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Abstract

A brain-computer interface (BCI) is a communication system that enables users
to voluntary send messages or commands without movement. The classical goal
of BCI research is to support communication and control for users with impaired
communication due to illness or injury. Typical BCI applications are the operation
of computer cursors, spelling programs or external devices, such as wheelchairs,
robots and neural prostheses. The user sends modulated information to the BCI by
engaging in mental tasks that produce distinct brain patterns. The BCI acquires
signals from the user’s brain and translates them into suitable communication.

This dissertation aims to develop faster and more reliable non-invasive BCI
communication based on the study of users learning process and their interaction
with the BCI transducer. To date, BCI research has focused on the develop-
ment of advanced pattern recognition and classification algorithms to improve
accuracy and reliability of the classified patterns. However, even with optimal
detection methods, successful BCI operation depends on the degree to which the
users can voluntary modulate their brain signals. Therefore, learning to oper-
ate a BCI requires repeated practice with feedback that engages learning mech-
anisms in the brain. In this work, several aspects including signal processing
techniques, feedback methods, experimental and training protocols, demograph-
ics, and applications were explored and investigated. Research was focused on two
BCI paradigms, steady-state visual evoked potentials (SSVEP) and event-related
(de-)synchronization (ERD/ERS). Signal processing algorithms for the detection
of both brain patterns were applied and evaluated. A general application inter-
face for BCI feedback tasks was developed to evaluate the practicability, reliability
and acceptance of new feedback methods. The role of feedback and training was
fully investigated on studies conducted with healthy subjects. The influence of
demographics on BCIs was explored in two field studies with a large number of
subjects. Results were supported through advanced statistical analysis. Further-
more, the BCI control was evaluated in a spelling application and a service robotic
application. This dissertation demonstrates that BCIs can provide effective com-
munication for most subjects. Presented results showed that improvements in the
BCI transducer, training protocols, and feedback methods constituted the basis to
achieve faster and more reliable BCI communication. Nevertheless, expert assis-
tance is necessary for both initial configuration and daily operation, which reduces
the practicability of BCIs for people who really need them.
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Kurzfassung

Ein Brain Computer Interface (BCI) ist ein Kommunikationssystem, das Be-
nutzern die Möglichkeit gibt, nach Belieben Nachrichten oder Befehle ohne Be-
wegung zu versenden. Das klassische Ziel der BCI-Forschungsarbeit ist die Un-
terstützung von Kommunikation und Kontrolle für Benutzer mit beeinträchtigter
Kommunikation, die durch eine Krankheit oder Verletzung verursacht wurde.
Typische BCI-Anwendungen sind die Kontrolle von Computer-Zeigern, Schreibpro-
grammen oder externen Geräten, wie z.B. Rollstühlen, Robotern und Neuro-
prothesen. Der Benutzer sendet dem BCI modulierte Informationen, indem er
durch die Durchführung von mentalen Aufgaben bestimmte Gehirnwellen-Aktivi-
tätsmuster erzeugt. Das BCI erfasst Gehirnsignale des Benutzers und setzt sie
in passende Kommunikation um. Das Ziel dieser Dissertation ist die Entwick-
lung einer schnelleren und zuverlässigeren nicht-invasiven BCI-Kommunikation
basierend auf der Erforschung des Lernprozess der Benutzer und deren Inter-
aktion mit BCI-Transducern. Bislang hatte die BCI-Forschungsarbeit die En-
twicklung verbesserter Mustererkennung und Klassifizierungsalgorithmen als Ziel.
Trotzdem, sogar mit optimalen Detektierungsmethoden hängen erfolgreiche BCI-
Operationen von den Möglichkeiten des Benutzers ab, mit denen er bewusst
Gehirnsignale erzeugen kann. Deswegen ist es notwendig, um zu lernen, ein BCI
effizient zu benutzen, wiederholt die Benutzung zu üben, was wiederum Lern-
prozesse im Gehirn anstößt. In dieser Arbeit wurden mehrere Aspekte, wie Sig-
nalverarbeitung, Feedback-Methoden, Experiment- und Trainings-Protokolle, De-
mographie und Anwendungen untersucht. Die Forschungsarbeit war dabei auf zwei
BCI-Paradigmen ausgerichtet: ,,Steady-State Visual Evoked Potentials” (SSVEP)
und ,,Event-Related (De-)Syncronization“ (ERD/ERS). Es wurden Signalverar-
beitungsalgorithmen für die Erkennung der beiden Gerhirnwellen-Aktivitätsmuster
angewendet und entwickelt. Außerdem wurde eine allgemeine Anwendungsschnitt-
stelle für BCI-Feedback-Aufgaben entwickelt, um die Anwendbarkeit, Zuverlässig-
keit und Akzeptanz von neuen Feedback-Methoden zu bewerten. Die Rolle von
Feedback und Training wurde in diversen Studien mit gesunden Probanden unter-
sucht. Der Einfluss von Demografie auf BCIs wurde zusätzlich in zwei Feldstudien
mit einer großen Anzahl von Probanden erforscht. Die resultierenden Ergebnisse
wurden durch fortschrittliche statistische Methoden gestützt. Zusätzlich wurde
die BCI-Kontrolle in einer Schreib- und Service-Roboter-Anwendung untersucht.
Diese Arbeit zeigt, dass BCIs für die meisten Benutzer eine effektive Kommu-
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nikationsart bieten können. Die Ergebnisse zeigen, dass Verbesserungen im BCI-
Transducer, in den Training-Protokollen und in den Feedback-Methoden die Basis
bilden, um eine schnellere und zuverlässigere BCI-Kommunikation zu erlangen.
Trotz aller positiven Ergebnisse ist noch eine Unterstützung durch Experten für
die anfängliche Konfiguration und den täglichen Gebrauch zwingend erforderlich,
was wiederum die Verwendbarkeit, für Menschen die wirklich BCIs benötigen,
stark einschränkt.

10



Acknowledgments

This dissertation presents the results toward the development of an effective com-
munication interface that connects the human brain with a computer to provide
disabled users with communication and control, so called Brain Computer Inter-
face (BCI). Over the last two decades, there has been a rapidly increase of lab-
oratories that began to explore BCI technology. At the Institute of Automation
(IAT) of the University of Bremen, BCI research started with the BRAINROBOT
project in 2005.

I was first involved in the BCI field by absolving a student project at IAT in
summer 2006. The project aimed to investigate the signals from the motor cortex
for the control of computers and robots. In November 2006, I started working
toward the doctoral degree in engineering with the project Practical Brain Com-
puter interfacing under the supervision of Prof. Axel Gräser, head of the Institute
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1. Introduction

Many people in the world are unable to effectively interact with other people or
operate assistive devices and communication technologies due to disabilities and
functional impairments. Persons with amyotrophic lateral sclerosis (ALS), cerebral
palsy, multiple sclerosis, traumatic brain injuries, spinal cord injury, and stroke
are examples of groups that need a new communication channel to interact with
the world [1]. When suffering from one of that diseases, people may lose control
of their motor functions, and, therewith, the brain’s normal communication chan-
nels. Most of these people would like to be able to communicate, but require an
interface that does not rely on their impaired movement ability. They cannot use
conventional interfaces, such as keyboards, mice or other interfaces that require
greater muscular control. Alternative systems for less disabled users rely on eye-
gaze shifting, electromyographic (EMG) activity and respiration [2]. Those most
severely affected users may be completely locked in to their bodies and are unable
to communicate in any way, they require a system that provides the brain with a
new non-muscular communication and control channel. Brain computer interface
(BCI) systems could address this need, since BCIs allow communication and con-
trol without requiring limb articulation nor any movement from the user [1]. The
normal communication channels, such as speech and movement, are not used, but
instead brain activity is directly recorded and transformed into control signals.

In the last years, BCI research have demonstrated proof of concept with healthy
users in laboratory settings [3] and with severely disabled users in home environ-
ments assisted by scientific researchers [4, 5]. New BCI applications have been
validated, such as wheelchair control [6, 7], electrical hand prosthesis control for
the restoration of the grasp function [8], virtual smart home environment con-
trol [9] and control of assistive devices (e.g., the FRIEND-II system at the IAT
lab [10,11]). BCIs have been proven useful as communication systems for broader
user groups than previously recognized [12–14]. BCI have been validated as tools
for stroke [15, 16] and autism rehabilitation [17]. New software tools have greatly
reduced the time and inconvenience of developing and testing new BCI signal
processing methods [18]. However, BCI systems are still predominantly inflex-
ible (long EEG preparation times are needed and unpleasant electrolytic gel is
used), difficult to use (they require high mental load and concentration), unreli-
able (mostly less than 100% accuracy is achieved), and crucially unavailable to
nearly all people who need them (high hardware costs and expert personal is re-
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1. Introduction

BCI User

Feedback

BCI Transducer

Data
Acquisition Preprocessing

Classification Feature
Extraction

Figure 1.1.: Block diagram of a BCI as a real-time closed-loop system.

quired for initial configuration and operation). At their actual state, BCIs are
research tools with limited practical function that might only be useful to some
people with very severe physical disabilities [19]. Further BCI research aims to
built more practical BCIs for much larger populations, i.e., systems that can easily
identify and adapt to the needs, desires, and abilities of each individual user and
operate effectively each day with little or no expert assistance.

The objective of this dissertation is to develop faster and more reliable non-
invasive BCI communication based on the study of users learning process and
their interaction with the BCI transducer using appropriate feedback methods.
The hypothesis is that, when persons are trained with real-time feedback, they
will generate more stable signals, and in this way the BCI control will be more
reliable. Fig 1.1 shows a block diagram that explains BCI communication. A
complete BCI system is a real-time closed-loop system that consists of three main
components. The BCI user voluntarily modulates information and generates spe-
cific brain patterns by engaging in mental tasks (e.g., focusing attention to an
oscillating stimulus or imaging movement of the hands). The BCI transducer
acquires signals from the user’s brain and translates them into suitable communi-
cation using efficient preprocessing, feature extraction and classification methods.
The feedback provides information of the correct or incorrect response of the BCI
and can be discrete or continuous, one- or more-dimensional, real or virtual, vi-
sual, auditory, or tactile. Successful BCI operation depends on how the BCI user
and the system interact with each other. The link between both components is
the user feedback to support the learning process.

The main contributions of this dissertation toward the development of more
Practical Brain Computer Interfacing by focusing on the study of the BCI user
with the analysis of the user’s learning process and demographics research; the BCI
transducer with evaluation of different signal processing methods; and the feedback
with the implementation and evaluation of different feedback applications, are:
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1. Crucial parameters for the detection of the ERD/ERS brain patterns were
identified and the relevance of feedback and training was investigated. The
event-related (de-)synchronization (ERD/ERS) paradigm is one of the most
interesting strategies used for non-invasive BCIs because it requires no ex-
ternal stimulation and constitutes an endogenous BCI. However, effective
endogenous BCI operation requires advanced signal processing tools that
extract specific brain patterns from background noise and the user must
learn to voluntarily modulate his/her brain signals. Chapter 3 presents the
results obtained from two studies: An exploratory study that employs dif-
ferent existing signal processing tools to extract subject-dependent signal
properties in the time, frequency and spatial domain from recorded EEG
data from six healthy subjects; and a single-case study that investigates
the learning effects of ERD/ERS training over several sessions. Both stud-
ies contributed to demonstrate online ERD/ERS control using three mental
states (imagination of right hand, left hand and feet) on a virtual labyrinth
application. 91.3% accuracy and 8.62 bit/min for a well trained subject after
12 sessions were achieved.

2. A new application in the service robotics was validated. Intelligent wheelchair
mounted manipulators FRIEND-I/-II are being developed at the Institute
of Automation, University of Bremen, since 1997 [20]. They were designed
as assistive devices to support persons with disabilities in daily life activities
as well as in working environments. The human-machine interface (HMI) of
the FRIEND-II used a speech recognition system and a chin joystick as in-
put devices. This excluded a wide spectrum of users with severe disabilities
which could benefit from the system. The control via an steady-state vi-
sual evoked potential (SSVEP) based BCI was conceived as an opportunity
to extend the range of users of the FRIEND-II system. The feasibility of
controlling the FRIEND-II via BCI by focusing attention on four flickering
lights was investigated on seven healthy subjects (see chapter 4). The user’s
task was to execute a predefined sequence of 10 commands to select high-
level robot tasks from a menu system, such as pouring a liquid into a glass.
Results demonstrated that goal-oriented control with a BCI is possible and
that intelligent systems could compensate the unreliability of the BCI. The
classification accuracy of the BCI was 96% in a group of five persons. Two
subjects did not attain effective control of the system due to poor SSVEP
performance.

3. A general software framework for the evaluation of BCI feedback methods
was developed and used to conduct several BCI studies. Chapter 5 presents
the design and implementation of a general software framework that enables
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fast implementation of new BCI feedback tasks. The framework provides
a set of cooperating classes that can be used to build applications that
require appealing visual display, real-time feedback presentation, multiple
frequency generation, presentation of sequences of stimuli, acquisition of
BCI control signals and measurement of BCI performance. The result of
this work was the successful implementation of two BCI feedback tasks: The
speller task was used to investigate the effects of different kinds of SSVEP
feedback on BCI performance and to evaluate SSVEP communication (see
chapters 6, 7 and 8); and the labyrinth task was used to provide visual
feedback for ERD/ERS BCIs (see chapter 3).

4. The influence of subjects demographics on BCI performance in two field
studies was investigated. One of the most consistent observations in the BCI
literature is considerable inter-subject variability, that often leads to the well-
documented “BCI illiteracy” phenomenon (about 10–25% of users are unable
to attain effective control) [21]. Chapter 6 investigates the causes of inter-
subject variability and BCI illiteracy by analyzing data recorded in two field
studies with a large number of test subjects. Results of both studies showed
that most subjects, despite having no prior BCI experience, could use the
Bremen SSVEP BCI system in a very noisy field setting. Performance data
suggest that SSVEP BCIs may be better suited to younger and/or female
subjects, though these trends did not attain statistical significance. Mean
information transfer rate (ITR) was about the same for healthy subjects
versus subjects with disabilities.

5. The role of feedback and training for SSVEP-based BCIs was investigated.
Several articles have been argued that SSVEP BCIs generally require no
training or just need a short training session to determine optimal param-
eters. This work supported the hypothesis that subjects can be trained to
perform better on visual attention tasks and that feedback reflecting brain
activity might improve performance. Chapter 7 presents the results of an
SSVEP feedback study that uses feedback to train users to control a vir-
tual keyboard. This study compares performance of two groups of subjects,
one group that received only the discrete output of the BCI, and another
group that additionally received real-time feedback of their SSVEP signals.
Results proved that training with SSVEP causes positive effects on subjects
and indicated that the type of feedback (continuous vs. discrete) exerts a
measurable effect on the subject’s performance, though continuous feedback
requires more initial training than discrete feedback.

6. Effective SSVEP BCI communication was validated. Chapter 8 presents an
SSVEP BCI that provides high information transfer rates. Effective SSVEP
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BCI communication was demonstrated in a study conducted on 27 subjects.
Presented results demonstrated that improvements in the BCI transducer
and the user feedback constituted the basis for achieving a mean ITR of
about 50 bit/min. Also, BCI illiteracy could be reduced.

This dissertation is organized as follows: First, an overview related to basic
concepts in present-day BCIs is presented in chapter 2. This comprises the def-
inition of a BCI, its operation explained through four basic components: sig-
nal acquisition, signal processing, output devices and operating protocol; typical
measures of BCI performance: accuracy and information transfer rate (ITR);
and the three most effective approaches among non-invasive BCIs (SSVEP, P300
and ERD/ERS). The following chapters present materials and methods, results,
discussion and conclusions of the studies mentioned above. Finally, chapter 9
summarizes major findings of this dissertation and points out future directions of
research.
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2. Present-Day BCIs

This chapter gives an overview of non-invasive brain-computer interfaces (BCI)
and offers an introduction to an exciting and active field of research. In particular,
this chapter starts with the definition of the term brain-computer interface and
describes the process to translate brain signals into device commands through the
components of a BCI: signal acquisition, signal processing, output devices and
operating protocol. Furthermore, the measures of BCI performance are explained
and finally the most effective approaches among non-invasive BCIs are presented.

2.1. Definition of a BCI

BCI research was pioneered by Dr. Jacques Vidal, Director of the Brain-Computer
Interface Laboratory at the University of California, in the early 1970’s. One of
the results was the first successful attempt to include brain signals into human-
computer communication. Vidal attempted to clarify the definition of direct brain-
computer communication and established their possibilities and limitations [22].
Later, he presented a communication channel with what a human could control
the movement of a cursor in four directions using visual evoked potentials [23].

The definition of the term BCI was given in 1999 during the first international
meeting on BCI research and development [24]: “A brain-computer interface is a
communication system that does not depend on the brain’s normal output path-
ways of peripheral nerves and muscles.” Brain computer interfaces allow users
to communicate without movement. Instead, direct measures of brain activity
are translated into messages or commands. BCI systems were initially developed
in laboratory settings, and have begun providing communication to people who
could not otherwise communicate due to severe motor disabilities [1, 4, 15].
BCI research is based on the development of complete systems that can provide

communication and control by directly acquiring information from the brain and
using it to perform actions operated by the user. This a real-time closed-loop sys-
tem which involves feedback to the user [25]. The most heavily cited BCI review
(Wolpaw et al., 2002) describes the four main components of any BCI system.
Like other communication and control systems, a BCI has an input, which is the
brain activity from the user; an output, which are the commands to control com-
puters or external devices; algorithms that translate the input into the output;
and a protocol that governs how these components interact [1]. This process is
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Figure 2.1.: The basic components of a brain-computer interface system. Repro-
duced from [2].

described through four components: signal acquisition, signal processing, output
and operating protocol [1, 2]. Fig. 2.1 shows the basic design of any BCI sys-
tem. The state-of-the-art of each of these components is reviewed in below. In
summary, significant advances have occurred recently within the signal processing
and operating protocol components [26]. Research has shown that subject perfor-
mance may change dramatically with different BCI approaches (P300, ERD/ERS,
SSVEP), and specific stimulus, signal processing, and feedback parameters within
each approach. Within the signal acquisition and application components of BCIs,
only minor to modest progress has been seen in recent years, and the greatest needs
are simpler, more convenient sensors and greater application flexibility.

2.2. BCI Signal Acquisition

A variety of sensor modalities can detect brain activity [27]. While most BCI
systems use electrical signals produced by the brain activity to derive user intent,
a variety of magnetic or metabolic signals could be also used to drive a BCI [28].
Depending on the recording method to acquire electrical brain signals, BCIs can be
invasive or non-invasive [2]. BCIs that do not require surgery to implant electrodes
are termed non-invasive. BCIs that acquire signals from electrodes implanted in
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2.2. BCI Signal Acquisition

the brain or lying on the surface of the cortex are considered to be invasive. In
general, there exist three recording alternatives depending of the grade of invasive-
ness of the recording system. BCI recording systems based on electrophysiological
signals can be classified in noninvasive, cortical surface, and intracortical recording
devices. Each method has advantages and disadvantages. Electroencephalogra-
phy (EEG) [29] measures electrical signals from electrodes placed on the surface
of the scalp. EEG recording is easy and noninvasive, but at the same time, it
has relatively limited topographical resolution and frequency range. Also, EEG
is susceptible to power line interference and other artifacts like electromyographic
(EMG) signals or electrooculographic (EOG) activity [27]. Invasive methods are
electrocorticography (ECoG), with electrodes on the surface of the dura or the
surface of the brain or with microelectrodes implanted in the cortex or elsewhere
in the brain [2]. At present, almost all non-invasive BCI communication rely on
the EEG to measure brain activity (over 80% of BCI publications describe BCIs
that use electrical signals recorded from the surface of the scalp [30]).

Methods for recording brain signals with sensors that are not in contact with
the body are functional magnetic resonance imaging (fMRI), positron emission to-
mography (PET) or magnetoencephalography (MEG). Near-infrared spectroscopy
(NIRS), functional near-infrared (fNIR) imaging measure changes in the brain’s
hemodynamic response. fMRI or NIRS provide good spatial resolution, but have
poor temporal resolution. In addition, fMRI, MEG and PET are not currently
suited for everyday use due to their technical demands, high expense, and/or lim-
ited real-time capabilities. MEG measures brain magnetic activity, might provide
real-time control with excellent spatial and temporal resolution, but is expensive
and impractical [26].

2.2.1. EEG Recording Systems

EEG recording systems provide the possibility to store and display information
about brain current sources. The goal is to amplify potential differences between
pairs of electrodes placed on the scalp such that the output voltage is proportional
to scalp potentials generated within the body [31].

The recorded signals are the contribution of brain sources and any other current
sources in the body (e.g., electrocardiogram, muscles, tongue, and eye movements)
that produce scalp potential differences in frequency bands that overlap the EEG.
All other signals different to brain sources are biological artifacts that can never
be completely eliminated by amplifiers and filters. The amplifier-filter system can
not distinguish artifacts from brain sources. Rejection of artifacts is accomplished
by visual inspection or computer analysis, as it will be explained later in the
signal processing section. Fig. 2.2 shows a simple schematic diagram of a typical
EEG recording system. An EEG channel requires one electrode singled out as
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Figure 2.2.: The basic design of a typical EEG recording system. Modified from [31].

the reference electrode, one as the ground electrode, and all remaining electrodes
are characterized as recording electrodes. Scalp signals acquired by a recording
electrode Vn(t) and the reference electrode Vr(t) are passed through a differential
amplifier. Electrode pairs are always require to measure scalp potentials because
such recording depends on current passing through a measuring circuit. The
ground electrode is connected to the internal ground of the differential amplifier,
which is isolated from the power line ground. The measured signal is then filtered
by a set of analog filters to reject artifacts. Low-pass filters typically remove
frequency noise above 50 Hz to 100 Hz and high-pass filters remove frequencies
below 0.5 Hz. A notch filter may or may not be used to remove power line
interference (50 Hz in Europe). The output voltage proportional to scalp potential
differences is

En(t) ∼= A[Vn(t)− Vr(t)]; n = 1, N (2.1)

where A is the total system gain and N is the total number of recording channels
with respect to one fixed location, the reference electrode. The scalp potential is
substantially amplified and then pass through an analog-digital converter (ADC).
The analog signal from each channel is sampled and numbers are assigned pro-
portional to the amplitude of the waveform, as follows

En(k) = En(kT ); k = 1, 2, 3, . . . (2.2)

where T = 1
fdig

is the sampling period and indicates the time between samples

and fdig is the digitization rate or sampling rate (samples per second). The sam-
pling rate is selected to avoid the misrepresentation of the recorded signal, that is
without aliasing. The criterion for digitization used in time series acquisition is
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2.3. BCI Signal Processing

the Nyquist criterion

fdig > 2fmax (2.3)

where fmax is the highest frequency present in the EEG signal. EEG waveforms
may then be displayed on the computer screen and stored for additional processing.
In BCIs, EEG signals are acquired and processed in real-time to control external
devices.

2.3. BCI Signal Processing

Once the signals are acquired, the signal processing unit extracts signal features
and translates them into messages or commands. For BCI use the interesting
signals are those that reflect the user’s intentions, all other components are cat-
egorized as noise. The aim of this unit is to improve the spatial resolution and
signal-to-noise ratio (SNR) of the recorded signals and then transform them into
control signals. The signal processing has two parts: feature extraction and trans-
lation algorithm.

2.3.1. Spectral Filtering

The goal of the feature extraction is to analyze properties of the signals and
isolate the features of interest that encode the user’s intent. These features can
be depending on the paradigm restricted to some frequency bands. A common
approach is the use of digital frequency filters, such as finite and infinite impulse
response filters, or for temporal filtering the Fourier-based filtering [32].

2.3.2. Spatial Filtering

Due to physical limits in spatial resolution of surface EEG, the discrimination of
nearby located cortical areas represents a challenging problem for data analysis.
Each single electrode acquires superposed data from within a certain neighborhood
radius, where many originally different signals are superimposed. Therefore, spa-
tial filtering techniques are required to get more localized signals. A spatial filter
is a vector of weights specifying a linear combination of sensor outputs. The most
common strategies for spatial filtering [32] used in BCI are bipolar filtering, com-
mon average reference (CAR), laplacian filtering, common spatial patterns (CSP),
principal component analysis (PCA) and a more sophisticated one, independent
component analysis (ICA).

The bipolar approach is a strategy to obtain a cleaner signal by canceling com-
mon nuisance signals. In practice, nuisance signals are strong and present in
all electrodes. EEG data are measured with respect to a fixed reference using
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monopolar amplification, and later converted to bipolar recording digitally. Bipo-
lar recordings are calculated as the voltage difference of two electrodes that are
sufficiently close (1 to 3 cm) together. Typically, it offers much better spatial
resolution than conventional reference recording.

The Laplace filtering is a practical and easily method to improve spatial reso-
lution in EEG recorded with a small number of electrodes. The first method was
first suggested by Hjorth (1975) [33]. The Laplace filter is estimated by averaging
potential differences between a central electrode location and four surrounding
electrodes. This filter eliminates volume conducted signals from distant regions
and removes reference electrodes effects.

Common spatial pattern and its extensions are techniques to analyze multi-
channel data based on recordings from two classes (conditions) [34]. It allows to
determine spatial filters that maximize the variance of signals of one condition
and at the same time minimize the variance of signals of another condition.

2.3.3. Classification

The translation algorithm is basically a classifier that maps the input signals
to classes in which each class corresponds with a control command. The most
used classification algorithms used in BCI research are linear classifiers, neural
networks, nonlinear Bayesian classifiers and nearest neighbor classifiers. Linear
classifiers such as linear discriminant analysis (LDA) and support vector machines
(SVM) are the most popular algorithms for BCI applications. They use linear func-
tions to distinguish classes. The most widely neural network used for BCI is the
multilayer perceptron (MLP). Classifiers that produce nonlinear decision bound-
aries are Bayes quadratic and hidden Markov model (HMM). Nearest neighbor
classifiers consist in assigning a feature vector to a class according to its nearest
neighbor(s), e.g., a feature vector from the training set (k nearest neighbors) or
a class prototype (Mahalanobis distance). Both kinds of classifiers are discrim-
inative nonlinear. BCI classification is achieved using a single classifier but the
combination of several classifiers aggregated in different ways (boosting, voting or
stacking) have been used as well. A complete review that presents the classifica-
tion methods mentioned above and describes their critical properties can be found
in [35].

2.4. BCI Output Devices

A BCI is primarily used to control assistive devices for people with severe motor
impairments. After the brain signals have been extracted and translated into ap-
propriate output classes, they can be used to drive a variety of output devices.
BCIs have an extensive range of possible practical applications. The computer
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monitor is to date the most commonly used output device for a BCI. Most classic
monitor-based applications are letter selection or cursor control, which are used
for basic word-processing programs, sending e-mails, selecting items from a menu,
accessing the Internet, or navigating a virtual environment. Other simple ap-
plications include managing basic environmental control, adjusting a television,
or opening and closing a hand orthosis. More complex BCI applications include
systems that require multidimensional control, e.g. wheelchairs, robotic arms, or
neuroprostheses [8]. Intelligent devices that can compensate the unreliability of the
BCI control signals are emerging applications. Also, neurofeedback tools, where
the focus is not communication and control, but primarily to facilitate effective
regulation and reorganization of brain structures, have recently been validated as
therapy for stroke, autism, attention deficit hyperactivity disorder (ADHD), and
other disorders [14, 15,17,36].

2.4.1. BCI-Driven Spelling Devices

Since the principal goal of a BCI is to provide means of communication and control
for severely disabled people [1], BCI driven spelling devices are an important topic
in BCI research. Several spelling devices controlled by a non invasive BCI system
have been developed in the last years. They differentiate basically in the BCI
approach, the number of commands and the selection strategy used. The first
BCI spelling application was based on the P300 signal pattern [37]. The alphabet
is typically arranged in a 6 by 6 matrix where each of the 36 cells contains a letter
or a symbol. The characters in each row and column are randomly flashed and a
P300 response is evoked every time the target letter is highlighted. Thus, in one
trial of 12 flashes (6 rows and 6 columns), the target cell will flash only twice, a
P300 is elicited for the row and other for the column. A number of other brain
signals have since been successfully utilized for spelling. The system developed by
the Tübingen group is based on binary decisions of the BCI [38]. The alphabet
is split into two halves (letter banks) presented at the bottom of the screen. The
user selects a letter bank by producing a Slow Cortical Potential (SCP), which
is then split into two new halves. This procedure continues until each of the two
letter banks had only one letter in it. When one of the final letters is selected, it is
displayed in the top of the screen and the initial letter banks are shown again for
a new selection. This system is know as the Thought Translation Device (TTD)
and have been tested in lock-in patients demonstrating the usefulness of the device
as an alternative communication channel [39, 40]. In two other studies that used
a similar selection strategy but a different BCI approach, patients used motor
imagery to modulate ERD and ERS changes. An ALS patient [41] and a patient
suffering from severe cerebral palsy [42] learned to operate a virtual keyboard
spelling application.
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Another system based on binary decisions is the Hex-o-Spell developed by
the Berlin group [43], which incorporates principles of Human-Computer Inter-
action into BCI feedback design. The mental text entry system Hex-o-Spell is
controlled by the Berlin Brain Computer Interface (BBCI), which operates on
spatio-temporal changes during different kinds of motor imagery [44, 45]. The
Hex-o-Spell was designed to map a small number of BCI control states to a high
number of symbols, it is controlled by two mental states (imagined right hand
movement and imagined right foot movement). The Hex-o-Spell consist of six
hexagonal fields surrounding a circle. By imagination of right hand movement,
an arrow located in the center of the circle starts moving clockwise. An imagined
foot movement stops the rotation and the arrow starts extending. If imagination
continues, the arrow reaches the hexagon and selects it. The five symbols of the
selected hexagon split into the individual hexagons. The arrow is then reset to
its minimal length while maintaining it original direction. The same procedure
is repeated to select a symbol. Splitting the alphabet into more that two parts
might increase the information transfer rate. This approach is presented in [46],
where the virtual keyboard is divided in three blocks (in a matrix of 3 rows by
9 columns), each associated to one motor imagery task. When a mental task is
classified, the corresponding block split in three smaller blocks until a letter is se-
lected. The process of writing a single letter requires always three commands. An
asynchronously controlled three-class spelling device operated by motor imagery
is proposed in [47]. Letters were arranged alphabetically on two moving vertical
lines on the left and right half of the screen. Five items were visible on each side.
By foot motor imagery the items scrolled from the bottom to the top of the screen.

2.5. Operating Protocol

The operating protocol [1,2] defines the real-time interactions between the user and
the BCI system and governs how the other three components (signal acquisition,
signal processing and application) interact with each other. It also determines
the nature and timing of stimulus presentation, what selections are available to
the user, details of user-system interaction, menu style, if the BCI is synchronous
or asynchronous, and the type of mental strategy or approach used for control.
Operating protocols must manage other details such as the type, location, and
timing of feedback.

2.6. Measures of BCI Performance

The performance of a BCI system can be influenced by several factors: exper-
imental paradigm, operating protocol, brain patterns, selected features, type of
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classifier, application, feedback presentation, etc. To compare different BCI sys-
tems, it is necessary to define consistent evaluation criteria.

2.6.1. The Confusion Matrix

The confusion matrix [48] describes the results of a classification problem by show-
ing the relationship between the true classes (desired output) and the predicted
classes (output of the classifier). The elements of the confusion matrix are denoted
by nij and each element indicates how many samples of class i have been classi-
fied or predicted as class j. The number of correct classifications are represented
by the diagonal elements nii, and the off-diagonal nij represents the number of
incorrectly classified samples.

2.6.2. Classification Accuracy and Error Rate

The classification accuracy (ACC) and error rate (ERR) are the most popular
measures of performance in BCI research [48]. Accuracy is easily to calculate and
interpret by using the following formula:

ACC = po =

∑M
i=1 nii∑M

i=1

∑M
j=1 nij

. (2.4)

The maximum accuracy that can be achieved is 1.0 (100%), which makes difficult
to compare systems that are close to this limit. Another limitation of this measure
is that the off-diagonal of the confusion matrix is not considered and all classes
have the same weight. Chance accuracy is already 100/N . For example, for a
BCI that discriminates between two classes, 50% of the trials are correct just by
chance. The error rate is defined as 1−ACC.

2.6.3. Information Transfer Rate

BCI systems differ greatly in their inputs, translation algorithms, outputs, and
other characteristics and thus they are often difficult to compare. A standard
performance measure was introduced by Wolpaw et. al., (1998) to follow BCI
development [49]. This general purpose benchmark is the information transfer rate
(ITR). As derived from Pierce (and originally from Shannon and Weaver [50]), the
bit rate for a communication system is the amount of information communicated
per unit time [1]. This measure incorporates speed and accuracy in a single value
and is calculated by,

B = log2N + P log2 P + (1− P ) log2

[
1− P

N − 1

]
, (2.5)

where P is the classification accuracy and N is the number of targets.
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2.7. Brain Patterns for EEG-based BCIs

Evoked potentials (EP), event-related potentials (ERP) and event-related changes
measured on the scalp may be used as brain patterns for a BCI. Averaged evoked
potentials are associated with specific sensory stimuli like repeated light flashes,
auditory tones, finger pressure, or mild electric shocks. Single-stimulus waveforms
are typically averaged to remove the spontaneous EEG. The number of stimuli
required to produce an averaged evoked potential may be between ten and thou-
sand, depending on the application. Event-related potentials normally occur at
longer latencies from the stimuli and are associated with endogenous brain state.
Most BCIs rely on either selective attention or motor imagery [51]. Commonly
used brain patterns for non-invasive BCIs are the SSVEP (steady state visually
evoked potential), the P300 (the 300-ms component of an evoked potential), and
ERD/ERS (event-related desynchronization and synchronization). In a selective
attention task, the user focuses attention on a particular stimulus. If the stimulus
is presented in a constant face pace, SSVEP activity is produced at corresponding
frequencies. Less frequent flashes may produce a P300 [52]. The P300 is a positive
deflection in the evoked potential that typically develops about 300 ms after the
eliciting stimulus. BCIs based on sensorimotor rhythms (SMR) can detect activity
changes when a person imagines or performs a movement. Imagination of different
movements produce ERD/ERS changes that convey user intentions [53]. When
building a BCI, it is important to select the pattern according to the subjects
capabilities (some tasks may be inappropriate for certain groups of subjects). For
example, motor imagery may be difficult for a person who has been paralyzed for
many years, or, indeed from birth. Visual tasks would probably be inappropriate
for some visually impaired people, such as those who have been totally blind since
birth [54]. Fig. 2.3 shows the mental strategies and brain patterns used in BCIs.
These three approaches are explain in more detail in the following sections.

2.7.1. Steady-state Visually Evoked Potentials

Electrical potential changes in the brain following the presentation of a visual
stimulus are known as visual evoked potentials (VEP). When the stimulus is pre-
sented in a constant fast pace (> 5 Hz [55]), resonance in the neuronal firing in the
visual cortex of the brain will arise [56]. This phenomenon is called Steady-State
Visually Evoked Potentials (SSVEP) [57]. Steady-state visual evoked potentials
are responses elicited when cortical neurons of the visual cortex synchronize with
the presentation of a periodic external stimulus. The brain response can be mea-
sured in a narrow frequency band containing the stimulus frequency. Flickering
lights at different frequencies are usually used as stimuli. The frequency of the
evoked SSVEP response matches that of the flickering stimulus exactly [58]. It
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Figure 2.3.: Mental strategies used to control a brain-computer interface.

is possible to get an SSVEP response with a larger number of frequencies, from
1Hz to 100Hz [59]. SSVEP responses with maximum amplitude are obtained in
three frequency bands: 5–12Hz (low), 12–25Hz (medium) and 30–50hz (high) [57].
However, the best responses are obtained for stimulation frequencies between 5
and 20 Hz [60].

The characteristic of the SSVEP response differs from the spontaneous activity
of the brain and it can therefore be robustly detected. Signal processing ap-
proaches to isolate SSVEPs were pioneered by Regan (1989) [57], making use of
the Fourier Analysis. Fig. 2.4 shows the spectra of an EEG signal from the visual
cortex when a test person is looking at a light emitting diode (LED) flickering
with 5, 7 and 9 Hz respectively. As can be seen, there are not only peaks at the
stimulation frequencies, but also at the harmonic frequencies at 10, 14 and 18 Hz.
Recent studies have been used the SSVEP phenomenon to build brain-computer
interface (BCI) systems [55, 58, 61–70]. An SSVEP-based BCI translates brain
activity patterns into control commands requiring the visual attention of the user.
To elicit SSVEP patterns, an external stimulation is required with targets that
flicker at different frequencies. Each target will produce a distinct SSVEP pattern.
Hence, by analyzing the frequency content of the EEG signals, it is possible to
infer the user’s intent. With these systems, humans intentionally modulate their
brain signals and their intentions can be mapped into interaction commands (e.g.,
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Figure 2.4.: SSVEP responses of an EEG signal acquired during visual stimulation
with a light source flickering at 5 Hz, 7 Hz and 9 Hz.
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(a) (b)

Figure 2.5.: P300 component of an event-related brain potential and a matrix of
possible selections.

move a cursor, click buttons, control external devices or computer-based applica-
tions). This ability to interact between the user and the outside world through
a BCI system has a high impact for subjects with reduced or non muscular ca-
pabilities. These interactions can substitute the brain’s normal neuromuscular
interactions or even augment them, establishing a new non-muscular possibility
for communication and control [71].

The SSVEP approach provides up to date the fastest and most reliable com-
munication paradigm for the implementation of a non-invasive BCI system. The
performance of the BCI can be assessed as the information transfer rate (ITR)
as discussed in [1] and reported in several studies. This measure depends of fac-
tors, such as, speed, accuracy and number of targets, which can variate from
two [61, 63, 64] up to 48 [55]. In a six target SSVEP-based BCI, an average ac-
curacy of 95.3% and an information transfer rates of 58 ± 9.6 bit/min for 12
healthy participants were reported [69]. Other studies have reported classification
accuracy of more than 90% [64–66]. Using a the code based SSVEP modulation
technique, where pseudorandom sequences are presented to the user, a mean ITR
value of 92.8± 14.1 bit/min for ten subjects was reported [72].

2.7.2. P300 Potentials

A P300-based BCI detects the P300 component of an event-related brain poten-
tial, which appears in the EEG over the central areas. The P300 is a wave that
corresponds to a positive deflection in voltage at a latency of about 300 ms after

35



2. Present-Day BCIs

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
Time (s)

ERS ERD

C
3

C
4

Figure 2.6.: Ongoing EEG signals recorded from electrodes C3 and C4 during right
hand motor imagery. Imagination-onset was at t = 0 s.

the presentation of auditory, visual or somatosensory stimuli, see Fig. 2.5(a). In
most P300-based BCIs described to date the stimulus is visual. However, in peo-
ple with visual impairment, auditory or tactile stimuli might be used. Farwell and
Donchin developed a P300-based BCI, which presents the user with a matrix of
6× 6 letters or other elements on a computer screen [37], as shown in Fig. 2.5(b).
The individual rows and columns of the matrix flash rapidly in a random sequence
and the user is instructed to silently count flashes that include the letter or symbol
that he/she wants to select, while ignoring other flashes. Only the row and column
that contain the letter that the user wants to select evoke large P300 potentials.

2.7.3. Event-related Synchronization and Desynchronization

Since EEG signals are time series that are composed of mixtures of multiple fre-
quency components, EEG is often labeled in a number of frequency bands that
have been named after Greek letters: delta (δ = 1− 4 Hz), theta (θ = 4− 8 Hz),
alpha (α = 8−13 Hz), beta (β = 13−20 Hz), and gamma (γ > 20 Hz). There are
different α rhythms depending on brain area and behavioral state [73]. The alpha
rhythm is the classical brain rhythm, which is usually identified as near-sinusoidal
oscillations at frequencies near 10 Hz, and occurs in a state of relaxed wakefulness,
particularly evident when the eyes are closed. Normal resting alpha rhythms may
be substantially attenuated, or even blocked in amplitude by opening the eyes,
drowsiness, and in many subjects, by moderate to difficult mental tasks. Alpha
rhythms, like most EEG phenomena, typically exhibit an inverse relationship be-
tween amplitude and frequency. The alpha rhythm is attenuated as the state of
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2.7. Brain Patterns for EEG-based BCIs

alertness is enhanced, such as sensory stimulation or mental activities. The term μ
(mu) is used for a special rhythm occurring over the rolandic or central area within
the alpha range. Contralateral movement, or even the mental intention to perform
a movement can block or desynchronize the ongoing mu activity [73, 74]. These
types of event-related changes represent frequency specific changes which consist
of either decreases (ERD or event related desynchronization) or increases (ERS or
event-related synchronization) of power in given frequency bands [53]. The term
ERD is referred to the decrease of power relative to the baseline recorded seconds
before the event, as shown in Fig. 2.6. The baseline represents a clear peak in
the power spectrum. This paradigm is explained in more detail in the following
chapter.
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3. Sensorimotor Rhythm-based
Brain-computer Interface

Sensorimotor rhythms (SMR) based BCI analyzes and classifies dynamics of single
frequency component, such as the mu or beta rhythms, or multiple components
of sensorimotor rhythms. Sensorimotor rhythms are 8–13 Hz (mu) and 13–20
Hz (beta) oscillations in the EEG recorded over sensorimotor areas. Normally,
changes in mu and/or beta rhythm amplitudes accompany sensory stimulation,
motor behavior, and mental imagery [53]. To enable communication between man
and machine without movement, a popular class of BCI is based on the modu-
lation of sensorimotor rhythm amplitudes. In the absence of any movement or
sensation, mu and beta amplitudes increase. By imagination of movement, those
amplitudes decrease. Motor imagery produces patters over sensorimotor areas
similar to planning and execution of real movements. In this chapter, two studies
are presented. The first study is an exploratory study that aims to find spatial and
time-frequency properties of EEG signals recorded from the motor cortex during
three classes of motor imagery (right hand, left hand and feet), and to evalu-
ate the proposed experimental protocol through subjective report. The second is
a single-case study that investigates the effects of training with motor imagery
by analyzing recording EEG data, estimated BCI performance, and subjective
report. Results showed that, consistent with other studies, different types of mo-
tor imagery produced noteworthy effects. Established and new signal processing
techniques were utilized to find motor imagery patterns and to investigate pattern
changes across training sessions.

3.1. Motor Imagery

Motor imagery (MI) corresponds to a subliminal activation of the motor system,
which is involved not only in producing movements, but also in imaging actions,
and learning by observation [75]. According to Jeannerod and Frak [75], motor
imagery is the mental phenomenon of simulating an action. Mental representa-
tion of actions can be consciously (imagine self running or raising the hand) or
unconsciously (visually presented hand) simulated and relies, at least partly, on
brain mechanisms common with those for motor execution [75]. Studies based on
patients with severe motor impairment demonstrated that conditions affecting the
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3. Sensorimotor Rhythm-based Brain-computer Interface

motor system leave intact the ability to generate motor imagery [4, 42].
It has been shown that this paradigm represents an efficient mental strategy

to control a brain-computer interface. Mental imagination of movements involves
similar brain regions as when a real movement is performed. The main difference
between performed and imagined movements is that in the latter case the execu-
tion will be blocked in some cortical level but programming and preparation of
both actions are similar. Several EEG studies confirm that motor imagery can
activate primary sensorimotor areas. Also, similar cortical activity over the con-
tralateral hand area during execution and imagination of hand movement have
been found.

Two oscillations are important for the BCI: the Rolandic mu rhythm in the
range 8-13 Hz and the central beta rhythm above 13 Hz [74]. Sensory stimula-
tion, motor behavior, and mental imagery can change the amplitude of the EEG
signals. Preparation and planning of self-paced hand movement results in a short
amplitude suppression of mu and beta rhythms. This amplitude suppression or
enhancement is called event-related desynchronization (ERD) and event-related
synchronization (ERS), respectively [53]. Through neurofeedback training, users
learn to voluntary modulate specific patterns in the brain. The length of the
training is subject-dependent but it also depends of the mental strategy used [76].

Differences in performance between the users have been widely reported [76,
77]. The reasons are not well know, it has been speculated that motivational
or emotional factors or the use of different mental strategies are responsible for
this effect. Subjects interpreted instructions differently. Although the request to
imagine moving a hand may seen straightforward, it is not. For example this task
can be understood in several ways [54]:

(a) remember the feeling of hand moving

(b) visualize own hand moving

(c) visualize another’s hand or abstract hand performing the movement

(d) combine remembered feeling and visualization of hand moving

(e) intent to move the hand while avoiding movement

Different ways of performing an imagery task involves different mental processes
in the brain and therefore may produce different brain patterns. Some cognitive
tasks may produce stronger brain patterns and other different characteristics. But
which mental strategy generate the best brain patterns for a BCI is still not known.

A recent study compared the effects to instruct the participants to imagine
the kinesthetic experience of movement instead of visualizing the movement [76].
In particular, the instruction how to imagine motor actions can be distinguished
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in the following kinds of imagery: Kinesthetic motor imagery involves a first-
person process, where subjects are asked to imagine the kinesthetic experience
of movement. The subject creates an “interior view” of the scene. Kinesthetic
motor imagery results in detectable ERD/ERS patterns over sensorimotor areas,
as confirmed in [76]. Visual-motor imagery involves a third-person process, where
subjects imagine seeing himself or other person performing the motor action. In
this kind of imagery, contrary to the kinesthetic mode, the subject has an “exterior
view” of the scene.

3.2. Event-related Synchronization and Desynchronization

ERD/ERS can be quantified in the time, frequency and spatial domains, and
can be used to study sensorimotor functions. An amplitude decrease of rhythmic
brain activity can be found for example prior to hand or foot movements, and an
amplitude increase for instance after termination of the movements [74]. It is also
possible to distinguish between imagined right and left hand movements based on
EEG signals and ERD/ERS analysis.

For the calculation of ERD/ERS, many event-related EEG trials are required,
which are time-looked to a trigger event. Because event-related changes need time
to develop and recover, the interval between two consecutive trials should last some
seconds. Standard ERD/ERS calculation is done by bandpass filtering of each
trial, squaring the samples and averaging over the trials and over the sample points.
The ERD/ERS is then defined as the proportional power decrease (ERD) or power
increase (ERS) in a given frequency band in relation to a reference interval several
seconds before the task was performed [53]. Mathematically, ERD/ERS can be
expressed as follows:

ERDf (t) =
Pf (t)− 〈Pf (t)〉ref

〈Pf (t)〉ref
(3.1)

The classical procedure of ERD/ERS calculation is displayed in Fig. 3.1 with
an example of dominant ERD in the alpha band during imagination of the right
hand movement and ERS after the termination of the imagination. The method
to compute ERD/ERS includes the following steps [53] [78]:

1. Bandpass filtering of all event-related trials. Event-related phenomena rep-
resent frequency specific changes of the ongoing EEG activity and therefore,
these signals should be filtered in given frequency bands of interest. These
frequency bands are obtained from time-frequency maps.

2. Subtracting the mean of the data for each sample. It is often useful to
subtract the mean of the data for each sample before squaring because evoked
potentials can mask induced activity.
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Figure 3.1.: Principle of ERD and ERS signal processing.
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3. Squaring of the amplitude samples to obtain power samples. Sij is the jth

sample of the ith trial of the bandpass filtered data and S̄j is the mean of
the jth sample averaged over all bandpass filtered trials.

Yij = (Sij − S̄j)
2 (3.2)

4. Averaging of power samples across all trials. N is the total of number of
trials and Pj the average power.

Pj =
1

(N − 1)

N∑
i=1

Yij (3.3)

5. Averaging of power in the reference interval [r0, r0 + k]. This epoch should
reflect the normal state, i.e. stationary properties of the signal. In Fig. 3.1,
the chosen interval was [−2.5,−0.5] before the imagination was performed.

R =
1

(k + 1)

r0+k∑
r0

Pj (3.4)

6. Obtaining percentage values for ERD/ERS.

ERDSj =
Pj −R

R
× 100 (3.5)

7. Averaging over time samples to smooth the data and reduce the variabil-
ity. In this example, the average over 32 samples was calculated with 50%
overlapping.

3.3. ERD/ERS Exploratory Study

This study explores the frequency bands, temporal and spatial properties of elec-
trical brain signals measured via EEG over the motor cortex during three classes
of motor imagery (left hand, right hand and feet imagery). The objective of this
study was to explore the signal characteristics of imagined movement with the aim
to establish a communication channel between brain and computer. Addition-
ally, the proposed experimental protocol for ERD/ERS screening was evaluated
to determine best timing parameters of the stimulus presentation by collecting
the impressions of the subjects. Analyses were conducted offline (evaluation of
technology with pre-recorded signals). Dependent variables were optimal window
length (time domain), relevant electrode positions (spatial domain) and most re-
active frequency bands (frequency domain) for the recognition of each imagery
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task. The physical environment in which the experiments were conducted was
the Brain Computer Interface Laboratory of the Institute of Automation. This
location is a normal office room susceptible to noise and interferences. Subjects
sat in reclined chair facing a computer screen 80 cm away.

3.3.1. Data Collection

This section describes the methods used for collecting data from subjects in an
ERD/ERS screening session. Signal were collected in a synchronous mode, i.e.,
subjects respond to an internal response modulation to an external stimulus (mod-
ulated response). The biorecording technology used was EEG over the motor
cortex. The specific electrode configuration proposed for this study for the classi-
fication of right hand, left hand and feet imagery tasks is shown in Fig. 3.2. EEG
signals were recorded from 15 channels corresponding to central electrodes C3, C4,
Cz and four electrodes around them using the extended 10−20 system of electrode
placement [79]. Data were referenced to the right ear lobe with a ground at site
AFz. This configuration was selected based on classification results from other
studies which indicated that the most important electrode locations for differen-
tiation between different motor imagery tasks are the electrode positions C3, Cz,
and C4 [80]. Also, optimal spatial filtering of multichannel EEG single-trial data
revealed electrode positions in the close neighborhood of C3 and C4 as the most
important ones for discrimination between different motor imagery tasks [81].

Data were digitized with a sampling rate of 256 Hz and amplified through
a gUSBamp amplifier. The software used for signal acquisition was the source
module of BCI2000 (gUSBampSource.exe), which included a bandpass filter of
0.1 − 60 Hz and a notch filter at 50 Hz. The stimulus presentation application
of BCI2000 was used to present the sequences of stimuli. Additionally to the 15
EEG channels, a StimulusCode signal that indicated the numerical identifier of
the stimulus being presented was recorded. StimulusCode was equal to 1 when
the subject was responding to the instruction to imagine right hand movement; 2
to the instruction to imagine left hand movement; 3 to the instruction to imagine
both feet movement; and 0 to the instruction to rest.

3.3.2. Subjects

Six able bodied subjects (age 24–32, 6 females) participated in the study. There
was no selection criteria or screening of subjects. They participated voluntary
without receiving any fee for their participation. All subjects were students at
University of Bremen and had no experience with motor imagery tasks. Only
Subject 3 and 4 had experience with another kind of BCIs.
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Z

Figure 3.2.: Electrode locations over the motor cortex for an ERD/ERS screening
session.

3.3.3. Experimental Protocol

The experimental design used in this study consisted of a single ERD/ERS screen-
ing session. The complete session lasted about one hour including electrode place-
ment, subject preparation and recording. Each session consisted of two 20-min
runs (150 trials) separated by 5-min break. In the first run, subjects were in-
structed to perform right hand, left hand and feet movements (motor execution -
ME condition) followed by a second run where subjects where asked to imagine
making that movements (motor imagery - MI condition) in response to an exter-
nal stimulus. The first run was used as training for the subjects before the motor
imagery tasks, which require high cognitive load and therefore are more difficult
to perform. The subjects’ task was to fix their attention on the computer monitor
and perform the desired task as soon as a cue (text message) appeared on the
screen. When the message “right hand” or “left hand” was displayed, the subject
was instructed to imagine (MI condition) or move (ME condition) the respective
hand depending on the condition. Specifically, subjects were instructed to imagine
continuous opening and closing of the hand (e.g., squeezing a soft ball) at a rate
of about one opening/closing per second. When the “feet” message was displayed,
the subject was instructed to execute or imagine feet movement. The imagination
of feet movement was similar to the one described for the hand, e.g, to imagine
opening and closing both feet as when trying to grasp an object. Subjects were
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Figure 3.3.: Feature plots for right hand imagery of subject S1.

requested to maintain motor imagination as long as the message remained visible
on the screen. The duration of the stimulus was five seconds. Between the tri-
als a blank screen was presented, subjects were instructed to relax and stop any
movement or imagery of movement (resting period). The inter stimulus interval
(ISI) was randomized between three and five seconds. Stimuli were presented in
a certain sequence, which consists of the presentation of each stimuli (right hand,
left hand, and feet) in random order. A total of 50 sequences were defined.

3.3.4. Analysis

Recorded EEG data were analyzed in the frequency, time and spatial domain to
find useful features that could discriminate three mental states: right hand, left
hand and feet imagery. Offline analyses from 15 EEG channels were performed to
find relevant subject-dependent activation patterns using different signal process-
ing tools.

Frequency Analysis

The goal of analysis was to find patterns that distinguish imagery from resting
state in the frequency domain, that is, in regard to the prominence of the differ-
ence in signal values between multichannel EEG recorded during imagery and EEG
recorded during resting. In this study, 15-channel EEG data from the ERD/ERS
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Figure 3.4.: Average voltage spectra (left) and average spectra r2 (right) for right
hand imagery at channel CP3 for subject S1.

screening session from each of the six subjects were analyzed with the BCI2000
offline analysis tool [18]. First, for each electrode location, common average ref-
erence (CAR) filtering was applied. The CAR was computed according to the
formula [82]:

V CAR
i = V ER

i − 1

n

n∑
j=1

V ER
j (3.6)

where V ER
i is the potential between the ith electrode and the reference, and n is the

total number of recorded electrodes. The waves resulting from CAR filtering were
then subjected to an autoregressive (AR) spectrum analysis using the maximum
entropy method (MEM) [83]. The average voltage spectra was calculated from 50
trials obtaining the spectra for each channel. The results were evaluated in terms
of the average voltage spectra values for condition 1 (imagery) versus condition 2
(resting), and also in terms of the values of r2 for the imagery/resting comparison.
The r2 measures the proportion of variance of two distributions, x and y, and was
calculated by:

r2 =
1
n1

(
∑n1

i=1 x)
2 + 1

n2
(
∑n2

i=1 y)
2 − 1

n1+n2
(
∑n1

i=1 x+
∑n2

i=1 y)
2∑n1

i=1 x
2 +

∑n2
i=1 y

2 − 1
n1+n2

(
∑n1

i=1 x+
∑n2

i=1 y)
2

(3.7)

These analyses can be displayed as feature, spectra and topography plots. Fea-
ture plots provides an overview of the data by displaying the r2 values between two
distributions as a function of frequency and channel. Fig. 3.3 shows the feature
plot obtained from the data recorded from subject S1 during right hand imagery
in the ERD/ERS screening session. From these feature maps, it is possible to de-
termine those frequencies and electrode locations whose amplitude is maximally
correlated with the subject’s task. Fig. 3.4 shows spectra and r2 plots that pro-
vides more detail information for selecting features. They show how data behave
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Figure 3.5.: Average voltage topographies of r2 for the imagery of (a) right hand,
(b) left hand and (c) feet movement of subject S1.

at a specific electrode channel. The plot on the left compares the frequency spec-
tra for both conditions (right hand imagery vs. resting), and the plot on the right
shows the r2 reflecting the imagery/resting difference at the selected electrode
channel.

Topography plots show the r2 values at a specific frequency. From the topogra-
phy plot, it is possible to see how the data behave at a specific frequency. Fig. 3.5
shows the topographies during three imagery tasks at 12, 14 and 16 Hz. Red areas
indicate most relevant electrode positions for the recognition of the respective task,
whereas recording locations coded in blue do not provide essential information.

Time-frequency Analysis

Another method used to find relevant features during motor imagery tasks is
the time-frequency analysis. This is an effective method for the visualization of
event-related changes in oscillatory brain activity [78]. Time-frequency maps were
useful for the selection of frequency bands and electrode locations with the most
significant band power increase or decrease during motor imagery tasks. They
provided an overview of the activity over broad frequency ranges and facilitates
the finding of important subjects features. Typical ERD/ERS analysis requires
the investigation of various channels and frequency bands that are dependent of
the subject. The analyses were computed with algorithms described in [84], from
15-channel EEG and 50 trials of 8-second epochs. For each channel, a time-
frequency map was calculated using the classical approach of quantification of
ERD/ERS (Pfurtscheller and Lopes da Silva, 1999) for frequencies between 5 and
40 Hz as explained in section 3.2. First, the power of the signals was calculated by
means of continuous wavelet transform and the absolute value at each point of the
transform was squared. ERD/ERS changes were then computed as the power in
relation to a reference period. The reference period corresponds to some seconds
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Figure 3.6.: (a) ERD/ERS time-frequency maps and (b) significant ERD/ERS
changes for right hand imagery of subject 1.
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before the imagination was performed, that means when the subject was resting.
Fig. 3.6(a) shows the ERD/ERS map calculated from 15 channels during imagery
of right hand movement and Fig. 3.6(b) shows significant ERD/ERS changes.
ERD values are colored blue, while ERS values are shown in red. The maps
cover the frequency range from 5 to 40 Hz, which is sufficient to detect important
ERD/ERS patterns such us mu and beta rhythms. The reference period was 0.5
to 2.5 seconds.

Temporal Analysis

The goal of the analysis was to find the optimal time window that better discrimi-
nates between each imagery class and the resting state. The results are computed
with the algorithm described in [85]. First, data from resting state were used to
estimate frequency bands of interest by FAD-parametric description of EEG time
series, that is, by estimating the parameters: frequencies, amplitudes and damping
coefficients (FAD) that characterize the basic EEG waves [86]. FAD decomposi-
tion detects the peaks within 7 and 30 Hz by calculating AR model coefficients,
estimating the transfer function and finding the impulse response function param-
eters. Common spatial patterns (CSP) filtering was applied to the acquired EEG
signals and the resulting waves were then subjected to bandpass filtering around
the spectral peaks found in the first step. The mahalanobis distance was used
to compare differences between different epochs, and to select the window, which
maximizes differences between both classes. In this case, the inter-group maha-
lanobis distance [35] was applied to distinguish imagery from resting state using
different epochs. The mahalanobis distance between two sets A and B is defined
as:

d
(
�A, �B

)
=

√
(�μA − �μB)

T C−1 (�μA − �μB) (3.8)

where �μA and �μB represents the means of the vectors derived respectively from
the class A and B, and C is the joint covariance matrix.

3.3.5. Results

Results of the frequency analysis

Table 3.1 summarizes the individual selected features for each subject that were
visually found from the resulting BCI2000 frequency analysis plots. Results of
the frequency analysis are explained only for data from a representative subject
(S1) during imagery of right hand as example how those features were obtained.
Fig. 3.3 shows the feature plot during right hand imagery of subject S1. As can
be observed, there are two clusters at channel 6 and 12 corresponding to electrode

50



3.3. ERD/ERS Exploratory Study

positions C3 and CP3 at 11 Hz. These two electrodes correlate more with the
imagination of right hand movement than the other 13 electrodes. To estimate
the effectiveness of these features and exact frequencies, it is necessary to look at
them in more detail using the spectra and topography plots. Fig 3.4 presents the
average spectra and r2 at channel location 12 (CP3). The power spectrum at each
condition clearly shows a peak at 11 Hz and 21 Hz while other frequency peaks
are reduced. Changes in spectral power at 11 and 21 Hz during the imagination
of the right hand movement can be observed. As expected, the power at these
frequencies during the imagination of movement is less than when the subject is
resting. There is a clear desynchronization (ERD) of the mu and beta components
during the imagery, even stronger for mu than for the beta band. The r2 plot
shows also a clear peak at 11 Hz and a weak peak at 21 Hz. Fig. 3.5(a) shows
the topography plot at 12 Hz for the imagery of right hand. A clearly focused
contralateral activation can be observed as important classification feature. The
time-frequency plot shown in Fig. 3.6(a) confirms the significance of the activation
patterns of electrodes C5, C3, C1 and CP3 at 11 Hz.

Results of the temporal analysis

Results were obtained from imagination and resting periods extracted from the
continuous EEG recorded in the ERD/ERS screening session. Windows of 2.0
and 3.0 seconds length were used for the analysis. The overlapping windows were
calculated as the duration of the stimulus in the ERD/ERS screening session
divided by four. In this study, the stimulus duration was five seconds. Thus, for a
window length of 2.0 seconds, the overlapping was 0.5 seconds, and for 3.0 seconds,
the overlapping was 0.75 seconds. That results in six epochs of 2.0 seconds length,
and three epochs of 3.0 seconds length. Because the selection of the autoregressive
model order is important to determine BCI performance [87], the results using four
model orders 9, 11, 13 and 15 were also compared. Table 3.2 presents the results
of analysis conducted on data from subject S2 for AR model orders 9 and 15
and window lengths 2.0 and 3.0. The mahalanobis distance was used as criteria
for the selection of parameters. The parameters with the highest mahalanobis
distance for each imagery class are highlighted in the table. The columns next to
the mahalanobis distance show the probability of classification of the imagery and
resting trials using the corresponding epoch and window length. The results of
subject S2 suggest that the resting state classification is more accurate than the
imagery classes. This observation was confirmed on the results of all subjects.

Table 3.3 shows the selected signal properties for each subject based on the
highest mahalanobis distance: model order, frequency peaks and their bandwidth,
and the window length of each imagination task. The probability of classification
was evaluated by applying the classifier (constructed with the selected parameters)
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Subject Age Imagery Frequency [Hz] Location Features

S1 24 Right hand 10− 14 C3, CP3 CP3(11 Hz)
Left hand 10− 14 C4, CP4 CP4(11 Hz)
Feet 15− 20 CPZ CPz(15 Hz)

S2 27 Right hand 16− 22 C3, CP3 C3(19 Hz)
Left hand 16− 22 CP4 CP4(19 Hz)
Feet 22− 28 CPZ CPz(25 Hz)

S3 27 Right hand 14− 18 C3, CP3 CP3(15 Hz)
Left hand 14− 18 CP4 CP4(15 Hz)
Feet 24− 32 CZ Cz(25 Hz)

S4 29 Right hand 8− 12 C3 C3(11 Hz)
Left hand 8− 12 C4 C4(11 Hz)
Feet 18− 22 CPz CPz(19 Hz)

S5 28 Right hand 12− 18 C3, CP3, C1 C3(17 Hz)
Left hand 12− 18 C4, CP4 C4(17 Hz)
Feet 18− 22 C2 C2(19 Hz)

S6 32 Right hand 10− 14 CP3 CP3(11 Hz)
Left hand 10− 14 CP4 CP4(11 Hz)
Feet 14− 18 CZ Cz(15 Hz)

Table 3.1.: Results of the frequency analysis from the ERD/ERS screening session.
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over all trials. The ratio between the correct classifications and the total number
of trials is shown in the last column.

3.3.6. Discussion and Conclusion

This study confirmed previous findings in the literature that motor imagery pro-
duces changes in the mu and alpha bands and that the involved signal parameters
are highly subject dependent. From the results of the time-frequency analysis it
was possible to infer that most pronounced power variations may occur at differ-
ent time points after cue onset and that those variations were different across the
imaginations. Results of the temporal analysis confirmed this observations, the
epoch in which one imagination was better classified differed from the epoch of
other imaginations. That leads to the conclusion that the time window is also
an important parameter to find relevant features and that it is dependent on the
imagination. Some subjects needed more time to generate a particular imagina-
tion. Another observation was that the AR model order 13 and 15 provides better
differentiation between the classes. Therefore, for the implementation of an online
ERD/ERS classifier, it is always necessary to calibrate subject-dependent param-
eters, such as model order, frequency bands, electrode locations, and time window
that differentiate best imagery classes from resting state.

Additionally, subjects impressions about the experimental protocol were col-
lected by interviewing each subject after the testing phase. Some impressions are
summarized as follows:

• The imagery tasks required significant commitment and concentration.

• The resting time between the imagery tasks (inter-trial interval) may be too
short.

• The screening session lasting approx. 20 min was tiring and tedious.

• It was difficult to know if the imagination was performed well, there was no
feedback.

• Electrode preparation lasted almost 20 minutes (15 electrodes), the overall
session was over one hour. There is a need to reduce the overall duration of
the screening session.

This issues will help to improve the experimental protocol for future ERD/ERS
screening sessions.
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3.3. ERD/ERS Exploratory Study

Subject Model Frequency patterns Temporal patterns Probability of
order f [Hz] BW [Hz] Imagery Window Classification

S1 15 f1 = 10.10 2.16 Right hand 0.75 - 3.75 0.84
f2 = 22.73 4.03 Left hand 0.0 - 3.0 0.90

Feet 1.5 - 4.5 0.98
S2 15 f1 = 9.43 1.82 Right hand 0.5 - 2.5 0.76

f2 = 21.79 3.74 Left hand 0.0 - 2.0 0.88
Feet 1.0 - 3.0 0.80

S3 15 f1 = 8.92 2.02 Right hand 0.5 - 2.5 0.66
f2 = 21.44 3.62 Left hand 0.5 - 2.5 0.84

Feet 0.0 - 2.0 0.86
S4 13 f1 = 10.46 1.18 Right hand 0.5 - 2.5 0.58

f2 = 20.78 5.38 Left hand 0.5 - 2.5 0.72
Feet 0.0 - 2.0 0.90

S5 15 f1 = 9.87 2.34 Right hand 1.0 - 3.0 0.60
f2 = 19.85 3.03 Left hand 1.0 - 3.0 0.50

Feet 0.0 - 2.0 0.78
S6 13 f1 = 8.78 1.56 Right hand 0.75 -3.75 0.66

f2 = 21.38 3.88 Left hand 0.75 -3.75 0.68
Feet 0.75 -3.75 0.68

Table 3.3.: Selected frequency and temporal patterns for the classification of imag-
ination of movements.

55



3. Sensorimotor Rhythm-based Brain-computer Interface

3.4. ERD/ERS Training Study

This study aims to investigate the relevance of ERD/ERS training across the
sessions. One of the subjects from the previous study (S4), who accepted to
undergo training for several weeks was the test subject (29 years old, female,
right-handed). This subject learned to generate specific brain patterns by imaging
movements of the right hand, left hand and feet. The training period was two
months (13 training sessions).

3.4.1. Data Collection

Each training session consisted of an ERD/ERS screening session and a feed-
back session [88]. The screening session records continuous EEG signals while the
subject imagines left/right hand movement or feet movement depending on the
presentation of a visual cue, then the best signal parameters are calibrated and a
subject-dependent classifier is set up. The feedback session detects motor imagery
patterns in ongoing EEG signals and provides the user with feedback about the
correct or incorrect classification of the brain patterns. The electrode locations
used in the previous study showed to be a good choice for ERD/ERS detection.
Thus, the EEG signals were acquired for both sessions using 15 electrodes placed
over the motor cortex as shown in Fig. 3.2. Electrodes and caps were provided
by Easycap. Data were amplified through a Porti32 amplifier (Twente Medical
Systems International, Netherlands) and sampled at 256 Hz.

ERD/ERS screening session

During the screening session, the subject was requested to imagine right hand,
left hand and both feet movement in a predefined sequence. The stimulus presen-
tation application of BCI2000 was used to present sequences of stimuli. With the
experiences collected from the first exploratory study, it was possible to establish
an improved experimental protocol to train subjects. Three important changes
were done. First, each motor imagination cue was indicated by an arrow that sig-
nalized the respective task instead of text messages to reduce the cognitive load of
the user. The inter stimulus interval (ISI) varied randomly between five and eight
seconds to give the user the opportunity to rest and prepare for the next mental
task. In the previous study, it was found that time windows between zero and
three seconds after cue onset were enough to classify the imaginations, and also
subjects could not produce imaginations for longer time periods. Therefore, the
stimulus duration was changed to three seconds. Each training session consisted
of 150 trials (50 for each class).
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3.4. ERD/ERS Training Study

(a) Intermediate trainer (b) Advanced trainer

Figure 3.7.: BCI trainer applications used at different learning stages.

ERD/ERS feedback session

The feedback session makes use of an online ERD/ERS transducer and a feed-
back application (BCI trainer). The ERD/ERS transducer analyzes segments of
EEG data and detects if they correspond to the imagination of “right hand,” “left
hand,” “feet,” or “resting.” The ERD/ERS transducer no only deals with the
discrimination between distinct motor imagery patterns (active classes), but also
the main challenge is to handle the resting state. The software framework used
for the communication between the acquisition, signal processing and application
modules was BCI2000 [18]. The source module acquires EEG signals with a sam-
pling rate of 256 Hz and applies a high pass filter at 0.1 Hz and a notch filter
at 50 Hz. Blocks of 32 samples (125 ms) are transmitted to the signal process-
ing module. This sample block size defines the timing of the complete system.
The signal acquisition module processes the data coming from the source module
and outputs a control signal that can be “right hand,” “left hand,” “feet,” and
“resting” depending on the classifier decision. The signal analysis is conducted on
windows of the same length as used in the calibration. For example, for a window
length of 2 seconds the module collects the EEG data into a matrix of 15 × 512
samples. At each signal processing cycle, old data is shifted and the incoming 32
samples are located at the end of the buffer matrix. Then, the classification is
performed. Control signals from the signal processing module are received by the
BCI trainer via UDP (user datagram protocol). The mode of operation of the
signal processing is independent of an external cue stimulus. The time windows
in which the subject performs a mental task are unknown for the system, and
therefore the signal is processed continuously.
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3. Sensorimotor Rhythm-based Brain-computer Interface

The BCI trainer is a software tool that provides several applications and helps
users to improve their BCI skills. It transforms the output of the BCI transducer
into a visual representation on the computer screen to show the user how successful
he/she is in modulating a desired brain pattern. The goal of the BCI trainer is to
support learning. In this work, three different applications were used to provide
feedback to the user at different learning stages. In the initial stage, a window
showing the result of the classification was used (session 1 to 6). Subjects were
trained for about 15 minutes in a free mode (no cues were presented). In the
intermediate stage, subjects task was to navigate a miniature robot out of the
labyrinth (see Fig. 3.7(a)). For this task, three control signals were used. With
the “move forward” command the robot moved forward to the next position in
the labyrinth. With the commands “turn left” and “turn right” the robot rotated
90 degrees to the left and to the right. Imagination of feet movement corresponds
to “move forward,” left and right hand imagery to “turn left” and “turn right,”
respectively. A feedback session started with the robot placed at the START
position and ended when the robot reached the FINISH position. The time was
measured at the exact time point when the robot left the start position until the
last command to reach the final position was received. If the robot was facing a
wall, and a “move forward” command was classified, the command was counted
as incorrect, but the robot did not move forward. Accuracy and information
transfer rate were calculated based on the time, hits and trials information. In this
application, the signal processing module counted the number of repetitions of each
command in eight consecutive commands (1000 ms). The command with more
repetitions was send to the robot control program. Additionally, when the robot
was moving from one position to another all incoming commands were rejected.
This lowered the level of difficulty of the application. From sessions 1 to 6, the
subject trained with the simple trainer and immediately after the subject was
given the opportunity to train with the intermediate trainer. Up session 7 until
11, the subject trained only with the intermediate trainer.

In the advanced stage, a virtual instead of a real labyrinth was used to train
the subject (see Fig. 3.7(b)). The layout of the labyrinth remained unchanged,
but instead of a robot, an arrow simulated the robot movements. The subject’s
task was to navigate the cursor (green arrow) from the start to the final position.
The control and performance calculation were done in the same way as in the real
labyrinth. With the virtual labyrinth the level of difficulty was increased because
the processing of commands was faster (every 125 ms). The application processed
every incoming command and provided feedback by showing a red circle on top
(for feet imagery), left (for left hand imagery) or right (for right hand imagery)
of the cursor. Only when eight commands were collected, the cursor performed a
movement. In this work, the virtual labyrinth was used in the last two feedback
sessions.
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3.4. ERD/ERS Training Study

3.4.2. Analysis

The ITR was calculated on the basis of the stages necessary to reach the goal, i.e.,
the low level commands sent to the transducer. This lead to an N of 3, based on
the 3 movement commands (“turn left,” “turn right” and “move forward”). The
BCI performance was calculated using the variables: hits, trials and time that
were calculated as follows:

1. The total time (time) was measured as the elapsed time since the robot
abandoned the START position after the first classification of the “forward”
command (this command was not counted for the ITR calculations, this
command was used to mark the start of the experiment).

2. Each executed command was rated as correct or incorrect based on the
actual robot position. The column and row starting from top left corner
represented the actual position as shown in Fig. 3.7. Thus, the FINISH
position was marked as (2, 0) and the START position as (2, 4). The
current direction of the robot was indicated by a numerical value that could
be 0◦, 90◦, 180◦ or 270◦. A value of 0◦ indicated the forward direction. For
example, at the beginning of the experiment after the first classification of
the “forward” command, the robot is located at position (2, 3) and has a
direction of 0◦. In this position, only the command “forward” is correct, all
other commands are treated as incorrect for the calculation of accuracy.

3. After each command, the evaluation of the position and direction starts
again. For example, in position (1, 1, 90◦), any of the commands “left”or
“right” would be incorrect, only the “move forward” command would be
correct.

4. At position (2, 2), the user could use one of the two possible paths to reach
the goal, left or right. Both ways were rated as correct. But, once the
subjects had chosen one of the paths, they should follow it. If later this
position was reached again, a new choice was possible.

5. If the robot was facing a wall, and a “forward” command was executed, the
classified command was counted (as incorrect), but the robot did not move
forward.

6. Accuracy was then calculated as the number of all correct commands (hits)
divided by the total number of executed commands (trials).

3.4.3. Results

Fig. 3.8 presents the probability of classification for each motor imagery task
across the training sessions. These results were obtained with offline analysis
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Figure 3.8.: Probability of classification for the calibration data.

from the EEG recorded in the screening session (50 trials per task). The analyses
of the calibration data were conducted using a window length of 2 seconds and
an AR model order 13. The classification parameters were found by selecting
the highest mahalanobis distance between different overlapping windows. Each
training session required a calibration session to set up the classifier.

Table 3.4 shows the results from the feedback sessions. Initially, the subject
trained with a simple window that showed the output of the classification (session
1 to 6). That training was done in a free mode, in which the subject decided when
to perform a task. From session 1 to 11, the intermediate feedback application
was used. The task was to navigate a robot out of the labyrinth. Only since
session 7, the subject was able to navigate the robot from the start to the goal
position. Therefore, no classification results are shown for the initial six sessions.
The results show that the subject could control the robot movements with an
accuracy of 73.91% already after six training sessions. After five training sessions,
the level of difficulty was increased by letting the user to control the advanced
trainer. Results were even better than with the intermediate trainer, an accuracy
of 91.3% could be achieved, and the number of total trials and total time was
decreased.

3.4.4. Discussion and Conclusion

These results demonstrated that online ERD/ERS control using three mental
states (imagination of right, left hand and feet) is possible. ERD/ERS patterns
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3.4. ERD/ERS Training Study

Feedback Hits Trials Time Accuracy ITR
session [s] [%] [bpm]

7 34 46 551.08 73.91 2.484
8 30 42 562.84 71.43 1.953
9 24 77 715.72 31.17 0.001
10 29 41 560.25 70.73 1.845
11 35 53 680.00 66.03 1.450
12 21 23 171.60 91.30 8.622
13 30 39 354.20 76.92 3.798

Table 3.4.: Results obtained from the feedback sessions.

related to three types of motor imagery could be recognized successfully in real-
time. The optimal selection of the most relevant features from the EEG of the
user together with feedback training made possible to successfully complete a
very difficult control task (navigate a robot/cursor out of the labyrinth) by using
three independent control signals derived alone from ongoing EEG signals. These
results are promising because the level of difficulty of the control task was very
high, three different patterns were recognized in an asynchronous mode (allows
the user to operate the BCI independently of an external cue stimulus), and a lot
of experience in ERD/ERS training was gained.

Users’ progress depends on development of improved training methods in rela-
tion to the learning stage. It was found that the instructions given to the user
played an important role. In this study, the BCI protocol asked the user to pro-
duce imagination of movements by opening and closing the hand. User’s report
about the strategies employed showed that the subject changed constantly her
strategy, and the most effective one was imagine playing piano. Once the subject
identified the best strategy, BCI control was more accurate. That may explain
why at the first six training sessions, no effective control over the robot movements
could be achieved. More extensive work to determine effective mental strategies
and to optimize the user training is needed [89,90]. The subject also reported more
difficulties to keep control of the resting state than the imagination of movements.
That suggests than some kind of mental training or experience with relaxation
techniques may further contribute to better BCI performance.
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4. High-level Control of
Semi-autonomous Assistive Devices
via BCI

A brain-computer interface transforms brain activity into commands that can
control computers and a wide range of assistive technologies for severely disable
users. Although advanced signal processing methods are used in BCI research,
the output of the BCI is still unreliable and its information transfer rate is lower
compared with conventional human interaction interfaces. Therefore, BCI appli-
cations have to compensate the unreliability and low information content of the
BCI. Direct control of a robot arm or a wheelchair would be not only slow and
frustrating, but even dangerous if the control solely relies on the BCI output. As-
sistive devices that autonomously conduct goal-oriented tasks and independently
detect and resolve safety issues are more suitable for being controlled via BCI.

This chapter presents the rehabilitation robot FRIEND-II controlled by the
Bremen-BCI based on SSVEP. The complete system is operated following the
high-level or goal-selection control approach. The role of the BCI is to translate
high-level requests from the user into control commands that are executed by
the FRIEND-II system. The BCI is used to navigate a menu system and to
select high-level commands such as pouring a beverage into a glass. The low-level
control is executed by the control architecture MASSiVE, which in turn is served
by a planning instance, an environment model and a set of sensors (e.g., machine
vision) and actors. The BCI is introduced as a step towards the ultimate goal of
providing disabled users with at least 1.5 hours independence from care givers.

4.1. High-level Control Approach

Most BCIs have been used to control computer applications such as spelling de-
vices [52], simple computer games [63,91], virtual environmental control [92], and
cursor control applications [41]; but only a limited number of systems have been
also used for controlling more sophisticated applications, including protheses [8],
robotic arms, and mobile robots [46]. These are complex applications that require
the control of all details of the process that accomplishes the user’s intents. In
this process-control approach [93], BCIs are not well suited for controlling more

63



4. High-level Control of Semi-autonomous Assistive Devices via BCI

complex details of demanding applications because of two reasons [94]: (a) com-
plex applications increase the mental workload of the user and can thus negatively
affect BCI performance, and (b) complicated tasks require a number of sub-tasks,
which, when controlled on a low-level basis, can be time consuming, fatiguing and
frustrating. This underscores the importance of reducing the burden on BCI users
through effective goal-oriented protocols. Goal-oriented or high-level BCI control
means the BCI simply communicates the user’s goal (the task) to the intelligent
application device that manages the process. Once the system knows the task, it
can autonomously performs all necessary sub-tasks to achieve the goal. In con-
trast, low-level control means the BCI manages all the intricate interactive process
involved in achieving the goal, and therefore requires high-speed interactions with
the device as the task proceeds. Thus, goal selection is easier and appears to be
a more realistic strategy for BCI control. Furthermore, the goal-oriented strategy
provides a more natural control, is more similar to normal motor control because
it distributes the operation of actions by delegating lower-level aspects of motor
control to another structures [93].

In any interface, users should not be required to control unnecessary low-level
details of system operation. This is especially important with BCIs; allowing low-
level control of a wheelchair or robot arm, for example, would not only be slow
and frustrating but also dangerous. Therefore, developing robust BCI applications
capable of providing effective real world control requires developing intelligent
mechanisms that can mediate between the user’s goals and the individual actions
needed to implement those goals.

An intelligent BCI system should, however, also provide the user with the option
of implementing lower level commands if desired. This is necessary if the high-
level commands do not contain the exact goal that a user seeks to attain. An
assistive robotic system that automatically pours water if the user conveys thirst
may not satisfy a user who instead wants soda, juice, or wine. In these cases,
the user might not mind the additional time required to perform tasks that are
not preprogrammed. An ideal intelligent system would identify frequently issued
command sequences and adapt accordingly, perhaps developing a new option to
get juice if the user often does so. Many current BCI applications that only provide
low-level control would benefit if they would provide high-level control as well.

4.2. Rehabilitation Robot FRIEND-II

The term rehabilitation robot describes a broad range of assistive devices that
are designed to meet the requirements of and address the problems confronted
by people with disabilities. The scale of disabilities can range from slightly dis-
abled to most severely disabled people. Depending on user’s impairment (scale of
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4.2. Rehabilitation Robot FRIEND-II

Figure 4.1.: Rehabilitation robot FRIEND-II controlled by the Bremen-BCI.

disability) various forms of input mechanisms are used to control rehabilitation
robots. Joystick, keyboard, and mouse are typical input devices for less severely
disabled people. Sip/puff switches, interpretation of voice or head position, eye
gaze, and electromygraphic activity are input modalities for people with disabili-
ties that prevent them from using other interfaces. Control by BCIs is usually the
last resort for the most severely disabled people. BCIs can control any application
that other interfaces can control but with a lower information throughput.

The rehabilitation robot FRIEND-II (FunctionalRobot Arm with User Friendly
Interface for disabled People) developed at the Institute of Automation of the Uni-
versity of Bremen is a semi-autonomous system designed to assist disabled people
in activities of daily living [95]. The main components of FRIEND-II are a con-
ventional wheelchair, a 7 degrees-of-freedom dexterous manipulator (robot arm),
a gripper with force/torque sensor, a stereo camera system mounted on a pan-tilt
head, a smart tray with tactile surface and weight sensors, a TFT monitor, and
a computing unit consisting of three independent industrial PCs [20]. The stereo
camera system and the smart tray form together a robust and redundant system
that is able to reliably localize objects on the tray largely independent from light-
ing conditions. Fig. 4.1 shows the FRIEND-II system and an able-bodied user
who controls the system with a BCI.

FRIEND-II is able to perform certain operations completely autonomously. An
example of such an operation is a “pour in beverage” scenario. In this scenario,
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4. High-level Control of Semi-autonomous Assistive Devices via BCI

the system detects the bottle and the glass both located at arbitrary positions
on the tray, it grabs the bottle, moves the bottle to the glass while automatically
avoiding any obstacles on the tray, it fills the glass with liquid from the bottle
while continuously controlling the fill level of the glass, and finally puts the bottle
back in its original position.

Besides this goal-oriented, high-level control approach for autonomously per-
formed tasks, FRIEND-II also provides the option to perform low-level control.
This is necessary because the system operates in an unstructured environment,
and uncertainties in sensor data can, in rare cases, result in slightly erroneous
estimation of the position of objects. In such cases, the user can take over the
control of the manipulator and adjust the gripper location. This is done in an
intuitive manner using Cartesian commands and with support from the system,
which controls the redundancy of the manipulator in parallel to simplify the task
for the user. After gripper adjustment by the user, the system can proceed with
the execution of the remaining tasks in an autonomous mode [11].

4.2.1. Multi-layer Architecture for Semi-autonomous Service Robots

The control of the FRIEND-II is facilitated by the multi-layer architecture MAS-
SiVE (MultilayerArchitecture for Semi-Autonomous Service Robots withVerified
Task Execution) [96]. This architecture provides high-level control approach for
autonomously performed task, and the option to perform low-level control. In
order to enable user involvement in the task processing, the MASSiVE architec-
ture consist of four modules, as shown in Fig. 4.2. The reactive-layer abstracts
the hardware specific functionality from sensors and actuators. The sequencer is
responsible for task planning. The human-machine interface (HMI) governs user
interactions and provides feedback. The world-model is used to store symbolic
and sub-symbolic data of the system and user environment.

A task is selected and started via input devices available to the user. All possible
input devices and their degrees of freedom are managed by the HMI. At present,
keyboard, mouse, joystick, voice, and BCI control are supported input devices.
The chosen high-level task, e.g., “Pour in a beverage,” is forwarded from the HMI
to the sequencer, which plans the task on the basis of pre-defined task knowledge
and petri-nets. The result of the planning process is a list of sub-tasks that
must be executed by the reactive layer. In the context of the MASSiVE control
architecture, these sub-tasks are called skills. If a problem would occur during the
execution of these sub-tasks and the user has to be involved, the sequencer invokes
a special user interaction skill using its interface to the HMI. The situation can
be then addressed by the user [96]. From the sequencer’s point of view, these user
interaction skills are like normal skills executed by hardware components. This
approach leads to a reduction of the planning complexity and a semi-autonomous
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Figure 4.2.: Overview of the robot control architecture MASSiVE.

system [97].

In the context of planning and execution, the world model plays the role of a
knowledge base. The division into symbolic and sub-symbolic part originates in the
need to store different kinds of data for different levels of abstraction. On one hand,
the sequencer needs data describing objects during the task planning process (e.g.,
what kind of objects are involved in the task scenario) without further knowledge
about them (symbolic data). On the other hand, detailed information about those
objects is needed during execution of an already planned task in the reactive layer
(sub-symbolic data). Hence, the sequencer operates on the symbolic, the reactive
layer on the sub-symbolic part of the world model. The connection between both
kinds of data is established via object anchoring, as presented in [98]. The directed
connection of the world model with the HMI evolves from the necessity of giving
feedback to the user during execution of a user interaction skill. Thus, the HMI
only operates on the sub-symbolic part of the world model.

4.2.2. Human-machine Interface

The HMI consists of multiple modules with different functions. These modules
are the graphical user interfaces, the input devices, the HMI model, the command
mapper and the interaction component. The HMI and its components are shown
in Fig. 4.3. The interaction component is responsible for the interaction between
the user and the system and vice versa. It forwards the tasks to be processed to

67



4. High-level Control of Semi-autonomous Assistive Devices via BCI

Figure 4.3.: Overview of the human-machine interface.

the sequencer, it is able to initiate additional environment monitoring, it has the
possibility of direct hardware control (used for special user interactions) and it
offers user interaction skills as methods to the sequencer. The model component
manages a representation of the graphical user interfaces, the data necessary for
the communication with the user (e.g., textual usage hints in different languages
and data from the world model used to give feedback) and processes incoming
HMI commands. Following the observer design pattern [99], each HMI command
that is received and processed results in a change of the model that is forwarded
to all graphical user interfaces, the command mapper and the interaction compo-
nent. The communication between all components is implemented using CORBA
(Common Object Request Broker Architecture) [97].

To integrate the BCI application into the HMI of the control architecture an
input device application was implemented. This application acts as a TCP/IP
client. It receives the BCI commands and forwards them as asynchronous events to
the command mapper. The latter maps the BCI commands into HMI commands
in correspondence to Table 4.1 and forwards them to the model, which is then
updated. In this case, the current selection is changed in a list. The list contains
possible system tasks and folders used to group system tasks. The graphical user
interface of the HMI offers a control panel, a list with the offered system tasks, a
log window and a window with the currently running tasks. The last two windows
are used to provide feedback to the user, who can follow the current state of the
system. The list with the offered system task is independent of the number of
commands used for the BCI to control the HMI. That means that more tasks
can be added without any changes in the BCI system and without adding new
flickering lights. The user can navigate the MASSiVE HMI main menu by looking
the associate light sources as follows. The light flickering at 13 Hz encode the
command “move to the left” and the previous folder is highlighted. If the user
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Frequency [Hz] BCI command HMI command

13 BCI RIGHT Select next

14 BCI LEFT Select previous

15 BCI SELECT start task/open task folder

16 BCI CANCEL one directory level back

Table 4.1.: Stimulation frequencies and their corresponding control commands

wants to go to the next folder, she/he has to focus on the light with 14 Hz (“right”
command). To start the execution of a task or to open a task folder she or he has
to focus on the 15 Hz light encoding the command “select.” The 16 Hz flickering
light is used to go back one directory level (“cancel” command).

4.3. A Robust BCI Based on SSVEP

The Bremen-BCI is based on the detection of SSVEP patterns. As mentioned
previously, SSVEP are potentials elicited in a visual selective attention task in
which BCI users focus their attention on light sources that flicker with frequencies
above 5 Hz. External flickering lights are used as stimuli. Each flickering light
and its corresponding SSVEP are associated with a certain control command.
The Bremen-BCI detects SSVEP and also discriminates between different SSVEP
patterns evoked from different stimulation frequencies. The basic components of
this BCI system are the signal acquisition and signal processing components. The
signal acquisition module is based on a biosignal amplifier, which records brain
signals from the visual cortex, connected to the USB port of a regular laptop
computer, on which the signals are processed. The signal processing component
includes the software that extracts the features of the brain signals and the trans-
lation algorithm that translates the extracted features into device commands.

The Bremen-BCI implements a robust signal processing methodology that pro-
vides high information transfer rates. Recorded signals are processed to find
SSVEP signal-to-noise ratios (SNR) calculated with the minimum energy com-
bination method described in [100]. The algorithm to detect SSVEP frequencies
is outlined in the following sections.

4.3.1. SSVEP Modeling

For a visual stimulation with a frequency f , the recorded brain signals are modeled
as a composite of SSVEP response, background activity and noise. The measured
brain signal yi(t) is the voltage proportional to scalp potential differences between
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a reference electrode and a signal electrode i. This model is linear and decomposes
the electrode signal into three parts:

yi(t) =
Nh∑
k=1

ai,k sin(2πkft+ φi,k) +
∑
j

bi,jzj(t) + ei(t). (4.1)

The first part is the evoked SSVEP response signal modeled as a number of sinu-
soids with frequencies given by the stimulus frequency f and a number of harmonic
frequencies Nh, and the corresponding amplitude ai,k and phase φi,k. The second
part describes the background brain activity and nuisance signals zj(t), which
are added to each electrode signal and scaled with the weight factor bi,j . The
nuisance signals are concurrent brain processes or external disturbances such as
breathing artifacts and power line interference. The last part ei(t) describes a
noise component in the measurement, which is specific for electrode number i.

Assuming a time segment of Nt samples and a sampling frequency Fs, the model
can be expressed in vector form

yi = Xai + Zbi + ei, (4.2)

where yi = [yi(1), . . . , yi(Nt)]
T is a vector with Nt elements, and ei is a similar

vector with noise. The SSVEP model matrix X is of size Nt× 2Nh

X = [X1 X2 . . .XNh
], (4.3)

where each submatrix Xk contains a sine and cosine pair in its columns. Finally,
assuming that brain signals are acquired from a number of electrodes i = 1, . . . , Ny,
the model can be further generalized to

Y = XA+ ZB+E, (4.4)

where Y = [y1, . . . ,yNy ] is a Nt×Ny matrix with the electrode signals as columns,
and Z is the background activity. A and B contain the corresponding amplitudes,
and E is the noise matrix.

4.3.2. Minimum Energy Combination

The minimum energy combination method is used to create a spatial filter that
linearly combines the signals of all electrodes into channel signals in a way that the
SSVEP response is magnified and strong interferences are minimized. A channel
signal is denoted by s and consists of a combination of the signals measured
by different electrodes yi’s. The detection of an SSVEP response is improved by
considering several channels S = [s1, . . . , sNs ], where Ns is the number of channels.
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A channel s is obtained by combining the original electrode signal using a weight
vector w of size Ny

s =

Ny∑
i=1

wiyi = Yw. (4.5)

More generally, the spatial filter creates several channel by making different com-
binations of the original electrode signals

S = YW, (4.6)

where Y is a given number of electrode signals and W is a Ny × Ns matrix
containing the weights for each combination in its columns.

In order to minimize as much of the nuisance signals as possible, the first step
is to remove any potential SSVEP components from all electrode signals by pro-
jecting them onto the orthogonal complement of the SSVEP model matrix X

Ỹ = Y −X(XTX)−1XTY. (4.7)

The remaining signal Ỹ contains approximately only background activity and
noise, i.e., Ỹ ≈ ZB+E.
The next step is to find a weight vector ŵ that minimizes the resulting energy of

the combination of electrode signals Ỹŵ. The linear combination for minimizing
the variance of Ỹ is found by optimizing

min
ŵ

∥∥∥Ỹŵ
∥∥∥2 = min

ŵ
ŵT ỸT Ỹŵ, (4.8)

which has the solution in the eigenvector v1 that corresponds with the smallest
eigenvalue λ1 of the covariance of Ỹ. Since the matrix ỸT Ỹ is symmetric, a
combination of electrode signals produces channel signals that are uncorrelated
and have an increasing energy stemming from nuisance signals. The weight matrix
W is created by choosing the eigenvectors as follows

W =

(
v1√
λ1

· · · vNs√
λNs

)
, (4.9)

where λ1 ≤ λNs . Each eigenvector is normalized with the square-root of the
corresponding eigenvalue, therewith the resulting channel signals will have the
same energy. The number of eigenvectors included in the weight matrix determine
the number of channels. Ns is chosen so as to discard as close to 90% of the
nuisance signal energy as possible using the following approach:∑Ns

i=1 λi∑Ny

j=1 λj

> 0.1. (4.10)

The denominator is the total energy in the nuisance signals and noise, and the
numerator is the total energy retained when Ns combinations are used.
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4.3.3. SSVEP Detection

Since the SSVEP response is a periodic signal with energy only in the fundamental
stimulation frequency and its harmonic frequencies, the presence of this signal
can be quantified as the power in the SSVEP response frequencies divided by the
estimated noise power in the same frequencies, that is, an SSVEP signal-to-noise
ratio (SNR). The SNR indicates how many times larger the SSVEP response is
compared to the case when no stimulation frequency is present. The average of the
SNR over all Ns spatially filtered signals and all Nh SSVEP harmonic frequencies
is a test statistics and is calculated by:

T =
1

NsNh

Ns∑
l=1

Nh∑
k=1

P̂k,l

σ̂2
k,l

. (4.11)

Pk,l is the power in the kth SSVEP harmonic frequency in channel signal sl and
is estimated as follows

P̂l,k =
∥∥∥XT

k sl
∥∥∥2 . (4.12)

σ̂2
k,l is an estimate of the noise power in the same frequency. To estimate the

noise power in the SSVEP frequencies, an auto-regressive model is first fitted to
the channel signals, and the fitted models are then used to interpolate the noise
power in the SSVEP frequencies. The energy in the SSVEP frequencies is removed
before fitting the AR(p) model

S̃ = S−X(XTX)−1XTS = ỸW. (4.13)

The AR(p) models are efficiently fitted by invoking the Wiener-Khinchin theorem
for computing the autocovariance of each channel signal and then solving the
Yule-Walker equations using a Levinson-Durbin recursion. This yields the AR(p)
model parameters α1, . . . , αp, as well as an estimate of the variance σ̂2 of the white
noise driving the AR(p) process. The noise level at SSVEP harmonic frequency
number k can be interpolated via the following formula for the power spectrum of
the AR(p) process

σ̂2
l,k =

πNt

4

σ̂2∣∣∣1 +∑p
j=1 αj exp (−2πijkf/Fs)

∣∣∣2 . (4.14)

where i is the complex
√−1.

4.4. High-level Control Study

In order to investigate the feasibility of controlling the rehabilitation robot FRIEND-
II by a brain-computer interface, the Bremen SSVEP BCI was connected to the
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Figure 4.4.: Diagram of the SSVEP-based BCI system application.

robot control architecture. Communication between the BCI system and MAS-
SiVE was established using the TCP/IP communication protocol. Four flickering
lights with frequencies 13, 14, 15, and 16 Hz and encoding four commands (select
next, select previous, start task and cancel task) were used to select goal-oriented,
high-level tasks performed by the FRIEND II. Fig. 4.4 shows the block diagram of
the complete system. An external visual stimulation in form of an array of light
sources was presented to the user. Each frequency corresponds to a command
“right,” “left,” “select,” and “cancel” that controls the HMI main window. The
BCI can detect the frequencies of the light sources by analyzing the frequency
contained in the measured EEG signals and extracting the SSVEP from multiple
electrodes placed over the visual cortex. When the user focuses her/his atten-
tion on one of the flickering lights, the signal-to-noise ratio corresponding to that
frequency increases in amplitude. The BCI sends a command every time this
signal exceeds the threshold and is transmitted to the HMI in the robot control-
architecture for further processing.

4.4.1. Data Collection

All data were recorded with gold electrodes attached at the locations Pz, PO3,
PO4, Oz, O9, and O10 from a customized 65 channel montage based on the stan-
dard 10–20 system electrode placement. Data were referenced to a ground elec-
trode placed at AFz. Electrodes and caps were provided by g.tec (Guger tech-
nologies, Austria). EEG paste was applied to bring impedances below 5 KΩ. An
EEG amplifier from g.tec was used to acquire the electrode signals. An analog
bandpass filter of 2–30 Hz was used in the amplifier, and the signals were digitized
with a sampling rate of 128 Hz. For visual stimulation, a custom made array with
four red light emitting diodes (LEDs) was used and connected to a controller with
which the flickering frequency of the diodes was generated. Each LED covered
an area of about 2× 4 cm2. The LED controller is based on a PIC16F877 micro-
controller that allows driving up to 16 LED’s with individual blinking frequencies
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Figure 4.5.: Bremen-BCI real-time data acquisition and processing software.

in the range from 0.2 to 1000 Hz. The controller internally works with a timing
signal of 204.8 μs. The flickering frequencies of the LED’s were set to 13, 14, 15
and 16 Hz and duty cycle of 50%. The Bremen-BCI software system was used
for all aspects of data acquisition and processing. Fig. 4.5 shows a screen-shot
of the acquisition and real-time signal processing software which detects SSVEP
responses, a period of 10 seconds of data is shown. In the top graph, the acquired
EEG signals are plotted with a voltage range between -5 to 5V. In the bottom
graph the detected SNR for each stimulation frequency is displayed. The SNR
signals from six EEG channels are calculated by spatial filtering with the mini-
mum energy combination and AR modeling methods explained in sections 4.3.2
and 4.3.3. The SSVEP detection algorithm takes a window length of 2 seconds
of EEG data to calculate the SNR of the incoming signals. This calculation is
executed every 100 ms (13 samples). For each frequency the SSVEP detection
software shows a different SNR signal color (13 Hz =̂ green, 14 Hz =̂ yellow,
15 Hz =̂ red and 16 Hz =̂ blue). The detection threshold is drawn in the bottom
plot (white line). By default this threshold was set to 8, meaning that a command
is issued when the power in one of the visual stimulation frequencies exceeds 8
times its normal value. When the user focuses her/his attention on one of the
flickering lights, the SNR corresponding to that frequency increases in amplitude.
In the SNR plot, it can be seen how the SNRs for different frequencies increase
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and exceed the threshold four times, i.e., the user is able to issue four commands
during this period by looking at different LED’s. A result code is available for
each frequency (13 Hz =̂ ’01’, 14 Hz =̂ ’02’, 15 Hz =̂ ’03’ and 16 Hz =̂ ’04’) and
indicates which light source the person is focusing on. This result code is issued
each time the signal with the largest SNR exceeds the threshold, then is trans-
mitted to the application interface via the standard network protocol TCP/IP for
further processing. Only if two seconds have passed since the last command, and
a signal exceeded the threshold, result code is not ’00’; otherwise the result code
is ’00’, indicating that no frequency was detected or that the subject is resting.

4.4.2. Results

In a first evaluation, a healthy person known to have strong SSVEP responses was
chosen as test subject. The user’s task was to navigate the HMI main window by
focusing on the light sources. The array of four diodes was fixed at the top of the
TFT monitor of the FRIEND-II system, where the HMI application was displayed.
While seated in the wheelchair (Fig. 4.1), the subject was given 9 specific menu
navigation tasks to execute. Each task consists of a sequence of commands. For
example, task 1 was to follow the sequence right-right-right-select to execute the
task “Pour in beverage.” The second task was to open a folder and to start a robot
task following the sequence right-right-select-right-right-right-select. Task 3 was to
go back in a folder and then select the task “serve beverage” following the sequence
cancel-right-right-right-select. To evaluate the performance of the system, the time
needed to complete each task was recorded. Moreover, the impact of the distance
to the flickering LEDs was also investigated by repeating the 9 tasks both with a
distance of 0.5 m and with a distance of 0.7 m to the LEDs. The times necessary
to navigate the main menu using the BCI with different distances to the light
sources and the number of commands for each task are shown in Table 4.2. The
user was able to navigate the HMI main menu with an average speed of 2.38 and
2.69 seconds per command for the distances 0.5 and 0.7m from the light sources
respectively. A paired t-test gives the statistical significance p = 0.24, i.e., no
significant difference between the distances 0.5 and 0.7 meters could be found.

Seven subjects in the age range of 25 to 35 years, and without previous BCI
experience participated in this study. Each user was asked to perform a predefined
sequence to select high-level robot commands. The experiments were conducted
in an office-like environment without any special shielding or other precautions to
avoid or reduce external noise or interferences from other electronic devices, power
lines, or routine background activity such as people talking or performing common
work tasks. The given task was to navigate the HMI main menu by executing 10
commands. In order to evaluate the performance of the system, errors made and
the time required to complete the command sequence were measured. An error
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Distance = 50 cm Distance = 70 cm
Task # of commands Time (s) Time (s)
Task 1 4 10:2 25:7
Task 2 6 17:9 19:0
Task 3 5 12:5 13:0
Task 4 5 15:9 12:5
Task 5 5 12:8 12:5
Task 6 5 13:0 17:2
Task 7 5 12:0 11:1
Task 8 5 12:2 09:5
Task 9 5 22:4 21:3

Table 4.2.: Times to navigate the HMI main menu with the BCI using two different
distances to the visual stimulation.

was counted when the BCI made a classification that did not correspond with the
user’s intention. The test paradigm was as follows: The subjects were asked to
look at each of the light sources and to perform some random commands to get
used to the system for a few minutes. The SSVEP response was measured and the
threshold for each participant was adjusted before the actual test began. The time
required to execute the task, the number of errors and the estimated seconds per
command for the 7 test subjects are reported in Table 4.3. Subjects #6 and #7
were not able to produce a sufficiently strong SSVEP response and thus were not
able to perform the task. With subject #6 strong response was only obtained at
13 Hz. For subject #7 strong responses were obtained for 13 Hz and 14 Hz. The
other five subjects achieved on average a classification rate of 96% and selection
speed of 4.61 seconds per command. After the experiment, all participants were
asked if the task was fatiguing, if the flickering lights caused any inconvenience,
and if the selection task required considerable mental load. All participants found
the task non-fatiguing. None reported about any inconvenience concerning the
flickering lights, and none found that the task required a high mental load [10].

4.4.3. Discussion

In this chapter, an application of Brain-Computer interfaces in the service robotics
area was presented. The MASSiVE software structure and the FRIEND-II system
support the daily activities of people with severe disabilities by, among other
things, controlling a seven degrees of freedom lightweight manipulator mounted on
a commercial wheelchair. A large number of tasks such as pouring in a beverage
or serving a beverage can be executed on a high level of abstraction using an
SSVEP-based BCI, as shown in Fig. 4.6. This is done by detecting four distinct
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Subject Errors Time (s) # of Seconds per
commands command

1 0 18:8 8 2.35
2 0 38:9 10 3.89
3 1 72:3 10 7.23
4 0 49:7 10 4.97
5 1 46:2 10 4.62
6 - - - -
7 - - - -

Table 4.3.: Time required to execute the experimental task, the number of erros
and the estimated seconds per command for 7 test subjects.

patterns in the brain activity of the user, who must be able to move the eyes to
focus on the different light sources. It means that patients who have no voluntary
muscle control of any sort including no control of eye movement cannot control
this system. Potential users of this BCI application are those who have only a
very limited capacity for neuromuscular control but can still control eye movement
to operate the system. This group includes people with brain stem stroke, severe
cerebral palsy and spinal cord injuries [1]. A BCI based on SSVEP is an alternative
to, or can be used in combination with, an eye-tracker. The only disadvantage of
an SSVEP-based BCI system is that the user is constantly confronted with visual
stimuli, which can become exhaustive after longer usage.

An advantage of BCIs based on evoked potentials is that they can achieve
higher information transfers rates compared to systems that do not use external
stimuli. However, current BCIs are still too slow for controlling rapid and complex
sequences of movements. Instead, the user has to execute control on a higher level.
With the system presented in this work, the user can initiate the execution of a
robot arm task by simply executing five consecutive commands, which is done
in less than 15 seconds. Another advantage of the presented SSVEP-based BCI
system compared to other non-invasive BCIs based on slow cortical potentials
or motor imagery is that no training is required before using the BCI. SSVEP
responses are strong inherent brain signals which can be well detected. With
BCIs based on motor imagery, users need an initial training period that can take a
couple of hours or a few days. They learn to control some mental task, for example,
imagination of left and right hand or foot movement. With the proposed SSVEP-
based BCIs, the only parameter that needs to be adjusted is the user-defined
threshold. It is important to note that there are some subjects for which the SNR
signals are not strong enough to be detected. The percentage of the population
for which BCI control does not work well enough to control applications has been
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Figure 4.6.: Pouring beverage into a glass and serving a beverage scenario.

investigated in chapter 6.

4.4.4. Conclusion

The aim of this work was to integrate an SSVEP-based BCI into a semi-autonomous
architecture that controls a robot arm to provide disabled users independence from
care givers. With 4 commands the user navigates the main menu of the robot archi-
tecture, which in turn controls the manipulator. These commands are generated
by the BCI system which detects 4 frequencies, 13, 14, 15 and 16 Hz, when the
user is focusing his/her attention on the flickering LEDs. The number of tasks that
can be executed by the robot arm can be increased without adding new flickering
lights. It has been show that this control system provides effective navigation
times for high level control. An average speed of 2.38 seconds per command was
achieved with a distance of 0.5 meters from the LEDs providing the visual stimu-
lation. Additionally, the classification accuracy of the SSVEP-based BCI was 96%
in a group of 5 persons. These results demonstrate that goal-oriented control of
a rehabilitation robot with a BCI is possible. It also demonstrates the robustness
of the Bremen-BCI system, because the test environment was (unlike most other
BCI studies) not a shielded room with ideal conditions for EEG recording. The
fact that two out of seven subjects were not able to produce SSVEP cannot be
accounted to the inefficiency of the BCI system. Rather, this is a result of using
untrained subjects for this study. Although many subjects can perform selec-
tive attention tasks without any training, some subjects need training to learn to
perform the task of selective attention effectively.
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Feedback Tasks

This chapter presents the development of a general software framework that en-
ables the implementation of BCI feedback tasks. The novelty of the interface is
the control via brain computer interface (BCI). The user communicates inten-
tions through a BCI, which translates brain signals into control commands. The
motivation for the development of this interface was the need to give feedback
to the user. A first implementation of the feedback interface was a spelling de-
vice [101], which is described in section 5.5. The spelling device consisted of a
matrix of characters, and its operation was based on 2-dimensional cursor control,
four commands for navigation and one for selection. The effectiveness and robust-
ness of the spelling program controlled via an SSVEP-BCI was demonstrated at
the CeBIT 2008 (world’s largest information technology fair) on 106 subjects [102],
and at the RehaCare 2008 (leading international trade fair for rehabilitation) on
36 subjects [103]. Results of both studies are presented in chapter 6. The second
implementation of the feedback interface led to a more general design, which in-
cluded not only a BCI spelling application but a set of cooperating classes that can
be reused to build any BCI application or feedback task. This chapter describes
the technical realization of both implementations. After giving an overview about
the software requirements of the speller task and visual stimulator, the design and
implementation of a general purpose application interface that provides real-time
frequency generation and feedback for the user is presented.

5.1. Introduction

BCIs have an extensive range of possible practical applications, from very simple
to very complex. The eventual practical importance of such applications depend
on their capabilities, practicability, and reliability, on their acceptance by spe-
cific kinds of users, and on the extent to which they have important advantages
over conventional methodologies. The practicability of BCI applications require
thorough evaluation to demonstrate their long-term reliability, their functionality
and acceptance across a large range of people. Particularly in the first stages of
their development, the implementation of a general application interface able to
configure applications that match each user’s unique needs, desires and physical
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and social environments is needed. This chapter presents the development of such
general interface for BCI applications, whose output is the feedback that the brain
uses to maintain and improve the accuracy and speed of communication. The idea
to create a more general software than the solution presented in 5.5.3 for a speller
task was initiated after several analyses of the results obtained from conducted
studies on healthy subjects as well as on disabled users (see chapter 6). The ini-
tial goal was to produce a more reliable frequency generation and improve the
feedback presented to the user. Those considerations led to the design and im-
plementation of a software framework that is be the basis for the implementation
of new BCI applications, which can adapt to the users’ preferences and different
signal processing methodologies. The software presented here is developed to be
as general as possible and to provide real-time feedback to the user. Feedback pro-
vides information of the correct or incorrect response in a synchronous (cue-based)
or asynchronous (uncued) BCI. This feedback can be discrete or continuous, one-
or more dimensional, real or virtual. Feedback is not only important during the
training period but also during the operation of the BCI application. Therefore,
several feedback tasks were implemented for testing new paradigms or stimulus
characteristics (stimulus presentation task), for BCI training (speller, labyrinth,
robot control task) or for communication purposes (speller task). One of the main
features of the software is the visual stimulation for SSVEP-based BCIs, which
includes the difficult task to generate frequencies and the display of stimuli on the
computer screen in real-time.

5.1.1. Repetitive Visual Stimuli

Exogenous BCI systems rely on activity elicited in the brain by external stimuli,
such as BCIs based on Steady-state Visual Evoked Potentials (SSVEP). To elicit
an SSVEP, a repetitive visual stimulus is presented to the user. Each command
is associated with a repetitive visual stimulus. If users direct attention to one
such stimulus, activity over occipital areas at corresponding frequencies can be
used to infer user intent [23]. The stimulus may oscillate at a frequency from 1 to
100 Hz [59]. The properties of the visual stimulator such as frequency, contrast,
color, are dependent of the rendering device and influence the SSVEP response
(amplitude and phase). This section presents the three properties of the repetitive
visual stimuli that have a significantly effect on the strength of the SSVEP signal,
the rendering device, color, and frequency.

Stimulus Type

In SSVEP-based BCIs research, visual stimulators are typically displayed on two
types of devices, light sources and computer monitors [104]. The repetitive visual
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(a) single graphic stimuli (b) pattern reversal stimuli

Figure 5.1.: Stimuli rendering options for visual stimulation on a computer screen.
From [104].

stimulus can be rendered on a computer screen by alternating graphical patterns,
or with external light sources able to emit modulated light. Stimulus presentation
for SSVEP-based BCIs is typically rendered using either single graphic stimuli or
pattern reversal stimuli, as shown in Fig. 5.1.

Light stimuli are rendered using light sources such as light emitting diodes
(LED) [105], fluorescent lights [106], or Xenon lights [107], which are modulated at
a specific frequency. The frequency of the light sources are typically controlled by
electronic circuits, which internally used microcontrollers for frequency generation.
These kind of circuits provides accurate waveform generation.

Single graphics stimuli are rendered on the computer screen in form of rectan-
gles, square, images or arrows (see Fig. 5.1(a)). The single stimuli appear and
disappear from the background at a specific rate.

Pattern reversal stimuli are rendered by alternating at least two graphical pat-
terns, for example, checkerboxes or lineboxes, as shown in Fig. 5.1(b).

Stimulus Color

Color is other characteristic that may affect the quality of the SSVEP response
with different displays. Regan (1966) reported the effect of stimulus color on
average SSVEP potentials by showing the relationship between the peak-to-peak
amplitude of the potentials evoked by red, yellow, and blue stimuli [108]. He found
an interesting dependency on the frequency of the stimuli. For both blue and red
light the low-frequency flank of the amplitude peak was very steep, but for the
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high-frequency flank was less steep for blue than for red. Red stimuli had the
most selective amplitude peak, and yellow the least. In other study, chromatic
(isoluminant red and green sinusoidal gratings) and achromatic (black and white
sinusoidal gratings) VEPs were compared [109]. The second and four harmonic of
the SSVEP were affected by the chromaticity of the visual stimuli. For SSVEP-
based BCIs that use LEDs for stimulation, red, green, and white color have been
used, whereas red color is the most used. For pattern reversal and single graphic
stimuli, the white and black combination is the most popular. Nevertheless, at
present there is no study that addresses how color influences the performance of
SSVEP-based BCIs [104].

Stimulus Frequency

The stimulation frequency is one of the most important properties of the repetitive
visual stimuli. When a subject gazes at the stimulus, SSVEP is induced in the
brain. The fundamental frequency of the evoked SSVEP matches exactly the
frequency of the target. Boundaries of SSVEP are often defined in the 3–50 Hz
range. However, flickering stimuli at very low frequencies (� 3Hz) can induce
SSVEPs [110]. Also, other investigations have shown that SSVEP can be elicited
up to 80 Hz [59]. Those frequencies can be classified into three frequency bands
as suggested by Regan (1989) [57]: low (1–12 Hz), medium (12–30 Hz), and high
(30–60 Hz). The frequency resolution of the SSVEP is about 0.2 Hz and the
bandwidth in which the SSVEP can be effectively observed is between 6 and
24 Hz (empirically determined values) [55].

5.2. Software Specifications

The problem was specific to the design and implementation of a spelling applica-
tion with the following requirements:

• Graphical representation of a spelling layout with the possibility to adjust values
and properties of the targets (letter and symbols).

• Graphical representation of SSVEP visual stimulation, and configuration of stimuli
parameters such as color, frequency, size, etc.

• Real-time frequency generation.

• Discrete feedback presentation in form of 2-dimensional cursor control and mapping
of BCI commands for cursor directions and target selections.

• Continuous feedback representation.

• Control via a brain computer interface.
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• Network connections for the acquisition of control signals from any BCI signal

processing module.

5.3. Software Design

The software design based on the requirements described above led to the design
and implementation of a more general application interface able to configure BCI
applications and provide real-time feedback to the user. The aim was to evaluate
the practicability, reliability and acceptance of new applications and feedback
methods for BCI.

The solution was designed specific to the problem at hand but also general
enough to address future problems and requirements. The idea was to avoid re-
design in the case of the implementation of new feedback tasks, which were not
necessary known at the time of software creation. This important issue led to
consider the use of a design pattern. As defined in [99], a design pattern explains
a general design that addresses a recurring design problem in object-oriented sys-
tems. It describes the problem and gives a solution as a general arrangement of
elements (objects and classes in this case) that solve the problem. Design patterns
make easier to reuse successful designs and architectures. The design pattern used
in this work focuses on the creation of BCI feedback tasks and real-time frequency
generation.

5.3.1. BCI Feedback Tasks

BCI feedback tasks are basically user interfaces that translate data coming from
the signal processing unit of the BCI into a visual representation on the screen to
provide visual feedback to the user. Any BCI application consists of the following
elements (see Fig. 5.2). The control signal is the output of the signal processing
module of the BCI and reflects user’s intent, the view is its screen representation,
and the parameters define application-wide settings that is constant during a run.
A run is the time period when the application is started, and ends when the
application is suspended. The application view must ensure that its appearance
reflects actual user’s input. If the control signals change, the view updates itself.
Besides the graphical representation of the feedback tasks, their configuration
is also of high relevance. A BCI application have to be constantly tested and
parameters have to be adjusted in regards to subject’s skills and preferences. Each
feedback task should be configurable in a modern and convenient way by means
of a graphical user interface (GUI). Between configuration dialogs and feedback
tasks exist a high cohesion, because configuration dialogs configure or parametrize
the tasks. In general, any feedback task follows five states of operation:
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View
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Parameters

Control signals

imports
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Figure 5.2.: BCI feedback task elements and their relationship.

1. Start-Up: instantiates the task.

2. Initialization: set application parameters.

3. Suspended: The task is suspended at the end of the initialization phase, the
task is fully configured.

4. Running: processes all incoming control signals.

5. Termination: closes the application window.

5.3.2. Real-time Frequency Generation

This section is dedicated to the frequency generation for repetitive visual stimuli
that are displayed on the computer screen. The basic principle of a repetitive visual
stimuli is the alternation of a single graphical object that appears or disappears
into the background at a specified rate. The stimulation rate is reported as the
number of full cycles per second, normally simply referred to as the frequency of the
stimulus [104]. Single graphics stimuli elicit an SSVEP response at the frequency
of one full cycle (i.e. two alternations). Thus, the period of one alternation for
any single graphic stimulus is given by

T =
1

2f
(5.1)

The timing of the graphical alternations is a real-time task that needs a special
design and implementation. The first version of the software made use of mul-
timedia timers (see section 5.5). This approach showed that the usage of timers
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did not produce the best scheduling for the repetitive visual stimuli because of
their accuracy and resolution. Timers do not have the possibility to check if the
requested number of timer clicks could be delivered or not. For example, if a
timer is unable to deliver the requested number of clicks, it will silently discard
some. Moreover, they are not guaranteed to time out at the exact value specified.
In many situations, they may time out late by a period of time that depends on
the accuracy of the system timers. Most platforms support a resolution of 1 mil-
lisecond, though the accuracy of the timer will not equal this resolution in many
real-world situations [111].

To minimize problems experimented with timers, the solution proposed here
makes use of a worker thread. The thread operates at a sampling time Ts, from
which the stimulation frequencies are calculated. The number of frequencies that
can be generated depend on the number of alternations and the sampling time Ts,
in this case, two alternations are used. Thus, the period Tn for a single stimuli n
in function of the thread sample time Ts is defined by

Tn ∈ {2mTs} ;m = 1, 2, 3, . . . ;n = 0, 1, 2, . . . (5.2)

Using the relation between period and frequency, all possible stimulation frequen-
cies fn that can be generated using two alternations are calculated by

fn ∈
{

fs
2m

}
;m = 1, 2, 3, . . . ;n = 0, 1, 2, . . . (5.3)

where fs is the sampling frequency of the worker thread. Table 5.1 shows an exam-
ple of all possible frequencies that can be generated with a worker thread operating
with a sampling time of 20ms and two alternations (a total of 25 frequencies can
be generated). The number of generated frequencies could be increased up to 50
by using different number of alternations, but that would influence the duty cycle
of the stimulation frequency and thereby the SSVEP response to the stimulus.
With two alternations the duty cycle is kept at 50%.

For the implementation of this approach, the system parameter Ts is crucial and
must be selected respect to several constraints, e.g., the hardware (microprocessor,
graphic card) and the operating system. From (5.3), it can be also deduced that
the maximum possible frequency for a virtual LED (VLED) that can be generated
using this approach is half of the sampling frequency fs of the worker thread, that
is

max fn =
fs
2
. (5.4)

If the stimulation frequency is produced in form of a square wave, there exist
two states. Each VLED vn has an active or ON state (vn = 1) that shows a single
graphic item, and a passive or OFF state (vn = −1) that hides the graphic item,

vn ∈ {1,−1} ;n = 0, 1, 2, . . . (5.5)
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n m Tn(ms) fn(Hz)

f0 1 40 25.00
f1 2 80 12.50
f2 3 120 8.33
f3 4 160 6.25
f4 5 200 5.00
f5 6 240 4.17
. . . . . . . . . . . .
f24 25 1000 1.00

Table 5.1.: Stimulation frequencies generated using Ts = 20ms (fs = 50Hz).

The flickering frequency is then produced by changing the state of the VLED.
To determine when a VLED must change its state vn, a counter cn is introduced
for each VLED. The counter cn describes how many times the worker thread is
executed before the corresponding state vn changes. The value of the counter is
calculated in relation to the period Tn by

cn =
Tn

2Ts
. (5.6)

In general, for each sample point k in which the worker thread is executed,

t = kTs; t ≥ 0 (5.7)

⇔ k =
t

Ts
(5.8)

all counters cn are subtracted by 1:

∀n : cn,k = cn,k−1 − 1 (5.9)

At sample point k = 0, the initial value for all counters is first calculated as
indicated by (5.6)

∀n : cn,0 := cn =
Tn

2Ts
. (5.10)

Then, the state vn,k of the VLED is changed only if the corresponding counter
cn,k is equal to 0:

∀n : vn,k =

{
cn,k = 0 (−1)vn,k−1
cn,k = 0 vn,k−1

(5.11)
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Figure 5.3.: Example of the generation of two stimulation frequencies with T1 = 2Ts

and T2 = 4Ts.

When a counter cn,k reaches zero, its current value is reset to its initial value
calculated as in (5.6) to be ready for the next state change, as follows:

∀n : cn,k =

{
cn,k = 0 Tn

2Ts

cn,k = 0 cn,k−1
(5.12)

Fig. 5.3 shows an example of the generation of two different stimulation fre-
quencies using the worker thread approach. E represents the execution state of
the worker thread. E = 0 means that the worker thread is suspended, and E = 1
that the thread is running or executed. For simplification of this example it is
assumed that the thread is not interfered by other threads or processes. v1 and
v2 are VLEDs with flickering periods T1 = 2Ts and T2 = 4Ts, respectively. c1 and
c2 are the corresponding counters for each VLED.

For a stimulation frequency with period T1 = 2Ts, the initial value of the counter
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c1 is calculated by

c1 =
T1

2Ts
=

2Ts

2Ts
= 1 (5.13)

The initial value of c1 is 1, meaning that the counter c1 only can switch between
the values {0, 1}. The VLED v1 changes its state every sample point k = t

Ts
, which

results in the maximal possible flickering frequency f1 =
fs
2 = 1

2Ts
.

For a frequency with period T2 = 4Ts, the initial value of the counter c2 is
calculated by

c2 =
T2

2Ts
=

4Ts

2Ts
= 2 (5.14)

This counter c2 switches between the values {0, 1, 2} and the state v2 of the VLED
only changes every second sample point 2k = 2t

Ts
. This results in a flickering

frequency f2 =
fs
4 = 1

4Ts
, which is shown in the time diagram as v2.

5.4. Software Implementation

The programming language used for the implementation of the design pattern was
C++ [112], and the Qt4 [111] framework was selected for graphical representation.
The proposed design pattern bundles base functionality which is useful for any BCI
application into a base class. This functionality comprises the acquisition of sig-
nals, parametrization of application view position and dimensions, maintaining an
application log and application messages to the user, initialization and processing
events that occur during system start-up and operation, evaluation methods of
user performance (time, accuracy and information transfer rate). Each specific
feedback task consists of a set of common operations defined by its interface. New
tasks can be defined in terms of existing classes using class inheritance. When a
task class inherits from a parent class, it includes the definitions of all data and
operations that the parent class defines.

Fig. 5.11 shows an unified modeling language (UML) [113] class diagram with
the participants of the design pattern. Four different tasks for representing BCI
signals were implemented. All tasks have identical interface but different imple-
mentations. The classes defining a stimulus presentation, speller, labyrinth, and
robot feedback tasks are the concrete BCI applications.

The following classes are the participants in the design pattern:
ApplicationBase is the base class from which all feedback task classes inherit.
StimulusTask is a base class for application modules that require the presen-

tation of stimulus flickering with a desired frequency. It implements real-time
frequency generation using a worker thread (see section 5.3.2).
FeedbackTask is a base class for application modules that provide feedback in

a trial-based paradigm.
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Figure 5.4.: UML class diagram for BCI feedback tasks and their configuration di-
alogs.
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Figure 5.5.: UML class diagram for parameter lists.

Objects of type FeedbackTask or StimulusTask are not use directly; rather,
subclasses inherit from it, and implement specialized behavior building on the
base functionality provided by this classes.

StimulusPresentationTask, SpellerTask, LabyrinthTask, and RobotFeedback-
Task are the concrete products or concrete task classes.

ApplicationConfig is the task creator. It instantiates the concrete task object
and is the base class for configuration dialog classes.

StimulusConfig, StimulusPresentationConfig, SpellerConfig, Labyrinth-
Config, FeedbackConfig and RobotFeedbackConfig are the concrete creators,
which means here the concrete configuration dialog implementations.

MainOperator is the experimenter’s user interface, determines the system con-
figuration and which task should be started.

ParameterList is used to hold and transfer information between the tasks and
its configuration. It holds all information needed by every task class to represent
the model.

StimulusParameters, StimulusPresentationParameters, SpellerParameters,
LabyrinthParameters, FeedbackParameters and RobotFeedbackParameters are
the concrete task parameters holding specific information for each task class.

5.4.1. Classes Description

ApplicationBase Class

ApplicationBase is the base class for all concrete products or concrete task
classes. It declares pure virtual methods [112], other methods and attributes.
ApplicationBase is not a pure virtual class [112]. The reasons are of practical

90



5.4. Software Implementation

Figure 5.6.: UML class diagram for ApplicationBase class.

nature, because in this way ApplicationBase can provide to its children gen-
eral methods and attributes. ApplicationBase inherits from QWidget because
all concrete BCI tasks should be graphically represented as widgets [111]. It has
also an aggregation to CGraphicsScene, which is a simple reimplementation of
the original Qt4 class QGraphicsScene. CGraphicsScene aggregates a QMutex

object to provide access serialization between threads [111]. A mutex avoids par-
allel accesses to the graphical representation (scene), which could cause undesired
graphical artifacts. Fig. 5.6 shows a detailed UML class diagram of this class.

Additionally, ApplicationBase has an aggregation to TcpServer, which holds
an implementation for listening on a TCP socket, and an aggregation to Connector-
Input, which is an implementation for incoming UDP packets. TcpServer is used
for the general interaction with other BCI software like signal processing modules,
whereas ConnectorInput is a concrete implementation for interaction with the
BCI2000 framework [18]. Both aggregations are static [112], because for different
instances of ApplicationBase children only one concrete TCP and UDP socket
can be used.

StimulusTask Class

The StimulusTask class is a cooperating class that makes up a reusable design for
the implementation of BCI tasks based on stimulus presentation. StimulusTask

is parent class from which another classes inherit. Its responsibility is the fre-
quency generation and presentation of stimuli within the framework. This design
provides the advantage that common methods and attributes can be provided
by only one implementation and do not have to be reimplemented several times.
StimulusTask can not instantiated directly, because it holds pure virtual methods
which must be implemented by its children. Fig. 5.7 shows a UML class diagram
of this class and other related classes for stimuli presentation. StimulusTask is
the parent class for all task classes that require stimulus presentation, e.g., speller
task and stimulus presentation task. StimulusTask holds an aggregation to the
nested class [112] StimulusThread.
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Figure 5.7.: UML class diagram of the StimulusTask class.

StimulusThread Class

The real-time frequency generation was also integrated in the design pattern.
StimulusThread is the implementation of the worker thread approach presented
in 5.3.2. To create the worker thread that controls the timing of the stimuli alter-
nations, the subclass StimulusThread inherits from QThread [111]. The QThread
class provides platform-independent threads. The sampling behavior of the worker
thread is then realized by reimplementing the virtual method StimulusThread::-

run(), which is the starting point for the thread. After calling start(), the
created thread calls run().

StimulusThread is a nested class of StimulusTask, because it needs direct
access to several members of its parent, which are private. This access is realized
by the aggregation m pParent of the type StimulusTask*, a pointer to its parent
class. Stimuli counters and states are located in StimulusTask::mStimuli, an
aggregation to the Stimulus class, which can be accessed by m pParent pointer.
StimulusTask always holds exactly one instance of StimulusThread, which is
described by the composition m Thread.

This methodology uses the soft real-time [114] methods existing in current op-
erating systems. These are mainly sleep-statements, which suspend a thread for a
certain amount of time. For the measurement of the execution time, the Advanced
Communication Environment (ACE) [115] communication framework was used.
The actual functionality of Qt4 does not provide the possible available accuracy
under a Linux-kernel, which is currently in the range of nano seconds, and therefore
ACE instead of Qt4 was used for this task. ACE is also platform-independent and
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Figure 5.8.: Different drifts of sample points.

therefore presents no limitation for the running operating system of the software.

Soft real-time systems could produce drifts of sample points. If the execution
of the thread for a sample point k is delayed about some Δt, the execution of
the next sample point k + 1 can not start at t = (k + 1)Ts. The next sample
point would start at t = (k + 1)Ts +Δt instead. If that occurs, it is said that the
sample point k + 1 has drifted. The consequence of a drift is that all following
sample points will drift about Δt. Furthermore, any additional drifts Δtn with
n = 0, 1, 2, . . . will be added to the drift. The time of later samples points are
calculated as t = (k+1)Ts +Δt+

∑∞
n=0Δtn. This is called global drift of sample

points. In general, drifts of sample points can not be avoided in soft real-time
systems because of their definition, but it is possible to eliminate the influence of
the drift of a single sample point. This can be done by calculating the time for the
next sample point. That means, in the case that the sample point k+1 has drifted
by t = (k + 1)Ts +Δt, the following sample point k + 2 will not drift, because its
start time t = (k + 2)Ts is calculated. This is called local drift of sample points.

Fig. 5.8 shows the difference between global and local drifts as time diagrams. E
is an ideal thread execution without any drift, Eg is thread execution with global
drift and El is thread execution with local drift. To avoid general global drifts,
the calculation of start points was implemented in StimulusThread and therefore
only local drifts can occur. This is assumed to be the currently best solution for
soft real-time systems.

To minimize the execution time of the thread, which directly influences the mini-
mal possible sample time Ts, some parts of the thread method StimulusThread::-

run() were manually enhanced by the usage of inline assembly statements [112].
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Although current compilers already provide a very good code optimization, it was
necessary to optimize code parts, which were very often executed like elements
of loops by manually written assembly parts with the aim to reduce the thread
execution time. The calculation of counters and VLED states is the main exe-
cution part of the worker thread and was therefore enhanced by inline assembly
statements. The minimal possible sample time Ts of the worker thread depends
on the hardware of the executing system. On the main testing system, it could be
observed that the enhancement with inline assembly reduced the minimal sample
time about approximately 2ms. Since the minimal sample time directly influences
the possible frequencies for generation (see equation 5.3), this can assumed to be
an important advantage.

A StimulusTask object can have a set of stimuli and therefore StimulusTask

has an aggregation of multiplicity * to the class Stimulus. Objects of the class
Stimulus, also shown in Fig. 5.7, are used for the graphical representation of
VLEDs. Their sates (on, off) are modified by StimulusThread as already de-
scribed above.

SpellerTask Class

SpellerTask is a concrete product in the design pattern because it can directly
be instantiated. It provides all functionality needed for a typical BCI spelling
application. This means on the one hand the graphical display of the virtual
keyboard or speller, but also the generation of flickering VLEDs. The speller
class inherits from StimulusTask to provide all visual stimulation functionality.
SpellerTask uses the mTcpServer aggregation of its base class ApplicationBase
to connect and interact with signal processing software. The speller class could
be also the basis for the implementation of new communication functions such
as sending/receiving emails, chatting, or surfing the web, which can effectively
improve the quality of life of the disabled user. The primary used speller task
configuration is presented in Fig. 5.9(a). It consists of a layout with 32 characters
arranged in a rhombus layout and five stimuli used to navigate the cursor and
select characters.

StimulusPresentationTask Class

This class presents sequential series of visual stimuli to the user. It implements
evoked responses, and selective attention paradigms, or screening sessions. The
sequence and characteristics of the stimuli can be parametrized though its corre-
sponding configuration dialog. Fig. 5.9(b) shows an example of a stimulus presen-
tation task. The subject’s task is to focus attention to the stimulus flickering at a
desired frequency while performing series of mathematical tasks.
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LabyrinthTask Class

The LabyrinthTask class is the implementation of a training environment that
navigates an object or a cursor through a 2D maze, the subject’s task is to bring
the cursor from the start position to the final position. The input signals can
be control signals from a BCI or key events. The labyrinth task responds to
four control commands: “move forward,” “move backwards,” “turn right,” and
“turn left.” This task was already used to train users to modulate sensorimotor
rhythms by performing three mental tasks (see chapter 3). Additionally, this
task measures performance in terms of competition time (s), accuracy (%), and
information transfer rate (bit/min). This information is updated every second
and presented at the bottom of the display. Fig. 5.9(d) shows a screen-shot of
the labyrinth display after the finalization of an experimental run. The cursor
is represented by a green arrow. LabyrinthTask inherits from ApplicationBase

and implements the following methods:

1. Initialize(): set application parameters. The cursor is located at the “start”
position and waits for data to process. All counters are reset.

2. StartRun(): the run is started only when a “move forward” command is
received. The cursor will move forward to the next position in the labyrinth.
At this time point the experimental run is started and the current time is
measured.

3. Process(): this method maps all commands received via TCP or UDP into
cursor movements.

4. StopRun(): the task is suspended at the end of the initialization phase, the
task is fully configured, or when the “finish” position has been reached.

RobotFeedbackTask Class

The RobotFeedbackTask class is the implementation of a virtual training environ-
ment that shows the model of a robot manipulator mounted on a wheelchair in a
3D space (see Fig. 5.9(c)), similar to the FRIEND system at IAT. This task was
included in the software to be used in further feedback studies or to train subjects
before they operate the real system. This class includes the libMVRGL library that
provides a set of classes to map objects using virtual reality (MVR) [116]. Real
objects can be modeled by combining three simple shapes (cuboid, cylinder and
sphere).
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(a) Speller task (b) Stimulus presentation task

(c) Robot feedback task (d) Labyrinth task

Figure 5.9.: Visualization of four different BCI feedback tasks implemented in “Neu-
rofeedback” using the classes of the BCI feedback framework.
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MainOperator

The MainOperator class uses the framework elements to provide an application
(executable) called NeuroFeedback.exe. The main operator is a window that
shows an icon for each available feedback task.

5.5. Speller with Integrated Stimulator

This section presents the speller application with integrated SSVEP stimulator
used in the experiments in chapter 6. The application consist of a matrix of 32
possible selections (letters and symbols) and five single graphics stimuli encoding
five different commands (see Fig. 5.10). The matrix is navigated right, left, up
and down to reach a character by focusing on the flickering lights. With this
integrated system, the stimulus and the visual feedback are provided on the same
screen and therefore the user’s attention is kept on the same place, making the
execution of tasks faster and avoiding error-classifications. The user does not
need to switch attention between the stimulus and the feedback provided by the
speller application to see if the output corresponds to what she/he wanted to
spell. An earlier version of the system [10] (see chapter 4) had an array of LEDs,
but subjects had to shift attention from the monitor to one of five LEDs to effect
control. Subjects complained that switching attention from the monitor to another
target, often located outside the fovea, impaired performance and ease of use.
Therefore, the integration of stimulus sources and feedback in one application was
more suitable.

5.5.1. Spelling Layout

The spelling layout was chosen depending on the strategy used for selecting char-
acters and the available number of commands. When only binary decisions of the
BCI are used to select letters, a procedure that employs partitioning the alphabet
until the desired letter remains may be suitable. With the Bremen-BCI more than
two commands can be robustly detected. Therefore, a selection strategy based on
five commands was used for this spelling application. In prior work carried out at
the IAT lab, two different spelling layouts and selection schemes were compared
and evaluated to be controlled with five commands [117]. The Row-Column layout
is similar to the design commonly used in P300 spelling programs, where letters
are chosen by first selecting the row containing the desired letter and then the
column. The Rhombus layout is that in which a cursor is navigated right, left, up
and down to reach the desired letter. It was found that the row-column layout
was faster, especially for strong performing subjects. For low performing subjects,
the rhombus layout may be more suitable because accidental commands or error-
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Figure 5.10.: Brain actuated spelling device with integrated visual stimulator.

classifications can easily be corrected by the user. An error only means that the
cursor moves one step in the wrong direction. In the row-column layout, all com-
mands are implicitly select-commands. Thus, with the Rhombus layout is easier to
keep a constant visual attention and accidental commands or error-classifications
can easily be corrected by the user. Therefore, the rhombus layout was selected as
spelling layout for the Bremen-BCI application. Some modifications to the Rhom-
bus layout were done. Delete and clear functions were implemented as additional
characters and some other characters were added.

Fig. 5.10 shows the spelling layout used in this application to be controlled
with five commands. The display consisted of a matrix with 32 letters and other
characters that the subject could communicate. Delete and clear functions were
elements that can be selected in the matrix. Letters were ordered depending on
their occurrence in the English language. Except for the letter ‘E,’ which its
occurrence is the most frequent in the English alphabet, two or more commands
are needed to select a letter. Other frequent letters are ordered to be reached
without any attention switches, e.g., the letter ‘C,’ can be reached just by using
the “right” command three times. It is assumed that the sequence right-right-right
is faster to execute than left-up. The selection of a letter requires navigating the
cursor right, left, up and/or down until the desired letter is reached. Once a letter
has been selected, the cursor starts over at the center position, the ‘E’ character.

5.5.2. Visual Stimulator

The SSVEP stimulator consists of single graphic objects that appear and disap-
pear in the background at a specific frequency. Visual stimulators displayed on
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the computer screen implement virtual LEDs and its frequency is generated on
software by alternating the graphics objects [101]. The stimulator for the spelling
layout displayed in Fig. 5.10 requires five VLEDs that flicker to a desired fre-
quency on the computer screen. For two dimensional control, four stimuli encode
cursor movement commands (left, right, up and down) and one command for the
selection of a character. Each VLED is alternated in constant intervals depending
of the stimulation frequency.

5.5.3. Speller Program

The speller program is the software implementation of the spelling layout and
visual stimulator described above. The object-oriented programming language
C++ [112] was selected for this implementation. For the visualization of the
speller and the visual stimuli, the cross-platform framework Qt4 [111] was used.
Qt4 supports 2D graphics applications by incorporating a broad set of render-
ing, texture mapping, animations, special effects, and other powerful visualization
functions. The speller application is a graphical interface that consist of rectangu-
lar elements that can be either targets or stimulus, and a status bar that shows the
spelled text. Targets are objects that perform an action when they are selected;
and stimulus are objects that can present or hide itself performing a flickering
action. This application receives five commands from the BCI analysis software.
Four commands correspond to cursor movements and the fifth command performs
letter selection. The cursor moves by highlighting the current target and a letter
is selected by appending the current target text to the status bar text. If “‘Del” is
selected, the last character is deleted from the status bar and for “Clr,” the status
bar is cleared.

An UML class diagram of the spelling application is shown in Fig. 5.11. The
spelling program consists of the following classes:

MainApplication class is the application main window. It inherits from the
QWidget class. A widget is the base element in Qt and the base class of all user
interface objects. MainApplication is a window with a frame and a title bar. It
contains an object of the TcpServer type for network connections and an object
of the Speller type for showing the graphical interface for the speller application
and the visual stimulator. Information about the state of the client connection is
available on its title bar. It also receives mouse and keyboard events from the win-
dow system. Keyboard events are received by reimplementing keyPressEvent().

Speller class is a widget responsible for displaying targets (letters or symbols)
and stimuli objects. This class is based on the graphics view framework of Qt [111],
which provides a surface for managing and interacting with a large number of 2D
graphical items (scene), and a view widget for visualizing the contents of the scene.
A QGraphicsScene object contains items of varying geometric shapes and serves
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Figure 5.11.: UML class diagram of the spelling device with integrated visual stim-
ulator based on multimedia timers for frequency generation.
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as a container for QGraphicsItem objects. QGraphicsScene is used together with
QGraphicsView for visualizing the items. Targets are represented by text items
(QGraphicsTextItem) and the cursor matrix is represented by rectangle items
(QGraphicsRectItem). The matrix of targets and cursor items are added to the
scene by calling QGraphicsScene::addItem() in DoTargets(). The cursor initial
postion is the target ‘E.’ The speller responds to four commands, “left,” “right,”
“up” and “down” by highlighting the character at the current position. When the
command “select” is received, the current character is displayed on the status bar,
which is a QLineEdit object, located at the bottom of the application window.
The ProcessCommands() method responds to BCI commands. The speller class
also provides acoustic feedback when a character is selected and when the cursor
is moved. Stimuli are objects of the Stimulus class and are added to the scene by
calling DoStimuli(). The scene is updated as soon as all events in the window
system’s event queue have been processed.

Stimulus class represents the functionality of a flickering LED. In a typical
SSVEP-based BCI application, a flickering light is associated with a certain control
command and is needed for visual stimulation. The main functionality of this class
is to perform a flickering action by changing the current visible state of the virtual
LED. An object of the class Timer is needed for setting the intervals, in which
the virtual LED is shown or hidden. A timer is started for each VLED and the
timer interval is set depending of the desired flickering frequency. Timer intervals
are calculated as half of the period. If the member variable mState is true the
VLED is shown, otherwise it is hidden, when the scene is updated. In this way
the flickering frequency is generated. An event is sent each time the timer finishes
counting. The texture, stimulus frequency, and other display parameters can be
adjusted to each user.

TcpServer class provides a TCP-based server. The Transmission Control Pro-
tocol (TCP) is a low-level, stream-oriented network protocol used for transmis-
sion of data. The TCPServer class makes possible to accept incoming TCP
connections. The function listen() is called to have the server listening for
incoming connections. The server listens on a specific address and port. The
newConnection() signal is then emitted each time a client connects to the server.
The nextPendingConnection() accepts the pending connection as a connected
QTcpSocket. The spelling program is started as server and waits until the BCI
connects to start flickering the VLEDs objects. When data is available on the lis-
tening port, a signal is emitted to the Speller class, which maps the commands
into cursor movements or letter selections.

Timer class implements a multimedia timer that provides high-resolution tim-
ing. The TimeProc function is called once upon the expiration of periodic events
changing the state member variable of the virtual LEDs.
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5.6. Conclusion

In this chapter, the requirements, design and implementation of a general appli-
cation interface for the presentation of BCI feedback tasks were described. The
challenges of this software are the real time frequency generation to present visual
repetitive stimuli on the computer screen, and the presentation of different types
of feedback for the user (e.g., feedback that shows real time SSVEP activity) to
investigate the feasibility of new feedback methods. These two aspects are the
basis for the robustness of the feedback interface system presented in chapter 8,
which used the classes of the framework. The motivation to build a more modern
and general concept was the development of the speller program (see section 5.5)
whose extension was very limited; and the necessity to provide a more reliable fre-
quency generation for visual stimulation than the offered with multimedia timers.
While in the speller program all classes were designed to accomplish the immedi-
ate goal unconcerned about future changes, the software framework presented in
this work based on extendability and re-usability concepts to offer the possibility
to develop others feedback tasks based on the exiting classes of the framework.
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6. Influence of Subject Demographics
on BCI Performance

Brain-computer interface systems provide severely disabled users with communi-
cation and control. This remains the principal focus of many research groups.
However, there has been increasing attention to using BCIs to provide communi-
cation for new user groups, such as healthy users or persons with less severe dis-
abilities. But before BCIs can become practical communication tools—for existing
or new user groups—BCI demographics must be better explored and addressed.
It is unclear why some BCI approaches or parameters are less effective with some
users. One of the most consistent observations in the BCI literature is consider-
able inter-subject variability, and thus the need to customize various parameters
according to each user [1, 21, 62, 118]. Inter-subject variability often leads to the
well-documented “BCI illiteracy” phenomenon; across different BCI approaches
(SSVEP, P300, ERD/ERS), about 10–25% of users are unable to attain effective
control [5,21,58,77,119,120]. While some of these (and other) articles have spec-
ulated about the causes of inter-subject variability and BCI illiteracy, there has
been little applied research to study why they occur.

This chapter elucidates BCI demographics by exploring correlations among BCI
performance, personal preferences, and different subject factors such as age or
gender. Results of two studies conducted on two exposition fairs showed that
most people, despite having no prior BCI experience, could use the Bremen-BCI
system in a very noisy field setting. Performance tended to be better in both
young and female subjects. Most subjects stated that they did not consider the
flickering stimuli annoying and would use or recommend this BCI system. These
and other demographic analyses may help identify the best BCI for each user.

6.1. BCI Demographic Work

BCI demographics research could help address why some people are better at
BCI use than others, how genetic, background, and lifestyle differences affect
performance and preferences with different BCI systems. It could also help to
determine if it is possible that the best BCI approach and parameters could be
anticipated without extensive testing and modification, or maybe if BCI illiteracy
can be predicted. Demographic information could help to provide the best BCI
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for each user, ideally with little or no expert help to configure and adapt key
parameters.

The first study that assessed a BCI with several dozen subjects was titled “How
many people can use a BCI?” [121]. This article presented results from 99 un-
trained subjects who used a SMR BCI in a field setting. Subjects imagined moving
either the right hand or both feet in response to cues provided on a monitor. About
70% of subjects attained accuracy between 60− 80% in this two-choice task, and
about another 20% of subjects attained greater than 80% accuracy. This land-
mark paper made significant progress toward validating SMR BCI systems with
untrained users in field settings, but did not record any demographic information
nor subjective report. That is, while it helped to answer the question of how many
people can use a BCI, it did not provide any guidance as to why some subjects
were better than others. A very recent paper explored P300 BCIs across a similar
number of subjects, 35 of whom received questionnaires to explore demographic
issues [122].

The present work attempts to address BCI demographics through applied re-
search with a large number of subjects. The results of two studies are presented,
the CeBIT study [102], in which 106 subjects participated, and the RehaCare
study [103], in which 37 subjects participated including eight handicapped users.
The conduction of both studies was approved by the Ethics Commission of the Uni-
versity of Bremen. The principal goal was to assess SSVEP BCI performance and
evaluate correlations between performance, preferences, and individual character-
istics assessed with brief questionnaires both before and after BCI use. In addition
to evaluating objective dependent variables involving spelling performance, also
subjective information such as whether subjects found SSVEP BCI use fatiguing
or unpleasant was assessed. Additional goals were to explore phrase length (the
number of letters or characters spelled), path length (the number of consecutive
instructions needed per letter), and free versus copy spelling.

6.2. CeBIT Study

CeBIT is the world’s largest information and communications technology exhibi-
tion fair held every year in Hanover, Germany. This fair was very attractive for
the BCI research group of the university of Bremen, as it is an excellent location
for large data collection, since many people interested in new technologies can
be found, and would likely participate in a quite long procedure (45 − 60 min)
without reward. Apart from that, the noisy and busy setting meets the demands
to test BCIs in realistic environments, and the potential risk of sampling errors
due to technically biased subjects appeared reasonable. From the 4th to 9th of
March 2008, subjects were randomly recruited from visitors to the Institute of

104



6.2. CeBIT Study

Automation booth. The team consisted of seven researchers and four assistant
researches. The results of this study and statistical analyses are described in de-
tail in the following sections. They may contribute to find relationships between
human variables and BCI performance and, thus, may reduce time identifying the
best BCI for each individual user. Defining variables that influence the commu-
nication between brain and computer is an important step for BCIs to become
practical tools for heterogeneous user groups.

The principal goal of this study was to assess SSVEP BCI performance across a
large number of subjects. Individual user characteristics were assessed with brief
questionnaires both before and after BCI use and correlated with BCI spelling
performance. Gender was assumed to be an interesting factor based on prior find-
ings in other studies. Features may be significantly different in female subjects
compared to male subjects. Skosnik et al., (2006) found that female subjects
demonstrated higher SSVEPs to both 18 and 25 Hz stimulation assessed via spec-
tral power and phase-locking [123]. Kaufmann et al., (2001) suggested gender
differences in cerebral hemodynamics [124]. Some BCI studies have also observed
differences across subjects. Allison et al., (2008) found that female subjects pro-
duced greater differences than male subjects, but these effects were not significant.
Also, they observed that subjects who play video games every day perform bet-
ter on a visual attention task [119], which is consistent with other reports [125].
Other demographic variables like age and education as well as variables that po-
tentially influence the ability to focus attention, like fatigue or substances (alcohol,
nicotine, caffeine) are tested for statistical significance. BCI performance was mea-
sured as accuracy, efficiency and information transfer rate (ITR) during copy and
free spelling tasks. In addition to evaluating dependent performance variables
(accuracy, efficiency, and ITR), subjective information such as whether subjects
found SSVEP BCI use fatiguing or unpleasant, was also assessed.

6.2.1. Data Collection

All data were recorded from sites Pz, Oz, PO3, PO4, O9, and O10 from a cus-
tomized 74 channel montage based on the standard 10–20 system of electrode
placement [126]. Data were referenced to site FCz with a ground at site AFz. Elec-
trodes and caps were provided by Easycap. These electrodes required electrode
gel, as is typical of conventional EEG recording systems. Data were digitized and
amplified through a g.tec amplifier (Guger Technologies, Austria), which included
a bandpass filter of 2–50 Hz. Data were stored on a PC compatible laptop running
Windows Vista. The Bremen-BCI software system was used for all aspects of the
SSVEP display, real-time data processing, feedback, and data storage. Fig. 6.1
shows an example of a screenshot when a subject successfully spelled “IAT.” The
center of the display contained 32 letters and other characters that the subject
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Figure 6.1.: The display used in the CeBIT study.

could communicate. The letters were arranged according to their occurrence in
the English language in order to facilitate spelling and shorten the spelling time.
Delete (erase last character) and clear (erase all letters) were available by moving
the cursor to Clr or Del, respectively. At the beginning of each run, a cursor was
presented over the ‘E’ character, and once a letter was selected, the cursor went
back to the initial position. The bottom of the screen presented the character
sequence that the subject already selected. Thus, the bottom of the screen con-
tained no characters at the beginning of each run. Subjects spelled by focusing
on one of five boxes presented on a laptop monitor. Each box contained either an
arrow (left, right, up, or down) or the word “Select,” and oscillated at a different
constant frequency: 13, 14, 15, 16, or 16.5 Hz (respectively). They encoded a
corresponding command by the flicker frequency of the particular box. When the
user focused attention to a box, an SSVEP response of the same frequency as
the stimuli and its harmonics was elicited and thus measurable over the occipital
cortex. These frequencies, and the best arrangement of characters in the display,
were determined through prior work [100, 117] and pilot work [101]. The box in
the top right of Fig. 6.1 presented the real-time data processing of the EEG sig-
nals, the threshold, and some control buttons. The Bremen-BCI automatically
determined the best spatial filter for each subject using the algorithm in [100]
and then calculated the power at each of the five stimulation frequencies. The
detection relied on a threshold based linear classifier. If the power at a specific
frequency exceeded the predetermined threshold, the corresponding command was
executed. If more than one signal exceeded the threshold, the frequency with the
largest power was classified. To avoid multiple unintended executions of the same
command, a simple command-selection algorithm was applied, which ensured an
idle period of at least two seconds between subsequent commands. The spelling
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program was responsible for interpreting and mapping the commands (a detail
description of this software is available in section 5.5). For example, if activity
at 14 Hz exceeded the threshold, the command was send to the speller program
and the cursor moved to the right. There was no “wraparound” feature; if the
cursor could not move further to the left, then the cursor did not move if 13 Hz
activity exceeded the threshold. If activity at 16.5 Hz exceeded the threshold, the
character highlit by the cursor was selected. The EEG raw data and the executed
commands were stored in a text file on the laptop for further offline analyses.

6.2.2. Subjects

In this study, subjects were people who went to an exposition and had no prior
expectation of spending almost an hour following a protocol as a research subject.
Subjects also had no prior or subsequent contact with the experimenters nor any
incentive to complete the study. Test subjects were recruited from visitors to the
Institute of Automation booth at CeBIT 2008. This booth featured a monitor
display announcing that visitors might be able to participate as research subjects,
and could ask booth personnel for more information. All persons who asked to
participate in the study (after reading a consent form and subject information
sheet) became research subjects. Potential subjects were asked if they were at
least 18 years old or had a seizure, epilepsy, mental or physical disorders, or any
skin allergies. Subjects would have been rejected if they had answered yes to any of
these questions, but none of them did. A total of 106 subjects participated in this
study. Subjects’ mean age was 30.58 years and standard deviation was 11.863. Age
range was between 18 and 79 years. Fig. 6.2 shows the age distribution separated
by gender. The majority of the subjects were young males (76.42%) with mean
age 31.94± 12.164 years. The normality of the distribution was checked with the
Kolmogorov-Smirnov (K-S) test. Age may not be assumed to come from a normal
distribution (p > 0.001).

6.2.3. Experimental Protocol

All subjects were randomly recruited from visitors to the IAT booth and were
generally not chosen on the basis of gender or age. The subjects had the possibility
to inform themselves about the study through subject-information sheets offered
at the booth. If they were interested, they contacted a team-member. It was
first assured that every subject was full age and healthy (no epilepsy, mental or
physical disorders, or skin contact allergies). Then, the subject was given time
to read the consent form and ask questions. After completing a consent form,
each subject completed a brief electronic questionnaire and was prepared for EEG
recording. Subjects were free to abandon the study any time and without giving
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Figure 6.2.: Distribution of subjects’ age separated by gender.

any reason. In that case, the cap was removed and the recording was canceled.
The pre-questionnaire assessed subject information like gender, age, education
level, etc. While completing the questionnaire, the subject was prepared for EEG
recording. For each electrode, impedance was checked to be below 10 KΩ in order
to get good signal acquisition. The subject was sitting in front of a laptop that
displayed the SSVEP spelling program shown in Fig. 6.1.

Subjects participated in a practice run, in which they used the SSVEP BCI sys-
tem to write the word “BCI.” The experimenter used the resulting data to man-
ually adjust subject parameters. Next, each subject used the SSVEP BCI system
to spell five phrases. Four of these phrases were chosen by the experimenter (copy
spelling), and the fifth was chosen by the subject (free spelling). The four copy
spelling phrases were BCI, SIREN, CHUG, and BRAIN COMPUTER INTER-
FACE. Before the free spelling run, each subject verbally told the experimenter of
the phrase that s/he intended to spell so spelling efficacy could be assessed. The
order in which these five phrases were presented was determined randomly. Each
run ended when the subject spelled the desired phrase, or a similar phrase with
some errors, or made five consecutive errors, or chose to stop spelling. At the end
of each run except the last run, each subject had a short break lasting about 30
seconds. It was sometimes apparent that subjects were not able to spell effec-
tively. In such cases—specifically, if subjects made five consecutive errors in each
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Figure 6.3.: Automaton used in offline data analysis. From [102].

of the five runs—additional manipulations were explored. An experimenter would
manually adjust the threshold required to execute a command or the frequency
used for the “select” button was changed. After the phrases were spelled, subjects
completed a second electronic questionnaire to offer the possibility to evaluate the
system and provide feedback to the developers and the procedure was complete.
The entire procedure took about 40 minutes on average per subject, and never
more than one hour. This time does not include the delay between when a subject
asked to become a subject and when the above procedure began.

6.2.4. Offline Analyses

Offline analyses were conducted in order to assessed BCI performance defined as
the amount of information communicated per unit time (ITR). To this end, the
total of correct selections were counted, and the time needed to spell a phrase
was determined from the stored file. Before calculating ITR, it was necessary
to determine a set of rules to follow when interpreting the data. These rules
were decided after extensive visual inspection of the letters that were spelled and
consideration of different rulesets, then programmed in to an automaton (shown
in Fig. 6.3) to automatically identify which trials would be counted in further
analysis. ITR was then calculated based on the following formula:

B = log2N + P log2 P + (1− P ) log2

[
1− P

N − 1

]
. (6.1)

In this formula, B represents the number of bits per trial, N represents the total
number of possible choices, and P represents the probability of correct selection.
B was then multiplied by the number of selections per minute to obtain ITR in
terms of bits per minute.

The calculations were focused on real world communication—the message that
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was actually sent, rather than the stages necessary to form that message. Thus,
the automaton used the following rules:

1. ITR was calculated on the basis of the letters selected, rather than the low
level commands sent to the transducer [30, 127]. This led to an N of 32,
based on 32 letters, instead of an N of 5, based on 4 movement commands
and select.

2. Clear and backspace commands were counted as such, rather than as letters.
Thus, the message “Q DEL BCI” would be considered 100% accurate—that
is, the same as “BCI.” Since ITR was calculated based on the total time to
convey each message, errors reduced ITR by increasing the time needed to
correctly spell. Uncorrected errors were counted as such, so “BQCI” was
75% accurate.

3. Words were only counted if the entire word was spelled. Thus, “PUT” or
“HUG” were ignored. That is, these messages would not have been counted
as efforts to spell, and were not used in ITR calculations. This was done
because it was often difficult to objectively judge whether such phrases rep-
resented legitimate efforts to spell the phrase defined in the protocol.

4. When analyzing “BRAIN COMPUTER INTERFACE,” either separator
(the dash or space) or no separator between those three words was allowed.
Letters were not counted as separators.

5. Any additional selections after the word was spelled were ignored, but addi-
tional letters before the word were counted as mistakes. Thus, “QBCI” was
75% accurate, while “BCIQ” was 100% accurate. This was decided because
the program did not immediately terminate after the message was spelled,
since the word order was pseudorandom (including the free spelling run) and
hence neither the experimenter nor the software knew ahead of time which
word was intended. Thus, additional letters were sometimes accidentally
spelled after the word was complete even though the subject was not paying
attention to the BCI at all—a classic example of the Midas touch problem,
when extraneous information is mistakenly translated into a command [128].

6. Similarly, speed was defined as the time from the beginning of the run until
the run ended for one of the reasons listed above. If the software continued
running after the word was spelled, the extra time (like any extra characters)
was ignored.

7. Efficiency was defined as the minimum number of commands necessary to
spell the target phrase divided by the number of commands issued during
the run.

110



6.2. CeBIT Study

Pre-questionnaire
N Mean SD Range

Age Age in years 106 30.58 11.863 18–79

Gender 1 = Female 25 1.76 0.427 1–2
2 = Male 81

Need for vision correction 1 = Yes 46 1.48 0.502 1–2
2 = No 42
Not answered 18

Education level 1 = Junior high school 10 2.47 0.843 1–4
2 = High school 37
3 = College or university 31
4 = PhD 10
Not answered 18

Computer work (h/week) answered 88 33.13 16.937 2–80
Not answered 18

Computer games (h/week) answered 88 3.32 9.332 0–60
Not answered 18

Substances Alcohol 23
Caffeine 21
Cigarettes 16
Not answered 18

Hours of sleep last night answered 88 6.22 2.323 0–13
Not answered 18

Do you presently feel tired? answered 88 2.09 1.035 1–5
Not answered 18

Post-questionnaire
Did the system work well answered 84 3.39 1.336 1–5
for you? Not answered 22

Would you use or recommend answered 84 3.82 1.263 1–5
this system to others? Not answered 22

Do you think the BCI was 1 = concentrated on LED? 54 1.36 0.482 1–2
easier if you 2 = gazed at LED? 30

Not answered 22

Did you find it easy to answered 84 3.62 1.289 1–5
switch attention? Not answered 22

Did you find the flickering answered 84 2.55 1.274 1–5
stimuli annoying? Not answered 22

Do you presently feel tired? answered 84 2.31 1.242 1–5
Not answered 22

Table 6.1.: Answers collected from pre- and post-questionnaires. In questions that
could be answered in a 1–5 scale, 1 means no and 5 means yes.
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Figure 6.4.: Distribution of the number of words spelled by 106 subjects.

6.2.5. Results

Tables 6.1 and 6.2 present results from subjects, questionnaire replies, and BCI
performance. All 106 subjects completed the consent form and answered at least
the questions about age and gender, were prepared for EEG recording, and began
using the BCI. 18 subjects did not answer any of the remaining questionnaire
items and 22 subjects did not answer the post-test questionnaire. Subjects’ task
was to spell four words in copy spelling mode and one word in free spelling mode.
The order in which these five words were spelled was determined randomly by
the computer. Due to many uncontrollable variables experimented at CeBIT, this
procedure was changed and some subjects did not complete the study for various
reasons. Subjects were not committed to finish the study and were free to leave
at any time. For example, some subjects’ recording sessions ended because the
subject decided to stop because of poor performance, or did not have more time
to finish the protocol (wanted to see a specific CeBIT event, or had to meet a
friend, etc.). Other subjects chose to spell phrases of their choosing rather than
the “copy spelling” phrases suggested in the protocol, and thus some subjects’
data are incomplete. No subjects stopped participating because they reported
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Spelling Time [s] ITR [bit/min]
task N Range Mean±SD Range Mean±SD
BCI 65 21.53− 463.63 126.11± 99.284 1.79− 41.80 10.96± 7.697
BCILong 22 241.01− 1029.54 455.94± 205.924 6.99− 29.87 18.20± 6.653
SIREN 52 27.42− 431.64 107.53± 79.002 3.48− 54.70 19.73± 12.600
CHUG 43 43.57− 435.20 133.46± 97.467 2.76− 27.54 12.82± 6.649
Free 58 29.66− 911.73 199.75± 173.828 2.96− 50.58 14.66± 9.665

Efficiency [%] Accuracy [%]
BCI 65 37.50− 100 86.34± 20.802 37.50− 100 91.85± 15.565
BCILong 22 57.14− 100 86.02± 14.960 88.89− 100 98.78± 2.944
SIREN 52 45.45− 100 85.84± 17.227 62.50− 100 93.45± 11.923
CHUG 43 33.33− 100 91.42± 18.090 80.00− 100 98.14± 5.878
Free 58 30.77− 100 84.29± 20.693 60.00− 100 96.65± 8.467

Table 6.2.: BCI spelling performance from subjects at CeBIT 2008. BCILong refers
to the phrase “BRAIN COMPUTER INTERFACE.”

any pain, discomfort, fatigue, or similar problems. Fig. 6.4 shows an overview of
the collected data according to the number of words spelled by the 106 subjects.
On average subjects spelled 2.25 ± 1.784 words (N = 106). 26 subjects did not
attain effective control or decided to stop the experiment. For these subjects
(24.53%) no data were available for any of the words. In contrast, only 11.3% of
the subjects completed the protocol by spelling the five words. From the figure, it
is observed that data from female subjects were almost equally distributed across
the number of spelled words, while for male subjects more variation is observed.
Effects of age in BCI performance are analyzed in the following section.

Table 6.2 presents descriptive statistics for each spelling task and different mea-
sures of BCI performance: time in seconds, information transfer rate in bits
transferred per minute, accuracy, and efficiency in percent. In that table, N
represents the number of subjects that successfully spelled each word. Subjects
performed best with the word “SIREN,” which had the shortest path to each letter
(19.73 bit/min). Most subjects (79.25%) chose not to spell out “BRAIN COM-
PUTER INTERFACE.” But in terms of accuracy, BCILong was spelled with less
errors than the other words (98.78%). Mean accuracy within the word groups was
95.77%, efficiency was 86.78%, and information transfer rate was 15.27 bit/min. A
one-way repeated ANOVA was conducted to test differences between the spelling
tasks with ITR as dependent variable for all subjects who could spell all words
(N = 12). ANOVA revealed statistically significant differences in performance
within the spelling tasks, F (4, 44) = 2.724, p = 0.041. Multiple comparisons
showed significant differences between the performance for “BCI” and “SIREN,”
p = 0.046, and between “BCILong” and “SIREN,” p = 0.024.
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Figure 6.5.: Mean information transfer rate and accuracy for 80 subjects across all
spelling tasks.

Fig 6.5 shows the mean individual BCI performance for each subject in terms
of information transfer rate and accuracy. 80 subjects performed with a mean
information transfer rate of 13.00±8.196 bit/min, accuracy of 94.54±9.935%, and
efficiency of 85.26±14.851%. These values differed from the mean values presented
above (ITR: 15.27 bit/min; accuracy: 95.77%; efficiency: 86.78%) because the
number of words spelled by each subject differed. Visual inspection of Fig. 6.5
shows that there were considerable inter-subjects differences in the study, as widely
reported in other BCI studies [93].

The following statistical analyses presents the results of the correlations between
performance, preferences and individual characteristics. The BCI performance
measure selected for the analyses was the information transfer rate, as this measure
incorporates both time and accuracy in a single value. Efficiency was calculated to
show that subjects normally executed more commands than the minimum number
of commands to spell the target phrase. This happened because subjects had to
correct each false classification. Preferences and individual characteristics were
assessed with brief questionnaires both before and after BCI use.
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Effects of Age and Gender

106 subjects participated in the study (30.58 ± 11.863 years), from which 25
(23.58%) were female (26.2 ± 9.811 years) and 81 (76.42%) were male subjects
(31.94± 12.164 years). The oldest woman was 46 years old, while the oldest man
was 79 years old. As stated before, 26 subjects (24.53%) did not complete the
study for two reasons: either subjects were unable to spell with the SSVEP-BCI
or they abandoned the study without having spelled the five words. From those
26 subjects, 15 subjects completed the post-questionnaire but did not successfully
spell any word and 11 subjects left without filling out the post-questionnaire.
Those subjects that tried to spell but attained poor control are referred as BCI
illiterates. 11 subjects produced non-target data and ended the session because of
different reasons as explained above. This means that from the initial population
of 106 subjects, it is assumed that only 14.15% of the subjects were BCI illiter-
ates (14 males and 1 female subject). Following this assumption, BCI illiteracy
was higher in males than in females. For the 10.37% of the subjects that did
not complete the study, the BCI literacy is unknown. Thus, following statistical
analyses were performed for a population of 80 subjects, who could spelled at
least one word. Mean ITR for each subject was used as dependent variable (mean
performance value within the spelled words), see Fig. 6.5.
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Gender Age N ITR [bit/min] Accuracy [%] Efficiency [%]
female 18− 24 15 17.59±9.315 95.23±11.731 83.60±17.403

25− 32 2 16.03±10.458 100.00±0.000 99.20±1.131
33− 49 4 12.97±6.731 93.75±7.217 79.65±7.350
total 21 16.56±8.740 95.40±10.336 84.33±15.718

male 18− 24 20 14.98±8.157 96.45±4.471 87.46±12.263
25− 32 20 12.48±8.219 94.85±10.286 86.86±14.653
33− 49 17 7.56±4.383 90.83±13.455 80.79±17.320
59− 66 2 7.39±2.829 95.00±7.071 95.00±7.071
total 59 11.74±7.677 94.24±9.861 85.59±14.655

total 18− 24 35 16.10±8.638 95.93±8.259 85.81±14.577
25− 32 22 12.80±8.211 95.32±9.900 87.98±14.405
33− 49 21 8.59±5.186 91.39±12.411 80.57±15.758
59− 66 2 7.39±2.829 95.00±7.071 95.00±7.071
total 80 13.00±8.196 94.54±9.935 85.26±14.851

Table 6.3.: Descriptive statistics for ITR, accuracy and efficiency with two factors
(gender and age).

Fig. 6.6 shows the age distribution for female and male BCI literate subjects
(N = 80). BCI literates’ mean age was 29.14± 10.381 years and ranged between
18 and 66 years. The female group age was 26.00±9.793 (N = 21), while the male
group age was 30.25± 10.435 (N = 59). From the figure, it can be observed that
equal gender distribution is only given for 18 − 24 years old subjects. Age was
not a controllable variable in this field study. Subjects may not be reflective of
the general population; they tended to be young men. For statistical calculations,
four age groups were used: 18− 24 years, 25− 32 years, 33− 49 years, and 59− 66
years. The first group was chosen because the variable gender was almost equally
distributed for that age. The second and third groups were chosen according to
the size of the first group; and the last group includes only few male subjects older
than 59 years. Table 6.3 shows the descriptive statistics for the four age groups.
From the table, age and gender effects are observed. ITR tended to be higher
for young subjects. Moreover, it seems that females, who spelled on average
with 16.56 bit/min performed better than males, who spelled with a rated of
11.74 bit/min.

Fig. 6.7 shows the relationship between age and ITR for each gender. This
figure indicates that the older the subject becomes, the lower is the ITR. This
trend is similar for both genders. The independence of both factors is indicated
by the parallel lines. By analyzing age and gender, it is important to notice that
the age groups are not equal in size. In general, most users were between 18
and 24 years old. Also, few female uses were in the other age groups with ages
greater than 24 years. For male users the groups are almost equally distributed,
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Figure 6.7.: Relationship between age and ITR for each gender.

except for the age group between 59 and 66 years. An one-way ANOVA was
conducted on mean ITR with two factors (age and gender). Neither an effect on
gender, F (1, 73) = 2.118, p = 0.132, nor an effect on age, F (3, 73) = 2.129, p =
0.104, was statistically significant, nor was their interaction, F (2, 73) = 0.156, p =
0.856. Multiple comparisons (Tukey HSD) between the age groups indicated a
significant difference in ITR between 18 − 24 years old and 33 − 49 years old
users (p = 0.004, α = 5%). By analyzing the relationship between age and the
ITR for each spelling task, only for the word “SIREN” significant effects of age,
F (1, 46) = 5.402, p = 0.025, and gender, F (2, 46) = 3.285, p = 0.046, were found.
Multiple comparisons showed differences between 18 − 24 and 33 − 49 years old
users, p = 0.032.

Pre-test Questionnaire Results

The pre-test questionnaire collected answers to questions about need for vision
correction, education level, use of the computer for working and playing computer
games in hours per week, hours of sleep in the last night, ingested substances in the
last 24 hours such as alcohol, caffeine or cigarettes, and level of tiredness. Table 6.1
presents the answers collected from this questionnaire. A total of 88 out of 106
subjects responded the pre-test questions. Subjects that could use the SSVEP-BCI
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Figure 6.8.: (a) Distribution of the education level and (b) ITR for subjects accord-
ing their education level.

and answered the pre-test questionnaire were 69. Therefore, further results and
statistical analyses were performed for a sample of 69 subjects. The need for vision
correction could be answered as 1, that meant yes or 2 that meant no. 34 subjects
need vision correction, whereas 35 did not need to wear any vision aid. A t-test
failed to reveal a statistically reliable difference between the mean ITR of subjects
that needed a vision correction (12.48± 6.624 bit/min) and the subjects that did
not need vision correction (15.23± 9.450 bit/min), t(67) = 1.395, p = 0.168.

The education level could be answered on scale from 1 to 4, 1 meaning “junior
high school” or the German “Realschule,” 2 “high school” or German “Abitur,”
3 “college or university” or German “Fachhochschule” or “Universität,” and 4
“PhD” or German “Dr.” degree. Fig. 6.8(a) shows the distribution of the groups;
the majority of the subjects visited or were visiting either the high school or
a college or university. Fig. 6.8(b) shows the performance achieved by subjects
according to their education level. The highest ITR was achieved by subjects
that visited the high school (15.67 ± 9.397 bit/min). An one-way ANOVA was
conducted with ITR with education level as factor. No effect due education level
was found, F (3, 65) = 1.745, p = 0.166. Multiple comparisons did not find any
significant differences between the groups.

Working on the computer or playing computer games was rated as the amount
of hours per week that a subject spent doing these activities. On average subjects
used the computer for working for about 32.93± 16.736 hours and played 3.34±
9.575 hours computer games. For analysis on the influence of the computer use,
subjects were divided in three groups: subjects that spent less than 25 hours,
between 25 and 40 hours, and more than 40 hours using the computer. 19 subjects
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used the computer less than 25 hours per week (12.75±8.914 bit/min), 34 between
25 and 40 hours (15.74±7.848 bit/min), and 16 more than 40 hours (11.26±7.746
bit/min). An One-way ANOVA performed on ITR and computer use as factor
revealed no influence of computer use between the groups on BCI performance,
F (2, 66) = 1.905, p = 0.157. Subjects were separated in two groups according
to the factor computer games: subjects that played and did not play computer
games. 39 subjects did not play computer games (13.25± 7.135 bit/min), and 30
played computer games (14.69 ± 9.550 bit/min). No effect due computer games
could be assessed, t(67) = 0.718, p = 0.475.

The questions regarding consumption of alcohol, caffeine, or nicotine in the last
24 hours were answered as yes or no. 31 subjects answered to having consume one
or more of these substances (11.78± 6.472 bit/min), whereas 38 did not consume
any of the substances (15.58 ± 9.171 bit/min). An independent t-test was used
to compare the mean performance values of subjects who consumed vs. subjects
who did not consume one or more of the above mentioned substances. Results of
the t-test show only a mild evidence that the population mean performance for
both groups are unequal, t(67) = 1.942, p = 0.056.

On average subjects slept 6.08 ± 2.373 hours the night before participating
in the experiment and ranged between no sleep and 13 hours of sleep. To test
the influence of sleep on BCI performance, two groups were used: Subjects that
slept five or less than five hours, and subjects that slept more than five hours. 20
subjects slept five or less than five hours (12.76±8.296 bit/min), and 49 slept more
than five hours (14.33± 8.256 bit/min). The t-test failed to reveal a statistically
significant difference between both groups, t(67) = 0.761, p = 0.477.

The level of tiredness before the experiment was reported on scale from 1 to
5, 1 meaning “not tired” and 5 “very tired.” 22 subjects answered “not tired”
(16.02± 9.906 bit/min), 24 claimed to be “a little tired” (13.30± 8.947 bit/min),
18 answered neutrally (12.06 ± 5.393 bit/min), 3 subjects reported to be “tired”
(15.67±2.406 bit/min), and 2 subjects to be “very tired” (10.70±2.909 bit/min).
Subjects who reported not to be tired had the highest ITR, while subjects that
felt tired had the lowest; it appears to exist a linear relationship between the ITR
and the tiredness level. The Levene statistic rejected the hull hypothesis that the
group variances are equal, p = 0.009. However, a nonparametric Kruskal-Wallis
test that makes minimal assumptions about the underlying distribution of the
data, failed to revealed a significant difference in the information transfer rate of
the groups with tiredness as factor, p = 0.691.

Post-test Questionnaire Results

After the experiment, subjects completed a brief post-questionnaire that asked
them about subjective opinion about the BCI system, if the SSVEP BCI system
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used here was generally perceived as annoying or difficult to use, and if it did pro-
duce significant fatigue. Also, subjects stated if they found it easier to concentrate
on the target versus gaze at the target. The level of tiredness was reported on
a 1 to 5 scale, as in the pre-test questionnaire. In comparison with the pre-test
questionnaire, the SSVEP-BCI did not produced significant fatigue: level of tired-
ness before the experiment was 2.09 ± 1.035 (N = 88) and after the experiment
2.31± 1.242 (N = 84). Subjects evaluated subjectively, if the BCI system worked
in general in a scale from 1 to 5, 1 meaning no and 5 yes. 10 subjects answered
no, 24 answered yes, all other subjects answered between 2 and 4. Most subjects
would use or recommend the system (65.48%).

6.3. RehaCare Study

The RehaCare study was conducted at the Institute of Automation booth on the
19th international rehabilitation fair RehaCare in Düsseldorf, Germany. One goal
of the experiments described hereafter was to reach a large audience of potential
BCI users from both the disabled and able-bodied population. Moreover, high level
of background noise and inappropriate illumination conditions are predominant
in such exposition fair. This is notably different to the usual EEG recording
conditions in which an electrically shielded room with low background noise and
luminance is used.

6.3.1. Data Collection

The EEG data was recorded in the same way as in the CeBIT study. Standard
Ag/AgCl EEG electrodes were placed on sites PZ , PO3, PO4, OZ , O9, O10; AFZ

was used for ground, and CZ was used for the reference electrode. Abrasive elec-
trolytic electrode gel was applied between the electrodes and the skin in order to
bring impedances below 15KΩ. An EEG amplifier g.USBamp (Guger Technolo-
gies, Graz, Austria) was used and the sampling frequency was 128 Hz. During the
EEG acquisition, an analog bandpass filter between 2 and 30 Hz, and a notch filter
around 50 Hz (mains frequency in Europe) were applied directly in the amplifier.
Subjects sat approximately 60 cm from the LCD (liquid crystal display) screen of
the notebook running the Bremen-BCI software (see Fig 6.1).

The main difference with the CeBIT study was the selection of the stimulation
frequencies. Although the same display was used, it was considered to change
the stimulation frequencies into factors of the laptop monitor refresh rate. As the
quality of the SSVEP response depends on the stability of the frequencies, the five
frequencies that were used in this study were factors of the refresh rate of 60 that
produces the stimulation frequencies: 7.50 Hz (“left”), 8.57 Hz (“right”), 10.00 Hz
(“up”), 12.00 Hz (“down”) and 6.67 Hz for “select.” The chosen frequencies
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Figure 6.9.: Distribution of subjects’ age separated by gender.

correspond to periods equivalent to 9, 8, 7, 6 and 5 frames on the LCD screen
respectively. A fixed number of frames within one period assures the frequency
stability [129].

6.3.2. Subjects

Experiments were performed on volunteer subjects recruited from visitors to the
IAT booth at the rehabilitation fair RehaCare 2008. This study was approved by
the local ethic committee of the University of Bremen, Germany, and all subjects
gave informed consent. A total of 37 subjects participated in this study. Subjects’
mean age was 35.03 ± 11.864 years. Age range was between 18 and 57 years.
Fig. 6.2 shows the age distribution separated by gender. The majority of the
subjects were females (59.46%) with mean age 33.55 ± 11.279 years. The other
40.54% were males with mean age 37.2± 12.751 years. Eight subjects from the 37
total subjects had different disabilities, 3 were unable to fill in the consent form
by themselves. All participants were naive subjects with no prior experience with
SSVEP based BCIs. 18 subjects required vision correction; four of them were not
wearing their glasses during the experiment. Subjects did not receive any financial
reward for participating in this study.
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6.3.3. Experimental Protocol

Subjects were first asked if they were full age and ever had a seizure, mental
disorders, or skin contact allergies with used electrolytic abrasive gel. Subjects
would have been rejected if they answered yes to any of these questions. All
subjects completed a written consent form and a pre-test questionnaire including
some screening questions. For the case of users with disabilities, this form was
completed by the care giver as dictated by the subject. A short familiarization run
was carried out in order to introduce the experimental procedures and to manually
set the subject-specific threshold for each subject. The subjects’ task was to spell
five messages with the SSVEP based Bremen-BCI system. Three of the messages
were the same for all subjects and were chosen by the experimenter (copy spelling),
and two words were chosen by the subject (free spelling). The copy spelling words
were in sequence BCI, BRAIN, and GEHIRN. The first free spelling word should
had five letters (Free1) and the second did not have any restrictions (Free2).
Each subject verbally told the experimenters the first free spelling word that they
intended to spell before each free spelling run. The experimental protocol was
very strict in case of misspelling. The participants were advised to correct errors
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Spelling task N Time Acc. ITR
[s] [%] [bit/min]

BCI 28 102.50± 116.090 93.36± 8.878 23.42± 11.902
BRAIN 29 124.14± 77.479 90.97± 8.211 21.09± 8.839
GEHIRN 27 119.98± 59.239 93.73± 8.104 21.68± 9.940
Free1 28 103.47± 85.995 94.06± 7.829 26.68± 11.677
Free2 29 135.14± 142.706 93.27± 9.522 25.67± 10.671

Table 6.4.: BCI spelling performance from subjects at RehaCare 2008.

by using the special characters “Del” and “Clr.” Performance for copy spelling
tasks was calculated online. All data collected during the experiment were stored
anonymously. After finishing the experiment the electrode cap was removed, the
post-test questionnaire was answered and the experiment finished.

6.3.4. Results

Subjects’ task was to spell three words in copy spelling mode and two words in free
spelling mode. The order in which these five words were spelled was determined
randomly by the computer. Fig. 6.4 shows an overview of the collected data
according to the number of words spelled by the 37 subjects. On average subjects
spelled 3.81± 1.927 words (N = 37). Five subjects did not attain effective control
and decided to stop the experiment. For those subjects no BCI performance could
be assessed for any of the words. The majority of the subjects 67.57% completed
the protocol by spelling all five words.

Table 6.4 presents the average BCI performance for each spelling task across
the subjects. Three different measures are displayed: time in seconds, information
transfer (ITR) rate in bits transferred per minute and accuracy (Acc.) in percent.
N represents the number of subjects that successfully spelled each word. Accura-
cies achieved in individual spelling tasks varied considerably (ranged from 66.13%
to 100%) with the majority achieving p > 90% (see detailed results for each sub-
ject in Appendix B). The spelling time also varies between subjects, leading to
ITRs in the range from 3.64 to 50.13 bit/min. Subjects performed best with the
free spelling word 1 (word with five letters: 26.68 bit/min). In terms of accuracy,
Free spelling 1 was spelled with less errors than the other words (94.06%). A
one-way repeated ANOVA was conducted to test differences between the spelling
tasks with ITR as dependent variable for all subjects who could spell all words
(N = 25). ANOVA revealed statistically significant differences in performance
within the spelling tasks, F (4, 96) = 3.768, p = 0.007. Multiple comparisons
showed significant differences in performance between copy spelling tasks BRAIN
and GEHIRN, and both free spelling tasks.
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Figure 6.11.: Individual information transfer rate and accuracy achieved by each
subject across five spelling tasks. From [103].

Fig 6.11 shows the mean individual BCI performance for each subject across
the spelled words in terms of information transfer rate and accuracy. 32 subjects
performed with a mean information transfer rate of 22.60 ± 9.648 bit/min and
accuracy of 92.85 ± 6.810%. The BCI illiterates were five subjects: two females
and one male with disabilities, and two males without disabilities.

Fig. 6.12(a) shows the relationship between age and ITR for each gender. This
figure indicates that the older the subject becomes, the lower is the ITR. This trend
was similar for both genders. Moreover, mean ITR of female subjects (24.93±8.455
bit/min, N = 20) was higher than there for male subjects (18.73±10.617 bit/min,
N = 12). An one-way ANOVA was conducted with ITR as dependent variable
and gender as factor. The effect of gender on the ITR did not attained statistically
significance, F (1, 30) = 3.322, p = 0.078. An one-way ANOVA was also conducted
on ITR separated by two groups of BCI users. The group of healthy subjects
could use the BCI with a mean ITR of 23.65± 9.923 bit/min (N = 26), whereas
the group of subjects with disabilities achieved 18.09 ± 7.396 bit/min (N = 6).
The ANOVA-test failed to reveal a statistically significant difference between both
groups, F (1, 30) = 1.654, p = 0.208.
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Figure 6.12.: Relationship between age and ITR separated by (a) gender and (b)
disability of the subjects.
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6.4. Conclusion

The performance data show that the Bremen-BCI system could provide effective
communication for most subjects in both studies. These results elucidate which
factors do (and do not) correlate with objective and subjective measures of SSVEP
BCI performance, and help elucidate the best BCI for each user. The CeBIT study
conducted on 106 healthy subjects resulted in an mean information transfer rate
of 13.00± 8.196 bit/min and accuracy of 94.54± 9.935%. Whereas, the RehaCare
study conducted on 37 subjects including 8 subjects with disabilities resulted in a
mean ITR of 22.60±9.648 bit/min and accuracy of 92.85±6.810%. By comparing
both results is evident that the RehaCare study produced much higher transfer
rates that the CeBIT study. Nevertheless, it is important to note than the ITR
calculation for the CeBIT study was done on the application level. That means,
ITR was calculated on the basis of the letters selected (N = 32). The ITR
in the RehaCare study was calculated on the basis of the low level commands
sent to the transducer (command level). This led to an N of 5, based on five
control commands. Performance at the transducer or command level would yield
different results than at the application level. Therefore, analyzing performance
at the same level would facilitate comparisons of both studies. However, a more
important concern than the ITR values achieved is the BCI illiteracy response
of both studies. At CeBIT a total of 26 subjects (24.53%) were unable to attain
effective control, whereas at RehaCare 5 subjects (13.51%) were BCI illiterates. In
conclusion, stable stimulation frequencies led to better performance and reduced
illiteracy.
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7. Role of Feedback and Training in
SSVEP-based BCIs

This chapter addresses two important aspects of SSVEP-based BCIs, which are
feedback and training. The main goal of this study was to determine whether
feedback and training can help to increase BCI performance on subjects that
learn to use an SSVEP BCI. The training protocol and feedback techniques used
in this study were designed based on the target application, a spelling device. The
subjects’ task was to navigate a cursor into a matrix of characters and to select the
desired character for communication purposes. This study compares performance
of two groups of subjects, one group receives only discrete feedback, and the
other group additionally received real-time feedback of their SSVEP signals. To
determine if there is a significant improvement across the training sessions and
how different types of feedback may affect BCI performance, information transfer
rates and classification accuracies for 20 subjects were analyzed and statistical
analyses were performed.

7.1. Introduction

Advances in cognitive neuroscience and signal processing techniques allow to in-
terface computers directly with brain activity. Physical processes in the brain that
correspond with certain mental tasks can be monitored and given in form of visual
feedback in a computer screen. This technology is known as neurofeedback, and is
used in brain-computer interface research to enable conscious control of brainwave
activity to produce stable signals that control computers or other communication
devices. Successful BCI control depends significantly on how the users can volun-
tary modulate their brain signals and not only on the signal processing algorithms
used to translate brain signals into control commands [130]. Learning to operate
a BCI requires repeated practice with feedback to engage learning mechanisms in
the brain.

Neurofeedback provides information of the correct or incorrect response of the
BCI. This feedback can be discrete or continuous, one or more dimensional, real
or virtual. Discrete feedback can be e.g., a number, a letter, a sound or an icon.
Continuous feedback is very often presented in form of a bar that represents the
power of the brain signal. A realistic 3D feedback is e.g., hand movement realized
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Figure 7.1.: Components of a BCI during feedback training.

by a virtual system, when the subject imagines hand movement. Feedback signals
can be presented in a computerized game-like form. The aim is to maintain user’s
motivation and attention to the task. To keep the training period as short as pos-
sible, a well design training protocol and helpful real-time feedback are essential.
A study that evaluates the role of feedback in EEG-based communication shows
that continuous visual feedback can have benefits as well as negative effects on
EEG control, and that theses effects vary across subjects [131].

During last years, many studies have shown that SSVEP-based BCIs generally
require no training or reported that SSVEP systems need a little user training [55],
which usually means a short familiarization session or a training phase to deter-
mine optimal system parameters [70]. Allison et al. (2008) suggested that subjects
can be trained to perform better on visual attention tasks and that feedback re-
flecting SSVEP activity might improve performance [119]. For example, subjects
who do not produce enough SSVEP activity for effective BCI control could be
trained to perform better through neurofeedback training. Many articles have re-
ported that visual feedback presentation may enhance performance in a BCI task,
especially for modulation of mu rhythms [130,132]. For SSVEP-based BCIs, only
one study has addressed neurofeedback training for learning to control SSVEP
amplitude [61]. However, the best feedback type and training protocols in a real
BCI application are still not known.
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7.2. SSVEP Feedback Study

7.2. SSVEP Feedback Study

7.2.1. Data Collection

EEG signals were recorded with eight sintered Ag/Ag-Cl electrodes from the sur-
face of the scalp. Electrodes were placed at positions PZ , PO3, PO4, OZ , O9, and
O10, from a customized 74 channel montage based on the standard 10-20 system
of electrode placement [79]. All channels were referenced to the right ear lobe
with a ground at the left ear lobe. Impedances were kept below 5KΩ by using
electrolytic electrode gel, as is typical for conventional EEG recording. Data were
digitized with a sampling rate of 128 Hz and amplified through a g.tec amplifier
(Guger Technologies, Austria), which included a bandpass filter of 2–30 Hz, and
a notch filter at 50 Hz.

Subjects were seated in a comfortable chair approximately 80 cm from an LCD
monitor (22 Samsung SyncMaster 2233 with a vertical refresh rate of 60 Hz and
resolution of 1680 × 1050 pixels), which displayed the graphical user interface
(GUI) shown in figure 7.2. Two computers were used. PC1 (notebook) ran the
signal processing software of the Bremen BCI system, including real-time EEG
data acquisition and classification; and PC2 (desktop PC running Linux) imple-
mented the application interface that provided the spelling interface and continu-
ous feedback to the user (Neurofeedback interface described in section 5.4). Both
programs communicated via the Transmission Control Protocol/Internet Protocol
(TCP/IP). The implementation on two separate PCs was chosen for this study
to facilitate meeting the different real-time requirements for the EEG and visual
stimulation.

Signal Processing

Minimum energy combination (MEC) was used to create a spatial filter that lin-
early combines the signals of all electrodes in a way that the background activity
and noise are minimized [100]. The BCI automatically determined the best spatial
filter for each subject and then calculated the signal-to-noise ratio (SNR) at each
stimulation frequency. Since the main SSVEP response is a periodic signal with
energy only in the stimulation frequencies and their harmonics, a test statistic for
testing the presence of an SSVEP response can be calculated. The test statistic
averages the SNRs across all used harmonic frequencies and over all spatially fil-
tered signals, and it calculates how many times larger the estimated SSVEP signal
is compared to the case where no visual stimulus is present. The SNR was esti-
mated every 13 samples (about 100 ms) from a signal length window of 2 seconds.
If the SNR value at the specific frequency exceeded a predetermined threshold,
the corresponding command was executed. For more technical details about the
method used please see chapter 4.
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COMPUTER
COM

Figure 7.2.: SSVEP display with real-time continuous feedback.

Application Interface

Fig. 7.2 presents the display used in this study. The center of the display contains
32 letters and other characters that the subject could select. Subjects spelled by
focusing on one of five flickering boxes presented on the display. Each box con-
tained either an arrow (left, right, up, or down) or the word “select” and oscillated
at a different constant frequency: 7.50, 8.57, 10.00, 12.00, and 6.67 Hz, respec-
tively. These frequencies were determined through prior work [129], and were
consistent with the monitor refresh rate of 60 Hz, which provides better quality
of visual stimuli. The frequency generation was based on the approach presented
previously in section 5.3.2. The signal processing algorithm calculated the SNR
at each of the five stimulation frequencies every 100ms. For example, if activity
at 7.5 Hz exceeded the predetermined threshold, the corresponding command was
executed and the cursor moved to the left. If activity at 6.67 Hz exceeded the
threshold, the character highlighted by the cursor was selected. This character
arrangement takes into account the probabilities of occurrence of every letter and
was determined during previous work as described in [117]. At the beginning of
each run and after each selection, the cursor was presented over the ‘E’ character.
There was no “wraparound” feature; if the cursor reached the layout boundaries,
e.g., at letter ‘H,’ then the cursor could not move further to ‘L.’ Possible mis-
spellings should be corrected with the “Del” option located at the top-right of the
matrix. During the experiment, if the feedback bars at the flickering boxes were
activated, they varied in relation to the SSVEP amplitude. The maximum level
that the feedback bars can reach is the subject-specific threshold.
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7.2.2. Subjects

Two groups of participants (control group and experimental group) were trained
to use the SSVEP-BCI to control the spelling device shown in Fig. 7.2. The
control group received only discrete feedback from the spelling device. That is, the
visual feedback was presented in form of discrete cursor movements (left, right, up,
down), by highlighting actual letter background. These actions were received from
the signal processing module, which detects the corresponding control commands
from the EEG signals. Auditory signals played the name of the received navigation
command or selected character simultaneously with cursor movements or letter
selections. The bottom of the screen presented the character sequence that the
subject already spelled.

The experimental group additionally received continuous feedback. That is,
SSVEP amplitudes were displayed in form of dynamic vertical bars at each flick-
ering box. The bars providing the real-time feedback were placed left and right of
each flickering box and represented SSVEP signal strength with a lineal scale from
zero to the predetermined subject-specific threshold. Thus, the corresponding con-
trol signals were generated, if the vertical bars were completely filled. Continuous
feedback was realized by using the SNR calculation at each of the five stimulation
frequencies and the state of the feedback bars were updated each 100 ms, which
is the time set to calculate an SNR value.

7.2.3. Experimental Protocol

Each test person participated in series consisting of six training sessions. During
every training session, each subject completed a brief questionnaire that included
questions regarding actual level of tiredness and stress, and substances ingested
in the last 24 hours prior to the experiment. Then, the subject was prepared for
EEG recording. At the beginning of the first session, subjects participated in an
additional practice run. In this run, subjects spelled the word “SIREN,” and the
experimenter used the resulting data to manually adjust a subject-specific thresh-
old required for frequency detection. Next, subjects were instructed to spell five
words as follows. Three of these words were chosen by the experimenter (copy
spelling) and did not change in the course of the training sessions. These copy
spelling tasks were “GEHIRN” (brain in German), “COMPUTER,” and “NEU-
ROWISSENSCHAFT” (neuroscience in German). Fourth and fifth words were
chosen by the subject (free spelling) and changed over the sessions. Free spelling
tasks are referred further as “FREE1,” which consisted of a word composed of five
letters, and “FREE2” for a word without restrictions. Before each free spelling
task, each subject verbally told the experimenter the word that she/he intended to
spell. The order in which these five words were presented to the user was randomly
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selected for each session. Each run ended, when the subject correctly spelled the
specified word, or when the subject was not able to spell (that did not occur during
this study). At the end of each session, after the five words were written, subjects
completed a second questionnaire regarding tiredness and annoyance due to the
flickering lights, and then the procedure was finalized. The entire procedure took
on average about 40 minutes per subject for each of six sessions.

7.2.4. Analysis

For statistical analyses, the performance values obtained from five spelling tasks
across six sessions were used. The goal was to find effects on training sessions,
and differences between the two feedback types, discrete and continuous. BCI
performance was assessed as information transfer rate, which is defined as the
number of bits transmitted per trial. The calculation of information transfer rate
for a brain-computer interface is described in [1] as follows:

B = log2N + P log2 P + (1− P ) log2

[
1− P

N − 1

]
(7.1)

where N is the number of possible choices (N = 5 commands) and P is the
probability of identifying the target (accuracy). Bit rate in bits per minute can
then be obtained by dividing B by the speed of the BCI system, which represents
the number of commands per minute.

This study aims to find statistically significant effects of training across training
sessions and to test the effectiveness of different kinds of feedback in SSVEP based
BCIs. To this end, repeated measures analysis of variance (ANOVA) were used
to determine whether there is a statistically significant difference in performances
within the sessions and between both feedback conditions.

7.3. Results

The overall results obtained from 20 participants are summarized in Fig. 7.3. It
shows the information transfer rate and accuracy for each subject averaged over all
tasks and feedback sessions. Subjects achieved a mean information transfer rate
of 36.51± 11.66 bit/min and accuracy of 97.66± 4.19%. Minimum and maximum
ITR peaks were 7.51 and 63.28 bit/min and for classification accuracy 72.41 and
100%, respectively. As can be seen, considerable inter-subject differences in the
information transfer rates were found. This observation was confirmed by one-way
repeated measures ANOVA computed with subject as between-subjects factor and
session as within-subjects factor. Table 7.1 summarizes the results of all conducted
ANOVA tests for the whole sample and separated feedback groups.
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Figure 7.3.: Information transfer rates and accuracies for 20 subjects averaged over
all training sessions.

7.3.1. Performance during Feedback Sessions

Subjects were trained under two feedback conditions, one group received discrete
feedback only (subjects S1 to S10), while the other group received additionally
the continuous feedback (subjects S11 to S20). They participated on six training
sessions, except for subjects S15 and S20 who participated only on the first four
training sessions. Therefore, subjects S15 and S20 were excluded for further sta-
tistical analyses. Fig. 7.4(a) compares the information transfer rate of both groups
across the sessions. Mean information transfer rates for discrete and continuous
feedback conditions were 36.77 ± 12.48 and 36.23 ± 10.74 bit/min, respectively.
To find significant differences in performance of subjects who received discrete
versus continuous feedback across the six feedback sessions, a repeated measures
ANOVA was computed with type of feedback as between-subject factor and session
as within-subject factor. The results revealed a significant main effect between the
feedback type, indicating that discrete feedback group performed better than the
continuous group in the course of the sessions. A main effect of training within
the sessions was found in the whole sample (N = 18).

Mean information transfer rates achieved for the group receiving discrete feed-
back (N = 10) were: session 1: 31.59 ± 11.17; session 2: 32.99 ± 11.97; ses-
sion 3: 37.44± 11.10; session 4: 41.31± 12.49; session 5: 38.08± 13.40; session 6:
39.22±12.31. User performance increased on average 7.62 bit/min after 6 sessions
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Figure 7.4.: BCI performance under two feedback conditions, discrete and contin-
uous feedback, over six experimental sessions. (a) Mean information
transfer rates. (b) Mean classification times needed to perform a “se-
lect” command.
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of training, and the peak was found in the fourth session. Analysis on the effects
of training for the discrete feedback condition were performed. One-way repeated
measures ANOVA was specified for performance (ITR) as the dependent variable
and session number as within-subject factor. It was found that there were signif-
icant differences between the sessions. To learn more about the structure of the
differences, pairwise multiple comparisons between the sessions were performed.
Multiple comparisons revealed significant differences between the initial training
session and sessions 3, 4, 5 and 6. The average increase of 7.62 bit/min was due
to the training and improvement could be achieved already in session 3.

Data from subjects receiving continuous feedback (N = 8) revealed the following
mean information transfer rates over six training sessions: session 1: 31.60± 7.68;
session 2: 33.85±10.28; session 3: 36.99±11.14; session 4: 35.59±12.62; session 5:
40.44± 11.05; session 6: 41.37± 9.58. To test the hypothesis that the increase of
9.78 bit/min was due to the training, a one-way repeated measures ANOVA was
specified on the ITR for each training session as within-subject factor. Significant
effects on performance were found. Pairwise comparisons showed significant dif-
ferences between the initial session and sessions 5 and 6. The continuous feedback
group performed best in the final session.

7.3.2. Classification Times

Classification time was measured as the time difference between the detection of
the last navigation command and a letter selection command. All navigation com-
mands such as “left,” “right,” “up,” and “down” were discarded from this analysis
because the goal was to find significant improvement in SSVEP training rather
than the ability to find the letters on the matrix layout. To assess improvement
over the sessions, analyses were conducted based on all correct selections. Infor-
mation about session number and feedback type were used as factors, and the
time needed to perform a “select” command was used as dependent variable.

Fig. 7.4(b) compares selection times for both groups across the sessions. Mean
classification times for the “select” command was 3.69± 2.72 in the discrete feed-
back condition, and 3.89 ± 2.82 for continuous feedback. Mean selection times
achieved by the group receiving discrete feedback were: session 1: 3.90 ± 2.43;
session 2: 4.06 ± 3.18; session 3: 3.94 ± 3.87; session 4: 3.38 ± 2.17; session 5:
3.42 ± 2.06; session 6: 3.44 ± 2.05. For the continuous feedback condition, selec-
tion times were: session 1: 3.84±2.13; session 2: 4.46±4.06; session 3: 3.89±3.12;
session 4: 4.22 ± 3.07; session 5: 3.49 ± 1.80; session 6: 3.46 ± 1.94. ANOVA re-
sults for correct selections are shown in Table 7.1. Analyses on the whole sample
revealed that the feedback type had significant effects on the selection times.
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7.3.3. Copy versus Free Spelling

To analyze differences between copy and free spelling tasks, performance data from
all subjects were separated by groups. Five groups were composed depending on
the spelling tasks. To assess differences between spelling tasks, one-way repeated
ANOVA was specified for ITR as dependent variable, and spelling task and session
as factors. As shown in Table 7.1, ANOVA results were not significant, indicating
that the performance was similar for all tasks. Subjects could switch from copy
to free spelling without any decrement in performance. As expected, the phrase
length did not have a noteworthy impact on performance results.

7.3.4. Questionnaire Results

Subjects preferences were evaluated by asking subjects that received continuous
feedback, if they found the feedback bars distracting. They answered this question
on a 1 to 5 scale, 1 meant not distracting and 5 very distracting. Mean answer was
2.05± 1.32. In general, subjects did not find the continuous feedback distracting.
This answer and the information transfer rate were highly negatively correlated
(r = −0.482, p < 0.001) by using Spearman bivariate correlation. Subjects who
performed better did not find the feedback bars distracting and for bad perform-
ing subjects, the feedback bars were distracting. By comparing groups based on
training sessions, the bivariate correlation showed that there is a significant and
fairly strong negative correlation between performance and subjects preferences
across sessions.

7.4. Discussion

The problem addressed in this work was to analyze the effects of SSVEP training
and feedback type over several sessions. Brain-computer interfaces that operate
with prior conditioning of EEG responses, that is the case of SSVEP, do not
require a sophisticated learning procedure, but it is probable that long-term use
of these signals can cause changes that may be adaptive or maladaptive [133].

A steady increase of the mean ITR that became significant after five (contin-
uous feedback), respectively three (discrete feedback) sessions compared to the
initial session values was found. Essential for this early improvement could be the
acquisition of the speller’s letter arrangement, which could reduce the duration
of the subjects’ visual search for a target character. For the continuous feedback
condition, a marked slump in the learning curve shape during session four was
observed. This suggested the assumption that an additional variable contributes
to the overall performance in the ITR and occasionally may interfere with it. In
contrast to the almost consistently rising trend of the mean ITR, a clear course of
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increasingly faster selection times could not be obtained in either one of the ex-
perimental conditions. According to the post-experimental surveys, it is assumed,
that the ability of a subject to diminish it’s selection times is the result of a short-
term learning process. This process aims to find the optimal strategy to produce
stable SSVEP signals, for example, the subject could try focusing at certain edges
of the flickering squares or focusing the stimuli as a whole. In searching for the
best possible system response, the subject tests and rejects cognitive strategies and
produces a more inconsistent curve shape over the first training sessions. Only
after an appropriate access to a reliable SSVEP processing has been discovered,
the subjects’ mean selection times level out at a stable state (session four to six for
the discrete and five to six for the continuous feedback condition). The slope of
the ITR curve in the fourth session of the experimental condition can therefore be
ascribed to the effect of a less productive concentrative strategy indicated by the
simultaneously high selection times. An overall difference between the two feed-
back groups was found, which suggest that discrete feedback supports more rapid
initial training. Furthermore, this condition is accompanied by lower variances in
the individuals mean selection times during the first three training sessions. Since,
it can be adopted that positive feedback is particularly important in the period of
evaluating one’s individual SSVEP handling strategy; in conclusion, discrete feed-
back facilitates the effectiveness of SSVEP training during the early sessions and
the stimulus flanking bars in the experimental condition may trigger a distracting
effect that makes it even harder to come upon an early ideal response strategy.

7.5. Conclusion

This work proved that training with SSVEP causes positive effects on subjects and
indicated that the type of feedback (continuous vs discrete) exerts a measurable
effect on the subject’s performance. There is evidence to suggest that discrete
feedback supports more rapid initial training since subjects not only need to ac-
quire the speller’s letter arrangement but explore options to improve their SSVEP
signals in a way the BCI could easily detect them. During this early period of
mapping out cognitive strategies, the accompanying bars of the continuous feed-
back type have proved to be inappropriate to enhance the operator’s convenience.
Particularly with regard to these results a new advanced type of feedback has been
proposed. Results of this more intuitive feedback type is shown in the following
chapter.
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8. Practical SSVEP-based
Brain-computer Interface

This chapter describes how the final goal of this thesis was achieved toward the
development of a practical BCI. A practical BCI can be defined as an effective
and usable communication tool for a wide range of users, one that can be used
outside the laboratory and with little expert assistance. The first though to make
BCIs more practical from the Engineering point of view is to make BCIs faster and
more reliable, that means increasing the information transfer rate (ITR). But to
achieve the goal of increasing the ITR of actual BCI systems, three parameters are
closely related: the accuracy of the detection, the speed of the detection, and the
number of patterns that can be discriminated [94]. For example, shorter window
lengths may speed up the detection time but also may reduce accuracy, or accu-
racy may be also affected with the number of patterns that can be differentiated.
In this work, the case study to increase the ITR of BCIs was the Bremen-BCI.
The Bremen-BCI is a BCI transducer that implements a robust signal processing
approach to detect SSVEP patterns in ongoing BCI signals. BCI control with the
Bremen-BCI was confirmed with the results of the studies presented in chapters
4 and 6, in which most subjects attained effective control of a robot arm and a
spelling device, respectively. Results of chapter 7 showed the importance of feed-
back to increase performance of subjects. Based on those results, a method used
for increasing the ITR of the Bremen-BCI was proposed. This method was based
on two principal concepts, first improving the SSVEP detection algorithm, and
second improving the frequency generation of the visual stimuli and the presen-
tation of intuitive feedback. Both used in combination helped users to be more
accurate and thereby increased the performance of the BCI. Improvements in the
BCI translation algorithm were focused on the timing of the detection using an
adaptive mechanism and the classification using a softmax activation function.
The adaptation of the window length used for each signal processing cycle was
used to speed up BCI communication. A novel control interface that provides real
time feedback of the SSVEP signals by changing the size of the visual stimulus
was the major improvement of the spelling device. A study using the improved
Bremen-BCI signal processing methodology and the new control interface was
conducted on 27 healthy subjects. Results showed a peak information transfer
rate of 117 bit/min and mean ITR of 49.93 bit/min. In comparison with online
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SSVEP-based BCI systems that have exhibited performance up to 70 bit/min [70],
the results achieved with the improved Bremen-BCI are challenging. The Bremen-
BCI signal processing chain is presented in section 8.1, then details of the control
interface are presented in section 8.2, and finally the methods and results of the
high ITR study with 27 subjects are described in section 8.3.

8.1. BCI Transducer

8.1.1. Spatial Filtering

The first step of the signal processing module is to create a spatial filter that
linearly combines the signals of all electrodes in a way that the background ac-
tivity and noise are minimized. The spatial filter creates several channels by
making different combinations of the original electrode signals using the minimum
energy combination (MEC) [100]. This filter was already described in detail in
section 4.3.2. To extract discriminant features, the signals from the i electrodes
need to be combined. This can be achieved by defining a channel vector s of length
Nt which is a linear combination of the electrode signals, yi,

s =

Ny∑
i=1

wiyi = Y w (8.1)

where w is a vector of weights [w1, . . . , wNy ] associated with the individual elec-
trode signals. The aim of the channel s is to enhance the information contained
in the EEG while reducing the nuisance signals. Several channels can be created
by using different sets of weights, depending on the nature of the SSVEP signal
and the noise. Equation (8.1) can be generalized for Ns channels as

S = YW (8.2)

with the set of channels S = [s1, . . . , sNs ] and the corresponding weight matrix
W = [w1, . . . , wNs].

8.1.2. SSVEP Power Estimation

The estimated signal power in the kth SSVEP harmonic frequency in channel
signal sl is given by

P̂k,l =‖ XT
k sl ‖2 (8.3)

where X contains the sine and cosine pairs with the SSVEP harmonic frequencies.

The test statistic, which is an average of the power over all Ns spatially filtered
components and all Nh SSVEP harmonic frequencies, for testing the presence of

140



8.1. BCI Transducer

an SSVEP response can be calculated by

T =
1

NsNh

Ns∑
l=1

Nh∑
k=1

P̂k,l (8.4)

8.1.3. Normalization

In a BCI application with several stimuli, a test statistic for each stimulation
frequency is calculated. The test statistic for each frequency is then normalized
into a probability

pi =
Ti∑j=Nf

j=1 Ti

with

i=Nf∑
i=1

pi = 1 (8.5)

The probability for each frequency is passed though a Softmax activation func-
tion to enhance SSVEP detection

p′i =
eαpi∑j=Nf

j=1 eαpj
with

i=Nf∑
i=1

p′i = 1 (8.6)

where α is set to 0.25. Each probability pi is compared with an empirically de-
termined threshold. If the highest probability exceeds the threshold, then the
corresponding frequency is detected, and the control command associated with
this frequency is executed.

8.1.4. Classification

The classifier output R is determined as the number of the i -th frequency, if 1) this
i -th frequency has the highest probability p′i, 2) p′i exceed the pre-defined threshold
β, and 3) the detected frequency belongs to one of the stimulating frequencies:

R =

⎧⎪⎨
⎪⎩

argmax(p′i),
p′i ≥ β,
i ≤ Nc

(8.7)

where 1 ≤ i ≤ Nf and β is set to 0.35 (based on prior practical investigations and
on the number of used frequencies Nf ). Nc represents the number of commands
(number of stimuli).

If R is classified as an undesired frequency (i > Nc) then this classification will
be rejected (the detected frequency does not belong to the stimulation frequency
set). To improve the overall reliability of the system, the commands corresponding
to the stimulating frequencies are produced only if their probability is higher than
the fixed threshold β.
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8. Practical SSVEP-based Brain-computer Interface

The main advantage of the methodology outlined above is the fact that the pre-
defined threshold β represents the relative probabilistic value and not the absolute
value as in the original method [100,101], and as such it is independent of changes
in the segment length Ts of the acquired EEG signal used for classification.

The classification has to take into account the moment when the subject does
not focus on any stimuli. Therefore, the classifier output also detects a resting state
or transition states between two stimuli and moments when the user’s attention
is not on a particular stimulus. These states where no SSVEP response should be
detected is called zero class. If stimulation frequencies are located at the alpha
band, this can produce false classifications in resting state.

8.1.5. Adaptive Mechanism

The signal processing algorithm proposed here is adaptive in two parts of the
signal processing chain. First, in the online adaptation of the spatial filter MEC,
in which the number of channels used is recalculated every signal processing cycle
(100 ms for a sampling rate of 128 Hz), and second in the online adaptation of the
time segment length Ts used for the classification. At the beginning of the trial,
the first classification will be performed with the minimal time segment length of
750 ms (the values of 750, 1000, 1500, 2000, 3000 and 4000 ms were determined
on previous work, for more details please refer to [134]). Similar to the original
method, the classification is performed with the sliding window of Ts based on
the last acquired EEG data approx. every 100 ms (every 13 samples with the
sampling rate of 128 Hz used). In the case where no classification can be made
and the actual time t allows the extension of the Ts to the next pre-defined value,
this new value will be used instead:

∀t : Ts =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

750ms, t ≤1000ms
1000ms, 1000ms≤ t ≤1500ms
· · ·
Tsn , Tsn ≤ t ≤ Tsn+1

· · ·
4000ms, t ≥4000ms

(8.8)

Further, after each performed classification, the EEG data used for the classifi-
cation (Tsn) will be empty. This ensures that no subsequent classification of the
same frequency based on the buffered data can be done. In addition, the user of
the BCI system will need some time for the gaze shifting. An additional 700 ms
of the EEG data will not be utilized, they are usually contaminated by strong
movement artifacts, therefore this data exclusion is helpful for the reliable classi-
fication. The next classification will be performed again with the minimal value
Ts = 750ms.
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Figure 8.1.: Time courses and processing steps of the SSVEP signal detection for
the word “BCI” spelled by subject 1. (a) EEG signals acquired from the
visual cortex (Ny = 6). (b) Signal classification on the basis of a thresh-
old (β = 35%). Each signal represents the normalized power calculated
for a specific frequency over all spatially filtered components (Ns) and
all SSVEP harmonic frequencies (Nh = 2). A total of 9 (Nf) fre-
quencies are processed but only 5 (Nc) encode a command (blue =̂ left;
green =̂ right; red =̂ up; light blue =̂ down; magenta =̂ select). There-
fore only five frequencies are classified. (c) Result of the classification
(1 =̂ left; 2 =̂ right; 3 =̂ up; 4 =̂ down; 5 =̂ select). The numbers indi-
cated the exact time of the classification.
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8. Practical SSVEP-based Brain-computer Interface

Fig. 8.1 shows the output of the signal processing module of the Bremen-BCI
for a subject that successfully spelled the word “BCI.” Subject’s task was to spell
letters by navigating a cursor left, right, up, and down until the desired letter
was reached. This letter could be then selected using the “select” command.
The number of frequencies to detect was set to nine (Nf = 9), five stimulation
frequencies (6.66, 7.50, 8.57, 10.00, 12.00 Hz) encoding five control commands and
four additional frequencies (7.08, 8.03, 9.28, 11.00 Hz) for improving the robustness
of the detection. The additional frequencies were calculated as the mean value
between two target frequencies. Fig. 8.1(b) shows the power probability for each
frequency and Fig. 8.1(c) the output of the classifier. For this spelling task, the
user performed a total of nine commands. A command was executed when a
signal exceeded the threshold of 35% (dotted line). After each classification, the
signal processing module rejects 700 ms of EEG signals, because it is assumed
that during this period the subject shifts gaze.

8.2. Control Interface

Users require effective interfaces that provide real-time feedback. The visual in-
terface that interacts with the user is therefore very important to achieving high
performance. The spelling interface toward a practical BCI is presented in Fig. 8.2.
It consists of a keyboard and five stimulation boxes. These boxes contain the com-
mands that can be sent: up, down, left, right, and select. Subjects spell by focusing
on one of five boxes, which oscillates at a different constant frequency. Fig. 8.2(a)
presents the speller display at beginning of a run. The cursor is presented over
the ‘E’ character and the stimuli boxes in their default size (150 x 150 pixels).
Each box contains either an arrow (left, right, up, or down) or the word “select”
indicating the command it encodes. The white frame located around the stimulus
box represents the maximum size that the stimuli can reach. This frame helps the
user to know when a command is executed. The bottom of the screen contains
the word to spell for the copy spelling case.

Fig. 8.2(b) shows an example of a screen-shot when a subject attempts to spell
the German word “GEHIRN.” After the subject had successfully spelled the se-
quence “GE,” then the cursor is navigated until the next target character, the
letter ‘H.’ Because at letter ‘H’ there is no possibility to move the cursor down,
the stimulus encoding the corresponding command was deactivated. This rule was
applied for all letters at boundaries of the layout. Continuous feedback is provided
according to the power of the EEG signals. That is, the stimulus size increases or
decreases depending on the actual power value at the corresponding stimulation
frequency. Additionally, the next target for each stimulus is displayed on the box.
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8.2. Control Interface

(a) At the beginning of the experiment

(b) During the experiment

Figure 8.2.: Spelling interface with feedback toward a practical BCI. (a) At the
beginning of the experiment, all flickering boxes are represented in their
default size of 150 × 150 pixels. (b) Subject trying to spell the target
word “GEHIRN.” The actual letter ‘H’ is going to be selected. As
no further “down” movement is possible, this stimulus box has been
deactivated. The amplitude of the SSVEP responses control the size of
the stimuli.
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8. Practical SSVEP-based Brain-computer Interface

8.3. High ITR Study

This section describes a usability study aiming to demonstrate that the Bremen-
BCI approach is controllable in a close-loop system with feedback (visual and
auditory), and to investigate maximum and average information transfer rates that
can be achieved with the system. The physical environment in which experiments
were conducted was a normal office room in the Institute of Automation at the
University of Bremen. This is different to the usual EEG recording conditions
which is usually an electrically shielded room with low background noise and
luminance. Subjects were seated in a comfortable chair approximately 60 cm
from a LCD monitor with the control interface shown in Fig. 8.2.

8.3.1. Data Collection

EEG data were recorded from the surface of the scalp via eight sintered Ag/Ag-Cl
EEG electrodes. They were placed on AFZ for ground, right ear lobe was used
for the reference electrode and PZ , PO3, PO4, OZ , O9, O10 as the input electrodes
on the international system of EEG measurement. Standard abrasive electrolytic
electrode gel was applied between the electrodes and the skin to bring impedances
below 5kΩ. An EEG amplifier g.USBamp (Guger Technologies, Graz, Austria)
was used for these experiments. The sampling frequency was 128 Hz. During the
EEG acquisition, an analog bandpass filter between 2 and 30 Hz, and a notch filter
around 50 Hz (mains frequency in Europe) were applied directly in the amplifier.
The Bremen-BCI software system was used for all aspects of the real-time data
processing and data storage. The SSVEP display was presented on a LCD screen
(1680× 1050 pixels) that presented a virtual keyboard and five white boxes, each
one flickering at 7.5 Hz (“left”), 8.57 Hz (“right”), 10 Hz (“up”), 12 Hz (“down”),
and 6.67 Hz (“select”). The size of each stimulus box was 150 × 150 pixels.
Technical details of the software development of the control interface (speller and
presentation of visual stimulation) used in this study is available in chapter 5.

8.3.2. Subjects

A total of 27 subjects participated in the study. Subjects mean age was 23.59
years, range 18-35 with standard deviation 4.73. This study included a total of
21 naive subjects who had never used any kind of BCI system before, subjects
1-3 had extensive SSVEP-BCI experience and were included in this study in order
to form the reference value, subject 27 used the Bremen-BCI system once, and
subjects 5 and 15 were “BCI illiterates” during the previous experiments. None
of the subjects had neurological or visual disorders. Subjects did not receive any
financial reward for participating in this study.
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8.3. High ITR Study

8.3.3. Experimental Protocol

Each subject completed a brief questionnaire including the age and gender infor-
mation and was prepared for EEG recording. Next, a short familiarization run
was carried out in order to introduce the experimental procedures and the letters
arrangement. The assessment task was to spell five messages with the SSVEP
based Bremen-BCI system. Three of the messages were the same for all subjects
and were chosen by the experimenter (copy spelling), and two words were chosen
by the subject (free spelling). The copy spelling words were “BCI”, “GEHIRN”
(German word for brain), and “INTERFACE.” The subjects were told that their
first free spelling word should be five letters long and their second word did not
have any restrictions. Free spelling tasks are referred further as “FREE1”, which
means a word composed of five letters, and “FREE2” for a word without restric-
tions. Before the free spelling trial, each subject verbally told the experimenter
the phrases that she/he intended to spell. The order in which these five phrases
were presented to the user was determined randomly to avoid adaptations. Each
trial ended automatically, when the subject correctly spelled the specified word
(or when the subject chose to stop spelling due to any reason such as visual fatigue
- this happened to subjects 15 and 20). Misspellings should be corrected with the
“Del” option located at the top-right of the matrix. At the end of each session,
after the phrases were spelled, subjects completed a second questionnaire and the
procedure was complete. The entire session took on average about 40 minutes per
subject.

8.3.4. Analysis

Analyses were based on the calculation of the information transfer rate (ITR) in
bits per minute and the accuracy (Acc.) in percent for each spelling task. The
following ITR formula presented in [49] was used for the computations:

Bt = log2N + P log2 P + (1− P ) log2

[
1− P

N − 1

]
, (8.9)

where P is the classification accuracy and N is the number of targets. Bt is
calculated in bits per trial. ITR was calculated on the command level, meaning
that the number of targets is the number of flickering boxes and not the number
of characters in the spelling layout. The reason was, none of the letters or special
characters were flickering and therefore could not be directly selected by means of
SSVEP communication channel. The number of commands required for each letter
selection varied depending on its location on the layout (selection of the letter ‘E’
in the middle of the speller layout with just one “select” command) to maximum
five commands (e.g., selection of the letter ‘G’, four movement commands and the
selection).
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8. Practical SSVEP-based Brain-computer Interface

In the case that one wrong moving command was detected, the user should
correct this error first, e.g. the correction movement command “right” after the
erroneously detected “left” command. Therefore, in this case the correction step is
counted as correct command classification. So that, the number of commands can
increase depending of the subject’s performance. In case of incorrectly classified
selection command, the wrongly spelled letter should be corrected, this results in
five additional commands to select the special character “Del.”

Classification accuracy P was calculated in the traditional way and was defined
as the number of correct command classifications divided by the total number of
classified commands. If some of the stimuli are deactivated, these frequencies still
can be classified due to various reasons like e.g. background brain activity in the
alpha range (8–12 Hz). Since all five frequencies can be (erroneously) classified
independently of the actual cursor position, the assumption that all choices are
equally probable still could be suggested.

The spelling time T (for the whole word) was considered in the calculation of the
ITR in bits per minute (Bm). A very important issue was the value of N . Since
some of the flickering boxes were deactivated when the current cursor position was
on an edge of the speller layout, the ITR calculations considers N = 2, 3, 4, or 5
depending on the cursor position. This leads to the modified ITR calculation:

Bm =
60

T
·

5∑
N=2

[CN ·Bt(N)] (8.10)

where CN is the number of classifications at N targets and T is the spelling time
in seconds. Bt in this case is a function of N . It is worth noting that this at first
sight quite complicated ITR calculation results only in very minor decrease of the
ITR values. This could be easily explained with the selected speller layout: only
the letters ‘G’, ‘H’, ‘F’ from altogether 18 letters of the three copy spelling words
“BCI”, “GEHIRN”, and “INTERFACE” are located at the layout boundaries,
where some stimuli will be deactivated (N = 3 for ‘G’, N = 4 for ‘H’, and N
= 4 for ‘F’). Since during the correct spelling of the word “BCI” the cursor is
never located at the layout boundaries, the number of targets N = 5 during the
complete spelling task “BCI”, C2 = 0, C3 = 0, C4 = 0, C5 = 9, respectively, and
the ITR was calculated in the conventional way:

Bm =
60

T
· 9 ·Bt(5) (8.11)

It is important to note that none of the 27 subjects during all spelling tasks
ever reached the letters ‘,’ and ‘ ’ located at the left and the right boundaries of
the speller layout, therefore, the minimal value of N was 3 in this study.
The highest theoretically achievable ITR can be achieved with this BCI system

is 132.68 bit/min, assuming a minimal time between two consequent command
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8.3. High ITR Study

classifications of 1050 ms (an idle period of 700 ms plus 350 ms enough to detect
a frequency):

ITRmax =
60

1.05
· log2 5 (8.12)

Since this is the ideal situation, the real ITR values will be always below this
theoretical value because a subject needs some time to change focus between two
stimuli or to look at the layout to find the characters.

8.3.5. Results

Three conventional BCI performances, spelling time, accuracy and ITR achieved,
for five spelling words over all 27 subjects are summarized in Table 8.1. The format
of this table allows a direct comparison to previous studies (see Appendix A and
B). For every word the minimum (Min), maximum (Max), mean (Mean) and
standard deviation (S.D.) for each measured variable are obtained by averaging
over all subjects who completed the particular spelling task. Accuracies achieved
in individual spelling tasks vary considerably, in the range from 54.55% to 100.00%.
However, the majority of achieved accuracies are over 92%. The spelling time also
varies between subjects, leading to ITRs in the range from 4.61 to 117.39 bit/min
with the mean of about 50 bit/min.

Fig. 8.3(a) shows individual accuracies and information transfer rates achieved
by 27 subjects. Mean information transfer rates across all tasks and subjects
was 49.93 ± 26.44. Fig. 8.3(b) presents the normalized (by the total number
of correct classifications) distribution of the time segment length for all correct
classifications. This distribution is independent of the stimulus frequency.

Information transfer rates and accuracies were analyzed to find significant differ-
ences within spelling tasks using repeated measures analysis of variance (ANOVA).
Data from the 25 subjects who successfully completed all tasks were used for this
analysis. The results show that performance measured as ITR across five different
spelling tasks differed significantly, F (4, 96) = 20.373, p < 0.001. Post hoc tests re-
vealed that the word “BCI” was significantly different from all other spelling tasks
(p < 0.002). In terms of accuracy, also spelling tasks were performed differently
F (4, 96) = 4.70, p < 0.002. Post hoc tests show that the word “INTERFACE”
differed from others two words: “BCI” (p < 0.05) and free spelling with five letters
(p < 0.05).
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Figure 8.3.: Results of BCI performance for 27 subjects. (a) Mean individual ac-
curacies and information transfer rates. (b) Distribution of the time
segment length for all correct classifications. From [135].
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8. Practical SSVEP-based Brain-computer Interface

8.4. Conclusion

Presented results demonstrated that improvements in the signal processing and
new feedback modules of the BCI system constituted the basis for achieving ITRs
in the order of 100 bit/min. The novel idea of adapting the processed signal values
to the size of the stimuli to provide continuous real-time feedback was one of the
keys to achieve high online performance, as well as the exact frequency generation.
Further research should identify other factors that can relate with performance,
such as, human factors, training procedures, time behavior of the complete system
(the user can learn the time latencies and responses of the system), and error
recognition and error correction at early stages of the BCI signal processing. In
this work, the classification threshold was set to a constant value for all frequencies
(β = 0.35). Further research might also consider a frequency dependent β to take
into account the variation of the power of SSVEPs at different frequencies.
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9. Summary and Future Directions

In this dissertation, the development of practical Brain Computer Interfacing com-
munication was assessed by studying all components that are involved in the BCI
closed-loop, i.e., the user, the transducer and the feedback. The objective was
to improve the speed and the reliability of non-invasive BCI systems that acquire
brain signals via EEG. In order to reach this main goal, this work focused on
two BCI paradigms: the event-related (de-)synchronization (ERD/ERS) and the
steady state visual evoked potential (SSVEP). The former is the amplitude in-
crease or decrease of the brain waves during performed or imagined movement
(e.g., hands or feet movement), and the latter reflects attention to a rapidly oscil-
lating stimulus (> 5 Hz). Whereas the ERD/ERS constitutes an endogenous BCI
(responds to internally generated signal), the SSVEP constitutes an exogenous
BCI (responds to an automatic response to an evoked stimulus).

Concerning ERD/ERS communication, crucial parameters for the detection of
ERD/ERS brain patterns were identified and the relevance of feedback and train-
ing was investigated (see chapter 3). Consistent with other studies, results of the
ERD/ERS explorative study showed that the ERD/ERS patterns were subject-
dependent and varied in frequency (around mu and beta bands) and space (elec-
trode location). With the help of time-frequency analyses, it was found that an-
other important parameter for the successful detection of ERD/ERS is the time
window in which the imagination of movement can be better differentiated. These
results were very helpful for the development of an online ERD/ERS detector,
which first separates the data in classes (each imagery class and resting period),
searches for the frequency peaks in the spontaneous EEG spectrum (resting pe-
riod), builds frequency bands based on the found peaks, and finally searches for
more prominent differences between the band pass filtered imagery classes and
the resting state. The ERD/ERS feedback study showed a single-case study of a
subject that trained motor imagery tasks over 14 training sessions. The results of
this study led to an important conclusion, the feedback application (BCI trainer)
used to train subjects should be implemented as a set of applications with differ-
ent levels of difficulty, for instance, initial, intermediate, and advanced; and the
training protocol should be adapted according to the learning process of the user
to avoid frustration and low motivation. Both studies contributed to demonstrate
online ERD/ERS control using three mental states (imagination of right hand, left
hand and feet) on a real (intermediate trainer) and a virtual (advanced trainer)
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9. Summary and Future Directions

labyrinth application. 91.3% accuracy and 8.62 bit/min for a well trained subject
after 12 sessions were achieved with the virtual labyrinth. Although the ERD/ERS
paradimg provides an endogenous communication, it requires complicate signal
processing methods and long training periods. Most subjects complained that
motor imagery tasks were difficult to perform. The experience with this paradigm
led to indeed ERD/ERS requires significant commitment and a lot of concentra-
tion for the user. Moreover, calibration sessions of 150 trials (20 minutes) are
tiring and tedious. The reduction of calibration times would be vital for any fur-
ther implementation that focuses on online ERD/ERS communication. Further
ERD/ERS research should also concentrate to validate ERD/ERS as advanced
neurofeedback tool, in which the goal is not communication but rehabilitation, for
example as therapy for stroke, autism, ADHD, and other disorders.

Concerning SSVEP communication, a new application in the service robotics
was validated, the role of training and feedback was investigated, and effective
SSVEP communication was achieved. The high-level control study in chapter 4
demonstrated that the proposed goal-oriented approach for the control of a ser-
vice robot via BCI is possible. This underscores the importance of reducing the
burden on BCI users through effective goal-oriented protocols when controlling
more complex applications than simple computer based applications. The goal
selection approach was easier for the subjects and appears to be a more realistic
strategy for the control of the complex systems than the low-level control. To
allow users the low-level control of the robot arm would not only be slow and
frustrating but also dangerous. New applications for communication and control
should employ intelligent devices that can increase what users may accomplish
with the limited control available with modern BCIs. With the aim to improve
the accuracy and information transfer rate of SSVEP based BCIs, the role of
feedback and training was investigated in an spelling application. The results of
the feedback study that used real time feedback of the SSVEP signals to train
subjects to control a virtual keyboard proved that training with SSVEP causes
positive effects on subjects and indicated that the type of feedback (continuous vs
discrete) exerts a measurable effect on the subject’s performance, though continu-
ous feedback requires more initial training than discrete feedback (see chapter 7).
Based on performance results and subjective report of the test subjects, a more
intuitive feedback for the SSVEP stimuli was developed by changing the size of
the stimulus by means of the SSVEP signals (see chapter 8). Moreover, improve-
ments in the signal processing algorithm used to detect the SSVEP responses to
the stimuli contributed to achieve high information transfer rates (49.93 bit/min
averaged over 27 subjects). Even the best information transfer rate for an experi-
enced subject and a well-tuned BCI system as such one presented in chapter 8 is
relatively low, in the vicinity of 2 bit/s. This is still too low for natural interactive
communication (spoken English is about 40 bit/s, eye tracking 14 bit/s, mouse
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12 bit/s, source: [136]), so researching ways of optimizing detection techniques, the
exploitation of the learning skills of the users though feedback and incorporating
prediction mechanisms to speed communication are still needed [137].
Already in the experiments conducted in chapter 3 and 4, there was a consistent

observation: the considerable subject variability and the phenomenon than some
subjects were unable to attain effective control. Aiming to answer the question
if demographic information could help to understand why some people are better
at BCI use than others, or if gender, age, background, and lifestyle differences
affect performance, this dissertation also made an effort to address BCI demo-
graphics (see chapter 6). To this end, the causes of inter-subject variability and
BCI illiteracy were investigated by analyzing data recorded in two field studies
with a large number of test subjects. Results of both studies showed that most
subjects, despite having no prior BCI experience, could use the Bremen SSVEP
BCI system in a very noisy field setting. Performance data suggest that SSVEP
BCIs may be better suited to younger and/or female subjects, though these trends
did not attain statistical significance. Also, subjects with disabilities could use the
BCI with a similar performance as healthy subjects. While those studies helped
to validate effective SSVEP communication, they did not help to address BCI de-
mographics. Demographics questions should be best addressed with a more equal
distribution of key characteristics like age or gender, requirement that was no ful-
filled at the CeBIT or RehaCare event. In future BCI studies that cannot recruit
or screen subjects in advance, researchers might consider rejecting some subjects
and encouraging others to attain a better mix of, for example, young versus old
subjects [102]. Further demographic research should identify how individual sub-
ject factors relate to performance with other BCIs, and with other parameters
such as the best frequencies, thresholds, tasks, mental imagery, training regimens,
feedback, or other adjustable parameters. This research should facilitate BCIs
that can adapt to each user, ideally with little or no expert help.

The spelling interface for SSVEP and the training environment for ERD/ERS
were the result of the software development described in chapter 5. This software
was designed following extendability and re-usability concepts, which showed to
be an effective solution for software development in BCIs. The practicability
of BCI feedback tasks require thorough evaluation to demonstrate their long-
term reliability, functionality and acceptance based on experimental results and
subjective report. Feedback tasks graphical representation change but the general
concept remains constant. A feedback task presents a view, acquires BCI control
signals and works based on configuration parameters. Therefore, the development
of a general application interface to study different kinds of feedback types was
the best solution to solve the software problem. Future research could extend this
software concept to other parts of the BCI system to build a BCI general software
framework.
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9. Summary and Future Directions

Future progress in BCI research can be expected by the design of hybrid BCI ar-
chitectures [138,139] that incorporates different BCI approaches with other biosig-
nals or external devices such as an eye tracking system [140], new algorithms that
can adapt together with the learning process of the user, exploitation of mental
states, and incorporation of human-computer interaction concepts. The devel-
opment of new electrodes, e.g., dry electrodes or electrodes that require water
instead of electrolytic electrode gel, would make both daily setup and clean up
much faster, easier and comfortable. A very recent study conducted at IAT [141]
presents promising results that confirm the operational readiness of water-based
electrodes for BCI applications. Advances can be expected by the development of
dry electrodes, amplifiers, lightweight and portable equipment by the inclusion of
industry partners in BCI projects.
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A. CeBIT data set

This appendix contains detailed results of the experiments conducted at CeBIT
2008. Table A.1 presents a synopsis of the CeBIT study and Table A.2 displays
the performance results assessed by 106 subjects. Subjects numbers 28 and 52 do
not exist. A hyphen symbol (-) indicates that the task was not completed.

Table A.1.: Study synopsis

Synopsis

Study Study class (non-controlled) Usability study
description Objective(s) Assess SSVEP BCI performance across a large number

of subjects
Online/Offline Online (evaluation of technology with live biosignals)
Subject class Human

Experimental Dependent Information transfer rate of control interface [bpm]
variable(s) variable(s) Correct selection of targets [%]

Completion time of spelling task [s]

Assistive Description Virtual keyboard with 32 targets
technology BI Technology (2 component) Demonstration system - Transducer

design model and Spelling Device
Target Fully-paralyzed (locked in individuals)
population Partially-paralyzed individuals

Individuals with other severe motor disabilities
Target Communication with people
activity
Target Anywhere (indoors or outdoors)
environment

Physical Location Field study: subjects sat in a chair facing a laptop
environment monitor 50 cm away at an exposition fair.
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A. CeBIT data set
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A. CeBIT data set
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A. CeBIT data set
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B. RehaCare data set

This appendix contains detailed results of the experiments conducted at RehaCare
2008. Table B.1 presents a synopsis of the RehaCare study and Table A.2 displays
the performance results assessed by 37 subjects. A hyphen symbol (-) indicates
that the task was not completed.

Table B.1.: Study synopsis

Synopsis

Study Study class (non-controlled) Usability study
description Objective(s) Reach a large audience of potential BCI users, specially

disabled subjects
Online/Offline Online (evaluation of technology with live biosignals)
Subject class Human

Experimental Dependent Information transfer rate of BCI transducer [bpm]
variable(s) variable(s) Correct selections of targets [%]

Completion time of spelling task [s]

Assistive Description Virtual keyboard with 32 targets
technology BI Technology (2 component) Demonstration system - Transducer

design model and Spelling Device
Target Fully-paralyzed (locked in individuals)
population Partially-paralyzed individuals

Individuals with other severe motor disabilities
Target Communication with people
activity
Target Anywhere (indoors or outdoors)
environment

Physical Location Field study: subjects sat in a chair facing a laptop
environment monitor 50 cm away at an exposition fair.
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B. RehaCare data set
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[90] D. Valbuena and A. Gräser, “Mental Strategies to Operate a Motor-imagery-
based Brain-computer Interface,” in Methods and Applications in Automa-
tion. Aachen: Shaker Verlag, 2008, pp. 66–74.

[91] R. Krepki, B. Blankertz, G. Curio, and K. robert Müller, “The Berlin Brain-
Computer Interface (BBCI) towards a new communication channel for online
control in gaming applications,” Multimed. Tools Appl., vol. 33, pp. 73–90,
February 2007.

[92] R. Leeb, D. Friedman, G. R. Müller-Putz, R. Scherer, M. Slater, and
G. Pfurtscheller, “Self-Paced (Asynchronous) BCI Control of a Wheelchair
in Virtual Environments: A Case Study with a Tetraplegic,” Computational
Intelligence and Neuroscience, vol. 1, p. 79642, 2007.

[93] J. Wolpaw, “Brain-computer interfaces as new brain output pathways,” J.
Physiol., vol. 579, no. 3, pp. 613–619, 2007.

175



References

[94] B. Graimann, B. Allison, C. Mandel, T. Lüth, D. Valbuena, and A. Gräser,
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Computer Interface using Water-based Electrodes,” J. Neural Eng., vol. 7,
p. 066007, 2010.

180



Index

Accuracy, 31

ACE, see Adaptive communication en-
vironment

Adaptive communication environment,
92

ADC, see Analog-digital converter

ADHD, see Attention Deficit Hyper-
activity Disorder

Aggregation, 91

Aliasing, 26

Alpha rhythm, 36

Analog-digital converter, 26

sampling period, 26

sampling rate, 26

Analysis of variance, 113, 132

ANOVA, see Analysis of variance

AR, see Auto-regression

Assistive technology, 63

Attention deficit hyperactivity disor-
der, 29

Auditory stimuli, 36

Auto-regression, 47, 72

Automaton, 109

Band-pass filtering, 41

BBCI, see Berlin Brain Computer In-
terface

BCI, 23

components, 23

definition, 23

demographics, 103

illiteracy, 103

invasive, 24

non-invasive, 24

operating protocol, 30

output devices, 28

performance, 30

signal acquisition, 24

signal processing, 27

trainer, 58

BCI2000, 30, 91

offline analysis, 47

signal processing module, 57

source module, 44

stimulus presentation, 44, 56

StimulusCode, 44

Berlin Brain Computer Interface, 30

Biological artifacts, 25

Biosignal amplifier, 69

Bipolar filtering, 27

Bit rate, see ITR

Brain patterns, 32

Brain-computer interface, see BCI

Bremen-BCI, 69, 97, 106

C++, 88, 99

base class, 88

thread, 91

CAR, see common average reference

Class

inheritance, see Inheritance

Classification, 28

Classification times, 136

Common average reference, 28, 47

Common object request broker archi-
tecture, 68

181



Index

Common spatial patterns, 28, 50
Confusion matrix, 31
Control interface, 144
CORBA, see Common object request

broker architecture
CSP, see Common spatial patterns

Demographics, 103
Design pattern, 83
Differential amplifier, 26

ECoG, see Electrocorticography
EEG, see Electroencephalography, 25

ground electrode, 26
recording system, 25
reference electrode, 26
spontaneous EEG, 32

Efficiency, 110
Electrocorticography, 25
Electroencephalography, 25
Electromyography, 25
Electrooculographic, 25
EMG, see Electromyography
EOG, see Electrooculography
EP, see Evoked potentials
ERD/ERS, 32, 41

calculation, 41
screening, 44

ERP, see Evoked-related potentials
Error rate, 31
Event-related desynchronization,

see ERD/ERS
Event-related potentials, 32
Event-related synchronization,

see ERD/ERS
Evoked potentials, 32
Exogenous BCI, 80

Feedback, 80
continuous, 131
discrete, 131
framework, 79

task, 83
Filter

analog, 26
high-pass, 26
Laplace, 28
low-pass, 26
notch, 26
spatial, 106

fMRI, see Functional magnetic reso-
nance imaging

fNIR, see Functional near-infrared imag-
ing

Fourier Transform, 33
Framework, 79
FRIEND-II, 64
Functional magnetic resonance imag-

ing, 25
Functional near-infrared imaging, 25

General application interface, 83
Graphical user interface, 83, 129
GUI, see Graphical User Interface

Hex-o-Spell, 30
High-level control, 63
HMI, see Human-machine interface
Human computer interaction, 30
Human machine interface, 67

Information transfer rate, 31, 109, 132,
147

Inheritance, 88
ITR, see Information transfer rate

Kinesthetic motor imagery, 40

Laplace filtering, 28
LCD, see Liquid crystal display
LDA, see Linear discriminant analy-

sis
LED, see Light emitting diode
Light emitting diode, 33, 73, 81

182



Index

Light stimuli, 81
fluorescent light, 81
LED, 81
Xenon lights, 81

Linear discriminant analysis, 28
Liquid crystal display, 120
Low-level control, 63

Machine vision, 63
Magnetoencephalography, 25
Mahalanobis distance, 50
Mapped virtual reality, 95
MASSiVE

multi-layer architecture, 66
MEC, see Minimum energy combina-

tion
MEG, see Magnetoencephalography
Mental strategies, 32
MI, see motor imagery
Minimum energy combination, 70, 129
Motor imagery, 39
MPL, see multilayer perceptron
Multilayer perceptron, 28
Multimedia timer, 84, 101
Mutex, 91
MVR, see mapped virtual reality

Near-infrared spectroscopy, 25
Neurofeedback, 127

applications, 96
software, 97
training, 128

NIRS, see near-infrared spectroscopy
Nuisance signals, 70
Nyquist criterion, 27

Oddball paradigm, 35

P300
potentials, 35
speller, 29

Parent class, 91

Pattern reversal stimuli, 81
PET, see Positron emission tomogra-

phy
Positron emission tomography, 25
Power, 72
Practical BCI, 139

Qt4, 99
graphics view framework, 99
QGraphicsScene, 91
QMutex, 91

Real-time
counter, 86
drifts, 93
execution state, 87
feedback, 144
frequency generation, 84
global drift, 93
inline assembly, 93
local drift, 93
sampling time, 85
soft, 93
worker thread, 85

Rehabilitation robot, 64
Repetitive visual stimuli, 80

SCP, see Slow Cortical Potential
Selective attention, 32
Semi-autonomous service robot, 66
Sensorimotor rhythms, 39
Signal-to-noise ratio, 72
Single graphics stimuli, 81
Slow cortical potential, 29
SMR, see Sensorimotor rhythms
SNR, see Signal-to-noise ratio
Spatial filtering, 27
Spectra plot, 47
Spectral filtering, 27
Speller

program, 99
rhombus layout, 97

183



Index

row-column, 97
layout, 97

Spelling devices, 29
Square wave, 85

duty cycle, 85
SSVEP, 32, 80

bandwidth, 82
detection, 72
feedback, 144
frequency resolution, 82
modeling, 69
training, 128

Standard 10-20 system, 44, 73, 105,
129, 146

Steady state visually evoked poten-
tial, see SSVEP

Stimulation rate, 84
Stimulus

color, 81
frequency, 82, 84

Support vector machines, 28
SVM, see support vector machines

t-test, 118
TCP, 91, 101
Thought translation device, 29
Topography, 48
Transmission Control Protocol, 101,

see TCP
Transmission control protocol, 129
TTD, see Thought Translation De-

vice

UDP, see User datagram protocol
UML, see Unified modeling language
Unified modeling language, 88
User datagram protocol, 57, 91

VEP, see Visual evoked potentials
Virtual class, 90
Virtual keyboard, 29
Virtual LED, 99

Visual evoked potentials, 23, 32
Visual feedback, 127
Visual motor imagery, 41
Visual stimulator, 80, 98
VLED, see Virtual LED

alternation, 84
states, 85
stimulation frequency, 85

Wheelchair, 64
Widget, 91, 99

184


