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Data Analytics in Steady-State Visual Evoked

Potential-based Brain-Computer Interface: A Review
Yue Zhang, Shane Xie, Senior Member, IEEE, He Wang, Member, IEEE, Zhiqiang Zhang, Member, IEEE

Abstract—Electroencephalograph (EEG) has been widely ap-
plied for brain-computer interface (BCI) which enables paralyzed
people to directly communicate with and control of external
devices, due to its portability, high temporal resolution, ease of
use and low cost. Of various EEG paradigms, steady-state visual
evoked potential (SSVEP)-based BCI system which uses multiple
visual stimuli (such as LEDs or boxes on a computer screen)
flickering at different frequencies has been widely explored in the
past decades due to its fast communication rate and high signal-
to-noise ratio. In this paper, we review the current research in
SSVEP-based BCI, focusing on the data analytics that enables
continuous, accurate detection of SSVEPs and thus high infor-
mation transfer rate. The main technical challenges, including
signal pre-processing, spectrum analysis, signal decomposition,
spatial filtering in particular canonical correlation analysis and
its variations, and classification techniques are described in this
paper. Research challenges and opportunities in spontaneous
brain activities, mental fatigue, transfer learning as well as hybrid
BCI are also discussed.

Index Terms—Brain-computer interface (BCI), steady state
visual evoked potential (SSVEP), healthcare application, data
analytics, canonical correlation analysis.

I. INTRODUCTION

Brain-computer interface (BCI) is a communication system

that enables paralyzed people to directly communicate with

and control of external devices without body movement via

analysing the user’s brain activities [1], [2], and it has been

widely explored in the past years, as illustrated by the fast

increment of the numbers of BCI related publications in the

Fig. 1. There are a wide variety of applications of BCI systems,

ranging from wheelchairs, robot and prosthetic arms control

to character spelling, games and entertainment [3]–[5].

BCI systems normally rely on different modalities of

functional neuro-imaging, such as electroencephalography

(EEG) [7], functional near-infrared spectroscopy (fNIRS) [8],

functional magnetic resonance imaging (fMRI) [9], and mag-

netoencephalography (MEG) [10]. Among the various modal-

ities, EEG is the most commonly employed one due to its

portability, high temporal resolution, ease of use and low cost
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Figure 1. Cumulative number of publications referring to BCI indexed by
IEEE Xplore, Web of Science, PubMed and Scopus, and it is obvious the
research on BCI is increasing year by year.

Figure 2. Distribution of published papers in subareas of EEG-based BCI
systems.

[11]–[14], as shown in the Table. I. Four typical paradigms in

the EEG signal, namely P300 event related potential (ERP),

slow cortical potential (SCP), sensorimotor rhythms (SMR),

and steady-state visual evoked potential (SSVEP) are used

to analyse brain activities [15], and Fig. 2 outlines a rapid

surge of interest in EEG-based BCI in recent years in terms of

the number of publications using different type of paradigms.
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Table I
THE COMPARISON OF EEG AND THE OTHER NEURO IMAGING TECHNIQUES

Neuro imaging techniques
EEG

fNIRS fMRI MEG
SSVEP P300 ERP SMR SCP

ITR (bits/min) 24.7∼325.33 4.47∼20.1 4.47∼17 N.A 3.18∼8.23 ∼5 13.1∼19.6

SNR(dB) 8.97∼25 0.87∼8.18 -16∼5 17.5∼42.8 26.48∼31.93 1.07∼161.2 2∼35

Temporal resolution millisecond millisecond second millisecond

Spatial resolution centimeter millimeter millimeter millimeter

Cost low moderate high very high

(a) Scheme of the experimental paradigm.

(b) Stimulus design of the 40-target BCI system.

Figure 3. The redraw of the experimental paradigm and stimulus design in
[6], which represented the setting for one of the highest numbers of stimuli.

It is obvious that SSVEP-based BCI has received extensive

research interests in the past decades due to its fast commu-

nication rate and high signal-to-noise ratio (SNR).

The SSVEP-based BCI usually utilizes several visual os-

cillating stimuli, such as LEDs or boxes on a computer

screen, which are generally modulated at different frequencies

and phases [16], [17]. A typical experimental paradigm of a

SSVEP-based BCI system generally contains M blocks each

containing N trials corresponding to N visual stimuli which

flicker at a random order. For example, Fig. 3(a) shows a

typical stimulated experiment in [6], which represented the

setting for one of the highest numbers of stimuli. The user

interface is a 5 × 8 matrix of visual stimuli including 40 targets

which were modulated by linearly increasing frequencies and

phases, as shown in Fig. 3(b). In each experimental block,

subjects were required to gaze at each visual stimulus for

0.5 s, and completed 40 trials corresponding to all 40 targets.

Each trial began with a 0.5 s visual cue that shows the target

stimulus produced by the stimulus program. During the target

cue period, users were required to shift their attention to the

flickering target on the screen as quickly as possible. The

subjects rested for a few minutes between two consecutive

blocks to relieve visual and mental fatigue. Besides, to de-

crease artifacts generated by eye movements, subjects should

avoid eye blinks during the experimental period. SSVEPs are

periodic neural responses generated in occipital scalp areas

of the brain, and the stimulus frequency will determine the

response frequency content, which contains activities not only

at the stimulus frequency but also at its higher harmonics [18].

Signal processing algorithms are applied to analyze the charac-

teristics of SSVEP responses and identify the subject’s intent

to control the peripheral equipment. As a result, subjects can

output desired commands by gazing at different target stimuli

sequentially [16].

Recent surveys of the BCI system used in computer in-

terface spellers [19] [20], and hybrid BCI [21] [22] have

signified the importance of SSVEP-based technologies. These

surveys focus mainly on the various applications of SSVEP

rather than its technical novelty and challenges. In other

surveys, Zhu et al. [23] reported the different repetitive visual

stimulus choices in terms of rendering devices, properties

(e.g., frequency, color), and their potential effects on BCI

performance, user comfort and safety. Zerafa et al. [24]

compared the different training requirements of feature extrac-

tion methods for SSVEP-based BCIs. They divided SSVEP

feature extraction methods into three categories according to

training requirements, namely training-free, subject-specific

and subject-independent training approaches. Different to pre-

vious surveys, this review focuses on technical challenges

and developments in SSVEP data analytics including signal

pre-processing, spectrum analysis, signal decomposition, spa-

tial filtering in particular canonical correlation analysis and

its variations, and classification techniques. Three databases,

Google Scholar, IEEE Xplore and Web of Science, were used

for the literature search. A combination of keywords, such

as BCI, SSVEP, classification, spatial filtering and canonical

correlation analysis, were used as search terms. Publications

from 2010-2020 were preferred, but this range was extended

in some cases.

The remainder of this paper is organized as follows. Section

II briefly introduces the typical healthcare applications of

SSVEP-based BCI system. Data analytics and signal pro-

cessing algorithms for SSVEP identification are detailed in

Section III. Section IV presents some new emerging challenges

and opportunities of SSVEP. Discussion and conclusion are

provided in Section V and VI.
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II. HEALTHCARE APPLICATIONS

In this section, we will use healthcare as the exemplar

to illustrate SSVEP-based BCI systems’ wide spectrum of

applications. Clinically, SSVEP-based BCI systems have been

applied for diagnosis of various diseases and health issues,

such as migraine [25], autism [26], cognitive aging [27],

as well as the abnormal nervous system in patients with

bipolar disorder [28] and schizophrenia [29], via comparing

differences between the patients and healthy people on certain

physiological indexes such as brain complexity described by

inherent fuzzy entropy and the amplitude/power of SSVEP

responses, when they look at certain visual stimuli. In addition

to the diagnostic applications, the SSVEP-based BCI systems

also show great potential in providing commands to control

rehabilitation or assistive devices for people with disability.

For patients with impaired mobility, restoring their lost abil-

ities, or at least helping them adapt to suffered disabilities,

is essential for them to live with dignity. The SSVEP-based

BCI system can output the patient’s desired commands and

control the external devices, which can thus restore/rebuild

the function of damaged muscles to efficiently accelerate the

rehabilitation procedure. For instance, the operation process

for rehabilitation is that BCI system analyses the SSVEP

responses generated from the scalp when the user looks at

different visual stimuli. Then, intentions are translated into

various commands to trigger the peripheral devices, e.g. upper

extremity rehabilitation [30], ankle rehabilitation robot [31],

which can stimulate impaired muscles to perform more precise

motion tasks that the patient cannot perform on his/her own.

Assistance applications have the same working principle with

rehabilitation equipment, but their output commands are used

to control aided peripheral experiment like wheelchair [4],

speller [5] or meal assistance robot [32].

SSVEP-based BCI systems also have made pragmatic

progress in the smart home scenarios, which provides

disabled people more direct interactions with the environment.

It performs mainly in two aspects, controlling household

appliances and undertaking housework. SSVEP-based BCI

offers people the possibility to recognize various commands

and control corresponding devices in their houses by

watching different stimuli [33]. By means of the quick

response technology QR code, Abdul et al. [34] designed

an augmented reality smart glasses to control items in the

environment, such as lights, coffee machines and elevators,

by focusing on different SSVEP stimuli displayed on the

glasses. Similarly, based on SSVEP-based BCI technology, a

hand-free control smart home has been created in [35], which

can control six devices. The SSVEP-based BCI system also

assists in reducing domestic pressure and improving home

conditions by helping people accomplish heavy housework.

Shao et al. [36] designed a novel EEG-based intelligent

teleoperation system for a mobile wall-crawling cleaning

robot, which uses the crawler type instead of the traditional

wheel type for window or floor cleaning. The developments

of SSVEP-based BCI in smart environment field may offer

the prospect of greatly improving the quality of life for

disabled people out clinics, and considerably increase their

independence, autonomy, mobility, and ability, which also

leads to reduced social costs.

III. DATA ANALYTICS FOR SSVEP IDENTIFICATION

The data analytics of a standard SSVEP-based BCI system

generally includes signal pre-processing and SSVEP recogni-

tion. The purpose of signal pre-processing is to improve the

quality of EEG signals by removing background noises, while

the SSVEP recognition is to make the characteristics contained

in the SSVEP responses emerge and then use them to identify

the stimuli. In this section, we will elaborate on the details of

signal pre-processing and SSVEP recognition.

A. Signal pre-processing

The EEG potentials gathered by electrodes are coming from

the brain, which can be easily contaminated by muscles acti-

vation, eyes movement and external artifacts [37]. Therefore,

it is necessary to pre-process the raw EEG signal to achieve

higher SNR before the SSVEP recognition step. Thus far, there

are mainly two types of pre-processing method: filtering and

blind source separation (BSS).

Band pass and notch filter are the most common pre-

processing filtering to remove the noises (i.e., eye move-

ment, head movement, power noise) whose frequencies are

not overlapped with SSVEP responses. The band pass is

utilized to retain the pertinent parts of the EEG signal, which

correspond to the stimulation frequencies as well as harmonics.

The SSVEP signal is divided into different frequency bands,

and just the sub-band signal in the given frequency can be

collected. Many works about SSVEP-based BCI have adopted

band pass as the signal pre-processing algorithm, such as [6],

[18], [38]. In most countries, the frequency of power frequency

interference is commonly concentrated near 50 Hz or 60 Hz

[39], [40]. The notch filter is utilized to eliminate power line

interference, but it is prone to induce waveform distortion [40].

Besides, these time-domain filtering methods require that the

correlated and uncorrelated signals are in different frequency

bands, which are not suitable for overlapping.

BSS is a popular way to enhance SSVEP responses if

the frequency range of some artifacts (i.e., EMG) and the

EEG overlap to a high degree. The BSS represents a group

of methods that recover underlying useful signals and reject

harmful artifacts through exploring the statistical indepen-

dent criteria [41], [42]. For example, independent component

analysis (ICA) returns independent sources which form the

measured EEG signal under the assumption that they are

linearly mixed [41]. Therefore, it is flexible to reconstruct

the EEG signal with non-artifact components to improve the

quality of signals, thus enhance the stimulation frequency

identification accuracy [43].

B. SSVEP recognition and classification

SSVEP-based BCIs are generally divided into two typical

classes, named frequency-coding and phase-coding, decided

by the modulation procedure and feature variable employed
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for classification [39]. Frequency coding system, which has

the same number of stimuli and targets, uses visual stimuli

with different frequencies and then examines the spectral

peaks in the recorded spectrum for recognizing targets [44],

[45]. Phase coding systems, designing visual stimuli with

the same frequency but different phases, compare phase lags

between SSVEP responses and reference ones to detect gazed

target [46], [47]. Thus far, the frequency coding is often

combined with phase coding to generate a high number

of commands. Recognizing the frequency and phase of the

SSVEP with superior accuracy in a short time window (TW)

is the main task for exploiting high performance BCI sys-

tems. Many frequently used SSVEP recognition algorithms,

such as Fourier transform-based spectrum analysis, signal

decomposition-based analytics, basic spatial filtering methods

and CCA-based methods are all reported in this subsection.

The advantages and disadvantages of most techniques are

also discussed, as shown in the Table. II. Moreover, many

classifiers utilized in the context of SSVEP identification are

also presented in this subsection.

1) Fourier transform-based spectrum analysis methods:

The simplest detection approach for SSVEP-based BCIs is

power spectral density analysis (PSDA) which is based on

the fast Fourier transform (FFT). By transforming the time

domain EEG signals to frequency domain, amplitudes and

phases information of each stimulation frequency are obtained

for further target identification procedure [86]. Many works

[48], [49] about SSVEP-based BCIs employ Fourier transform

due to its small computation time and simplicity. Estimating

the phase of EEG signals is another fundamental issue of

SSVEP-based BCI systems. Currently, most phase estimators

are implemented based on the discrete Fourier transform

(DFT), which highly depend on the conclusion of frequency

estimation [87]. Many efforts are dedicated to compensating

above drawback, such as the work based on energy [88] or

based on interpolated FFT [89]. However, they all fail to

remove the bias produced by frequency acquisition, which will

bring uncertainty to the phase estimation [90]. To solve this

limitation, Huang et al. [51] present a novel idea to estimate

phases based on fully-traversed DFT which enables consider-

ing all possible truncated DFT spectra to achieve direct phase

extraction and extracts instantaneous phase information in high

accuracy without any correction process.

Most current Fourier-based analysis methods require a

long window length to obtain a sufficiently high frequency

resolution. Moreover, when DFT is used to estimate phase

information, the data length needs to contain an integer number

of cycles, which may limit practical applications. Furthermore,

the magnitude and distribution of SSVEPs are quite different

across subjects, leading to the problem that PSDA is not robust

to real-time BCIs [91]. Some efforts attempt to solve this

issue by optimizing parameter, such as electrode and time

length selection [92], [93], which may increase the additional

work. The FFT is a linear method based on a predefined basis

function, which generally requires an assumption of stationary,

so it is unable to treat the highly complex EEG signals with

nonlinear and non-stationary features well [63].

The Fourier transform-based methods normally achieve

stimulus target recognition utilizing spectrum. To be specific,

since the SSVEP carries the frequency characteristics of visual

stimulation, the frequency corresponding to the peak of the

signal power spectrum obtained by Fourier transform is deter-

mined as the stimulation frequency that induces the SSVEP

response.

2) Signal decomposition-based analysis methods: Wavelet

transform (WT) can be regarded as FT with adjustable window

[52], which is good at dealing with non-stationary signals like

SSVEP responses. WT has gained many focuses due to its

ability to provide the information about frequency components

presented in the signal, and their occurrence time simultane-

ously. For example, Rejer et al. [53] employed wavelet analy-

sis to detect both frequency and time information of SSVEP re-

sponses through translation and dilation of the mother wavelet.

In many practical application scenarios, the discrete wavelet

transform (DWT) that uses discrete translations and scales is

generally employed to decompose the given signal into several

small components according to different frequency bands,

and then components with corresponding frequencies will be

extracted for further analysis [54], [55], [63]. In WT-based

methods, the wavelet coefficients of sub-bands that contain

stimulation frequencies are frequently selected as the feature

vector and input to the classifier for SSVEP recognition [56].

WT shows high quality in processing non-stationary signals,

but it is still hard to demonstrate excellent performance for

highly complex SSVEPs which show nonlinear dynamics and

chaos.

Huang [59] proposed the idea of Hilbert-Huang transform

(HHT), including Empirical mode decomposition (EMD) and

Hilbert transform (HT). EMD as a nonlinear technique is

appropriate to process dynamic and complicated signals. EMD

enables to adaptively decompose signals into a group of

intrinsic mode functions (IMFs) which show oscillation feature

in the non-stationary signals [39], satisfying the requirements

of HT. Besides, IMFs are analytical, self-constructed and well-

defined functions with time-varying amplitudes and frequen-

cies, indicating that EMD is an entirely data-driven approach

because it is based on original features of the signal [60].

Currently, many studies have employed EMD successfully

to achieve frequency recognition and enhance classification

accuracy in SSVEP-based BCIs, such as [57] and [61].

Besides, ensemble empirical mode decomposition (EEMD)

was employed to deal with the mode-mixing problem caused

by signal intermittences [62]. Considering another obstacle

in EMD technique named mode misalignment in multiple-

channel decompositions, Chen et al. [63] proposed multivari-

ate empirical mode decomposition (MEMD) to better align the

corresponding IMFs of multi-channel signals. Compared with

FFT and WT, HHT has better universality to handle nonlinear

and non-stationary signals. It not only absorbs the advantages

of multi-resolution of WT but also overcomes the difficulty

of selecting an appropriate wavelet base which is a key

issue of wavelet analysis. However, HHT requires complicated

calculations, thus the calculation time is increased.

In the EMD-based methods, target identification requires

further analysis of IMFs. In [57], SSVEP-related IMFs are

selected through calculating the instantaneous frequency, and
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Table II
TARGET RECOGNITION METHODS FOR SSVEP-BASED BCI SYSTEMS

Categories Methods Description Advantages Disadvantages Recognition/classification

PSDA
[48], [49]

PSDA is based on the FFT. By
transforming the EEG signals from
time domain to frequency domain,
amplitudes and phases of each
stimulation frequency are obtained.

Simplicity and small
computation time.

It shows poor performance
on non-linear and unstable
signals.

Since the SSVEP
carries the frequency
features of visual
stimulation, the
frequency
corresponding to the
peak of the signal
power spectrum
obtained by Fourier
transform is used as the
stimulation frequency
that induces SSVEP
response.

Fourier
transform-
based
spectrum
analysis
methods

DFT [50]

Discrete Fourier transform. Most
phase estimators are implemented
based on the DFT, which highly
depend on the conclusion of fre-
quency estimation.

It achieves phase estima-
tion.

The operation time of
DFT is longer than FFT.

Fully-
traversed
DFT [51]

Considering all possible truncated
sequences containing the center
sample, spectral leakage in
corrected-phase DFT is greatly
reduced and thus the instantaneous
phase information of the center
sample can be directly extracted.

It extracts instantaneous
phase information in
high accuracy without
correction process and
solves spectral leakage.

In current work, it em-
ployed two flickers and
more targets may be ex-
plored in future studies.

WT [52],
[53]

WT can be regarded as FT with
adjustable window. It provides in-
formation about frequency compo-
nents and their occurrence time si-
multaneously.

It is good at dealing with
non-stationary signals.

However, it is still hard to
show an excellent perfor-
mance for nonlinear situa-
tions.

DWT
[54]–[56]

It generally decomposes the given
signal into several small compo-
nents according to different fre-
quency bands through discrete
translations and scales.

Its computation is more
efficient than WT.

Lack of phase informa-
tion.

In WT-based methods,
the wavelet coefficients
of sub-bands that
contain stimulation
frequencies are
frequently selected as
the feature vector and
input to the classifier
for SSVEP recognition
[56]. In EMD-based
methods, the frequency
of IMFs with the
maximum presence
probability and closest
to the stimulation
frequency is
determined as the
visual target [57]. The
peak frequency of
power spectra of IMFs
is also commonly
extracted and taken as
the target [58].

EMD
[58]–[60]

It can treat the highly complex
EEG signals with nonlinear and
non-stationary features better com-
pared with FFT.

It is suitable to han-
dle nonlinear and non-
stationary signals.

It faces the mode-mixing
problem caused by signal
intermittence.

Signal
decomposition-
based analysis
method

EMD
+rGZC

[57]

The refined generalized zero-
crossing (rGZC) method is used
to calculate the instantaneous
frequencies in each IMF.

It helps EMD reduce
background noises.

The current study uses a
fixed window, future re-
search may have a try on
adaptive epoch length.

EMD
+CCA
[61]

EMD and CCA are integrated to
enhance the classification accuracy
of high-frequency SSVEPs, which
also improve the comfort level of
subjects in the experiment.

It improves the com-
fort level of users and
reduces the possibility
of inducing diseases like
epilepsy.

It may be also affected
by the problem of mode-
mixing.

EEMD
[62]

To deal with the mode-mixing
problem of EMD caused by signal
intermittences

To reduce mixing of
modes and boundary ef-
fects.

It requires to set certain
initial parameters.

MEMD
[63]

MEMD simultaneously
decomposes multichannel data
to achieve better alignment of
corresponding IMFs from different
channels.

It will benefit narrow
band SSVEP detection
with broadband sponta-
neous EEG.

The optimization of refer-
ence signals in the whole
frequency band of training
data rather than a particu-
lar sub-band.

HHT [64]
HHT is composed of EMD de-
composition and Hilbert transfor-
mation.

It can handle nonlinear
and non-stationary sig-
nals well.

It requires more calcula-
tion time.

MEC
[65], [66]

MEC finds a spatial filter project-
ing the multi-channel signal to a
low-dimensional combined one to
weaken background noises.

Minimizing the back-
ground signals

It may lose useful in-
formation in EEG signals
during the linear transfor-
mation.

In MEC/MCC, the
SSVEP power
contained in the filtered
EEG signal at different
frequencies are
estimated. The
frequency related to the
maximal power is
regarded as the target.
CSP is commonly used
with a single classifier.

Basic spatial
filtering
methods

MCC
[67]

MCC attempts to make the energy
in the SSVEP frequencies is max-
imized through the computation of
a weight matrix.

Maximizing the SNR
It may lose some useful
information in the EEG
signals.

CSP [68]
It aims to maximize the SNR of
SSVEP responses against the non-
stimulus situation.

Improving the distinc-
tion between EEG sig-
nals from the stimulus
and non-stimulus situa-
tions.

It is suitable for narrow
frequency bands, depends
on robust channel covari-
ance matrix estimations
and easy to overfitting.

Canonical
correlation
analysis-based
methods

CCA
[69], [70]

CCA tries to find a pair of lin-
ear combinations of multi-channel
EEG signals and sine-cosine ref-
erence signals that have the max-
imum correlation with each other.

It is an effective way
to compute the rela-
tion between two multi-
variable signals without
training.

The artificial reference
signals lack true
information of EEG data
and only the maximum
coefficient is used.

Mway
CCA [71]

Calculating the correlation between
two multiway data arrays rather
than vector variables.

A reference signal opti-
mization step is added.

The computing time is in-
creasing.
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L1-
Regularized

MCCA
[72]

L1-regularization is implemented
on trial-way array optimization of
MwayCCA .

Removing obstruction
trials.

The increase in computing
time.

P-CCA
[73]

The SSVEP response phases are
estimated based on the physiologi-
cally apparent latency.

SSVEP response phase
is placed to the reference
signal as a constraint.

It improves the standard
CCA method in compli-
cated ways that may be
difficult to understand and
implement in real practice.

MsetCCA
[74]

MsetCCA extracts common fea-
tures shared by the real EEG sig-
nals to optimize reference signals.

The performance are
better than MwayCCA
and CCA.

It may treat background
noises as common fea-
tures.

MCM
[18]

In order to avoid extracting the
background noise as common fea-
tures, the MCM adopts superiori-
ties of both CCA and MsetCCA.

It further improves
SSVEP recognition
accuracy by designing
three-layer of correlation
maximization steps.

It shows relative poor per-
formance with a short
time window.

Fuzzy
ensemble
system

[75]

The advantages and disadvantages
of the MLR and MsetCCA are in-
vestigated using expert knowledge,
and the rules are developed for
their strategic combination to im-
prove the overall performance.

It can become 2.5%
higher than the best re-
sponse between these
two methods in the best
condition in detecting
frequency.

A successful fuzzy ensem-
ble system needs sufficient
and correct expert infor-
mation on the subsystem.

FBCCA
[76]

It includes three major steps: filter
bank analysis, CCA between sub-
band components and sinusoidal
reference signals, and target iden-
tification.

It incorporates
fundamental and
harmonic frequency
components together for
target detection.

The reference signals are
sine-cosine waves, which
may need further improve-
ment.

In the CCA-based
methods, correlation
coefficients can be
calculated between a
SSVEP response and
reference signals at
each stimulus
frequency [18]. The
frequency related to the
maximal correlation
coefficient is
determined as the
target.

Canonical
correlation
analysis-based
methods

FBCCA
+BF [77]

A combination of the training-free
feature extraction capabilities of
FBCCA with the accurate physio-
logical representation capability of
the spatiotemporal beamforming.

It can describe
the variational and
individually different
physiological SSVEP-
based BCIs better.

The stimulation time ef-
fects the experimental re-
sults. Too long or too
short stimulation time will
cause ITR to become
worse.

IT-CCA
[78]

The reference signal is individ-
ual template acquired by averaging
multiple training trials.

It is proposed to de-
tect temporal features of
EEG signals.

The screen refresh rate in-
fluences the system per-
formance.

A combi-
nation

method
of CCA

and
IT-CCA

[79], [80]

Three weight vectors are applied
as spatial filters which form four
correlation vectors as recognition
features.

It alleviates the interfer-
ence from spontaneous
background EEG activi-
ties by incorporating in-
dividual SSVEP training
data.

The ITCCA-based method
requires precise time syn-
chronization between a
stimulation program and
EEG recording.

KCCA
[81], [82]

The kernel is applied to project
the data to high-dimension space
to solve the problem that CCA is
infeasible for nonlinear relation ex-
isting in the real signals.

Linear CCA-based
methods may be
insufficient given the
complexity of EEG
signals. KCCA provides
a nonlinear method to
solve the frequency
detection problem.

How to choose the ap-
propriate kernel is still
a question worth thinking
about.

DCCA
[83]

In DCCA, deep networks are used
to process input data before CCA
procedure.

DCCA improves the
performance of SSVEP-
based BCI with higher
SNR and detection
accuracy compared to
those of CCA.

DCCA only considers
the nonlinear correlation
between EEG signals and
reference templates rather
than the information
within the real signals.

DMCCA
[38]

It can extract more real informa-
tion within the EEG signals than
DCCA.

The DMCCA-based
method effectively
improves the accuracy
at short time windows.

The background noises
contained in the SSVEP
are also nonlinear, which
may be represented with
real useful information by
neural networks.

CORRCA
[84], [85]

CORRCA can calculate same spa-
tial filters for two multichannel sig-
nals.

It remedies the limita-
tion that standard CCA
method requires spatial
filters to be orthogonal.

It requires individual
training data, which
is cumbersome and
time-consuming.

TRCA
[6]

TRCA extracts task-related com-
ponents efficiently by maximizing
the reproducibility of time-locked
activities across trials.

TRCA has the potential
to eliminate the back-
ground unrelated activi-
ties from EEG.

It also needs training data,
which might resort to the
transfer learning method
to obtain the spatial fil-
ters with existing datasets
from other subjects.
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then the frequency with the maximum presence probability

and closest to the stimulation frequency is determined as the

visual target. Moreover, the power spectra of IMFs that contain

stimulation frequencies are also used for SSVEP recognition.

The peak frequency is commonly extracted and taken as the

target [58]. In addition, the EMD can also combine with CCA

where the IMFs contain almost all the energy are selected and

input into CCA for SSVEP detection [61].

3) Basic spatial filtering methods: The combination of

signals collected from different electrodes is called spatial

filtering [39]. In the past few years, multi-channel-based

frequency recognition methods have received much attention,

because they overcome inter-subject variations which cannot

be solved by single-channel SSVEPs [16], [69]. By optimizing

the combination of data from multiple electrodes with less

parameter optimizations, the algorithm’s anti-noise capability

is greatly enhanced than unipolar or bipolar systems. Minimum

energy combination (MEC) and maximum contrast combi-

nation (MCC) are two common spatial filtering algorithms,

but they have different objective functions. The core idea

of MEC is to find a spatial filter that projects the original

multi-channel signal to obtain a low-dimensional combined

one in order to weaken the noise and other artifact signals

[65], [66]. However, MCC approach attempts to make the

energy in SSVEP frequencies maximized through computing

a weight matrix [67]. Therefore, one advantage of spatial

filters is computational time reduction by combining signal

preprocessing and feature selection. For each reference signal,

MEC or MCC can obtain a spatial filter which is applied

over the original EEG data. And then the total SSVEP power

contained in the cleaned EEG signal at each stimulation

frequency is estimated. The target frequency should be the

frequency of the reference signal that maximizes the SSVEP

power [94].

Common spatial pattern (CSP) [68], [95] is another spatial

filter to improve the distinction between EEG signals from

stimulus and non-stimulus situations. There are two distri-

butions in a C-dimensional space where C is the number

of known channels, and CSP attempts to find projections

minimizing the variance of one class but maximizing the

variance of the other one. In SSVEP-based BCIs, it aims

to maximize the SNR of SSVEP responses against the non-

stimulus situation [68]. CSP as a spatial filtering method that

enhances the SSVEP is generally combined with the sepa-

rate feature extraction and classification steps to distinguish

different stimulation frequencies [24]. For example, in [68],

the amplitude estimations of the filtered SSVEPs at different

stimuli were extracted and then linear discriminant analysis

(LDA) performed classification task.

The above three spatial filters reduce artifacts and noise

signals by extracting spatial features. However, for the algo-

rithms based on MEC and MCC, performance may decrease

due to some useful information contained in the signal also

eliminated during the linear transformation.

4) Canonical correlation analysis-based methods: The

canonical correlation analysis (CCA) method is used to find

the relationship between two sets of data, which can be used

as a feature extraction algorithm in SSVEP-based BCIs. The

CCA-based spatial filter, first presented by Lin et al. [69],

has attracted many interests in recent years due to better

SNR, higher recognition accuracy, well usage of harmonic

frequencies, and lower inter-subject variability [24]. The CCA

attempts to find a pair of linear combinations of the multi-

channel signals and the artificial reference signals, generally

sine and cosine waves, that have the correlation maximization

at each stimulus frequency. Then, the frequency related to

the maximal correlation coefficient is determined as the target

[69], [70]. Nowadays, many improved CCA-based methods are

proposed due to higher requirements of performance indexes

such as SNR and ITR, or the drawbacks of CCA, e.g. the

artificial reference signals lack true information of EEG data,

and multi-channel signals are easily influenced by background

noise such as spontaneous EEG.

a) Multiway canonical correlation analysis (MwayCCA):

Before introducing MwayCCA, the concept of tensor should

be firstly referred. A tensor is a multiway array of data, and

its order is the number of dimensions, also called models or

ways [96]. Tensor CCA is a development of standard CCA,

which concentrates on calculate the correlation between two

multiway data arrays, rather than two sets of variables based on

vector [97]. Based on this concept, MwayCCA optimizes the

reference signals through maximizing the correlation between

third-order EEG data tensor (channel × time × trial) and

pre-constituted sine-cosine reference signal matrix (harmonic

× time) [71]. Then, target frequency can be recognized by

applying multiple linear regression (MLR) or CCA between

test EEG data and optimized reference signals [71]. In Mway-

CCA, EEG tensor is constructed by multiple trials where

some trials may contain more artifacts which generally have

negative contribution to the reference signal optimization.

Therefore, L1-regularization is implemented on trial-way array

optimization of MwayCCA to remove obstruction trials [72].

MwayCCA and its variation add a reference signal optimiza-

tion procedure, so that the reference signal is enriched with

more real information of EEG signals, thereby improving the

performance of standard CCA. The disadvantage is that the

consequent increase in computing time.

b) Phase constrained canonical correlation analysis (p-

CCA): Except the amplitude information, phases of SSVEPs

are also important for improving target frequency detection

accuracy [98], which have been used to add the number of

visual stimuli. Wang et al. [17] provided a benchmark SSVEP

dataset with a 40 targets BCI speller which was coded using

a JFPM method.

In study [73], phase constrained CCA (p-CCA) is proposed

for recognising the phase of SSVEP responses based on the

apparent latency L that means the delay of SSVEP responses

caused by the transfer time of visual pathway. L is fixed for a

specific subject but unknown for all the stimulus frequencies

[99] and it can be estimated using SSVEP phases Φs, that is

defined as the phase lag between the fundamental component

and the closest prior stimulus [73]. Then Φs is calculated

through the EEG training data of a subject, and L can be solved

through an exhaustive search process using the results of Φs

[24]. It is presented in [73] that for a specific subject, SSVEP

response phases Φr are derived from the apparent latency L
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and proportional to the different stimulus frequencies. Finally,

Φr as a constraint condition is placed to the preconstructed

sine-cosine reference signals which is further used for calcu-

lating canonical correlation with test data.

The p-CCA optimizes the reference signal from the phase

perspective, and can distinguish SSVEP responses of different

phases at the same frequency, thereby increasing the diversity

of visual stimulus coding. Therefore, compared with ordinary

CCA, p-CCA is more universal and comprehensive.

c) Multiset canonical correlation analysis (MsetCCA):

The original constructed reference signals with sine-cosine

waves are generally short of real information of EEG data,

which go against SSVEP frequency recognition. Multiset

canonical correlation analysis (MsetCCA), proposed by Zhang

et al. [74], considers common features shared by EEG signals

may be more real and natural compared with predefined

signals. For a specific subject, some common characteristics

contained in a set of trials at a certain stimulus frequency,

which can be used to construct optimal reference signals to

achieve a higher detection accuracy. To be specific, MsetCCA

learns multiple linear transforms that maximizes the overall

correlation among canonical variates from multiple sets of

random variables [74]. Therefore, in the SSVEP-based BCIs,

the optimal reference signals can be determined by MsetCCA

through the joint spatial filtering of multiple sets of EEG

training dataset for each stimulus frequency [100]. Jiao et al.

[18] further presented a three-layer model based on MsetCCA,

named multilayer correlation maximization (MCM) which

adopts superiorities of both CCA and MsetCCA to avoid

extracting the background noise as common features. Ziafati et

al. [75] proposed a fuzzy ensemble system which encompasses

the benefits of all the subsystems, i.e. multivariate linear

regression (MLR) and MsetCCA. The new SSVEP frequency

detection architecture shows more flexibility in performance

compared with MLR and MsetCCA.

MsetCCA produces fully optimized reference signals based

on the EEG signal training set. It turns out that the averaged

classification accuracy and ITR of MsetCCA are better than

them of MwayCCA and CCA [100]. However, one drawback

is that it may treat background noises as common features, so

it need to be used with other denoising algorithms.

d) Filter bank canonical correlation analysis (FBCCA):

Considering that harmonic SSVEP components are not be em-

ployed for frequency recognition, Chen et al. [76] incorporated

fundamental and harmonic frequency components to propose a

new method, called filter bank canonical correlation analysis

(FBCCA). The FBCCA method contains three steps, firstly,

a filter bank analysis implemented sub-band decomposition

from EEG signals with multiple filters that have different pass-

bands. And then, CCA is employed to calculate the correlation

between the sub-band components and the constructed refer-

ence signals with sine-cosine waves related to all stimulation

frequencies. Finally, a weighted sum of squares of the corre-

lation for all sub-band components are combined as the final

feature for frequency identification. In order to compensate the

deficiency that the reference signals are sine-cosine waves, Ge

et al. [77] proposed a bimodal decoding algorithm, absorbing

the advantages of the training-free recognition of FBCCA and

the data-driven adaptive features of spatiotemporal beamform-

ing (BF), which can describe the variational, complicated and

individually different physiological SSVEP-based BCIs better.

FBCCA was often combined with current innovative meth-

ods in [85], [101], thereby further optimizing them and achiev-

ing higher detection performance. It can be seen that FBCCA

is expected to become a new standard paradigm after CCA.

e) Individual template canonical correlation analysis-

based methods: The individual template based CCA (IT-CCA)

was first proposed in [78] to optimize the reference signals

with sine-cosine waves by detecting temporal features of EEG

data. The IT-CCA calculates the canonical correlation between

test data and individual template signals acquired by averaging

multiple training trials. Nakanishi et al. [79], [80] developed

it and proposed a combination method of CCA and IT-CCA,

that applies three weight vectors as spatial filters for enhancing

the target detection, they are spatial filter between test data

and the individual template, spatial filter between test data

and preconstructed reference signals, and spatial filter between

the individual template and preconstructed reference signals,

respectively. Then four correlation vectors as recognition fea-

tures are obtained by above spatial filters, and an ensemble

classifier is employed to combine four vectors to form a

weighted correlation coefficient as the final feature [100].

Two limitations of individual template-based SSVEP detec-

tion algorithms may need to be noticed and researched in the

future work [2]. The first problem is that they require precise

time synchronization between a stimulation program and EEG

recording procedure in order to exert the superiority of JFPM

coding. Moreover, the stability of stimulus performance may

affect the outcome of the ITCCA-based methods.

f) Nonlinear extensions of CCA: The transformation of

CCA maximizes the mutual information between extracted

multi-dimension features, but it is infeasible to deal with non-

linear relations existing in real signals [93]. Considering the

kernel method used in SVM is applicable for linear situations,

Akaho et al. [81] proposed a kernel CCA (KCCA) method. For

asynchronous SSVEP-based BCIs, Zhang et al. [82] presented

a KCCA based idle-state detection method, which provided a

practicable way to extract nonlinear characteristics of multi-

dimension EEG signals. However, there are two limitations of

KCCA method, firstly, its representation is restricted by the

fixed kernel, besides, its training time changes with the size

of training dataset. Andrew et al. [83] further developed deep

CCA (DCCA) which can compensate the above drawbacks of

nonlinear models. DCCA processes input data through deep

network before calculating their correlations. Liu et al. [38]

proposed an extension of DCCA, named deep multiset CCA

(DMCCA) for SSVEP frequency recognition, that extracts

the information within the real EEG signals to attain better

detection accuracy.

The above nonlinear frequency recognition algorithms are

more in line with the characteristics of original EEG signals,

leading to better results than the CCA. For KCCA, how to

choose the appropriate kernel is still a question worth think-

ing about. DMCCA achieved better recognition performance

by combining nonlinear method DCCA and linear method

MsetCCA, which provides us a potential research direction.
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g) Correlated component analysis (CORRCA): The CCA

requires spatial filters to be orthogonal, however, it is an

impractical condition for EEG signals. In addition, CCA

distributes two projection vectors for two multi-dimension

signals, which contributes the number of free parameters

doubling, thus the detection performance is impaired [84].

Dmochowski et al. [102] proposed correlated components

analysis (CORRCA) that calculates same spatial filters for

two multichannel signals based on maximizing the linear

components of the two. In 2018, Zhang et al. [85] introduced

the CORRCA to learn spatial filters with multiple trials of

individual training data for SSVEP-based BCI systems, which

is a potential technique to reduce background EEG activities.

Zhang et al. [84] further developed CORRCA to a two-stage

architecture, that utilizes all the spatial filters obtained from

all stimulus frequencies to improve the approach accuracy.

Compared with CCA, CORRCA reduces the number of

parameters and improves the identification accuracy. In order

to further improve performance, the two-stage CORRCA intro-

duced an ensemble spatial filtering strategy. In a SSVEP-based

BCI system, the Nf visual stimuli generate Nf individual

training data, resulting in Nf spatial filters. These spatial filters

should be similar in ideal conditions, because the mixing

coefficients from the source of SSVEP responses to the scalp

EEG signals can be considered similar in a narrow frequency

range [103], [104], which shows the possibility of further

development by assembling Nf spatial filters.

h) Task-related component analysis (TRCA): Many tech-

niques [105], [106] have been developed to extract task-related

source signals from scalp recordings based on the idea that

cortical source activities can be rebuilt through a weighted

linear summation of EEG signals from multiple electrodes.

Tanaka et al. [107], [108] proposed task-related component

analysis (TRCA) which achieves better performance com-

pared with other task-related methods due to maximize the

reproducibility of time-locked activities across trials. In 2017,

Nakanishi et al. [6] introduced TRCA-based analysis to EEG

study especially SSVEP-based BCI systems, which success-

fully enhanced the SNR of EEG signals through eliminating

the background noises and showed great capacity for dif-

ferent applications in communication and control. SSVEPs

are time-locked photic-driving responses related to repetitive

visual stimuli. Therefore, TRCA-based techniques have a great

possibility to achieve higher SNR of EEG signals [2], [16].

In the CCA-based methods, correlation coefficients can be

calculated between a SSVEP response and reference signals

at each stimulus frequency [18]. The frequency related to the

maximal correlation coefficient is determined as the target.

5) Traditional pattern recognition methods: In addition

to the aforementioned target identification methods, some

traditional pattern recognition methods involving classic clas-

sifiers such as LDA, SVM and k-nearest neighbour (kNN)

are also usually used for SSVEP classification scheme [44],

[109]. Features corresponding to different visual stimuli are

regarded as the feature vector to train the classifier based

on training data. Then, the experiment is conducted on the

testing data with the trained classifier to determine targets.

For example, in [110], the power spectral density in all

possibly evoked frequency bands is extracted from the SSVEP

responses to facilitate the discrimination task. In this work,

three classifiers, namely LDA, SVM and extreme learning

machines (ELM) are performed at the target detection stage

and the ELM shows more promising classification capacity

in the context of SSVEP. Therefore, it proves the good

generalization performance of neural network-based methods

for SSVEP classification. The convolutional neural network

(CNN) is another popular classifier for SSVEP-based BCIs.

For instance, Kwak et al. [111] explored a CNN architecture

with a spatial convolutional layer and a temporal one which

uses band power features from two EEG channels, resulting

in classification rates of 99.28% and 94.03% in the static

and ambulatory scenario, respectively. With this background,

neural network-based classifiers seem to be more potential and

efficient options to achieve higher accuracy with a mass of

EEG data. Meanwhile, it is worth noting that wider knowledge

and more time or more data are needed for adjusting related

parameters and training feasible models [112].

IV. CHALLENGES AND OPPORTUNITIES

Although significant achievements in SSVEP data analytics

have been made in the past decades, some new emerging

issues need to be further explored, such as the pre-trained

model, the spontaneous EEG signals, mental fatigue, transfer

learning and hybrid BCIs. In this section, we briefly describe

these directions and current development. The underlying

challenges and some potential ideas are also illustrated.

A. The pre-trained model for EEG classification

The big data generated by the human brains maintains long

period neural recordings of a great number of subjects under

various conditions. Due to the considerable large volume

of data, the SSVEP-based BCI system requires an efficient

method to compress, analyze and classify the collected

signals. Recently, data-driven methods based on deep learning

were applied in dealing with EEG signals. For example, Gao

et al. [113] designed a convolutional neural network with long

short-term memory (CNN-LSTM) architecture, which extracts

the spectral, spatial as well as temporal features of SSVEPs

in order to achieve the high classification performance.

However, Ditthapron et al. [114] stated that it is complicated

and costly to collect a large number of EEG signals for

training CNN-LSTM architecture, so a pre-trained model

called event-related potential encoder network (ERPENet)

was proposed to classify the attended and unattended event.

Generally, the pre-trained model can be fine-tuned and then

employed to a novel related scenario to solve insufficient

data and detection accuracy problem [5]. For instance,

Embrandiri et al. [115] employed denoising autoencoder to

pre-train the network and then the network was trained by

back-propagation to maximize contrast/SNR, which proves

the feasibility of pre-trained model in SSVEP detection.

Therefore, the advanced ERPENet in [114] proposed for

ERP/P300 classification may provide potential direction for

SSVEP-based BCI systems, which can ease the pressure of
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store and analyze large-scale data.

B. The spontaneous EEG signals

According to the cited papers about CCA, we know that

many methods have considered the reference signal opti-

mization procedure, like MwayCCA, MsetCCA and MCM

[18], [71], [74]. With these approaches, the performance of

target detection in SSVEP-based BCI systems has been highly

enhanced compared with the CCA. MsetCCA and MCM

alleviate the interference from spontaneous brain activities

and improve the SNR of SSVEPs through incorporating real

information existing in EEG signals. The result of [6] also

indicates that TRCA increases the gap between target and non-

target feature by removing background EEG signals. However,

these researches have not paid enough attention to the correla-

tion between SSVEP responses and spontaneous EEG signals.

No matter how large or small the correlation coefficient

is, it always has the special but meaningful implication for

frequency detection. Meanwhile, limited studies consider the

nature of spontaneous EEG [116], which may be a new view

for solving background noises issues.

C. Mental fatigue

The SSVEP-based BCI systems have been successfully

applied in many fields, but mental fatigue is still a tough

problem for both users and researchers. Most publications

mentioned focus on the performance of frequency recognition,

but the accuracy of classification may be damaged due to the

appearance of fatigue symptoms in the operation [117]. The

fatigue can induce many severe problems, such as signal qual-

ity declining, recognition ability deterioration and even risk

of photosensitive epileptic seizures [118], pushing SSVEP-

based BCI systems to higher development [119]. Zhang et al.

[120] studied how much metal fatigue subjects have through

the change of oxygen saturation obtained by near-infrared

spectrum approach when they use an intelligent artificial limb.

Some researches [61], [121] attempted to reduce subjects

fatigue by employing visual stimuli in higher frequencies,

however, they cannot be adaptive according to the state of

mental fatigue. Recently, Talukdar et al. [122] proposed an

adaptive structure for the CSP based on the mental fatigue

of the subjects for motor-imagery BCI, which can adapt the

CSP through employing LDA, providing a potential solution

for SSVEP-based BCI systems.

D. Transfer learning

Another limitation of most methods in Section III is that

they need to collect training data from each subject and then

proceed a long calibration process. The reason is that high

dimensional EEG signals contain much background noises,

and they are highly non-stationary due to large variations

across the subject or within subjects psychological and mental

states, experimental circumstances [2]. Therefore, the trained

classifier obtained from previous trials may show poor per-

formance on new trials or new subjects [123]. Many studies

have tried to short calibration time through transfer learning,

where data collected from existing users or trials can be used

to new ones [124]. Chiang et al. [123] proposed a cross-

subject transfer approach combined least-squares transforma-

tion (LST) and TRCA, which largely reduces the variability

of SSVEP signals across individuals. Unsupervised transfer

learning [125], [126]have also gained much attention, for

example, Waytowich et al. [125] presented a transfer approach

named spectral transfer using information geometry (STIG),

learning single-trial detection successfully in ERP-based BCI

without the existence of calibration data, which provides a

creative and practical idea for SSVEP-based BCIs.

E. Hybrid BCIs

One of the drawbacks of SSVEP-based BCI is the require-

ment of the constant attention to the light source, which may

be difficult and annoyed for some patients. Hybrid BCIs that

improve the quality of BCIs systems with single modality

through combining two or more BCI paradigms could provide

potential solutions for this problem [127]. To be specific, in

hybrid paradigms, the number of control commands can be

increased through decoding the brain activities simultaneously

[128]. For example, in a Tetris game [129], rotating command

requires a continuous gaze of visual stimulus to evoke SSVEP

potentials. Meanwhile, the active motor imagery (MI) is em-

ployed to output two control commands, which are used to

move bricks toward left and right. This multi-modality system

avoids long gazing stimuli, which cause discomfort. Besides,

hybrid BCIs are capable of enhancing system classification

accuracy. For instance, Wang et al. [130] designed a new

hybrid paradigm (shape-changing and flickering-hybrid) based

on P300 and SSVEP, which improves performance for some

subjects. The works on the hybrid BCI are increasing in the

past few years, but the portable, wearable and low-cost related

products that can be employed for the public need further

commercialization [128]. Moreover, the target detection al-

gorithm adopted in many SSVEP-based hybrid systems is

standard CCA [129]–[131], which can be further improved

by the advanced signal analysis methods illustrated in Section

III in order to achieve higher performance.

V. DISCUSSION

In this review, we mainly targeted the SSVEP systems

that use frequency/phase to modulate visual oscillating stim-

uli. However, the stimuli patterns/colors may also affect the

SSVEP identification accuracy. Besides, there are also some

systems using amplitude coding or without gazing. In this

section, we will provide a brief overview of these areas.

A. Stimulus design

In general, in addition to multiple target coding and target

identification methods, the performance of an SSVEP-based

BCI is also attributed to the stimulus design [2], including

the choice of light source, stimulus color and the color of

background, etc. Zhu et al. [23] reported that the computer

screen and LED are the most frequently used stimulation
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types. Furthermore, compared with systems using computer

screens, the SSVEP-based BCIs that employ LED for stimulus

design have higher bit rates. Besides, LEDs can be controlled

by waveform generators which are easy to create various

frequencies, so LEDs are preferable in most applications.

Meanwhile, the color of visual stimuli is also an important

factor that affects the SSVEP system. Chu et al. [132] investi-

gated the influence of 10 stimulus colors on SSVEPs and found

that colors with a longer wavelength, such as red and orange,

have better SSVEP responses. However, the choice of color

depends not only on the SNR value or the accuracy of BCI, but

also on the comfort of the subject. Through parallel analysis

of SNR and comfort, Jukiewicz et al. [133] presented that

green is perceived the most friendly color for users. Another

factor is the background color. The selection rule is that higher

contrast between the stimulus color and background color

invokes higher potentials, visibility and brightness. The most

employed background color is black [134], but it is known

that the dynamic scene condition may be inevitable in most

practical usages. Therefore, how to choose the appropriate

stimulus color and light source, while compensating for the

performance degradation caused by the dynamic scene, is a

problem that requires to be considered in future research.

B. Amplitude modulation

In general, SSVEP-based BCI systems are designed based

on frequency-coding and phase-coding, but many works fo-

cused on amplitude modulation [135], [136]. It is widely

useful and critical for a SSVEP-based BCI system to predict

various modes of amplitude modulations, especially for stable

control of future neural rehabilitation tasks. Autthasan et al.

[137] pointed out that the SSVEP amplitude changes as a

function of stimulus luminance contrast and then proposed an

integrated architecture to predict the frequency and contrast-

related amplitude modulations of the SSVEP signal simulta-

neously. Moreover, except for luminance contrast, attention

generally enhances rhythmic brain responses at the frequency

of the stimulus. For example, Gulbinaite et al. [138] explored

the effect of attention on the amplitude of SSVEPs in a wide

range of temporal frequencies (3-80 Hz). The research results

showed that such influence is frequency-dependent, namely

different flicker frequency bands like theta, gamma and alpha

have various relationships with amplitudes. However, there

are still some limitation of current amplitude coding related

works, such as the eye fatigue effect in [137]. An amplitude-

modulated visual stimulation for reducing eye fatigue proposed

by Chang et al. [136] that achieved a similar manner to high-

frequency stimuli may provide a flexible way to solve this

issue. To further confirm this investigative idea, online/real-

time experiments are required.

C. SSVEP-based BCI without gazing

SSVEP-based BCIs generally require the subject changing

his/her gaze direction to focus on different target stimuli,

which is difficult for those patients with severe motor impair-

ment, because they are unable to control gaze optionally [23].

Therefore, it is essential to design gaze-independent BCIs in

order to satisfy more users’ need. The BCI in [139] utilized

visual spatial attention mechanisms to classify binary trials

as left-attended or right-attended. Except for spatial attention,

people can modify the energy of the evoked response without

gazing at the stimulus with the aid of selective attention. A

SSVEP-based BCI design was proposed in [140], in which the

energy difference between SSVEP responses induced under

attend and ignore conditions was maximized, resulting in

higher classification accuracy. Moreover, a visual stimulus

used in [141] combined these two designs, where visual

selectivity through the perception and neural mechanism of

spatial attention was confirmed. Although the SSVEP-based

BCI system without gazing is more robust and friendly in

the face of individual differences, there is still a complicated

problem that hinders its development, namely the limited

targets. For example, there are only two targets in [140] and

[141]. Further research may focus on increasing the number of

targets by employing spatial attention and selective attention

together.

VI. CONCLUSION

This study performed a comprehensive review of the

SSVEP-based BCI system, mainly focusing on signal ana-

lytics. The healthcare application of the SSVEP-based BCI

system was also briefly introduced. The state-of-the-art devel-

opments of data pre-processing, spectrum analysis, classifier,

spatial filtering such as CCA and its extensions as well as

their limitations were presented in order to provide feasible

references for future research. Besides, some novel emerg-

ing directions of SSVEPs including the pre-trained model,

spontaneous EEG signals, mental fatigue, transfer learning and

hybrid BCIs were also introduced. Finally, this work discussed

some innovative and unconventional aspects including ampli-

tude modulation, SSVEP-BCIs without gazing and stimulus

design.
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