936 research outputs found

    Collision detection for UAVs using Event Cameras

    Get PDF
    This dissertation explores the use of event cameras for collision detection in unmanned aerial vehicles (UAVs). Traditional cameras have been widely used in UAVs for obstacle avoidance and navigation, but they suffer from high latency and low dynamic range. Event cameras, on the other hand, capture only the changes in the scene and can operate at high speeds with low latency. The goal of this research is to investigate the potential of event cameras in UAVs collision detection, which is crucial for safe operation in complex and dynamic environments. The dissertation presents a review of the current state of the art in the field and evaluates a developed algorithm for event-based collision detection for UAVs. The performance of the algorithm was tested through practical experiments in which 9 sequences of events were recorded using an event camera, depicting different scenarios with stationary and moving objects as obstacles. Simultaneously, inertial measurement unit (IMU) data was collected to provide additional information about the UAV’s movement. The recorded data was then processed using the proposed event-based collision detection algorithm for UAVs, which consists of four components: ego-motion compensation, normalized mean timestamp, morphological operations, and clustering. Firstly, the ego-motion component compensates for the UAV’s motion by estimating its rotational movement using the IMU data. Next, the normalized mean timestamp component calculates the mean timestamp of each event and normalizes it, helping to reduce the noise in the event data and improving the accuracy of collision detection. The morphological operations component applies mathematical operations such as erosion and dilation to the event data to remove small noise and enhance the edges of objects. Finally, the last component uses a clustering method called DBSCAN to group the events, allowing for the detection of objects and estimation of their positions. This step provides the final output of the collision detection algorithm, which can be used for obstacle avoidance and navigation in UAVs. The algorithm was evaluated based on its accuracy, latency, and computational efficiency. The findings demonstrate that event-based collision detection has the potential to be an effective and efficient method for detecting collisions in UAVs, with high accuracy and low latency. These results suggest that event cameras could be beneficial for enhancing the safety and dependability of UAVs in challenging situations. Moreover, the datasets and algorithm developed in this research are made publicly available, facilitating the evaluation and enhancement of the algorithm for specific applications. This approach could encourage collaboration among researchers and enable further comparisons and investigations.Esta dissertação explora o uso de câmeras de eventos para deteção de colisões em veículos aéreos não tripulados (UAVs). As câmeras tradicionais têm sido amplamente utilizadas em UAVs para evitar obstáculos, mas sofrem de alguns problemas como alta latência ou baixa faixa dinâmica. As câmeras de eventos, por outro lado, capturam apenas as alterações na cena e podem operar em alta velocidade com baixa latência. O objetivo desta pesquisa é investigar o potencial de câmeras de eventos na deteção de colisões em UAVs, o que é crucial para uma operação segura em ambientes complexos e dinâmicos. A dissertação apresenta uma revisão do estado atual da arte neste tema e avalia um algoritmo desenvolvido para deteção de colisões em UAVs baseado em eventos. O desempenho do algoritmo foi avaliado através de testes práticas em que foram registadas 9 sequências de eventos utilizando uma câmera de eventos, retratando diferentes cenários com objetos estacionários e em movimento. Simultaneamente, foram capturados dados da unidade de medida inercial (IMU) para fornecer informações adicionais sobre o movimento do UAV. Os dados registados foram então processados usando o algoritmo proposto de deteção de colisões, que consiste em quatro etapas: ego-motion compensation, normalized mean timestamp, operações morfológicas e clustering. Primeiramente, o ego-motion compensation compensa o movimento do UAV estimando o seu movimento rotacional usando os dados do IMU. Em seguida, o componente de normalized mean timestamp cálcula o timestamp médio de cada evento e normaliza-o, ajudando a reduzir o ruído nos dados de eventos e melhorando a precisão da deteção de colisões. A etapa de operações morfológicas aplica operações matemáticas como erosão e dilatação nos dados dos eventos para remover pequenos ruídos. Finalmente, a última etapa utiliza um método de clustering chamado DBSCAN para agrupar os eventos, permitindo a deteção de objetos e a estimativa das suas posições. Esta etapa fornece o output final do algoritmo de deteção de colisões, que pode ser usado para evitar obstáculos em UAVs. O algoritmo foi avaliado com base na sua precisão, latência e eficiência computacional. Os resultados demonstram que a deteção de colisões baseada em eventos tem o potencial de ser um método eficaz e eficiente para a deteção de colisões em UAVs, com alta precisão e baixa latência. Estes resultados sugerem que as câmeras de eventos poderiam ser benéficas para melhorar a segurança e a confiabilidade dos UAVs em situações desafiadoras. Além disso, os conjuntos de dados e o algoritmo desenvolvido nesta pesquisa estão disponíveis online, facilitando a avaliação e o aprimoramento do algoritmo para aplicações específicas. Esta abordagem pode incentivar a colaboração entre os investigadores da área e possibilitar mais comparações e investigações

    Comprehensive Survey and Analysis of Techniques, Advancements, and Challenges in Video-Based Traffic Surveillance Systems

    Get PDF
    The challenges inherent in video surveillance are compounded by a several factors, like dynamic lighting conditions, the coordination of object matching, diverse environmental scenarios, the tracking of heterogeneous objects, and coping with fluctuations in object poses, occlusions, and motion blur. This research endeavor aims to undertake a rigorous and in-depth analysis of deep learning- oriented models utilized for object identification and tracking. Emphasizing the development of effective model design methodologies, this study intends to furnish a exhaustive and in-depth analysis of object tracking and identification models within the specific domain of video surveillance

    From Fully-Supervised Single-Task to Semi-Supervised Multi-Task Deep Learning Architectures for Segmentation in Medical Imaging Applications

    Get PDF
    Medical imaging is routinely performed in clinics worldwide for the diagnosis and treatment of numerous medical conditions in children and adults. With the advent of these medical imaging modalities, radiologists can visualize both the structure of the body as well as the tissues within the body. However, analyzing these high-dimensional (2D/3D/4D) images demands a significant amount of time and effort from radiologists. Hence, there is an ever-growing need for medical image computing tools to extract relevant information from the image data to help radiologists perform efficiently. Image analysis based on machine learning has pivotal potential to improve the entire medical imaging pipeline, providing support for clinical decision-making and computer-aided diagnosis. To be effective in addressing challenging image analysis tasks such as classification, detection, registration, and segmentation, specifically for medical imaging applications, deep learning approaches have shown significant improvement in performance. While deep learning has shown its potential in a variety of medical image analysis problems including segmentation, motion estimation, etc., generalizability is still an unsolved problem and many of these successes are achieved at the cost of a large pool of datasets. For most practical applications, getting access to a copious dataset can be very difficult, often impossible. Annotation is tedious and time-consuming. This cost is further amplified when annotation must be done by a clinical expert in medical imaging applications. Additionally, the applications of deep learning in the real-world clinical setting are still limited due to the lack of reliability caused by the limited prediction capabilities of some deep learning models. Moreover, while using a CNN in an automated image analysis pipeline, it’s critical to understand which segmentation results are problematic and require further manual examination. To this extent, the estimation of uncertainty calibration in a semi-supervised setting for medical image segmentation is still rarely reported. This thesis focuses on developing and evaluating optimized machine learning models for a variety of medical imaging applications, ranging from fully-supervised, single-task learning to semi-supervised, multi-task learning that makes efficient use of annotated training data. The contributions of this dissertation are as follows: (1) developing a fully-supervised, single-task transfer learning for the surgical instrument segmentation from laparoscopic images; and (2) utilizing supervised, single-task, transfer learning for segmenting and digitally removing the surgical instruments from endoscopic/laparoscopic videos to allow the visualization of the anatomy being obscured by the tool. The tool removal algorithms use a tool segmentation mask and either instrument-free reference frames or previous instrument-containing frames to fill in (inpaint) the instrument segmentation mask; (3) developing fully-supervised, single-task learning via efficient weight pruning and learned group convolution for accurate left ventricle (LV), right ventricle (RV) blood pool and myocardium localization and segmentation from 4D cine cardiac MR images; (4) demonstrating the use of our fully-supervised memory-efficient model to generate dynamic patient-specific right ventricle (RV) models from cine cardiac MRI dataset via an unsupervised learning-based deformable registration field; and (5) integrating a Monte Carlo dropout into our fully-supervised memory-efficient model with inherent uncertainty estimation, with the overall goal to estimate the uncertainty associated with the obtained segmentation and error, as a means to flag regions that feature less than optimal segmentation results; (6) developing semi-supervised, single-task learning via self-training (through meta pseudo-labeling) in concert with a Teacher network that instructs the Student network by generating pseudo-labels given unlabeled input data; (7) proposing largely-unsupervised, multi-task learning to demonstrate the power of a simple combination of a disentanglement block, variational autoencoder (VAE), generative adversarial network (GAN), and a conditioning layer-based reconstructor for performing two of the foremost critical tasks in medical imaging — segmentation of cardiac structures and reconstruction of the cine cardiac MR images; (8) demonstrating the use of 3D semi-supervised, multi-task learning for jointly learning multiple tasks in a single backbone module – uncertainty estimation, geometric shape generation, and cardiac anatomical structure segmentation of the left atrial cavity from 3D Gadolinium-enhanced magnetic resonance (GE-MR) images. This dissertation summarizes the impact of the contributions of our work in terms of demonstrating the adaptation and use of deep learning architectures featuring different levels of supervision to build a variety of image segmentation tools and techniques that can be used across a wide spectrum of medical image computing applications centered on facilitating and promoting the wide-spread computer-integrated diagnosis and therapy data science

    Regmentation: A New View of Image Segmentation and Registration

    Get PDF
    Image segmentation and registration have been the two major areas of research in the medical imaging community for decades and still are. In the context of radiation oncology, segmentation and registration methods are widely used for target structure definition such as prostate or head and neck lymph node areas. In the past two years, 45% of all articles published in the most important medical imaging journals and conferences have presented either segmentation or registration methods. In the literature, both categories are treated rather separately even though they have much in common. Registration techniques are used to solve segmentation tasks (e.g. atlas based methods) and vice versa (e.g. segmentation of structures used in a landmark based registration). This article reviews the literature on image segmentation methods by introducing a novel taxonomy based on the amount of shape knowledge being incorporated in the segmentation process. Based on that, we argue that all global shape prior segmentation methods are identical to image registration methods and that such methods thus cannot be characterized as either image segmentation or registration methods. Therefore we propose a new class of methods that are able solve both segmentation and registration tasks. We call it regmentation. Quantified on a survey of the current state of the art medical imaging literature, it turns out that 25% of the methods are pure registration methods, 46% are pure segmentation methods and 29% are regmentation methods. The new view on image segmentation and registration provides a consistent taxonomy in this context and emphasizes the importance of regmentation in current medical image processing research and radiation oncology image-guided applications

    Robust Modular Feature-Based Terrain-Aided Visual Navigation and Mapping

    Get PDF
    The visual feature-based Terrain-Aided Navigation (TAN) system presented in this thesis addresses the problem of constraining inertial drift introduced into the location estimate of Unmanned Aerial Vehicles (UAVs) in GPS-denied environment. The presented TAN system utilises salient visual features representing semantic or human-interpretable objects (roads, forest and water boundaries) from onboard aerial imagery and associates them to a database of reference features created a-priori, through application of the same feature detection algorithms to satellite imagery. Correlation of the detected features with the reference features via a series of the robust data association steps allows a localisation solution to be achieved with a finite absolute bound precision defined by the certainty of the reference dataset. The feature-based Visual Navigation System (VNS) presented in this thesis was originally developed for a navigation application using simulated multi-year satellite image datasets. The extension of the system application into the mapping domain, in turn, has been based on the real (not simulated) flight data and imagery. In the mapping study the full potential of the system, being a versatile tool for enhancing the accuracy of the information derived from the aerial imagery has been demonstrated. Not only have the visual features, such as road networks, shorelines and water bodies, been used to obtain a position ’fix’, they have also been used in reverse for accurate mapping of vehicles detected on the roads into an inertial space with improved precision. Combined correction of the geo-coding errors and improved aircraft localisation formed a robust solution to the defense mapping application. A system of the proposed design will provide a complete independent navigation solution to an autonomous UAV and additionally give it object tracking capability

    Video based vehicle detection for advance warning Intelligent Transportation System

    Full text link
    Video based vehicle detection and surveillance technologies are an integral part of Intelligent Transportation System (ITS), due to its non-intrusiveness and capability or capturing global and specific vehicle behavior data. The initial goal of this thesis is to develop an efficient advance warning ITS system for detection of congestion at work zones and special events based on video detection. The goals accomplished by this thesis are: (1) successfully developed the advance warning ITS system using off-the-shelf components and, (2) Develop and evaluate an improved vehicle detection and tracking algorithm. The advance warning ITS system developed includes many off-the-shelf equipments like Autoscope (video based vehicle detector), Digital Video Recorders, RF transceivers, high gain Yagi antennas, variable message signs and interface processors. The video based detection system used requires calibration and fine tuning of configuration parameters for accurate results. Therefore, an in-house video based vehicle detection system was developed using the Corner Harris algorithm to eliminate the need of complex calibration and contrasts modifications. The algorithm was implemented using OpenCV library on a Arcom\u27s Olympus Windows XP Embedded development kit running WinXPE operating system. The algorithm performance is for accuracy in vehicle speed and count is evaluated. The performance of the proposed algorithm is equivalent or better to the Autoscope system without any modifications to calibration and lamination adjustments

    Feature-based tracking of multiple people for intelligent video surveillance.

    Get PDF
    Intelligent video surveillance is the process of performing surveillance task automatically by a computer vision system. It involves detecting and tracking people in the video sequence and understanding their behavior. This thesis addresses the problem of detecting and tracking multiple moving people with unknown background. We have proposed a feature-based framework for tracking, which requires feature extraction and feature matching. We have considered color, size, blob bounding box and motion information as features of people. In our feature-based tracking system, we have proposed to use Pearson correlation coefficient for matching feature-vector with temporal templates. The occlusion problem has been solved by histogram backprojection. Our tracking system is fast and free from assumptions about human structure. We have implemented our tracking system using Visual C++ and OpenCV and tested on real-world images and videos. Experimental results suggest that our tracking system achieved good accuracy and can process videos in 10-15 fps.Dept. of Computer Science. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2006 .A42. Source: Masters Abstracts International, Volume: 45-01, page: 0347. Thesis (M.Sc.)--University of Windsor (Canada), 2006

    Deformable meshes for shape recovery: models and applications

    Get PDF
    With the advance of scanning and imaging technology, more and more 3D objects become available. Among them, deformable objects have gained increasing interests. They include medical instances such as organs, a sequence of objects in motion, and objects of similar shapes where a meaningful correspondence can be established between each other. Thus, it requires tools to store, compare, and retrieve them. Many of these operations depend on successful shape recovery. Shape recovery is the task to retrieve an object from the environment where its geometry is hidden or implicitly known. As a simple and versatile tool, mesh is widely used in computer graphics for modelling and visualization. In particular, deformable meshes are meshes which can take the deformation of deformable objects. They extend the modelling ability of meshes. This dissertation focuses on using deformable meshes to approach the 3D shape recovery problem. Several models are presented to solve the challenges for shape recovery under different circumstances. When the object is hidden in an image, a PDE deformable model is designed to extract its surface shape. The algorithm uses a mesh representation so that it can model any non-smooth surface with an arbitrary precision compared to a parametric model. It is more computational efficient than a level-set approach. When the explicit geometry of the object is known but is hidden in a bank of shapes, we simplify the deformation of the model to a graph matching procedure through a hierarchical surface abstraction approach. The framework is used for shape matching and retrieval. This idea is further extended to retain the explicit geometry during the abstraction. A novel motion abstraction framework for deformable meshes is devised based on clustering of local transformations and is successfully applied to 3D motion compression

    Sea Ice Field Analysis Using Machine Vision

    Get PDF
    Sea ice field analysis has motivation in various areas, such as environmental, logistics or ship maintenance. Among other methods, local ice field analysis from ship-based visual observations are currently done by human volunteers and therefore are liable to human errors and subjective interpretations. The goal of the thesis is to develop and implement a complete process for obtaining dimensions, distribution and concentration of sea-ice floes, which aims at assisting and improving part of the aforementioned visual observations. Such process involves numerous, organized steps which take advantage of techniques from image processing (lens calibration, vignetting removal and orthorectification), robotics (transformation frames) and machine vision (thresholding and texture analysis methods, and morphological operations). An experimental system setup for collecting the required information is provided as well, which includes a machine vision camera for image acquisition, an IMU device for determining the dynamic attitude of the cameras with respect to the world, two GPS sensors providing a redundant positioning and clock data, and a desktop computer used as the main logging platform for all the collected data. Through a number of experiments, the proposed system setup and image analysis methods have proved to provide promising results in pack ice and brash ice conditions, thus encouraging further research on the topic. Further improvements should target the accuracy of ice floes detection, and over and under-segmentation of the detected sea-ice floes

    A computer vision approach for sewer overflow monitoring

    Get PDF
    Combined Sewer Systems (CSS) exist in over 700 communities across the United States. Under extreme wet conditions, excess inflow which is beyond the capacity of CSS results in Combined Sewer Overflows (CSOs); the consequence being direct discharge of untreated water into the environment. Current CSO monitoring methods rely on in situ placement, where the sensors are installed within the combined sewer chambers and the harsh environment may decrease the expected lifetime of the sensors. Other limitations include high costs and accessibility difficulties for the sensing equipment. CSOs are a major concern for maintaining acceptable water quality standards and thus better monitoring is required. To overcome current CSO sensing limitations, this work has created a computer vision based approach for CSO monitoring from outlet points of CSS. This approach relies only on video capture of CSO events at outlet points where there is flow out of a CSS, thus a camera can be installed outside of the CSS without any contact with water. The proposed methodology is capable of detecting, identifying and tracking CSOs by motion, shape and color features. It is also able to measure flow rate based on a proposed model and two provided dimensions. Consequently, the approach can characterize CSOs in terms of occurrence, duration and flow rate. In addition, the algorithm package is implemented in a Windows desktop application for data visualization, and an iOS application for real-time CSO video capturing and processing. The computer vision approach was tested in a laboratory environment with three different flow rate conditions: 5, 15 and 25 gallons per minute. The performance was evaluated by comparing the results reported by the approach with the ground-truth baselines. The detection of an overflow event using the computer vision approach is 1.0 second slower than a ground-truth method. Flow rates reported by the computer vision approach are within 12\% from the ground-truth flow rate baseline. The results of this work have shown that computer vision can be used as a reliable method for monitoring overflows under laboratory conditions. It opens the possibility of applying computer vision techniques in CSO monitoring from outlet points with mobile devices in the field
    corecore