and visual analysis, and the sub-cortical regions which
regulate the vital functions such as respiration and heart rate.
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Fig. 1.2: Lobes of cerebral cortex.

The cerebral cortex arouses a lot of
interest in the world of research as
its functions are essentially linked
to the will of the person, an essen-
tial requirement for the development
of brain-computer interfaces (BCIs).
The functioning of the cerebral cor-
tex is still unclear, however, since the
mid-nineteenth century, many stud-
ies [3, 4] have shown that a certain
amount of cortical functions are lo-

calized. The concept of localization should not be intended in the strict
sense, but as areas in which brain activity is more intense during certain
actions.
The cerebral cortex is a bilateral structure consisting of two hemispheres,
each ofwhich canbe divided into four lobes (Fig. 1.2). The frontal lobe is pri-
marily responsible for voluntary movement, attention and problem solving.
The parietal lobe is mainly responsible for spelling, perception and spatial
awareness. The temporal lobe is connected tomemory, learning, language,
emotional control. Finally, the occipital lobe is related to the interpretation
of visual stimuli. A particular characteristics in the organization of the cere-
bral cortex is that each hemisphere is related to the processes on the op-
posite side of the body. Starting from the division into lobes, much more
detailed and localized functional maps of the brain were subsequently pro-
posed. In particular, the Brodmann map identifies 52 different areas (Fig.
1.3), each one devolved to a specific function. However, it should be noted
that small lesions to the cerebral cortex do not impair its normal function-
ing, which highlights an extremely flexible neural organization.

Fig. 1.3: Illustration of Brodmann’s cortical maps. Lateral (a) and medial surface
(b).
Source: [5]
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1.2 Neuroimaging techniques

The neural activity of the brain can be analyzed using different methods
and tools. The main techniques for detecting, displaying and interpreting
such activity are described below.

1.2.1 SPECT

Single Photon Emission Computerized Tomography (SPECT) is an imag-
ing method based on the tracking of gamma rays emitted by radioactive
nuclei injected into the patient’s bloodstream. To identify particular areas,
specific chemical compounds are used so that there is a greater accumu-
lation of radionuclides in the affected areas. A commonly used radioactive
tracer is the metastable nuclear isomer of technetium 99mTc. Using po-
sition sensitive photodetectors (typically rotating cameras) 3D images of
the part of the brain under examination can be generated. SPECT devices
have a spatial resolution of about 1 cm and a temporal resolution of sev-
eral seconds. Better spatial resolutions can be achieved with the use of
new detectors such as silicon photomultipliers [6].

1.2.2 PET

Positron Emission Tomography (PET) is in principle very similar to SPECT.
It is also based on gamma ray tracking. However, radionuclides do not
directly emit photons but positrons, which in turn interactwith the electrons
surrounding the affected area [7]. From this interaction two annihilation
photons are emitted in opposite directions which, once detected in time-
coincidence window, allow to generate an image in a similar way to SPECT.
PET can reach spatial resolutions of less than a millimeter but it is very
expensive and is only present in specialized centers.

1.2.3 MEG

Magnetoencephalography (MEG) is a non-invasive technique used tomea-
sure the weak magnetic fields produced by the synchronous activity of
thousands of neurons in the brain. These fields allow to trace the brain
region activated by an external stimulus or to identify injured areas. The de-
tection is basedon superconducting quantum interference devices (SQUID)
which convert magnetic waves into electrical signals [8].
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1.2.4 fMRI

FunctionalMagnetic Resonance Imaging(fMRI) is used tomeasure changes
in blood oxygen levels in active areas of the brain. This phenomenon is
known as blood oxygenation level dependent (BOLD) and is detected by
placing the patient in a strong static magnetic field. In this situation, the
spins of certain nuclei (including hydrogen) showaprecessionmotion around
the magnetic field vector at a fixed frequency. By applying radio frequency
pulses, the directions of the spins can be brought in a direction perpendicu-
lar to themagnetic field by inducing a voltage variation in a receiving circuit
through antennas placed around the area to be imaged [9]. fMRI produces
high spatial resolution but a very poor temporal resolution.

1.2.5 fNIR

Functional Near Infrared (fNIR) imaging is a fairly recent technology based
on the projection of infrared light at different wavelength into the brain. The
re-emitted light allows to determine the oxygen concentration, which mod-
ifies the scattering and absorption properties, in the areas of interest [10].
In this way, images similar to fMRI can be obtained with better spatial res-
olution at the expense of temporal resolution.

1.2.6 ECoG and Single-unit recording

Electrocorticography (ECoG) allows to measure brain activity through sur-
face electrodes placed on the cerebral cortex [11, 12]. It is a method with
extremely high spatial and temporal resolutions since neural electrical ac-
tivity is detected directly on the surface of the brain. Recent studies have
shown that using micro surface electrodes (< 100 µm2) it is possible to
record single-neuron activity [13]. However, being invasive and limited to
the exposed area of the brain, it still has no practical use outside laborato-
ries. Superior performances can be achieved with intracortical electrodes,
known as single-unit recording devices. However, they have even greater
limitations, such as damage to the blood brain barrier and allergic reac-
tions.
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1.2.7 EEG

Fig. 1.4: Expanded 10/20 system
according to the American Clinical
Neurophysiology Society (ACNS)
guidelines.

Electroencephalography (EEG), used
for the first time by Hans Berger
in 1924 [14], represents one of the
most valid and least invasive meth-
ods to analyze brain activity, in ad-
dition to its cost-effectiveness and
high temporal resolution. The elec-
trical activity is detected on the sur-
face of the brain by means of elec-
trodes placed on the scalp in con-
tact with the skin, therefore in a
non-invasive way. However, this re-
sults in a very weak signal and in-
volves the presence of environmen-
tal noisewhich require some precau-
tions. These include various stages
of amplification and filtering and the
use of saline gels to reduce the con-

tact impedance of the electrodes with the skin. If the electrodes have built-
in amplification circuitry they are called active electrodes, otherwise pas-
sive electrodes. Another distinction can be made between wet and dry
electrodes depending on whether or not saline gels are used. For practi-
cal use of EEG devices outside of laboratories, dry active electrodes are
preferred. The scalp electrodes can be placed according to the expanded
international 10/20 system, which refers to specific cranial landmarks pro-
posed by the American Clinical Neurophysiology Society (ACNS) [15]. De-
pending on the particular task, one or more electrodes can be used.

1.3 Brain signals

Brain signals are mainly divided into two categories: evoked signals and
spontaneous signals.

1.3.1 Evoked signals

Evoked signals refer to brain responses to an external stimulus, which can
be related to any human sensory input. Such signals are generated in an
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unconsciousway. Although external stimuli can sometimes be uncomfort-
able, evoked signals have the advantage that they require little user effort
and do not present substantial differences from subject to subject. The
most known evoked signals are Steady State Evoked Potentials (SSVEP)
and P300.

SSVEP

Steady State Visual Evoked Potentials (SSVEP) are rhythmic variations of
electrical potential produced on the primary visual cortex, in correspon-
dence of the occipital lobe (Fig. 1.2). They can be evoked through periodic
visual stimuli and are characterized by a response frequency equal to that
of stimulation. Stimuli can be generated by light flashes or flickering im-
ages projected on a display. Due to their high signal to noise ratio (SNR)
and fast time response, SSVEPs are ranked among the fastest and most
immediate signals currently available [16].

P300

P300 is a peak in the detected signal that appears about 300 ms after the
subject has been exposed to an infrequent or unexpected stimulus. An ex-
ample is the repetition of a sequence of randomstimuli with a less frequent
one [17]. As for the SSVEPs, the P300 also does not require user training
but is very tiring and repetitive.

1.3.2 Spontaneous signals

Spontaneous signals are generated voluntarily by the subject and aremostly
based on cognitive tasks such as music imagination, mathematical calcu-
lation or movement simulation. The user mentally simulates a process,
then pattern analysis is performed on the recorded signals with more or
less sophisticated techniques, includingmachine learning. Among the var-
ious spontaneous signals related to cognitive tasks, motor imagery and
slow cortical potentials are the most used.

Motor imagery

Motor imagery is a mental task in which the subject imagines making a
movement, such as hand or foot movements, without actually doing it.
Such tasks imply a change in the amplitude of brain signals coming from
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the motor cortex, known as sensorimotor rhythms, which can be detected
and used as control signals [18]. Indeed, motor imagery is very suitable for
control applications but needs several electrodes for good performances
and may require long training time.

Slow cortical potentials

Slow cortical potentials (SCP) are slow variation of brain activity controlled
by an individual using operant conditioning. These signals occur in the cen-
tral and frontal part of the cortex and can encode various cognitive param-
eters such as those related to movements or language [19]. It may require
very long training time and some users may not be able to generate these
signals.

1.4 Direct brain-computer communication

Fig. 1.5: Basic flowchart of a Brain
Computer Interface.

The first person to highlight the pos-
sibility of direct communication be-
tween computer and brain, in partic-
ular through EEG, was Jacques J. Vi-
dal in 1973 on the basis of the state
of the art of technologies and neu-
rophysiology at that time [20]. He
was also the first to refer to Brain
Computer Interfaces (BCI) as sys-
tems capable of acquiring brain sig-
nals to voluntarily control external
devices. The realization of a BCI
system must include some essen-
tial elements. These are summa-
rized in the flowchart shown in Fig.
1.5. Starting from the user, brain sig-
nals are acquired through an head-
set hosting the acquisition sensors. Signals are subsequently filtered, dig-
itized, and preprocessed by a microcontroller to reduce the background
noise and extract the main features, i.e., the extraction of information
through various processing techniques, such as spectral or time-frequency
analysis. The processed signals are then transferred to a recognition soft-
ware which performs a classification, interpreting the characteristics ex-
tracted from the signal. Finally, the recognized patterns are translated into
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commands for controlling external devices. It is also necessary that feed-
back is provided to the user so that he is aware of the performed action.

1.4.1 BCI classification

Besides the distinction between invasive and non-invasive BCIs, which de-
pends on the particular neuroimaging technique chosen, BCI systems can
be classified according to the degree of user interaction and synchroniza-
tion.

Dependent and independent BCI

Dependent BCIs require a minimum of motor control of the subject’s sen-
sory muscles. For example, such a system might require the user to focus
on various external stimuli to activate related brain signals. Independent
BCIs, on the other hand, does not require any motor control.

Synchronous and asynchronous BCI

In synchronous BCIs, the user can interact with the system only in prede-
termined time intervals. Outside these timewindows the systemwould not
work. In asynchronous BCIs, also called self-paced, the system is able to
respond to the mental tasks of the subject at any time.

1.4.2 EEG based BCIs

Themost suitable neuroimagingmethods for aBCI systemare ECoG, single-
unit recording and EEG, as they offer far superior spatial and temporal res-
olutions and are also less bulky. Among these three, EEG is of particu-
lar interest as it does not require a cranial opening to place the electrodes
and the entire acquisition and processing system could be embedded into
the headset. The main drawback in using an EEG-BCI system is related to
the application of many electrodes on the scalp for adequate signal recog-
nition, resulting very uncomfortable and not practical. This problem can
be addressed by using machine learning techniques to extrapolate useful
information using only few channels, especially when many classes (the
number of different outcomes that a signal is expected to encode) are in-
volved.
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1.4.3 Performance indicators

Different indicators can be taken into consideration when comparing dif-
ferent BCI systems, although, depending on the type of application, one
quality may be preferred over another. Themost used performance indica-
tors are:

• Detection accuracy. It is the ratio of correctly predicted classes to the
total number of predictions made:

accuracy =
n_correct_predictions
n_total_predictions

(1.1)

The accuracy strongly depends on the Signal-to-Noise ratio (SNR) i.e.,
the ratio of signal power to the background noise power.

• Detection time. It can be defined as the mean time elapsed between
two consecutive correct predictions.

• Information transfer rate (ITR). It is the amount of information trans-
ferred per unit time (precisely, bit per minutes). It takes into account
the detection accuracy, detection time, and the number of classes
[21]. Formally:

ITR = Q×

[
log2N + P × log2P + (1− P )× log2

(
1− P
N − 1

)]
(1.2)

where N is the number of target or classes, P is the detection accu-
racy and Q is the detection time in minutes.

1.5 Machine learning

Machine learning (ML) refers to a set of classification techniques that al-
lows to obtain information on complex data whose characteristics are not
fully known. In particular, ML is a branch of artificial intelligence that aims
to build a model starting from data samples, known as training data, in or-
der to make predictions on new data. Indeed, dataset preparation is the
most crucial aspect in machine learning. A training dataset is made of
vectors, whose dimension depends on the number of unique measurable
properties of the study under consideration. These properties are knownas
features and the resulting vector is called feature vector. Usually, features
are extracted from raw data on the basis of statistical considerations, or
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even hypotheses, on the observed phenomenons. The techniques for ma-
nipulating raw data in order to extract relevant features are known as pre-
processing algorithms. Each training vector has an associated label that
points to the set of possible classes to which a vector can belong. The set
of classes is usually discrete but can also belong to a subset of real num-
bers. The dataset made up of feature vectors, with the associated classes,
allows to train amodel capable of predicting which class new input vectors
belong.
Machine learning is particularly suitable for the classification of brain sig-
nals as they are often very noisy and not much is known about them. Pat-
terns can be very hidden and extremely difficult to detect with classical
signal analysis. The techniques used in this work will be described in the
next chapter alongside the description of the developed BCI prototype.

1.6 Applications and future directions

Being both a monitoring and control device, the possible applications of
BCIs are innumerable. These includes, but not limited to:

• the study and monitoring of particular disorders (epilepsy, sleep dis-
orders)

• rehabilitation from neurodegenerative diseases

• support for paralyzed patients

• control of prostheses or commonly used devices

• performance enhancement

• videogames controller

• augmented and virtual reality assistance

For each area of application, it is essential to improve its usability andmake
it accessible to everyone. For these reasons, the research objectives of this
work are pursued by constantly taking into account the key properties for
the BCIs of the future: ease of use, rapid training, fast response, integrated
analysis, cost effectiveness, and low power consumption. In this work a
BCI prototype having thementioned characteristics is proposed. A detailed
description is provided in the next chapter.
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Chapter 2

THE EEG-BCI PROTOTYPE

Based on the considerations addressed in the previous chapter and thanks
to the collaboration with QUASAR of the physics department of the Fed-
erico II University of Naples, the electronic engineering department, the
Protom Group S.p.A. and the collaboration with the CERN robotics group,
I have developed a wearable single-channel BCI prototype based on elec-
troencephalography specific for SSVEP signals. The prototype has been
thought to meet the usability and low-cost requirements. For this reason
components have been chosen to have a balanced ratio between costs
and performances. Its realization involved hardware configuration, soft-
ware development as well as 3Dmodeling and printing. A detailed descrip-
tion is provided throughout this chapter.

2.1 Concept design

As delineated in the previous chapter, SSVEP signals result as response to
periodic visual stimuli, such as flickering lights or images. These signals
can be analyzed to recognize which stimulus the subject is focusing on,
paving the way for a control system in various applications.
The concept design of the developed system is shown in Fig. 2.1. A device
renders the visual stimuli, eliciting SSVEP responses in the subject. Signals
are captured through EEG electrodes positioned on the scalp, digitized by
the acquisition unit and sent to the processing unit. Here signals undergo
segmentation, filtering and transformations, such that the relevant features
are extracted and classified according to the observed stimulus. The sys-
tem also integrates a server that can send commands to external devices
based on the outcomes of the classification.



14 The EEG-BCI prototype

Fig. 2.1: Concept design of the proposed EEG-BCI prototype.

2.2 Hardware components

The proposed prototype is made of four fundamental units: the headset,
the acquisition unit, the processing unit and the stimulation platform. I will
not provide hardware details on the stimulation platform in this section as
there may be of different types and the system allows for quick configu-
ration. The particular platform used will be described in chapters 3 and 4
along with the type of application covered.

2.2.1 Headset

The headset design has been thought to host the electrodes in the occip-
ital zone (Oz) and the frontal-parietal zone (Fpz) according to the 10/20
system. In fact, the Oz position is located in correspondence of the visual
cortex, where SSVEP signals are more intense. Since the captured signal
is the voltage difference between the two electrodes (Sec. 2.2.2), the Fpz
position is strategic as it is as far as possible fromOz, avoiding signal over-
lapping.
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Fig. 2.2: 3D model of the headset, on the left, and 3D printed headset hosting the
electrodes, on the right.

Electrodes

The adopted electrodes are of two types, passive and active. Precisely,
two active electrodes have been used for signal detection and a passive
Driven Right Leg (DRL) electrode used as a reference electrode. The pas-
sive electrode simply consists of a gold-plated flat surface assembled with
a shielded cable. The active ones contain a preamplification circuit that im-
proves the signal and reduces environmental noise. One of the two active
electrodes has been modified by adding twelve gold-plated spring connec-
tors to improve the skin contact through the hair.

Fig. 2.3: Gold-plated flat electrode on the left and a modified spring-loaded
electrode on the right.
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2.2.2 Acquisition unit

The acquisition unit is based on the Olimex EEG-SMT (Fig. 2.4), a 10-bit,
256 Hz, 2-channels, differential input Analog-Digital Converter (ADC) for
digitizing brain signals. Three electrodes have been used as input to the
Olimex, two active electrodes for the differential ADC and a passive one as
reference electrode. The ADC digitizes data as an integer number ranging
from0 to 1023with a dynamic range of ±0.39mVdue to the default internal
gain of the device (G = 6427).

Fig. 2.4: Olimex EEG-SMT.

2.2.3 Processing unit

The processing unit is built upon a Raspberry Pi 3 single-board computer
(Fig. 2.5), developedby theRaspberry Pi Foundation, with a 4×ARMCortex-
A53 1.2GHzCPU, 1GBRAM, severalmultipurpose pins andperipherals, wire-
less network capabilities such as Bluetooth and WiFi, and a Debian-based
Linux operating system installed. It communicates via USBwith the Olimex
device, integrates preprocessing and classification algorithms for the dig-
itized data, and serves as WiFi interface to interact with external devices.

Both the acquisition unit and the processing unit have been packed to-
gether in a 3D printed box that can be worn with a belt (Fig. 2.6). The
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Fig. 2.5: A Raspberry Pi 3 single-board computer used as processing unit and as
WiFi interface.

box also contains a slot for a powerbank capable of powering the system
for about three hours.

Fig. 2.6: The EEG prototype packed into the 3D printed wearable box.
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2.2.4 Stimulation platform

The stimulation platform consists of a display capable of providing visual
stimuli, usually black-white squares oscillating on a black background. The
display canbe froma laptop, a tablet, a smartphoneor virtual- and augmented-
reality headsets. Flickering frequencies values depend on the device. In
fact, the number of the producible frequencies are limited to integer divi-
sors of the monitor refresh rate [22]. To overcome the limits imposed by
the refresh rate a pulsed sinusoidal modulation of the brightness can be
used.
If f is the desired frequency andR the refresh rate of the device, the bright-
ness of the stimulus at the frame index n is given by:

S(n, f) = sin(
2πfn

R
) (2.1)

The pulsed sinusoidal waveform is obtained by replacing all negative val-
ues with zero.

2.3 Firmware

The main firmware is entirely written in Python and hosted on the Rasp-
berry Pi 3. It comprises a set of methods accessible through an integrated
HTTP server. Each method calls a sub-module responsible for a precise
task, from data acquisition to the prediction algorithms. The main mod-
ules are three: raw-data acquisition, preprocessing and classification.
When a request is sent to the server, sampled data is processed in order to
provide either the predicted frequency (using the train-based or the train-
less algorithms) or the estimated number of eyeblinks. The flowchart of
the server is shown in Fig. 2.7 showing the main requests. Other requests
allow the user to choose the prediction algorithm, obtain rawdata, and save
trained models.

2.3.1 Raw-data acquisition module

This method continuously fill a built-in 4096 words buffer, following the
First-In-First-Out (FIFO) paradigm, retrieving digitized data from the Olimex
EEG-SMT acquisition unit. The buffer size corresponds to the last 16 s of
data that will be immediately available for computation. This module runs
on a separate thread (Fig. 2.7).
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Fig. 2.7: Flowchart of the Raspberry Pi server.

2.3.2 Preprocessing module

Includes a set of analysis tools used to extract relevant features for the final
classification. Such tools are:

• Segmentation: produces signal segments of fixed length, known as
time window. Segments can share a portion of the original signal
(overlap) with a settable percentage.

• Fast Fourier Transform (FFT): invented by Gauss in 1805 and redis-
covered later by Cooley-Tukey [23], is a powerful tool that converts
signal segments from the time domain to the frequency domain. It’s
numerical expression is:

Xq =

N−1∑
k=0

xke
−i 2πkq

N (2.2)

where q ranges from 0 to N − 1, x0, ..., xN−1 are the elements of the
input buffer, N its length, and X0, ..., XN−1 are complex numbers
constituting the transformed signal.
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Fig. 2.8: EEG recording with an example of 2 s windowing, 50% overlap,
and the FFT power spectrum for the first 2 s time window, in the range 4
Hz - 32 Hz.

• Butterworth passband filter: a signal filter designed to attenuate un-
wanted frequencies and have a frequency response as faithful as
possible as possible in the chosen passband.

• Normalization: scales data into a range of [0, 1].

• Standardization: scales data to have a mean of 0 and a standard de-
viation of 1.

2.3.3 Classification module

Performs frequency prediction and eyeblink recognition on the preprocessed
data. Three submodules have been implemented:

Train-based algorithms

Include a set of interchangeable machine learning algorithms to perform
classification. A training phase is needed before being able to use the sys-
tem. The implemented machine learning algorithms are:
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• Logistic Regression (LR): a machine learning technique that uses a
logistic function to describe the outcomes of a binary variable. More
in detail, the logistic function is a sigmoid function,

σ(t) =
1

1 + e−t
(2.3)

which takes as input a real value t and maps it in the (0, 1) interval.
Given a vector ~x, t can be expressed as a linear combination of the
vector components x1, ..., xN . Formally,

t = ω0 + ω1x1 + . . .+ ωNxN (2.4)

In this way, the logistic function can be rewritten as follows:

p(~x) = σ(t) =
1

1 + e−(ω0+ω1x1+...+ωNxN )
(2.5)

where p(~x) is interpreted as the probability that a particular sample
belongs to the positive class. The aim of LR is to find the best co-
efficients ω0, . . . , ωN that fit data to the probability distribution. The
regression coefficients are estimated using the maximum likelihood
estimation [24].

Fig. 2.9: Schematic of a Logistic Regression classifier [25].

• Support Vector Machines (SVM): a binary classifier that finds an opti-
mal hyperplane that separates each class in a high dimensionalmap-
ping of the features space [26]. In detail, given a set of labeled training
instances (x1, y1), ..., (xl, yl) with xi ∈ Rn and yi ∈ {−1, 1}, SVM re-
quires the minimization of

1

2
w2 + C

l∑
i=1

ξi (2.6)
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subject to the constraints

yi(w · φ(xi) + b) ≥ 1− ξi (2.7)
ξi ≥ 0 (2.8)

where φ : Rn → RN is a vector function thatmaps the n-dimensional
input vector x into an N -dimensional feature vector and can be de-
fined by a kernel function K(xi,xj) = φ(xi)

Tφ(xj). C is the penalty
parameter (also known as regularization parameter).

Some common kernels are:

– K(xi,xj) = xTi xj (linear)
– K(xi,xj) = (γxTi xj + r)d (polynomial)
– K(xi,xj) = exp (−γ|xi − xj |2) (radial basis function)

Trainless algorithms

Correlation-based algorithm to distinguish between two classes. Given a
signal fragment of length T , Pearson correlation coefficients are evaluated
between the filtered data DT and two sine waveform - Y1(φ) and Y2(φ) -
each with a frequency of the flickering stimuli and variable phase.
The selected correlation coefficients ρ1 and ρ2 consist of:

ρ1 = max
φ∈[0,2π[

cov(DT , Y1(φ))

σDT · σY1(φ)

ρ2 = max
φ∈[0,2π[

cov(DT , Y2(φ))

σDT · σY2(φ)

(2.9)

Then, the following features can be defined:

FA = max(ρ1, ρ2)

FB =
max(ρ1, ρ2)−min(ρ1, ρ2)

min(ρ1, ρ2)

(2.10)

Given two threshold values TA and TB , a signal fragment can be marked
as recognized if:

FA > TA ∧ FB > TB (2.11)
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If condition 2.11 is not satisfied, an idle status is assigned to the current
signal fragment and a new fragment of length T , overlapping with the pre-
vious one ofT/2, is processed. In thisway, the response time of the system
can be defined as the time interval between two recognized stimuli.

Eyeblink detection

Estimates the number of eyeblinks in a fixed time window. EEG eye-blink
artifacts are characterized by huge peaks along the EEG track. Such peaks
are first detected when the signal exceeds a fixed threshold, acting as a
trigger, then EEG data within 1 s time window is integrated with respect
to the signal baseline. In this way, the integrated signal is proportional to
the number of eye-blinks occurring in the time window. The baseline is
evaluated averaging the first 150 ms signal (pre-trigger) and the last 150
ms of the time window. The trigger threshold was set to 0.2 (normalized
units), corresponding to 80% of the averagemaximumeyeblink amplitudes,
based on the previously collected data. In Figure 2.10 are shown two eye-
blink artifacts with a graphical explanation of the detection principles.

Fig. 2.10: Typical eye-blink artifacts in 1 s time window. When the first peak
exceeds the trigger threshold (red line) a 1 s time window starting 150 ms before
the trigger is integrated with respect to the baseline (green line). The highlighted
area is proportional (within a certain tolerance) to the number of blinks.
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The algorithms described in this chapter are integrated into the device,
which therefore can also carry out the training part. However, for faster
analysis on multiple subjects, the algorithms were trained offline and im-
plemented on the device for online testing. The validation of the prototype
is reported in the next chapter.



Chapter 3

SYSTEM VALIDATION

The validation process involved several steps, from data acquisition to the
evaluation of the performances of the implemented algorithms. Twodatasets
were created during the PhD program to test the performances of the pro-
posed algorithms. In particular, a first datasetwas acquired to assess train-
based algorithms, i.e., using machine learning techniques, on four-classes
data. A second collection of data was acquired with a different setup to
evaluate the trainless algorithm on two-classes data.
Data acquisition protocols and the experimental setups are described in
this chapter for each of the implemented algorithms, evaluated in terms of
accuracy and response time.

3.1 Train-based system validation

3.1.1 Dataset acquisition

Experimental setup

Brain signals have been acquired through the single channel EEG-BCI, de-
scribed in chapter 2, from eleven volunteers aged from 25 to 50 years. Par-
ticipants were equipped with the 3D printed headset (Sec. 2.2.1) hosting
the FPz, Oz and DRL electrodes and seated on a chair 70 cm away from
the stimulation platform, consisting of a 15.6" laptop monitor. Stimuli con-
sisted of four alternating black-white 80×80 pixel squares on a black back-
ground with flickering frequencies of 8.57 Hz, 10 Hz, 12 Hz and 15 Hz, com-
patible with the monitor refresh rate.
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Experimental protocol

Each volunteer was asked to carry out the following steps:

1. Focus on one stimulus out of four for 16 seconds, as indicated by the
software interface.

2. Wait four seconds before focusing on a different stimulus. No stimuli
were provided during the 4 seconds break.

The steps were repeated until data related to all four stimuli was acquired.
The resulting dataset consisted of 44 recordings of 16 seconds each. Since
the ADC sampling rate is 256 Hz, a total of 180224 samples were collected
[27].

3.1.2 Validation procedure

To evaluate the performances of the classification algorithms in multiple
scenarios, data was segmented using different combinations of two pa-
rameters: time windows length and overlap percentages. In particular, five
values were considered for the time windows - 2s, 3s, 4s, 5s and 6s - and
six values for the overlap percentages - 35%, 50%, 65%, 80%, 90% and 95%
-. Feature extraction has been then applied to the obtained dataset. Specif-
ically, each segment was converted from the time domain to the frequency
domain using the Fast Fourier Transform (FFT), as explained in Sec. 2.3.2.
The power spectrum of the FFT in the range [4Hz, 32Hz] has been used as
feature vector. Successively, data were standardized in order to have zero
mean and unit variance.
The dataset size for each combination of segmentation parameters are
shown in Table 3.1. Since the FFT size is proportional to the number of
samples, we also reported in Table 3.2 the number of features for each
time window length.

Table 3.1: Dataset size for each combination of time window length (in seconds)
and overlap percentage.

Window Size/Overlap 35% 50% 65% 80% 90% 95%
2.0 s 540 702 1003 1755 3510 7020
3.0 s 359 467 668 1168 2337 4673
4.0 s 269 350 500 875 1750 3500
5.0 s 215 280 399 699 1398 2796
6.0 s 179 233 332 582 1163 2327
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Table 3.2: Number of features for each time window size.

Window Size (s) # Features
2.0 56
3.0 84
4.0 112
5.0 140
6.0 168

In order to validate the classification algorithms each dataset, resulting
from the different combinations of timewindowandoverlap, was randomly
partitioned into two subsets, 80% for training the models and the remain-
ing 20% for testing.
The training datasetwas evaluated using a classical ten-fold cross-validation
procedure.
Two classification algorithms, Logistic Regression (LR) andSupport Vector
Machines (SVM), explained in Sec. 2.3.3, have been evaluated in terms of
accuracy and compared with the state of the state of the art approach for
single channel SSVEP-basedBCIs, namely the Linear Discriminant Analysis
(LDA) [28].

Fig. 3.1: Flowchart of a genetic
algorithm.

Moreover, the training dataset has
been also used for the optimization
of the hyper-parameters of SVM by
themeans of genetic algorithms. Ge-
netic algorithms aim to solve an opti-
mization problemby acting on apop-
ulation of potential solutions and re-
producing the natural evolution that
leads to the survival of themost suit-
able individuals able to adapt to en-
vironmental conditions [29]. Usually,
genetic algorithms operate on en-
coded representations of solutions,
called chromosomes. The algorithm
begins with the definition of an initial
population of possible solution, usu-
ally generated randomly. Each chro-
mosome is evaluated by the means
of a fitness function that reflects the
quality of a solution for the consid-
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ered problem. Chromosomes providing the best solutions are selected as
parents of the next generation. Successively, parents undergo crossover
and mutation to create the new population. In particular, the crossover
swaps portions between two randomly selected chromosomes. Mutation
causes a random alteration of the chromosome components. The steps
described can then be performed again on the new population. The algo-
rithm terminateswhen specified conditions, such as themaximumnumber
of iterations or a threshold value for the fitness function, are reached.
In our case, the chromosome is represented as a real vector composed
of the SVM parameters to be tuned. In detail, the parameters tuned for
the SVM classifier are the penalty parameter C , the γ parameter related to
the RBF kernel function K(xi,xj) = exp (−γ|xi − xj |2), described in Sec.
2.3.3. The SVM individual is then of the form (C, γ). The fitness value of
a chromosome is defined as the average accuracy calculated by applying
the ten-fold cross-validation procedure. The genetic operators applied in
each generation are the one-point crossover and the polynomial mutation,
with 5% independent probability for each parameter to bemutated. As stop
criteria we consider a maximum of 1000 generations [30].

3.1.3 Results

Logistic regression

The first study aimed at evaluating the performance of LR with respect to
LDA. We initially evaluated the impact of the overlap percentage on the ac-
curacy of the system. In Figs. 3.2 and 3.3 are shown the accuracy scores
achieved by LR and LDA for different time windows and overlap percent-
ages. In particular, Fig. 3.2 shows the accuracy scores of LR obtained by
applying the cross validation on the training dataset. Fig. 3.3 shows the
same results for the LDA classifier.
Not surprisingly, the best accuracy values are achieved with higher over-
lap percentages. Consequently, LR and LDA are compared by fixing the
95% overlap percentage, which provided the best results. The results are
reported in Figs. 3.4 and 3.5 where are shown, respectively, the accuracy
scores of the cross validation applied to the training dataset and the accu-
racy scores of the trained models on the testing dataset.
The relative improvement of LR with respect to LDA is reported in Table
3.3. The calculated average relative improvement amount to 4.7% [31].
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Fig. 3.2: Cross validation accuracy of LR as a function of the overlap
percentages for each time window.

Fig. 3.3: Cross validation accuracy of LDA as a function of the overlap
percentages for each time window.

Table 3.3: Relative improvement of the Logistic Regression classifier on Linear
Discriminant Analysis.

Window LDA LR Improvement
2.0 s 59.4% 58.8% −1.0%
3.0 s 69.6% 73.8% 6.0%

4.0 s 76.3% 81.7% 7.1%

5.0 s 89.2% 93.3% 4.6%

6.0 s 90.7% 96.9% 6.8%
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Fig. 3.4: Cross validation accuracy of LDA and LR as a function of the time
window using 95% overlap.

Fig. 3.5: Accuracy scores of LDA and LR on the testing dataset as a function of
the time window using 95% overlap.

Support vector machine

In this study we only consider the 95% overlap percentage, which has been
shown to provide the best results. The training dataset has been used for
the optimization of the hyper-parameters of SVM by using the classical
ten-fold cross-validation as fitness function of the implemented genetic al-
gorithm. The best parameters reached by the genetic algorithm for each
time window are shown in Table 3.4. The trained model has been then val-
idated using the remaining 20% dataset.
The results in terms of the accuracy of the proposed SVM have been com-
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Table 3.4: Best SVM parameters achieved by the evolutionary algorithm.

Window C γ

2.0 s 59 3.1e-3
3.0 s 689 2.5e-3
4.0 s 28 1.9e-3
5.0 s 79 2.9e-3
6.0 s 187 4.6e-3

pared with the LDA and LR classifier. In particular, the accuracy scores
of all methods on testing datasets against the considered time window
are shown in Table 3.5. Additionally, Table 3.6 shows the relative improve-
ments of the SVM classifier with respect to LR and LDA [30].

Table 3.5: Accuracy on testing data for the compared classifiers.

Window LDA LR SMV
2.0 s 59.4% 58.8% 74.5%

3.0 s 69.6% 73.8% 85.4%

4.0 s 76.3% 81.7% 92.7%

5.0 s 89.2% 93.3% 95.6%

6.0 s 90.7% 96.9% 97.6%

Table 3.6: Relative improvements of the SVM with respect to LR and LDA.

Window LDA LR
2.0 s 25.4% 26.7%

3.0 s 22.7% 15.7%

4.0 s 21.5% 13.5%

5.0 s 7.2% 2.5%

6.0 s 7.6% 0.7%

Average 16.9% 11.8%
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3.2 Trainless system validation

3.2.1 Dataset acquisition

Experimental setup

Fig. 3.6: The Moverio BT-200 smart
glasses.

Data was acquired from five vol-
unteers aged from 23 to 40 years.
Participants were equipped with
the 3D printed headset hosting the
FPz, Oz and DRL electrodes, and
the Moverio BT-200 Augmented
Reality (AR) smart glasses (Fig.
3.6). The latter served as stimula-
tion unit. The AR environment con-
sisted of two white squares posi-
tioned at the left and right ends of
the screen. The flickering frequen-
cies were generated with the OpenGL library, using a pulsed sinusoidal
modulation of the brightness to overcome the limits imposed by the re-
fresh rate 2.2.4. The chosen flickering frequencies were 9 Hz and 10 Hz
for the left and right squares respectively. The perceived screen size of the
glasses was 80 inches at 5 m projected distance, with a refresh rate of 60
Hz.

Experimental protocol

Each volunteer was asked to focus on one stimulus out of two at a time,
for 16 s each. Additional 16 s of data have been acquired as background
signals, where users were left free to blink one, two, or three consecutive
times their eyes without focusing on any of the two stimuli.
The resulting dataset consisted of 15 recordings of 16 seconds each for a
total of 61440 samples.

3.2.2 Validation procedure

The acquired data was processed to find the best combinations of T , TA
and TB (a detailed description of the parameters is provided in Sec. 2.3.3).
Each signal fragment of length T has been filtered using a 5th-order But-
terworth passband filter between 5 Hz and 25 Hz. We then evaluated the
Pearson correlation coefficients between the filtered dataDT and two sine
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waveform with frequencies 9 Hz and 10 Hz respectively. Based on the al-
gorithm recognition logic, accuracies and response times were evaluated
for different combinations of T , TA and TB .
The whole dataset was processed using different time windows T in the
range 0.3 s - 1.0 s evaluating, for each of them, the features FA and FB .
An example of distribution of the recognition times for the 9 Hz stimulus is
shown in Figure 4. To evaluate the mean response time we fitted the data
with an halfnormal distribution.

Fig. 3.7: Distribution of the recognition times for the 9 Hz stimulus using a 0.3 s
time window. The red line is the half-normal fit to the data.



34 System Validation

Fig. 3.8: Scatter plot of the features FA and FB as defined in Sec. 2.3.3 and
exclusion curves using different threshold values TA and TB (vertical and
horizontal lines respectively).

3.2.3 Results

A first look at the scatter plot in Fig. 3.8, indicates that increasing threshold
values TA and TB (vertical and horizontal lines respectively) improves the
discrimination between background signals (grey dots) and proper signals
(red and blue dots), but also increases the total amount of rejected data.
This translates into increasing accuracy and decreasing response speed.
We fixed the threshold value TB = 0.5 (which means that the correlation
with a sine waveform is 50% greater than the other), and then we varied TA
for each time window. The obtained performances in terms of accuracy
and response time are shown in Fig. 3.9 and 3.10. The numerical values
are shown in Table 3.7.
Using a 1 s time window and TA = 0.5, we reached an accuracy of 99.85%
with a response time of 2.36± 1.07 s.
On the other hand, we can increase the speed using shorter time windows
(down to 0.3 s), at the expense of the accuracy that can go down to 68%.
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Table 3.7: Analysis results.

TA ↓ / T (s)→ 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.44 0.71± 0.34 0.85± 0.40 0.88± 0.40 1.07± 0.50 1.24± 0.57 1.60± 0.76 1.69± 0.80 1.77± 0.82

0.46 0.78± 0.38 0.98± 0.48 1.00± 0.47 1.22± 0.58 1.31± 0.61 1.67± 0.80 1.79± 0.85 1.94± 0.91

0.48 0.87± 0.43 1.02± 0.50 1.20± 0.58 1.45± 0.71 1.43± 0.67 1.58± 0.75 1.85± 0.88 2.15± 0.95

0.50 0.96± 0.47 1.17± 0.58 1.30± 0.63 1.59± 0.78 1.68± 0.81 1.89± 0.91 1.91± 0.90 2.36± 1.07

Response times for different time windows T and threshold values TA, with TB = 0.5

TA ↓ / T (s)→ 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.44 68.08% 74.71% 81.89% 84.04% 87.92% 92.76% 93.76% 95.62%

0.46 69.55% 75.26% 83.88% 85.16% 88.67% 93.71% 95.89% 97.10%

0.48 69.57% 77.12% 84.64% 87.21% 91.28% 94.06% 98.48% 97.39%

0.50 69.81% 78.29% 87.61% 87.86% 92.94% 94.72% 98.39% 99.85%

Accuracy for different time windows T and threshold values TA, with TB = 0.5

Fig. 3.9: System accuracy for different threshold values TA as a function of the
time window T .

The eyeblink detection performance has been validated as well. Using the
algorithm described in the previous section we successfully detected and
counted all the artifacts in the data.
The system was also successfully validated in a live session to control a
robotic arm. The live task is described in the next chapter, where some
applications of the developed prototype are presented.
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Fig. 3.10: System response time for different threshold values TA as a function
of the time window T .



Chapter 4

APPLICATIONS

SSVEP-based BCIs have been used in many applications in the last years,
from home appliances control to spelling systems, video-games, robots,
quadcopters and prosthesis control [32, 33, 34, 35, 36, 37]. In a recent work
[38], for example, a robotic arm has been controlled using a 10-channels
SSVEP-based BCI reaching an accuracy of 92.78% and 4 s response time.
In this chapter some applications that can be realized with the developed
BCI prototype are presented. Some of them have only been implemented
but not tested live due to the lack of volunteers at the time of development.

4.1 Smart wheelchair

Fig. 4.1: Wheelchair equipped with
the BCI system and the User
Interface.

Due to their high signal to noise ratio
(SNR) and fast time response, SSVEPs
are ranked among the fastest andmost
immediate signals currently available in
BCI systems. For these reasons they
represent an optimal choice for the re-
alization of assistive devices, since no
particular effort is required by the users.
Motor disabled people like wheelchair
users may benefit from such a BCI sys-
tem for example to drive the wheelchair
itself or to control external devices, sub-
stituting themanual control. In this sec-
tion a cost-effective, brain computer in-
terface (BCI) integrated with the Alexa
framework to control multiple devices
is presented.
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The system, developed at the QUASAR laboratories at the Federico II Uni-
versity of Naples, enables wheelchair users to control the ON/OFF state
of four Internet-of-Things (IoT) devices promoting independent and au-
tonomous living. A picture of the BCI-equipped smart wheelchair is shown
in Fig. 4.1.

4.1.1 Architecture

Fig. 4.2: Architecture of the Wheelchair-BCI system.

The architecture of the proposed wheelchair-BCI system is shown in Fig.
4.2. It comprises three modules:

– The developed BCI prototype (Sec. 2), with train-based algorithms
enabled, mounted on the back of the wheelchair.

– The stimulation platform, implemented on a 7" android tablet. The
stimuli frequencies are 8.57Hz, 10Hz, 12Hz and 15Hz.

– An IoT controller, that translates the recognized stimuli into com-
mands for the Alexa framework. It is written in python and accept
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as input the class of the recognized frequency. Thanks to the gTTS
and playsound libraries, each class trigger the vocal synthesis of the
statement to control an Alexa-compatible device. As an example, the
recognition of the 10 Hz stimulus produces the following outputs: 1)
"Alexa, turn on the light", 2) "Alexa, turn off the light". Statement 1) or
2) is chosen based on the previous state.

4.2 Virtual reality

Recent studies [39, 40] suggest that realistic immersive virtual reality (VR)
environments, combined with BCI, can be used to improve cognitive func-
tions and social skills in people affected byAutismSpectrumDisorder (ASD).
Fixed-frequency flickering images induce synchronous responses in the
subject’s brain. Using the BCI technology, it is possible to recognize which
stimulus the subject is looking at, providing a feedback on his local atten-
tion. SSVEP signals have been recently adopted to investigate lateral inhibi-
tions in people affected by ASD, suggesting a correlation between different
ASD symptoms and brain responses [41]. The combined use of BCI and
VR is very promising for the treatment of autistic children, enforcing the at-
tention deficits and providing novel means of communication, especially in
game-like environment where visual feedback are provided to the subject
based on his actual attention [42].
In this section an interactive smartphone-based VR environment equipped
with a single-channel SSVEP-based EEG-BCI system is presented. Main
goal is to provide a high-accuracy, fast-training and cost-effective device
for the rehabilitation of ASD children.

4.2.1 Architecture

The system architecture is shown in Fig. 4.3. A VR smartphone-based
headset renders the virtual environment providing visual stimuli to the sub-
ject. The headset also hosts the three EEG electrodes for acquiring brain
signals. A processing unit is responsible for the analysis of the digitized
data, extraction of the relevant features and recognition of the observed
stimuli. These components, together, form a closed loop: the VR headset
provide visual stimuli to the subject; the digitizer captures EEG signals from
the electrodes transferring them to the processing unit, which finally ana-
lyze the data and sends wireless commands back to the VR environment.
The main interface is shown in Fig. 4.4.
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Fig. 4.3: Architecture of the VR-BCI system.

Fig. 4.4: Main interface of the virtual environment.

The VR environment has been developed in collaboration with the Protom
Group S.p.A., using the Unity cross-platform game engine. The 3D sce-
nario is a kitchen, with four common-use objects placed on a table as vi-
sual stimuli. The luminosity and saturation can be separately adjusted for
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Fig. 4.5: Different configurations of background and stimuli objects in the main
scenario.

both the objects and the background. Some examples of different envi-
ronment configurations are shown in Fig. 4.5. Flickering frequencies can
be chosen from an automatically generated list, whose values depend on
the device. In fact, the number of the producible frequencies are limited to
integer divisors of the monitor refresh rate.
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4.3 Robotic arm control

The combined use of Augmented Reality (AR) glasses and a single channel
EEG-BCI, based on Steady-State Visual Evoked Potentials (SSVEP) and eye-
blink artifacts detection, has been used to control a 6-degrees of freedom
robotic arm at the European Organization for Nuclear Research (CERN)
robotics facility.

4.3.1 Architecture

The concept design of the developed system is shown in Fig. 4.6. A pair
of AR glasses renders the visual stimuli, eliciting SSVEP responses in the
subject. Signals are captured through EEG electrodes positioned on the
scalp and sent to a processing unit. The elaborated response is sent back
to the AR glasses providing a visual feedback to the user and forwarding
the related command to a robotic arm.

Fig. 4.6: Architecture of the AR-BCI system.

Based on the deep experience accumulated during the last years at CERN
operating robots for remote inspection and maintenance [43], we chose to
use only two stimuli to reduce the visual fatigue of the operator, increas-
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ing the user attention and, consequently, the accuracy of the system. The
number of available commands was compensated using the eye-blink de-
tection.
A minimal use of the robotic arm should embrace at least 3-D movements
in the space and the control of a gripper. Indicating with x1, x2, and x3 the
axis of a Cartesian reference system, we used the brain SSVEP responses
to move the arm along a fixed axis, and a double eye-blink to change axis.
Three consecutive eye-blinks were used to commute the state of the grip-
per, from open to close and vice versa.
The system is composed of three units:

– The stimulation unit, realized using the Moverio BT-200 AR smart
glasses, showing two pulsed sinusoidal waveforms at the left and
right ends of the screen. The chosen flickering frequencies are 9 Hz
and 10 Hz for the left and right squares respectively. The BT-200 con-
troller also acted as a bridge between the processing unit and the
robotic arm.

– The developed BCI prototype (Sec. 2) with trainless algorithm en-
abled.

– The robotic arm, consisting of a 6-DoF Schunk Powerball arm, al-
ready used for intervention in harsh environment by the CERN [44]
[43], equippedwith aRobotiq 2F-85 adaptive gripper, providing through
the CERN Robotic Framework an efficient and unified control inter-
face. To simplify the control of the arm its orientation was kept fixed.
Only the end effector position and the gripper state were controlled.
The arm movements were controlled in position. The controller was
connected trough WiFi to the Moverio smart glasses retrieving in-
formation in a JSON format [45], forwarded from the Raspberry Pi
server. This setup allowed the operator to perform the desired pick-
ing tasks in a 3D reference system.

4.3.2 Live tests

The online validation consisted in grabbing an object in one position and
move it to another, with the robotic arm. The arm was controlled by map-
ping the brain activities as follows:

– 9 Hz : move backward (along the current axis)

– 10 Hz : move forward (along the current axis)
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– 2 blink : change axis (xi ↔ xj)

– 3 blink : commute grip

For this task we chose the parameters TA = 0.44, TB = 0.5, and T = 0.5
(see Sec. 3.2.3), which gave us an accuracy of 81.9% and a response time
of 0.88±0.40 s in the offline analysis. The online task is schematized in Fig.
4.7. Starting from initial position (start), the arm was controlled to pick up
the object in position 1 and move it in position 2. The task was completed
in less than 100 seconds (comprising the time elapsed to open/close the
grip) counting 85 commands. In Fig. 4.8 is shown a picture of the robotic
arm controlled by the developed prototype during a live session.

Fig. 4.7: Schematic of the path carried out by the robotic arm during the online
task.
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Fig. 4.8: Picture of the BCI-controlled robotic arm during an online test session.
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CONCLUSIONS

Currently there are many players involved in BCI technology including uni-
versities and companies, and significant progress has been made so far.
However, the main challenge is to integrate it into real-life applications.
This work demonstrates that this goal can be achieved, both from the hard-
ware and software point of view. In particular, the developed prototype
has the potential to be reformulated into an effective and scalable product
at the market level. Thanks to the use of a single acquisition channel, by
means of dry active electrodes, the prototype turns out to be of extremely
practical use. Furthermore, the combined use of SSVEP potentials with dif-
ferent brain signalsmakes this technology extremely flexible, increasing its
capabilities.
Machine learning plays a key role in signal recognition, especially in ob-
taining information from particularly noisy signals that encode numerous
classes. In particular, the use of Support Vector Machines (SVM) and Evo-
lutionary Algorithms improved noticeably the accuracy of the system with
respect to the state of the art approaches for single channel SSVEP based
BCIs, in distinguishing between four classes. On the other hand, when few
classes are involved, the use of a correlation based algorithm also proved
to be efficient, being able to effectively control a 6-DoF robotic arm.
The applications covered in the last chapter are just an example of the po-
tential of this technology. Part of them are still under investigation while
others, such as spelling systems and selection of questionnaire answers,
are under development. The research on novel BCIs in the medical field
is of particular interest, since most EEG diagnostic devices are very ex-
pensive, invasive, and available only in dedicated facilities. Conversely, the
portable framework studied in this work is well suited for the continuous
monitoring of brain signals in home and primary care. However, there is
currently a lack of commercial devices that are tailored for these scenar-
ios.
It is expected that technologies based on EEG-BCIs will be integrated in
applications that ranges from diagnostics to entertainment. In particular, a
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portable framework enhanced by machine learning techniques may play a
crucial role where extremely low latency and rapid training are mandatory.
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