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Abstract

This dissertation explores the use of event cameras for collision detection in unmanned

aerial vehicles (UAVs). Traditional cameras have been widely used in UAVs for obstacle

avoidance and navigation, but they suffer from high latency and low dynamic range.

Event cameras, on the other hand, capture only the changes in the scene and can operate

at high speeds with low latency. The goal of this research is to investigate the potential of

event cameras in UAVs collision detection, which is crucial for safe operation in complex

and dynamic environments.

The dissertation presents a review of the current state of the art in the field and evalu-

ates a developed algorithm for event-based collision detection for UAVs. The performance

of the algorithm was tested through practical experiments in which 9 sequences of events

were recorded using an event camera, depicting different scenarios with stationary and

moving objects as obstacles. Simultaneously, inertial measurement unit (IMU) data was

collected to provide additional information about the UAV’s movement. The recorded

data was then processed using the proposed event-based collision detection algorithm for

UAVs, which consists of four components: ego-motion compensation, normalized mean

timestamp, morphological operations, and clustering.

Firstly, the ego-motion component compensates for the UAV’s motion by estimating

its rotational movement using the IMU data. Next, the normalized mean timestamp

component calculates the mean timestamp of each event and normalizes it, helping to

reduce the noise in the event data and improving the accuracy of collision detection. The

morphological operations component applies mathematical operations such as erosion

and dilation to the event data to remove small noise and enhance the edges of objects.

Finally, the last component uses a clustering method called DBSCAN to group the events,

allowing for the detection of objects and estimation of their positions. This step provides

the final output of the collision detection algorithm, which can be used for obstacle

avoidance and navigation in UAVs. The algorithm was evaluated based on its accuracy,

latency, and computational efficiency.

The findings demonstrate that event-based collision detection has the potential to be

an effective and efficient method for detecting collisions in UAVs, with high accuracy and
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low latency. These results suggest that event cameras could be beneficial for enhancing

the safety and dependability of UAVs in challenging situations.

Moreover, the datasets and algorithm developed in this research are made publicly

available, facilitating the evaluation and enhancement of the algorithm for specific ap-

plications. This approach could encourage collaboration among researchers and enable

further comparisons and investigations.

Keywords: Event-cameras, UAVs, Collision detection algorithm, Ego-motion, IMU, Dy-

namic objects
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Resumo

Esta dissertação explora o uso de câmeras de eventos para deteção de colisões em veículos

aéreos não tripulados (UAVs). As câmeras tradicionais têm sido amplamente utilizadas

em UAVs para evitar obstáculos, mas sofrem de alguns problemas como alta latência

ou baixa faixa dinâmica. As câmeras de eventos, por outro lado, capturam apenas as

alterações na cena e podem operar em alta velocidade com baixa latência. O objetivo

desta pesquisa é investigar o potencial de câmeras de eventos na deteção de colisões em

UAVs, o que é crucial para uma operação segura em ambientes complexos e dinâmicos.

A dissertação apresenta uma revisão do estado atual da arte neste tema e avalia um

algoritmo desenvolvido para deteção de colisões em UAVs baseado em eventos. O de-

sempenho do algoritmo foi avaliado através de testes práticas em que foram registadas

9 sequências de eventos utilizando uma câmera de eventos, retratando diferentes cená-

rios com objetos estacionários e em movimento. Simultaneamente, foram capturados

dados da unidade de medida inercial (IMU) para fornecer informações adicionais sobre

o movimento do UAV. Os dados registados foram então processados usando o algoritmo

proposto de deteção de colisões, que consiste em quatro etapas: ego-motion compensation,

normalized mean timestamp, operações morfológicas e clustering.

Primeiramente, o ego-motion compensation compensa o movimento do UAV esti-

mando o seu movimento rotacional usando os dados do IMU. Em seguida, o componente

de normalized mean timestamp cálcula o timestamp médio de cada evento e normaliza-o,

ajudando a reduzir o ruído nos dados de eventos e melhorando a precisão da deteção de

colisões. A etapa de operações morfológicas aplica operações matemáticas como erosão

e dilatação nos dados dos eventos para remover pequenos ruídos. Finalmente, a última

etapa utiliza um método de clustering chamado DBSCAN para agrupar os eventos, per-

mitindo a deteção de objetos e a estimativa das suas posições. Esta etapa fornece o output

final do algoritmo de deteção de colisões, que pode ser usado para evitar obstáculos em

UAVs. O algoritmo foi avaliado com base na sua precisão, latência e eficiência computaci-

onal.

Os resultados demonstram que a deteção de colisões baseada em eventos tem o po-

tencial de ser um método eficaz e eficiente para a deteção de colisões em UAVs, com
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alta precisão e baixa latência. Estes resultados sugerem que as câmeras de eventos pode-

riam ser benéficas para melhorar a segurança e a confiabilidade dos UAVs em situações

desafiadoras.

Além disso, os conjuntos de dados e o algoritmo desenvolvido nesta pesquisa estão

disponíveis online, facilitando a avaliação e o aprimoramento do algoritmo para aplica-

ções específicas. Esta abordagem pode incentivar a colaboração entre os investigadores

da área e possibilitar mais comparações e investigações.

Palavras-chave: Câmaras de eventos, UAVs, Algoritmo de deteção de colisões, Ego-

motion, IMU, Objectos dinâmicos
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1

Introduction

Collision detection for UAVs is a critical aspect of ensuring the safety and reliability of

these systems. The use of UAVs has rapidly increased in recent years, with applications

ranging from military operations to civilian search and rescue, agriculture, and even

package delivery. However, as UAVs become more prevalent, the risk of collisions with

other aircraft or objects in the environment increases. This is particularly concerning in

crowded urban areas, where the potential for collision with other aircraft or obstacles is

high.

One promising approach to addressing this problem is the use of event cameras, which

have the ability to capture visual information at extremely high frame rates, making

them ideal for detecting and tracking fast-moving objects in real-time. In addition to the

practical benefits of using event cameras for collision detection in UAVs, there is also a

significant potential for innovation and research in this area. The use of event cameras

in Unmanned Aerial Vehicle (UAV) collision detection represents a relatively new and

emerging field, with many opportunities for innovative ideas and approaches with the

potential to make significant contributions to the safety and reliability of these systems.

As such, it is an excellent topic for a dissertation, offering the opportunity to make a

meaningful impact and contribute to the advancement of this important field.

While there has been some research on using event cameras for collision detection

on UAVs, there are still many open questions and opportunities for further investigation.

For example, robust algorithms are needed to effectively track obstacles in complex en-

vironments, and the performance of these algorithms needs to be evaluated in realistic

scenarios. The safety of UAVs is closely tied to public perception and acceptance of this

technology. If UAVs are perceived as unsafe or unreliable, it will be difficult to gain

widespread adoption and trust in their use. By prioritizing the development of reliable

and effective collision detection systems, we can help build confidence in the safety of

UAVs and pave the way for their widespread adoption in the future.
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CHAPTER 1. INTRODUCTION

1.1 Objective

The primary objective of this work was to develop a collision detection algorithm that is

robust and reliable. The algorithm developed is available online to anyone interested in

the practical aspect of this topic. Additionally, a dataset with event camera recordings

that mimic real-world situations was created to support this effort. This dataset provides

a valuable resource for researchers and developers who wish to compare and enhance

their own algorithms. The excitement surrounding this project is due to the limited

number of online event camera collision detection algorithms available currently. The

ultimate goal is to foster new and innovative UAVs applications through the use of the

proposed algorithm.

1.2 Supplementary material

The Python implementation of the algorithm can be found here:

https://github.com/jppaulo13/COLLISION-DETECTION-USING-EVENT-CAMERAS.git

The datasets recorded to test and evaluate the algorithm can be found here:

https://drive.google.com/drive/folders/1lhNRML8HVNRZbxZB26XQtKz80BL1BURB?usp=

share_link

1.3 Document structure

This work is encompassed by the present introduction as well as five other chapters

structured in:

1. Theory – This chapter provides a comprehensive overview of the fundamental con-

cepts and principles related to collision detection for UAVs and event cameras.

2. State of the art – This chapter examines the existing literature on collision detection

algorithms, focusing specifically on the use of event cameras and highlighting the

strengths and weaknesses of the algorithms.

3. Methodology – This chapter describes the methodology used in this study to develop

the proposed event camera collision detection algorithm, as well as the dataset.

4. Experimental results – The chapter presents the results of the experimental tests

conducted to evaluate the performance of the proposed event camera collision de-

tection algorithm. It also explains some decisions made during the development of

the algorithm.

5. Conclusion and future work – The final chapter summarizes the main findings and

conclusions of the study. It also highlights the contributions of the proposed al-

gorithm and suggests potential future research directions to further improve the
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algorithm’s performance. Finally, it proposes a possible implementation in hard-

ware.
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2

Theory

2.1 Cameras

Cameras are technical devices designed to capture and record visual information. They

are utilized across a broad range of applications, including but not limited to photography,

videography, surveillance, and scientific research. The field of camera technology has

undergone a rapid evolution in recent years, leading to the development of an array of

different camera types with varying features and capabilities.

On the other hand, computer vision is a subset of artificial intelligence that empowers

computer systems to derive significant insights from digital images, videos, and other

visual inputs. These insights can then be used to make decisions or provide recommen-

dations based on the processed information. In simpler terms, Artificial Intelligence (AI)

enables computers to think, whereas computer vision allows them to see, perceive, and

comprehend visual inputs [56]. The past 60 years of research in computer vision have

primarily focused on frame-based cameras.

2.1.1 Standard cameras

Frame-based video cameras, also known as standard cameras, utilize lenses that focus

incoming light onto a sensor chip. This sensor chip contains an array of light-sensitive

pixels. When the shutter, whether it is mechanical or electronic, is open, the pixels collect

light for a specific exposure duration, forming an image, as illustrated in figure 2.1. These

sensors are designed to capture sequences of images, creating a video by sampling the

scene based on an external clock, such as 15 frames per second (fps) or 15 Hertz (Hz) [25].

However, frame-based cameras have significant limitations, such as high latency, mo-

tion blur, low dynamic range, and redundant sampling. These limitations can be detri-

mental for certain applications, such as in the field of robotics and UAVs. In contrast,

event cameras, also known as asynchronous or dynamic vision sensors, have revolution-

ized the field of computer vision by addressing these limitations because unlike frame-

based cameras, they don’t suffer from the aforementioned problems.
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Figure 2.1: Frame-based camera work principle [18].

2.1.2 Event Cameras

An event camera, also known as a dynamic vision sensor, uses smart pixels that operate

independently and asynchronously [44]. The pixels only transmit bits of information if

they detected change of brightness in the scene, otherwise they stay silent. These bits of

information are called events. Since the events are generated asynchronously, the output

of the event cameras is a sequence of events instead of full frames. These sensors sample

the scene based on how intensity evolves at each pixel, therefore there is no need for

an external clock. An event includes the pixel coordinate position, the time, and 1-bit

polarity of the intensity change, brightness increase (ON), or brightness decrease (OFF).

If the pixel does not detect a sufficient intensity change, the pixel stays silent and does not

transmit/trigger any information [23]. In the scene, only the informative pixels (the ones

that transmit information) will appear. The image 2.2 shows an example of the output of

a standard camera and an event camera.

Figure 2.2: Event camera vs standard camera [21].

2.1.3 Event cameras advantages

In order to navigate safely and avoid obstacles or other objects, it is crucial for a robot to

quickly detect their presence and take appropriate actions. This is especially important

when the robot and the object are moving quickly relative to each other, as any delay in

perception could have serious consequences. Perception latency, which refers to the time
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it takes for the robot to perceive its environment and analyze the data in order to generate

control commands, plays a vital role in this process [19].

The paperwork [19] explores the trade-off between the maximum speed a flying robot

can achieve while securing safe navigation to the robot´s hardware and the surrounding

environment. After analysing the impact of the latency on the maximum speed for a

monocular frame-based camera, a stereo frame-based camera, and a monocular event

camera, the results allowed to conclude some ideas:

1. When the sensing range (the distance where every event in it can be detected by the

sensor) of the camera and the robot’s agility is small, the difference between the 3

types of cameras is not noteworthy.

2. The stereo frame-based camera and the event camera improve their performance

and, as a result, their speed by increasing their agility and sensing range.

3. The difference in maximum speed between stereo frame-based cameras and event

cameras becomes noticeable after a spike in the agility of the robots.

Event cameras can help UAVs fly faster by 7-12% compared to using a traditional frame-

based camera. The advantage of using an event camera is even greater for robots that are

highly agile. This is according to research on the subject. Although in some situations,

the stereo camera and the event camera had a similar performance, event cameras have a

leverage in other aspects:

1. Event cameras do not need to deal with the impracticality of having two cameras.

2. For small drones/quadrotors not having two cameras makes the platform lighter.

3. Having a high dynamic range makes the event cameras more suitable for navigation

in adverse lighting situations.

4. Event cameras’ latency is independent from the exposure time, which can signifi-

cantly decrease their latency.

5. Higher temporal resolution reduces the motion blur and makes obstacle detection

easier at high speed.

6. Low power consumption.

This paper proved that the latency of event cameras between the time a visual signal

is triggered and the time it is processed to output control commands is significantly

shorter than that of standard cameras. Despite the good results of event cameras, the

robotic industry must adapt its algorithms to this new way of capturing visual informa-

tion. Standard vision algorithms cannot be applied, since the output of an event camera

is a stream of asynchronous events rather than images, therefore new algorithms need to

be developed to fully exploit the potential of event cameras.
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In order to fully understand the advantages that event cameras offer in comparison to

traditional frame-based cameras, it is necessary to have a deeper understanding of certain

concepts.

2.1.3.1 Latency

Latency refers to the delay or delay time between the occurrence of an event and the

detection or recording of that event by a sensor or system. In the context of cameras,

latency refers to the delay between when an event occurs in the scene and when the

camera captures that event [59]. High latency in a camera system can negatively impact

the performance of that system in certain applications, such as robotics, UAVs, and high-

speed motion tracking.

Frame-based cameras, which capture images of a scene at a fixed rate, typically have

high latency due to the delay between the time an event occurs and the time the camera’s

sensor captures that event. This delay is known as the shutter lag, which includes the

time it takes for the sensor to read out the previous frame and for the mechanical shutter

to open and close. The high latency of frame-based cameras can be problematic in high-

speed motion tracking applications, as the delay can result in a significant discrepancy

between the state of the scene at the time of capture and the state of the scene at the time

the event occurred.

Event cameras, on the other hand, are designed to detect and output pixel-level

changes in the scene. As it was mentioned, event cameras work by outputting a stream

of events that correspond to changes in the light intensity at each pixel. These events are

generated as soon as a change in intensity is detected, reducing the sensor latency. This

approach allows event cameras to achieve low latency, even in the range of microseconds,

which can be crucial in high-speed motion tracking applications.

2.1.3.2 High dynamic

Dynamic range refers to the ability of a camera or imaging system to capture and rep-

resent a wide spectrum of brightness levels in a scene, from the darkest shadows to the

brightest highlights [58]. High Dynamic Range (HDR) cameras are able to capture and

represent a broader scope of brightness levels than traditional cameras, which can result

in more detailed and accurate images and videos.

Frame-based cameras, also known as traditional cameras, typically have a low dy-

namic range. This is because the sensor in the camera can only capture a limited range of

brightness levels. When the scene has a high contrast, with both bright and dark areas,

the camera will struggle to capture the details in the bright and dark areas simultaneously.

This can result in washed out highlights 2.3 or blocked-up shadows in the final image.

Event cameras have a high dynamic range due to their ability to detect and output

pixel-level changes in the scene and operating in a logarithmic representation which
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results in a higher dynamic range, enabling them to represent a much wider spectrum of

brightness levels.

Figure 2.3: Dynamic range example [4].

2.1.3.3 Motion Blur

Motion blur is an artifact that can occur in photographs and videos when the motion

of an object or the camera itself causes the image to appear blurry. Motion blur can be

caused by a slow shutter speed, a moving camera, or a moving subject [26].

In traditional frame-based cameras, motion blur can occur when objects in the scene

are moving quickly while the camera is capturing an image 2.4. This is because the

shutter is open for a fixed duration of time, and during that time, the objects in the

scene may have moved. The result is a blur in the image, which can make it difficult to

identify or track moving objects. This can be especially problematic in high-speed motion

tracking applications, where the motion blur can significantly reduce the effectiveness of

the tracking algorithm.

Event cameras, however, don’t suffer from the problem of motion blur. When an object

is moving, the event camera will detect the movement and output events that correspond

to it, rather than capturing a blurry image. This allows event cameras to provide a clear

representation of the moving objects, which can be especially useful in high-speed motion

tracking applications.

Moreover, some event cameras also have high frame rate capability, meaning they can

output events at high frequencies up to tens of kilohertz. This can provide an additional

advantage for high-speed motion tracking, as the higher frame rate allows the camera to

capture more information about the scene and helps to reduce the motion blur.

2.1.3.4 Redundant sampling

Redundant sampling refers to the acquisition of data that does not contain any new or

useful information [57]. In the context of cameras, redundant sampling occurs when a

traditional frame-based camera captures images of a scene at a fixed rate, regardless of
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Figure 2.4: Motion Blur example [26].

whether there is any change in it. This means that many images may be captured with

the same scene, resulting in redundant data 2.5.

Aforesaid, frame-based cameras typically sample the scene based on an external clock,

such as 15 frames per second (15 fps, 15 Hz). This fixed rate of acquisition can result in

the capture of many images with the same scene, even when there are no changes, leading

to a high degree of redundancy in the data. This can be a problem in applications where

storage and computational resources are limited, as the redundant data can consume

large amounts of storage space and require additional processing time to be analyzed.

On the contrary, the events from event cameras are generated as soon as a change

in intensity is detected, which allows the camera to capture more information about

the scene and represent it more accurately. Additionally, event cameras also work in an

asynchronous mode, meaning they only output events when there is a change in the scene

and they don’t have to operate at a fixed frame rate.

Figure 2.5: Redundant sampling demonstration [44].

2.2 Collision avoidance systems

The use of unmanned aerial vehicles has been marred by frequent collisions with birds,

other objects, or intentional sabotage by malicious individuals, resulting in damage to

equipment and the environment. In order to address these concerns and ensure safe

operations, it is crucial for UAVs to have the fastest possible response time. UAVs have

gained widespread attention in various fields such as military, commercial, search and

rescue, traffic monitoring, border security, and atmospheric research due to their ability

to access hazardous locations without endangering human lives. Therefore, it is essential
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to develop collision avoidance algorithms to enable UAVs to operate autonomously and

avoid obstacles or other objects during flight [61].

2.2.1 Perception

The first step in any collision avoidance algorithm is a perception, which involves acquir-

ing data around the UAVs’ surroundings. This step primarily utilizes sensors, which can

be divided into two main categories: active and passive ones.

Active sensors have their own power source and do not rely on external factors such

as sunlight, allowing them to operate effectively both during the day and at night. Ad-

ditionally, active sensors are able to operate in adverse weather conditions and are not

susceptible to interference. They emit a pulse of electromagnetic radiation towards the

target to be measured and detect the radiation that is reflected back. These sensors can be

further divided into several subcategories such as radar, LiDAR, and ultrasonic sensors.

Radar sensors use radio waves to detect objects. They can work in all-weather condi-

tions, including fog, rain, and dust. LiDAR sensors use laser light to measure distance

and detect objects. They can operate in all-weather conditions, including fog, rain, and

dust. Ultrasonic sensors use sound waves to detect objects. They have a shorter range

compared to radar and LiDAR sensors. Passive sensors, on the other hand, use the range

of the optical spectrum and can only operate during daylight conditions. These sensors

do not emit any energy, instead, they read the energy discharged by the object to be mea-

sured or captured. An example of a passive sensor is a camera. Cameras can be used to

detect and track objects in the UAVs’ environment. They are sensitive to light and can

capture images and videos in high resolution.

In addition to cameras, other passive sensors include infrared sensors, which can

detect heat signatures, and ultrasonic sensors, which can detect sound waves. These

sensors can be used in combination with active sensors to provide a more comprehensive

understanding of the UAVs’ environment and improve the accuracy of collision avoidance

algorithms.

In conclusion, the perception step in a collision avoidance algorithm for UAVs is a

critical component that enables the UAVs to understand its environment. Active and

passive sensors are the two main types of sensors used in this step, and each has its own

unique capabilities and limitations. By using a combination of these sensors, UAVs can

improve their ability to detect and avoid potential collisions, ensuring the safe operation

of the system.

2.2.2 Action

The second and final step in any collision avoidance system for UAVs is the action step,

which involves maneuvering the UAVs to avoid a collision. This process can be divided

into four different types of actions: geometric, force-field, optimized, and sense and avoid.
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The geometric approach uses the location and velocity information of the UAVs and

the obstacles to ensure that a minimum distance between the UAVs and the obstacles is

maintained. This is typically achieved by simulating potential trajectories for the UAVs

and selecting the one that results in the greatest separation from the obstacles.

The force-field approach uses attractive and repulsive forces to repulse the UAVs from

obstacles and attract the UAVs to its goal. This method relies on knowledge of the position

and size of the obstacles, as well as the motion and geometry of theUAVs.

The optimized approach uses probabilistic search algorithms to calculate the best

collision avoidance trajectory based on geographical information. This method balances

computational complexity with response time, making decisions quickly while minimiz-

ing the computational power required.

The sense and avoid approach focuses on simplifying the collision avoidance process

by breaking it down into individual detection and avoidance of obstacles. This approach

allows each UAVs in a group to manage its own course without needing to know the plans

of the other UAVs.

Overall, the action step in a collision avoidance system for UAVs is critical for ensuring

the safe operation of the system by maneuvering the UAVs to avoid collisions. Each of

the four types of actions has its own strengths and weaknesses and the choice of action

depends on the specific requirements of the UAVs system and the operating environment.

Figure 2.6: Collision avoidance system generalised modules [61].

A collision avoidance system must be capable of:

1. Detecting an obstacle and its attributes (e.g. position).

2. Conclude if the obstacle is approaching.

3. If there is a risk of collision.
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4. Make calculations and perform a safety collision avoidance maneuver.

Figure 2.7: General process for collision avoidance [61].

2.3 Collision detection

In the context of collision avoidance systems for UAVs, the perception step is where the

collision detection algorithms are implemented. These algorithms are essential for ensur-

ing the safe operation of UAVs by utilizing a combination of sensors and computational

methods to detect and avoid potential collisions with other objects in the UAVs’ opera-

tional environment. The goal of collision detection is to identify and locate objects that

may pose a threat to the UAVs and to provide the necessary information for the UAVs’

control system to take appropriate action to avoid a collision.

One common approach for collision detection is to use stereo cameras to capture

images of the UAVs’ environment in 3D. These images are then processed using computer

vision algorithms to detect and track objects in the scene. Computer vision algorithms

such as stereo matching, optical flow, and feature-based methods are used to extract the

3D information of the scene. This approach can be used to detect both static and dynamic

objects, such as buildings, trees, and other UAVs.

Radar and LiDAR sensors are also commonly used for collision detection in UAVs.

These sensors use radio waves or laser light to measure the distance to nearby objects.

They are particularly useful for detecting objects in adverse weather conditions or at night

when cameras may not be effective. LiDAR sensors can provide high-resolution 3D point

clouds of the environment, while radar sensors can detect objects at longer ranges and

can provide information about the object’s velocity.

Another type of sensor that can be used for collision detection is ultrasonic sensor,

which emits sound waves and measures the time it takes for the sound waves to return.

This method is mostly used for short-range collision detection and is useful for detecting

obstacles that are close to the UAVs, such as walls or ceilings.

In addition to detecting objects, collision detection systems in UAVs also need to de-

termine the UAVs’ own motion and trajectory. Ego-motion compensation is an important

aspect of collision detection systems. It refers to the correction of the motion of the sen-

sor or camera mounted on the UAVs to account for the motion of the UAVs itself. This

concept is crucial in a wide range of applications, including self-driving vehicles, indus-

trial robot arms, and other autonomous navigation systems. By accurately estimating
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the motion of the object itself, it is possible to gain a more precise understanding of the

surrounding environment, which can help prevent algorithmic and mathematical errors

and ultimately reduce the likelihood of accidents.

One common method for estimating ego-motion in standard cameras is through visual

odometry techniques, which analyze a sequence of images captured by the moving camera.

Visual odometry is a technique used in robotics and computer vision to determine the

location and orientation of a robot by evaluating the related camera data [40].

However, the estimation of ego-motion in event cameras, which are specialized types

of cameras that can detect changes in the scene at high temporal resolution, requires

different methods or variations of the same techniques used for standard cameras. These

specialized cameras are different from standard cameras and have different characteristics

which have to be taken into account when estimating ego-motion.

Once an object is detected and its motion is estimated, the UAVs’ control system

can take appropriate action to avoid a collision. This may involve changing the UAVs’

speed, direction, or altitude, or taking evasive maneuvers. The control system uses the

information provided by the sensors and motion estimation algorithms to plan a safe

trajectory for the UAVs to follow.

In conclusion, collision detection systems in UAVs are a critical component of en-

suring the safe operation of these systems. They use a combination of sensors, such as

cameras, radar, and LiDAR, to detect and track objects in the UAVs’ environment, and

use visual odometry to determine the UAVs’ own motion and trajectory. Once an object

is detected, the UAVs’ control system can take appropriate action to avoid a collision,

ensuring the safe operation of the system. The method used to detect and avoid collisions

may vary depending on the specific requirements of the UAVs system and the operating

environment.
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State of the art

3.1 Dynamic obstacle avoidance for quadrotors with event

cameras

One application for event cameras in flying robots is obstacle detection. Creating efficient

algorithms for detecting objects and avoiding collisions is, among others, a high-potential

field for UAVs and event cameras. A researcher from the University of Zurich proved the

effectiveness of a moving-obstacle detection algorithm in an article [20]. As the article

said, “Our moving-obstacle detection algorithm works by collecting events during a short-

time sliding window (figure 3.1) and compensating for the motion of the robot within

such a time window.”

3.1.1 How does the algorithm work?

Event cameras generate events either from moving objects in the camera´s view or from

ego-motion. Ego-motion is the estimated movement of the camera (mounted on the

robot/UAVs) within the environment. To generate events from only moving objects, the

first step for developing the algorithm was to remove all data generated by the UAVs’

ego-motion. This method is called ego-motion compensation.

3.1.2 Ego-motion compensation by the article

Ego-motion compensation has been addressed in various papers and with various ap-

proaches. The paper under discussion used a simpler and a more computationally effi-

cient ego-motion compensation method aiming to reduce to the fullest the latency. To do

so, they estimated the ego rotation using an average of the IMU’s angular velocity. This

Inertial measurement unit (IMU) data was collected during a small specific time span

using an IMU sensor.

IMU is a device, which can be integrated into the event camera, that can measure

and report specific gravity and angular rate of the UAVs [2]. Then they compute the

normalized mean time stamp for each pixel (figure 3.2).
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Figure 3.1: Events accumulated in defined time span [20].

Figure 3.2: Events with colour code representing the normalized mean time stamp [20].

The normalized mean time stamp is the process to determine which pixels belong to

a moving object and which to the background. After normalizing the data, they can then

categorize it. This mathematical technique allows to assign scores to the events and then

through a thresholding procedure, to set apart the events from moving objects and the

rest (figure 3.3).

After the ego-motion compensation, the algorithm can now only deal with pixels that

have at least one remaining event.

The possibility of the presence of multiple moving obstacles and noise in the scene

requires the next step to separate the individual objects and the noise from each other.

This process is called clustering (figure 3.4).
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Figure 3.3: After thresholding [20].

Figure 3.4: Obstacle segmentation [20].

3.1.3 Optical flow

Optical flow is about understanding how things are moving in a scene and how motion is

happening. The optical flow calculation allows estimating the image plane velocity from

the image points. It is difficult to group objects with varying velocities and distances from

the UAV using solely the information obtained from ego-motion compensation. Therefore,

it is necessary to incorporate an optical flow estimation to the algorithm. Following an

investigation, the researchers determined that the Lucas-Kanade algorithm would be

suitable for processing the unthresholded normalized mean time stamp image obtained

from ego-motion compensation. This optical flow algorithm is advantageous in that it

is less susceptible to noise. The Lucas-Kanade algorithm operates under the assumption

that the optical flow in a small neighborhood of the scene is constant across all points

within that neighborhood. Hence, the optical flow equation, according to the Lucas-

Kanade method, can be expressed as shown in figure 3.5, where the qi are the pixels
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inside the neighbourhood, the Ix, Iy , It are the partial derivatives of the image I, in this

case, the unthresholded normalized mean time stamp image produced by the ego-motion

compensation, with x and y being the pixel´s position and t the time. The wi values

(weights) are important because it is how the algorithm can be adjusted to have a better

performance. In practice, it is better to give more weight to the pixels that are closer to

the central one. The Vx and Vy gives us the image flow vector from the neighbourhood.

This image flow vector (velocity) will then be useful to maximize the accuracy of the

clustering. More information about this topic can be found in [3].

Figure 3.5: Optical Flow equation – Lucas-Kanade method [3].

3.1.4 Image to world projection

Once the velocity of the objects has been calculated, the algorithm must then determine

their position relative to the UAVs. Subsequently, this information is fed into a fast

avoidance algorithm, which is designed to exploit the low sensing latency. To get the

position of the objects, it is required to estimate the depth and size of the objects to

the image plane. If the UAVs is monocular, meaning it only has one camera, the depth

calculation requires knowing the size of the objects before the estimation. Otherwise, it is

only necessary to fit a rectangle around the cluster points and get the four corner points

and the centre position in the image plane. And with this data and the method cluster´s

disparity, explained in detail in the article [52], the algorithm estimates the depth. The

size is then calculated using the equation in Figure 3.6, where f is the focal length, cẐ

the depth and w the measure side length of the fitted rectangle.

Figure 3.6: Size Equation [3].

After finding the obstacle´s size and depth, the algorithm transforms the plane image

in a 3D space. And by leveraging the intrinsic camera matrix, along with the scale factor

and the Cartesian coordinates of each point in the cluster, the algorithm is capable of

identifying the specific points that correspond to the obstacle’s location. A total of six

points. Now that we have the position of the objects it is possible to estimate their velocity.

It was estimated using a Kalman filter [6], with the object’s position as the input.
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3.1.5 Obstacle Avoidance

In order to create a fast avoidance algorithm, the researchers utilized a reactive avoidance

scheme that relied on artificial potential fields.

3.1.5.1 What is the artificial potential field method?

The method involved constructing an artificial potential field that simulated the use of

magnetic force to draw the robot towards its goal and repel it from obstacles in the

environment. The force applied to the robot was the sum of the attractive potential field

and the repulsive potential field, and was incorporated into the linear speed equation on

the kinematic robot. More information on the equations and calculations used can be

found in the source article [32]. The block diagram control 3.7 for the artificial potential

field includes potential fields for the x and y axes, each of which requires input data on

the robot’s location, the obstacles’ positions on the x and y axes, and the desired endpoint.

Once the force is calculated, the algorithm produces a velocity command that is input

into the quadrotor’s Proportional Derivative Controller (PD) controller, which helps to

stabilize the system by predicting future errors in the response.

Figure 3.7: Potential field algorithm for quadrotor [32].

Constructing a discretized map is a typical approach for artificial potential fields,

however, this mapping approach is applicable in 2D space (x and y axes), but it requires

more computational resources to extend it to 3D space. To overcome this limitation, the

researchers chose to model the obstacles as ellipsoids and estimated their position and

velocity to compute their repulsive forces at each time step. Additionally, they calculated

the attractive force towards a given target position. The resulting combined force from

these calculations was used to generate a velocity command for the controller to execute.
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3.1.5.2 Ellipsoids

An ellipsoid is a three-dimensional closed surface that possesses a unique and interesting

property: all plane cross sections made across it are either circles or ellipses. Moreover,

the shape of the ellipsoid exhibits a remarkable symmetry that is characterized by having

three mutually perpendicular axes that intersect at the center of the ellipsoid. This means

that the ellipsoid looks identical when viewed from any of these axes, and is known as a

triaxial ellipsoid. Due to its elegant geometrical properties and symmetry, the ellipsoid

has a wide range of applications in various fields of science, engineering, and mathemat-

ics, including astronomy, geodesy, physics, and statistics.

Figure 3.8: Obstacle ellipsoid [20].

The figure 3.8 shows the process of constructing an ellipsoid obstacle in the world’s

frame of reference, based on the clustered data in the image plane. Specifically, an

iterative approach is used to fit a minimal volume ellipsoid around six projected points,

which are calculated through the image-to-world projection.

The resulting algorithm has an impressively low overall latency of just 3.5 millisec-

onds. This latency is sufficient to detect and avoid potential collisions with objects of

varying shapes and sizes, even when the relative speeds of these objects are as high as 20

meters per second.

3.2 Night vision obstacle detection and avoidance based on

bio-inspired vision sensors

Researchers from University of Turku created an algorithm [61] to help UAVs to avoid

collisions in low lighting conditions, such as night-time scenes. Hence, they opted for

event cameras due to their ability to gather data under varying lighting conditions. Event

cameras do not use a shutter, enabling each pixel to operate autonomously, and the

photoreceptors of the pixels function using logarithmic scaling.

3.2.1 How does the algorithm work?

This algorithm consists of four main units: noise cancellation, object detection, depth

estimation, and asynchronous adaptive collision avoidance.
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3.2.2 Noise cancellation

The introduction states that event cameras are designed to only detect changes in bright-

ness, but hardware limitations such as current leakage and thermal noise can cause events

to trigger in the background. To address this issue, the researchers developed a filtering

algorithm to remove background noise. The algorithm examines a selected event and a

9 × 9 pixel area surrounding it, with the selected event at the center. Using a k-nearest

neighbor algorithm, the filter assesses the correlation between the selected event and its

neighbors. If the event does not have enough correlated neighbors, it is treated as noise

and discarded.

3.2.2.1 K-nearest neighbour algorithm

This algorithm belongs to the supervised learning category in machine learning, it is

used mostly for classification. The k-nearest neighbour considers the k nearest points to

the selected point and predicts the class or its value according to these neighbours. The

algorithm chooses the nearest points based on their distance to the selected point. The

most popular distance metric used is the Euclidean distance. The algorithm will then

classify the point based on the majority of classes in the neighbours, or in the case of this

filter the number of neighbours [27].

3.2.3 Object detection

The researchers chose not to adopt the approach described in the algorithm [20]. Instead,

they developed a new method that involves accumulating “N” events based on the ve-

locity of the objects, which produces a more precise event frame. Object detection is

performed by fitting a local plane using a randomized Hough transform on the accumu-

lated events. The researchers decided to use this approach because the previous method

of accumulating events during a fixed time interval led to either noisy or blurred event

frames.

3.2.3.1 3D Hough transform

The Hough transform is a technique used to detect objects, and in this context, it utilizes

three random events as input and produces a 3D space or parameterized planes as output.

The Hough space is defined by three parameters: ϕ, θ and ρ. Here, θ represents the angle

of the normal vector on the xy-plane, ϕ denotes the angle between the xy-plane and the

normal vector in z, as shown in Figure 3.9, and ρ indicates the distance from the origin

of the coordinate system.

To find the plane which corresponds to the object, it is necessary to solve the Hough

Transform for each of the 3 random events. Given a point (event) P in cartesian coordi-

nates and solving the equation (3.1), it creates a 3D sinusoid curve for each point, and the

intersection of the curves corresponds to the plane 3.10.
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Figure 3.9: Normal vector described by polar coordinates [7].

Px × cosθ × sinϕ + Py × sinθ × sinϕ + Pz × cosϕ = ρ (3.1)

Figure 3.10: Transformation of three points into Hough space [7].

The intersection of the curves in the Hough space is represented by a black point or

pixel. In this approach, the selection of the three points used to construct the plane is done

randomly. This process is called randomized Hough transform. After randomly selecting

three points from a point cloud, a corresponding cell in the Hough space, denoted as A(θ,

ϕ, ρ), is incremented. If the point cloud consists of a plane, the corresponding cell in the

Hough space will have a high score. On the other hand, if the three points are widely

spread apart, they are unlikely to belong to a plane, and the corresponding cell in the

Hough space will have a low score. For more information on the 3D Hough transform,

please refer to [7].
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3.2.4 Depth estimation

After detecting the object, it is now crucial for the algorithm to estimate the depth of

the objects. To do this, the researchers decided to use a more friendly derivation of the

eHarris, which they called LC-Harris. They created a new version of the eHarris algorithm

because this one is computationally too heavy and complex.

3.2.4.1 eHarris

The described approach involves detecting corners in an image by analyzing the average

change in image intensity. This is accomplished by calculating the spatial gradient of

the intensity. If the matrix containing the first derivatives of intensity has two large

eigenvalues, it is indicative that the pixel is a corner. The matrix is calculated using

the equation (3.3), where (3.2) is the gradient of an obtained binary surface and e is the

current event.
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To conclude if an event is a corner event, the method associates the eigenvalues with

a score, R (3.4). Where λ1 and λ2 are the eigenvalues of M.

R (ei) = det(M)− k(trace(M))2 = λ1λ2 − k (λ1 +λ2)2 (3.4)

If the calculated R value for a given event e is greater than a pre-set threshold S, the

event is classified as a corner event, according to the method described in [53]. Based

on this approach, the researchers developed a new method called LC-Harris, which in-

volves extracting a binary local patch of size 9 × 9 around each new event occurrence.

The most recent neighbors are labeled as 1 in the local patch, and the horizontal and

vertical gradients are computed using the binary local patch. The identification of corner

events is based on a score calculated from the gradients. Finally, the location, orientation,

and extracted corners from the LC-Harris algorithm are used to estimate depth through

triangulation.

3.2.5 Asynchronous Adaptive Collision Avoidance

After detecting the obstacles, it is now necessary to estimate their relative velocities. The

researchers estimated the velocities with an approach [38] that takes into account the

lifetime of each event independently and displays the event for that period. Estimating

the lifetime of an event gives the velocity of that event, because the lifetime of an event is
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the time interval that an event is considered active. And an event is considered active if

the brightness gradient causing the event is visible by the pixel. The velocity of the event

is estimated using event-based visual flow [5]. Visual flow is the way of projecting a 3D

perspective and motion over time of a 2D static capture, or in this case 2D frame from

a time span of events. With the velocity of the UAVs (v) and a timespan (ti − ti−1), the

distance travelled by the UAVs can be calculated using the equation (3.5).

dv = v ∗ (ti − ti−1) (3.5)

Then the distance travelled by the obstacles (dobji) can be calculated using the equa-

tion (3.6).

dobji = ρi−1 − dv − ρi (3.6)

where ρi−1 and ρi are the distances between the UAVs and the obstacle at ti−1 and ti
respectively. Based on the point of collision, the algorithm assigns the highest priorities to

the obstacles with the closest points of collision. These priorities are constantly monitored

and updated, in case a new obstacle appears in the scene. Then the point of collision with

the highest priority is chosen for path planning, which triggers an avoidance maneuver.

3.3 EVDodgeNet: deep dynamic obstacle dodging with event

cameras

3.3.1 Introduction

The paper referenced [43] describes a framework that utilizes deep learning to enable

UAVs equipped with event cameras to avoid unknown dynamic obstacles. The UAVs

in question are equipped with a single front-facing event camera, a lower-resolution

down-facing event camera, a sonar for measuring altitude, and an IMU. The proposed

AI framework allows for dodging, evading, and avoiding dynamic obstacles using solely

on-board sensing and computation, with no prior information. The framework consists

of both perception and control modules. The perception module is divided into three

segments, as depicted in the figure 3.12.

3.3.2 EVDeBlurNet

The researchers developed a neural network called EVDeBlurNet for improving the qual-

ity of event frames. The network takes an event frame as input, which consists of events

triggered in a spatio-temporal window. The frame may be blurred due to camera move-

ment, causing misaligned events. To address this, EVDeBlurNet identifies point trajecto-

ries along the spatio-temporal point cloud and optimizes a function that balances high

25



CHAPTER 3. STATE OF THE ART

contrast and similarity to the input image, resulting in a higher-quality frame. The in-

put frame has three channels representing the per-pixel average count of positive and

negative events and the average time between events per pixel.

3.3.3 EVHomographyNet

After deblurring the event frame, the algorithm must estimate the ego-motion/odometry.

The method used the downfacing camera of the UAVs, the IMU and the distance sensor to

gather data for the ego-motion estimation. The researchers adapted the works from two

articles [39] and [14], both the unsupervised and supervised learning algorithm trains a

deep convolutional neural network to estimate planar homographies 3.11.

Figure 3.11: Output of EVHomographyNet for raw and deblurred event frames at differ-
ent integration times. Green colour denotes the ground truth, and red colour denotes the
predicted ego-motion [43].

3.3.4 EVSegFlowNet

EVSegFlowNet is a method that combines segmentation and optical flow learning in a

semi-supervised manner. One approach to segment moving objects is to use simulated

data with known segmentation for each frame and train a Convolutional Neural Network

(CNN) to predict the Independently Moving Objects (IMO) and background segmentation

using cross-entropy loss. However, estimating 3D IMO motion using a monocular camera

without prior knowledge is impossible, so the method predicts a safe trajectory based

on the velocity direction of the IMOs on the image plane. This velocity direction can be

obtained by tracking the segmentation mask of the IMO or computing the mean optical

flow direction of the region of interest, which is computed using a CNN trained by the

researchers.

3.3.5 Datasets

In order to train their networks, the researchers generated synthetic scenes using random-

ized wall textures, objects, and object/camera trajectories. This approach allowed for an
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Figure 3.12: Overview of the proposed neural network-based navigation stack [43].

unlimited amount of training data to be generated with one or more moving objects in the

scene. The researchers followed a similar approach as described in a previous work [42]

to generate the scenes. They created seven unique configurations, each consisting of a

room with three objects in motion, as shown in figure 3.13. By training on simulated data,

the networks were able to be directly transferred to the real world without any re-training

or fine-tuning.

Figure 3.13: Various scene setups used for generating data [43].

3.4 Event-based moving object detection and tracking

The system proposed in this work [35] considers the 3D motion estimation and segmen-

tation with no prior knowledge about its motion or the scene. The ego-motion estimation

is obtained directly from the event stream, and the dynamic objects are detected and

tracked based on the inconsistencies in the motion field. Event stream is a cloud of events

within a small time interval. The implemented algorithm can be divided in two segments:

motion compensation, and object detection and tracking.

3.4.1 Motion compensation

The first section of segment uses a 4-parameter model (3.7) to compensate for the back-

ground motion and detect the objects. The 4-parameter model consists of: the shift par-

allel to the image plane (hx,hy), a motion towards the image plane (hz), and the rotation

around the z axis (θ).
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MG = {hx,hy ,hz,θ} (3.7)

The algorithm uses the model on the global warp field (3D representation) to describe

the distortion caused by the camera motion on the event cloud. The goal is to transform

the original event coordinates {x,y, t} into new coordinates {x0, y0, t} that are aligned with

a reference frame. The transformation is represented mathematically by (3.8), where the

new coordinates {x0, y0} are a function of the original coordinates {x,y} and the parameters

of the model. For the sake of simplicity, the timestamp is excluded and remains unaltered

during the transformation. The authors assume linear event trajectories within the time

slice, which means that the motion of each event can be described by a straight line.
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3.4.2 Object detection and tracking

In order to identify objects that are in motion, this section assigns a score to each pixel,

based on the variations in τ . τ is a discretized plane that displays the average timestamp

of events projected onto each pixel by the warp field. The score indicates the deviation

between independently moving objects and the background. By using this technique,

the pixel can be labeled either as a component of the background or as part of a moving

object.

Figure 3.14: A frame captured from the “Two Objects” dataset, displaying the misalign-
ment between two objects after global motion compensation has been applied. The green
hue represents the most recent events [35].

After detecting the moving objects 3.14, the algorithm implements a simple Kalman

filter to prevent missing or wrong detections.
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3.4.3 Datasets

The DAVIS240B bio-inspired sensor was used to collect the data. They gathered over 30

recordings in total, but the sequence with a periodically flashing bright light in a dark

room and another UAVs moving is the dataset’s centrepiece. The bright light in a dark

room is an excellent indicator for the algorithm because it causes a lot of noise.

3.5 A unifying contrast maximization framework for event

cameras

This article [22] presents a framework for handling numerous computer vision challenges

using event cameras: estimation of motion, depth, and optical flow.

3.5.1 General description of the framework

The framework produces two products: estimated point trajectories that implicitly estab-

lish correspondences between events and the trajectories which can be used to correct the

edge motion.

The framework finds the point trajectories on the image plane that best fits the event

data. The image plane 3.15 is a set of events acquired during a time window (typically

with milliseconds interval).

Figure 3.15: (a) The space-time region of the image plane is depicted with events (dots)
caused by a moving edge pattern, and the corresponding point trajectories. The events
are colored based on their polarity, blue indicating a positive event, which represents an
increase in brightness, and red indicating a negative event, representing a decrease in
brightness. (b) The corresponding events align along the direction of the point trajectories
highlighted in (a), providing a visual representation of the edge pattern that caused them
[22].

A geometric model of how points move on the image plane is created by the framework

and depends on the type of estimation required to solve the computer vision problem

(i.e., optical flow, depth or motion). The goal is to estimate the model’s parameters using

the data provided by the events. The estimation is presumably achievable because the
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model parameters, which are unknown a prior, are shared by numerous events and are

observable (meaning that they can be measured). To tackle the estimation problem, the

framework builds candidate point trajectories according to the motion and scene models,

and then uses an objective function to evaluate the level of matching between these

trajectories and the event data. After this, an optimization algorithm is used to search

for the point trajectories that maximize the objective function, which measures how well

events are aligned along the candidate trajectories.

3.5.2 Steps of the method

1. To create an image (H), the events are warped based on the point trajectories speci-

fied by the geometric model and proposed parameters (θ). This involves translating

the events along a trajectory that accounts for their space-time coordinates and

other characteristics of the point-trajectory model, which is known as warping. The

warp shifts each event along the trajectory that passes through it until it reaches a

reference time.

2. The next step is to compute a score (f) based on the image of the warped events. An

objective function f(H(E’)) is computed based on the image of histogram of warped

events H(E’). The researchers use the variance of H as a dispersion metric with the

aim to maximize it. The objective function measures the quality of fit to the event

data (E) by representing the statistics of the warped events (E’) as a function of the

candidate model parameters (θ). In other words, maximizing the variance of the

image of warped events H(E’(θ)) favours the point trajectories that align the warped

events on the image plane.

3. The objective function is optimized by tuning the parameters of the model to obtain

the best possible fit to the event data. This involves finding the optimal point

trajectories on the image plane that align with the event data. Various optimization

algorithms such as gradient ascent or Newton’s method can be used to find the best

model parameters. The framework is flexible and not tied to a specific optimizer.

3.6 Event-based motion segmentation by motion compensation

The article [50] describes a proposed method for event-based motion segmentation, which

aims to classify events of a space-time window into separate clusters that represent co-

herent moving objects or background, even in the presence of a possibly moving camera.

The method is inspired by classical layered models and uses motion compensation tech-

niques. It jointly estimates the motion parameters of the clusters and the event-cluster

associations in an iterative, alternating fashion, using an objective function based on

motion compensation. The proposed method is flexible and can handle different types
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of parametric motions of the objects and the scene, such as translation, rotation, and

zooming.

3.6.1 Method

In this study, a method was developed to improve motion segmentation in computer

vision by combining classical layered models with event-based motion compensation.

The former models [55] are a type of computer vision model that represents a scene as a

set of layers or regions, each corresponding to a different object or surface in the scene.

The idea is that each layer is a two-dimensional surface that moves independently of other

layers, and the observed image is a combination of these moving surfaces.

Event-based cameras, also known as the Dynamic Vision Sensor (DVS), have inde-

pendent pixels that output “events” in response to changes in intensity. The method

developed in this study involves processing these events in packets to aggregate sufficient

information for the estimation. The main problem addressed by this method is a motion

segmentation, which involves identifying which events correspond to which objects or a

background motion.

The proposed solution involves classifying events into clusters or layers representing

coherent motion, with each cluster having constant motion parameters. To achieve this,

the method leverages the idea of motion compensation to separate events into clusters

by maximizing event alignment. This is done by warping events to a reference time

and maximizing their alignment, producing a sharp image of warped events (Image of

Warped Events (IWE)).

Warping events to a reference time refers to transforming the timestamps of the events

in a way that aligns them to a common temporal reference frame. This is important

because events in different parts of the visual field may occur at different times due to the

relative motion between the camera and the scene. Maximizing their alignment refers

to finding the transformation that best aligns the events across the temporal and spatial

dimensions. This transformation is determined by optimizing an objective function that

measures the alignment between the events in different parts of the visual field.

The goal of this process is to group events that correspond to the same object or a

background motion together, which can then be used for further analysis or processing.

Multiple motion models or clusters are required to achieve maximal event alignment for

multiple objects with different motions. The sharpness of the IWE is used as the main

cue to segment the events, identifying the events corresponding to each independently

moving object as well as the object’s motion parameters.

Figure 3.16 shows the output of the event-based camera, which is a sequence of events

in response to changes in intensity, along with a colour image of the scene for illustration

purposes. The middle block represents the iterative clustering algorithm proposed in

the method, which classifies the events into clusters representing coherent motion. The

right-hand side shows the segmented moving objects causing the events, which include
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Figure 3.16: Event-based motion segmentation by motion compensation [50].

a pedestrian, a cyclist, and the camera’s ego-motion. The objects are colour-coded for

clarity.

The method jointly estimates the motion parameters θ and event-cluster membership

probabilities P to best explain the scene, resulting in motion-compensated event images

for all clusters on the right-hand side. θ represents the motion parameters of each cluster,

such as the speed and direction of the object’s movement. The event-cluster membership

probabilities P represent the probability of each event belonging to a particular cluster.

The motion-compensated event images for each cluster show the events that corre-

spond to each independently moving object. The colour-coded segmentation of the mov-

ing objects makes it easier to identify and track each object’s motion parameters. Overall,

this figure demonstrates the effectiveness of the proposed method in accurately segment-

ing moving objects in the scene captured by the event-based camera.

3.6.2 Conclusion

This work presents a novel method for per-event segmentation of a scene into multiple

objects based on their apparent motion on the image plane. Per-event processing involves

analyzing each event individually, rather than a series of frames captured at fixed time

intervals. This approach allows for more efficient and accurate processing of visual infor-

mation, especially in dynamic scenes with fast motion or lighting changes. The proposed

method identifies the motion parameters of different objects (clusters) that cause the

events while segmenting them. Additionally, the method produces motion-compensated

images with a sharp edge-like appearance of the objects in the scene, which can be used

for further analysis, such as a recognition.

The method outperforms two recent methods on a publicly available dataset, with as

much as a 10% improvement. It can resolve small relative motion differences between

clusters and achieves this using a versatile cluster model while avoiding explicit estima-

tion of optical flow for motion segmentation, which is error-prone.

This method allows for motion segmentation in challenging conditions, such as in

high-speed scenes, unlocking the outstanding properties of event-based cameras. Overall,

this work presents an effective method for per-event segmentation of a scene into multiple

objects, which has important implications for computer vision and image processing.
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3.7 Ego-motion estimation based on fusion of images and

events

The event camera is a novel bio-inspired vision sensor that produces an event stream. In

this study [60], a novel data fusion algorithm called Events Aggregation and Superimposi-

tion (EAS) is proposed to merge conventional intensity images with the event stream. The

fusion output is then applied to various ego-motion estimation frameworks and evaluated

on a public dataset collected in low light environments.

3.7.1 Method

The implementation of EAS occurs in two stages: firstly, events are aggregated into event

slices, and secondly, the corresponding event slices are superimposed on intensity images.

The event camera outputs an event stream, where the ith event can be represented

by a 4-dimensional vector ei = (xi , yi , ti ,pi), with xi and yi denoting the pixel coordinates

of the event, ti representing the time stamp, and pi representing the polarity, indicating

the increase or decrease of light intensity (usually denoted as 1 or 0). In this study, due

to events with opposite polarities being generated for the same edge moving in different

directions, the polarity is ignored, and both types of events are treated equally.

To extract and track features effectively, a fixed number of events or events within

a fixed time interval are aggregated along the time dimension, resulting in an event

slice that contains sufficient information. A fixed number is preferred over a fixed time

interval because the camera’s speed can vary widely, leading to a significant difference in

the number of events generated in a fixed time interval, making the aggregation result

unstable. The aggregation process is expressed in equation (3.9), where es denotes the

event slice, and sign(.) is defined as follows: sign(x) = 1, if x > 0; sign(x) = 0, if x = 0;

N is the number of events aggregated in an event slice. In other words, the aggregation

process involves setting a pixel value to 1 if it generates any events in the event slice, and

to 0 otherwise.

es = sign(
∑

ei), i0 ≤ i < i0 +N (3.9)

Superimposing, also known as image fusion, is a process of combining two or more

images of the same scene, taken from different sources or at different times, to create a

single composite image that contains more information than any of the individual images.

In the context of computer vision and image processing, superimposing usually involves

aligning and blending an image obtained from a traditional camera with an image ob-

tained from a specialized camera, such as a depth, thermal, or event camera, in order to

enhance or highlight certain features of the scene. The process of superimposing can be

achieved through various methods, such as image registration, intensity normalization,

colour mapping, and blending.
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In this case, the alignment of event slices 3.17(c) with original intensity images 3.17(a)

in time is necessary for their fusion. Each intensity image has a corresponding event slice

obtained at the exact moment the image is captured. Before superimposing, the event

slice is first smoothed by a Gaussian filter and weighted. This weighting is determined

by the value of the parameter α, which decides the degree of influence of the event slices

on the fusion result. Higher α means that the event slices will have a greater impact

on the final result. A threshold is set to restrict the superimposition and ensures that

only pixels with values smaller than β can be enhanced by the corresponding event slice

3.17(b), meaning that pixels with values above this threshold will not be affected. This

is done to ensure that the superimposition process does not cause damage to important

features in the original image. An adaptive strategy to determine the weight α is used,

which is set to the maximum pixel value of the intensity image with a lower bound to

prevent over-amplification of small pixel values. The final fusion result 3.17(f) can be

expressed mathematically using equation (3.10), where EAS represents the final fusion

result, I is the original intensity image, and G(.) denotes the Gaussian filter function.

EAS(x,y) =

I(x,y) +α ·G(es(x,y)), I(x,y) < β

I(x,y), I(x,y) ≥ β
(3.10)

The image in 3.17 shows various sets of images from a dataset. The EAS image (f)

has the best quality among all the images in the set. This demonstrates the effectiveness

of the EAS algorithm in improving the image quality of event camera data fused with

conventional intensity images.

Figure 3.17: The first (a) is the original image, the second (b) is the enhanced version of
the original image, the third (c) shows the event slices obtained from the event camera,
the fourth (d) shows the temporal slice (TS) obtained by averaging the event slices, the
fifth (e) shows the smoothed and integrated temporal slice (SITS), and the sixth (f) shows
the final fused image obtained using the EAS algorithm [60].

3.7.2 Conclusion

The novel data fusion algorithm (EAS) to fuse conventional intensity images with the

event stream output by event cameras proposed in the paper [60], was tested on two

different tasks that involve estimating the movement of a camera (ego-motion estimation):

one task that estimates rotation based on tracking the movement of objects in the scene,

and another task that estimates both rotation and translation. The tests were conducted
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on a dataset captured in low-light conditions. The results showed that EAS significantly

improved the accuracy of rotation estimation compared to using only the conventional

intensity images. These findings suggest that EAS is a promising approach for improving

the accuracy of motion estimation in challenging lighting conditions by leveraging the

unique strengths of event cameras.

3.8 Motion compensation and object detection for

neuromorphic camera

The paper [54] discusses motion compensation and object detection for neuromorphic

cameras. It presents two motion compensation and target detection methods and con-

ducts a comprehensive experimental study on two datasets to explore the advantages and

disadvantages of different algorithms for applicable scenarios. Specifically, the paper in-

troduces two motion compensation methods for operating event flow based on differential

neuromorphic camera. The first method involves motion compensation based on event

count image and time image, while the second method involves motion compensation

based on an image of warped events.

3.8.1 Motion compensation based on event count image and time image

The first method of motion compensation is a technique that utilizes two types of images,

namely the “event count image” and the “time image”, to estimate and compensate for

motion. The event count image represents image stability, and it is calculated by summing

up the number of events that occur at each pixel over a certain period. The time image, on

the other hand, uses dynamic information from the event flow to create a representation

of the motion. It measures the time interval between successive events at each pixel,

providing information about the motion of objects in the scene.

To achieve motion compensation, a motion model is used to fit the 3D geometric

characteristics of the event flow. It is used to estimate the moving system’s ego-motion

instead of locally calculating the image motion on a single event. This global method of

motion compensation is more accurate than local methods because it accounts for the

motion of the entire system rather than just the motion of individual events.

The motion compensation algorithm uses a 4-parameter global motion model to repre-

sent the global warp field, which expresses the transformation that is applied to the event

flow to compensate for the movement. The event count image and time image are used to

measure the error of event flow motion compensation. The algorithm tries to minimize

the error between the predicted event flow and the actual event flow by adjusting the

motion model parameters.

Overall, this method of motion compensation is effective in compensating for camera

movement and other types of motion in the scene. By using a global model and two types

of images, it can accurately estimate and compensate for motion in the entire system.
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3.8.2 Motion compensation based on IWE

The second method of motion compensation estimates the parameters of a model based

on the information in the event – the data point that contains the location, time, and

polarity of an event in the image. Once the parameters are estimated, the event is warped

for different motion models to find the point trajectory that is most suitable for the event

flow. The event is then warped again according to the point trajectory described by the

motion parameters, resulting in an IWE.

To determine the relative motion parameters between the neuromorphic camera and

the scene, the polarity of the events is summed to obtain IWE. Before adding polarity, the

event motion is realized by warping, and then the IWE corresponding to any pixel track

is formed. To measure the quality of the IWE, contrast is used, which is a measure of the

difference between the intensity of the event and the surrounding pixels.

The goodness of fit between the point trajectory and event is measured by using the

contrast function of IWE as the objective function. By maximizing it, the point trajectory

on the image plane that best matches the event can be confirmed, and the optimal param-

eters can be found. The contrast maximization method is used to distinguish the polarity

of regions with and without events. Variance is typically used to measure the contrast of

images, which is a measure of the dispersion or concentration of image values near the

average intensity.

To estimate the motion parameters that can best compensate the rotational camera

motion, the contrast of the rotation event image is maximized using the contrast maxi-

mization method. However, the contrast is a nonlinear function of unknown variables,

and a closed solution of this problem is unlikely to exist. Therefore, an iterative nonlinear

algorithm is used to optimize the contrast and make the motion compensation result

optimal.

3.8.3 Object detection based on threshold

This method uses motion inconsistency to detect independent moving objects and accu-

rately model the background. The algorithm iteratively detects and tracks objects that do

not conform to the background model. To detect independent moving objects, the algo-

rithm observes the inconsistency of time images and uses a threshold to detect pixels that

move differently. Morphological operations group the pixels into objects and associate

each pixel with a score representing its misalignment with the background. The score is

then used to classify pixels as background or independently moving objects.

3.8.4 Object detection based on contrast maximization

This method uses a group of continuous events to detect moving objects. The event data

is first segmented into clusters, each of which represents a coherent and independent

moving object or the background. To accomplish this, an objective function based on
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motion compensation is used to estimate the correlation between event clusters and the

motion parameters of each cluster. By iteratively optimizing this objective function, the

method can accurately identify and track different moving objects in the scene. Since each

event carries very little information and lacks prior knowledge of the scene, the events

are clustered together to gather more information and estimate the motion parameters of

every cluster. Each of them represents a coherent moving object, and it is assumed that

the motion parameters of the cluster are constant over time. To divide different moving

objects in the scene, the event cluster association is modeled in the motion compensa-

tion framework to determine the possibility that an event belongs to a cluster. This is

accomplished by optimizing the contrast of all the clusters. To solve this problem, an

iterative alternating optimization method is used. This method updates the motion pa-

rameters and the event cluster association alternately to maximize the contrast of all the

clusters. In each iteration, the motion parameters are updated using the gradient ascend

method, while the event cluster association is updated using a probability partition law.

In statistics, this law is used to calculate the probability of an event occurring given the

knowledge of other related events [28]. In summary, this method uses event data to detect

and track moving objects in a scene by clustering the events and estimating the motion

parameters of each cluster using an objective function based on motion compensation.

By iteratively optimizing this function, the method can accurately identify and track

different moving objects in the scene.

3.8.5 Conclusion

The paper discusses different motion compensation and object detection methods for neu-

romorphic cameras. The authors propose two motion compensation methods: one based

on event count images and time images and the other based on IWE. The experimental

results show that both methods have different strengths and can be selected according to

the needs. The former can produce motion-compensated images with clear edges, while

the latter can highlight moving objects in the result. The paper also presents two object

detection methods: one based on a threshold and the other based on a contrast maximiza-

tion. The threshold-based method is suitable for object detection in many cases, while

the other performs well for sequences with translational motion and can detect moving

objects in more complex datasets.
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Methodology

An event camera only transmits events from pixels where there has been a change in

brightness intensity, so capturing an environment through an event camera on a static

body will only generate events from pixels where there are moving objects. There may

be some noise-generated data, but it is insignificant and can be easily removed during

processing. If the object on which the event camera is mounted remains static, collision

detection becomes simpler because most of the events will be part of one or more moving

objects. As a result, it is only necessary to process the event data and its location to

determine the number of dynamic objects and their trajectories.

However, during mission flights, UAVs equipped with event cameras can experience

instability due to unfavorable conditions such as wind, resulting in additional motion.

Therefore even without dynamic objects, the camera’s motion generates significant events

in the background. Therefore, to process events from moving objects, the algorithm

needs to filter out events generated by the camera’s motion. This process is known as

“ego-motion compensation”.

In this work, an initial approach was to replicate the detection algorithm performed

in the paper [35]. This was possible because the authors of the article had made the

code available online. A motion-compensation pipeline was available on GitHub in C++

language. In order to make the pipeline accessible to a wider audience, the developers

also provided Python bindings for the functions. These bindings allowed the functions

written in C++ to be called from Python code, enabling Python developers to utilize the

motion-compensation pipeline in their projects. Python has become increasingly popular

as a programming language in recent years, and for good reason. Not only is it versatile

and powerful, but it also has a relatively easy-to-learn syntax that makes it accessible

to beginners. Its readability and ease of use make it an attractive choice for a variety of

applications. Moreover, Python has a vast library of modules and frameworks that can

help streamline the development process. This makes it possible to accomplish complex

tasks with minimal effort and helps to reduce the amount of code that needs to be written

from scratch. Additionally, Python has a large and supportive community of developers,

who are constantly creating new tools and resources that make the language even more
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powerful and useful. Hence, the decision was made to utilize the available Python code

instead.

Once the functions for reading data from the dataset were replicated, the next step

was to prepare the ego-motion compensation pipeline. This involved creating a four-

parameter model that described the distortion caused by the camera movement. The

transformation of each event’s coordinates was calculated using the equation (3.8).

Where [hx,hy ,hz,θ] are the model parameters that would later be optimized in order

to find the best values so that the distortion caused by ego-motion would be as small as

possible and [x,y, t] are the coordinates and the timestamp of each event.

This optimization process proved to be quite complex and computationally inefficient,

and another ego-motion compensation method was quickly sought that did not have the

same problems.

As it was explained and researched in the state of the art, it is possible to create

ego-motion compensation in a much simpler and more efficient way without using op-

timization processes and so much mathematical complexity, e.g. through methods that

require the use of the IMU device. But for this, we had to collect our own data, as the

data that was being initially used was obtained from the Internet and did not contain any

IMU information.

4.1 Data

The first data sequences used were obtained from the Internet, specifically, from the

article [35]. The data was obtained with the DAVIS240B bio-inspired sensor [11], which

has a 3.3 mm lens and an 80-degree horizontal and vertical field of view. Most of the

sequences were generated using a handheld device. They customized a Qualcomm Flight-

TM platform to link the DAVIS240B sensor to the onboard computer and capture data

in a realistic environment for the quadcopter sequences. The Qualcomm Flight is a

complete drone reference design featuring a low-power, high-performance heterogeneous

processing engine that offers 15 TOPS, long-range Wi-Fi 6 and 5G (optional) connectivity,

support for 7 camera concurrency, computer vision, and vault-like security. Figure 4.1

illustrates the quadrotor + sensor platform arrangement. The fully loaded platform

weighs 500 g and is powered by the Snapdragon APQ8074 ARM CPU, which has four

cores running at up to 2.3 GHz.

Over 30 recordings were collected, but the sequences that we mainly used consisted

of multiple recordings with 1 to 3 moving objects in normal lighting conditions. The

objects are simple, with little or no texture in some cases. The objects move at different

rates, either following linear paths or hitting a surface.

The article provides all datasets in two formats: text files and binary (rosbag) files.

Although their contents are the same, one can be more suitable for a specific task. For

this case, we used the text files since they can be loaded easily using Python. The binary
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Figure 4.1: Drone used in the dataset collection. 1 – mounted DAVIS240B camera, 2 –
customized Qualcomm Flight platform with onboard computer [35].

rosbag files are intended for users who are already familiar with the Robot Operating

System (ROS) and for programs that will run on a real system.

The text file which contains the events is called events.txt. It has one event per line,

with the timestamp in seconds, the x position, the y position, and the polarity, 1 being

positive event and 0 being negative event.

As mentioned, this data did not have any IMU information. Therefore, we had to

collect our own data and sequences to incorporate the IMU information ourselves.

4.1.1 IMU

The IMU is an electronic device/sensor that contains an accelerometer and a gyroscope,

some may also contain a magnetometer or a barometer.

An accelerometer is the sensor responsible for detecting inertial acceleration, or the

change in velocity over time, and is available in several configurations, including mechan-

ical, quartz, and Micro Electro Mechanical System (MEMS) accelerometers. As demon-

strated in Figure 4.2, a MEMS accelerometer is basically a mass sustained by a spring. The

mass is referred to as the proof mass, and the direction in which the mass is supposed to

move is referred to as the sensitivity axis. When a linear acceleration along the sensitivity

axis is applied to an accelerometer, the proof mass shifts to one side, with the amount of

deflection corresponding to the acceleration.

A gyroscope (figure 4.3) is an inertial sensor that measures the angular rate of an

object in relation to an inertial reference frame. There are several different types of gyro-

scopes on the market, ranging in performance from mechanical to fiber-optic (Fibre-Optic

Gyroscopes (FOGs)), ring laser (Ring Laser Gyroscopes (RLGs)), and quartz/MEMS gy-

roscopes. Quartz and MEMS ones are commonly employed in consumer, industrial, and

tactical grade industries, respectively, whereas fiber-optic gyroscopes cover all four per-

formance categories. Ring laser ones generally have in-run bias stabilities ranging from

1°/hour to less than 0.001°/hour, covering tactical and navigation grades. Mechanical

gyroscopes are the best performing on the market, with in-run bias stabilities of less than

0.0001°/hour.
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Figure 4.2: Simple accelerometer model [29].

Figure 4.3: Simple gyroscope - tuning fork configuration [29].

A device known as an Inertial Measurement Unit utilizes one or more accelerometers

and gyroscopes to detect linear acceleration and rotational rate. In some cases, a mag-

netometer is also included as a heading reference. For each of the primary axes, namely

pitch, roll, and yaw, a typical setup comprises of one accelerometer, one gyroscope, and

one magnetometer. IMU readings are commonly employed in Inertial Navigation Sys-

tems (INS) to determine the device’s attitude, angular rates, linear velocity, and position

relative to a global reference frame.

4.1.2 Recorded data

4.1.2.1 EVK1 camera

9 sequences of events and IMU data were recorded with an EVK1 HD event camera from

Prophesee [17], which is a French technology company that specializes in event-based

vision solutions. Prophesee’s event camera evaluation kits (EVK1) are designed to provide

developers with all the necessary tools and support to view and record event streams
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captured by Prophesee’s advanced event-based vision sensors. The sensors feature a

number of unique characteristics that make them ideal for a wide range of applications,

including autonomous vehicles, robotics, and industrial automation.

The camera used (figure 4.4), HD pixel-individually auto-sampling image sensor is

capable of capturing visual data at high resolution and with high sensitivity, enabling

developers to accurately capture and analyze visual data in real-time. The sensor also

features a wide dynamic range of up to 120dB, which allows it to capture scenes with a

high level of contrast, even in challenging lighting conditions.

Prophesee’s event sensors use contrast detection events only, which means they are

triggered by changes in the scene rather than at a fixed rate. This allows the sensors to

capture and process visual data more efficiently, and enables them to operate at very high

speeds.

Provided with the EVK1 evaluation kit is a D-FOV 81.5° CS mount lens, which ensures

a wide field of view and is compatible with multiple camera systems. The kit also includes

a power supply and data exchange with a standard USB 3.0 interface, which makes it easy

to integrate the camera into existing systems and workflows.

One of the most important features of Prophesee’s event sensors is their event time-

stamping capability, which provides microsecond (µs) precision. This enables developers

to accurately measure and track events as they occur in the scene, and to synchronize

visual data with other sensor data for more accurate analysis and processing.

Figure 4.4: Prophesee EVK1 HD event camera [17].

The Prophesee EVK1 is equipped with a 6-axis IMU that combines a three-axis ac-

celerometer and a three-axis gyroscope. The specific model of the IMU used in the EVK1

is not disclosed by Prophesee, but it is designed to provide high-precision motion tracking

capabilities.

As will be explained later, the ego-motion compensation method created does not

need the IMU values from the accelerometer and certainly not from the magnetometer

or barometer. Only the values of the angular velocities obtained from the gyroscope are
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required.

4.1.2.2 Recorded sequences

Each of the sequences recorded contains four files:

1. data.raw -– the recorded events.

2. data.avi — a short visualization of the recording.

3. event_data.csv — the events are stored in a text file, which has one event per row,

with the timestamp in microseconds, the x position, the y position, and the polarity,

“1” being positive event and “0” negative event.

4. imu_data.csv — the IMU values saved in a text file, each row has the timestamp,

also in microseconds, and the 3 angular velocities (gx, gy, gz).

The 9 sequences are the following:

1. Static — a simple scenario recorded with a static camera and no moving objects

in the scene. This sequence was recorded to check if the algorithm does not gen-

erate any false positives and to evaluate the algorithm’s resilience to noise in the

environment.

2. Dynamic Camera – a scenario recorded with a dynamic camera and no moving

objects in the scene. The sequence was specifically designed to test the ego-motion

compensation capabilities of the algorithm.

3. Dynamic Object -– 4 sequences recorded with a static camera and one or more mov-

ing objects in the scene. The purpose of recording these sequences was to evaluate

the algorithm’s ability to detect moving objects when ego-motion compensation is

not required. By capturing sequences without any intentional camera movement,

the algorithm’s ability to accurately detect moving objects can be tested under sta-

tionary conditions. This type of testing is important for ensuring that the algorithm

can operate effectively in real-world scenarios where camera movement may be

minimal or non-existent.

4. Dynamic -– 3 sequences recorded with a dynamic camera and one or more moving

objects in the scene. The purpose of recording these sequences was to comprehen-

sively test the algorithm’s capabilities, including its ability to perform ego-motion

compensation and detect one or multiple moving objects. By capturing sequences

with varying degrees of camera movement and the presence of one or more moving

objects, the algorithm’s ability to operate effectively in complex, real-world scenar-

ios can be evaluated. This type of testing is critical for ensuring that the algorithm

can accurately detect and track objects under a range of conditions and in different
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environments. The sequences were specifically designed to provide a challenging

testing environment that could accurately evaluate the algorithm’s full capacities

and its ability to perform under demanding conditions.

4.2 Ego-motion compensation

The ego-motion compensation algorithm collects the events from a predefined short time

span, 10 ms was considered a suitable time window for our method after numerous tests

and experiments. A shorter time window would make the algorithm insensitive and

therefore unreliable, but with a longer time window, the number of events to process

would also be larger, causing a longer delay in the algorithm’s operation. This increase

in events would not add any value, as it would only add events generated by the same

motion as the dynamic objects but on a longer timeline.

Figure 4.5: Events collected in a 10 ms time window from a scene with 3 moving objects
and a moving hand. The positive events are displayed in blue and the negative events are
displayed in red.

Through the UAV’s rotational information, which is obtained with the IMU device, it

is possible to know the correlation that exists in all the events created by the UAV’s own

rotation. This uniform movement of the events over the time window can be quantified

by the information from the IMU. As only the events created by the rotation of the UAV

itself have this uniform movement, if the algorithm can withdraw the influence of this

movement, then only events created by dynamic objects will remain in the image, and

the ones created by ego-motion will disappear.

After the algorithm of ego-motion compensation, it can be noticed that not all events

created by the UAV’s own motion disappear. This happens because the algorithm does

not account for any translational motion of the UAV.

Based on the idea from the article [20], it was decided to only consider rotational

motion in the algorithm’s calculations. This decision was made because, with a short time
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window of only 10 ms, translational motion is relatively insignificant, and incorporating

it into the calculations would make the algorithm slower and more complex. Instead, it is

more advantageous to filter out this movement and focus solely on compensating for the

camera’s rotational motion. By doing so, the algorithm can more efficiently and effectively

detect and track objects without being bogged down by unnecessary calculations. This

approach is in line with current research and allows for a more streamlined and optimized

algorithm that can operate effectively in real-world scenarios.

The ego-motion compensation algorithm starts by calculating the rotation matrix. By

selecting a time window and capturing the events, the values of the angular velocity of

the IMU in the same window were also collected, and their average value was calculated.

Then the rotation vector was formed by the average values of the angular velocities (4.1).

r = (gx, gy , gz) (4.1)

The rotation matrix was obtained using the Rodrigues algorithm and the rotation

vector [41] [33]. Rodrigues’ formula is an efficient technique for rotating a vector in a

space given an axis and angle in three-dimensional rotation theory. The equations (4.2),

(4.3) and (4.4) are used to convert a rotation vector into a rotation matrix.

θ← norm(r) (4.2)

r← r/θ (4.3)

R = cos(θ)I + (1− cosθ)rrT + sin(θ)


0 −rz ry
rz 0 −rx
−ry rx 0

 (4.4)

Inverse transformation can be also done easily using the equation (4.5).

sin(θ)


0 −rz ry
rz 0 −rx
−ry rx 0

 =
R−RT

2
(4.5)

By multiplying the vector of an event in spatio-temporal space with the rotation ma-

trix, we get the vector with the initial position of the event, prior to the rotation during

the selected time window. A rotation vector is the most convenient and compact repre-

sentation of a rotation matrix (since any rotation matrix has just 3 degrees of freedom).

Let’s represent the rotation matrix as the following (4.6) and (4.7).

R =


a00 a01 a02

a10 a11 a12

a20 a21 a22

 (4.6)
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
x′

y′

t0

 =


a00 a01 a02

a10 a11 a12

a20 a21 a22

 ·

x

y

t

 (4.7)

After doing these calculations for all the events within the selected time window, the

new events are now all assigned to t0 (t0 is the first event’s time of the selected batch),

going from a 3D projection to a 2D one. This process is called warping.

[
x1, y1, t1

]
→

[
x′1, y

′
1, t0

]
[
x2, y2, t2

]
→

[
x′2, y

′
2, t0

]
[
x3, y3, t3

]
→

[
x′3, y

′
3, t0

]
etc...

(4.8)

After the warping process, the algorithm faces a problem, as certain events will be

transposed to positions that are not within the image limits. Using in this particular case

an image with a height of 720 pixels and a width of 1280 pixels, after the calculation of

the new positions, certain values could exceed these limits or fall short of them. Thus in

these cases, it was decided to place these events in positions in the closest place within

the limits. The figure 4.6 represents a drawing of this process. It is possible to conclude,

Figure 4.6: Representation of the events that after the transposition fall outside of the
image limits. Red represents the position of the event after warping and green represents
the position of the event after solving the boundary issue.

by comparing figure 4.5 with figure 4.7, that after the ego-motion compensation process,

there is a higher density of events in the area where the dynamic objects are.
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Figure 4.7: The result of the ego-motion compensation, showing in white all the pixels
where there has been at least one event in the time window.

4.3 Normalized mean timestamp

The next step is to identify which pixels belong to a moving object and which belong to

the background and to do so, each pixel must be assigned a score. First, from the warped

events, their number in each pixel location is computed, which is called event-count pixel

Iij . Then, the time-pixel Tij is built, which is the sum of all timestamps of all events

within the pixel, and the mean timestamp in each pixel is calculated using the equation

(4.9).

mean(T )ij =
Tij
Iij

(4.9)

Having the mean timestamp for each pixel, the algorithm must now calculate the

average timestamp of all warped events as in equation (4.10).

mean(T ) =
T
I

(4.10)

The event-count image I presents the total number of events within the warped event

image and the time-image T presents the sum of all timestamps of the events within the

image. The given score for each pixel is computed using the equation (4.11).

p(i, j) = mean(T )ij −mean(T ) (4.11)

The result of the equation (4.11) is called normalized mean timestamp. The normal-

ized mean timestamp value has a range of [-1,1] (figure 4.8).

Computing a score allows to threshold the events (figure 4.9), separating static and

dynamic objects (figure 4.10).

The articles [35] and [54] proposed the concept of assigning a score to each pixel and

then utilizing a fixed threshold to differentiate between events generated by ego-motion
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Figure 4.8: Example of the normalized mean timestamp.

Figure 4.9: Example of a fixed threshold of the events.

and those produced by a moving object, as explained in the “Object detection based on

threshold” sub-chapter 3.8.3. Following several tests, a threshold of 0,002 was set as

it has a good compromise between the success of the results and the simplicity of the

algorithm.

By implementing a Python loop that iterates through each pixel in the frame, it is

possible to store the coordinates, the cumulative sum of events, and timestamps of the

events occurring in that pixel in a 3D array (table 4.3). This makes it feasible to compute

the average timestamp of the events and eventually determine the score for each pixel.

Then, by implementing an if condition, the algorithm saves only the pixels with a score

greater than a specific threshold in a string and removes the events from other pixels in

the frame.

After applying thresholding, as demonstrated in the following image 4.11, the dy-

namic objects are now more easily discernible. However, it is possible that certain events

from the static regions of the scene are not filtered out, resulting in salt-and-pepper noise
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Figure 4.10: Example of separation between events from dynamic objects and the rest.

Array of pixels
x[0:total] y[0:total] level task
xi yi 0 sum of events
xi yi 1 sum of the timestamps
xi yi 2 average of the timestamps
xi yi 3 score
xi yi 4 score > threshold ? “1” else “0”

Table 4.1: Demonstration of the array of pixels and the information stored in each of
them.

that must be eliminated using morphological operations.

Figure 4.11: The result of the ego-motion compensation after thresholding.

Based on a comparative analysis of the figures 4.7 and 4.11, it can be inferred that

a perceptible alteration occurs in the number of events subsequent to the thresholding

procedure. A substantial portion of the events vanishes, while the remaining events

persist primarily in regions where dynamic objects are present.
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4.4 Morphological operations

Morphological operations are a set of image processing techniques that process images

based on the shapes and structures within them. These techniques are particularly useful

for extracting meaningful information from images, such as identifying objects or ana-

lyzing patterns. Morphological operations are based on the principles of mathematical

morphology, which is a branch of mathematics that deals with the shapes and structures

of objects [36].

Morphological operations are often used in combination with other image processing

techniques, such as thresholding or edge detection, to extract and analyze features in an

image. They are widely used in a variety of fields, including computer vision, medical

imaging, and pattern recognition.

There are two main types of morphological operations: dilation and erosion. Dilation

expands the size of an object by adding pixels to its boundaries, while erosion shrinks an

object by removing pixels from its boundaries. To better understand these concepts, let’s

use the following image 4.12 as an example.

Figure 4.12: Black image with the letter “j” in it [37].

Dilation works by increasing the size of certain elements in an image, called “struc-

turing elements”, by adding pixels to their perimeter. These structuring elements can be

simple shapes, such as circles or squares, or more complex, such as lines or curves (figure

4.13).

Erosion is a common technique used in image processing to reduce the size of objects

or features in an image. It works by applying a small kernel or matrix over the image and

setting each pixel to the minimum value within that kernel. This process removes small

pixels or features from the image, effectively eroding them away (figure 4.14).

These operations can be combined and modified in various ways to achieve a range of

effects, such as closing small holes or removing noise. To remove the noise, a combination

of operations is used called opening. It is a technique intended to remove small objects

or noise from an image. It is typically used in image processing and computer vision

applications to improve the quality of an image (figure 4.15).

The opening operation consists of two steps: erosion and dilation. Erosion removes
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Figure 4.13: Image after dilation transformation [37].

Figure 4.14: Image after erosion transformation [37].

Figure 4.15: Image after opening transformation [37].

small objects or noise from the image by eroding away the pixels around the object. This

is done by using a kernel, which is a small matrix of values that is applied to the image.

The kernel slides over the image and compares each pixel to its neighbors. If the pixel

is surrounded by a majority of pixels with a value of 1 (in a binary image) or 255 (in a

greyscale image), then it is retained. If the pixel is surrounded by a majority of pixels

with a value of 0, then it is eroded away.

Dilation then follows erosion, and it expands the remaining pixels in the image. This

is done by using the same kernel as erosion, but in this case, the kernel looks for pixels

with a value of 1 and expands them to include the surrounding pixels. This helps to

restore the size and shape of the objects in the image after they have been eroded.
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Opening is a useful technique for removing small objects or noise from an image, as

it preserves the larger objects and features while removing the smaller ones. It is often

used in combination with other morphological operations, such as closing and thinning,

to further improve the quality of an image.

To eliminate the noise, the method is to simply execute the function cv2.morphologyEx(),
which is a function in the OpenCV library that allows for the application of morphological

transformations to images.

The function takes in three main arguments: the source image, the morphological

operation to be performed, and the structuring element. The morphological operation

can be one of several options, including erosion, dilation, closing, gradient, top hat and

the one applied here, opening.

The structuring element is a simple shape, such as a square or a circle, that is used to

perform the morphological operation. It is defined by its size and shape. The structuring

element used here was a 4 × 4 kernel of 1s (4.12).


1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

 (4.12)

Overall, cv2.morphologyEx() is a powerful tool for image processing and analysis and

can be used in a wide range of applications, from object detection and segmentation to

image enhancement and restoration.

Following the application of the morphological operation and subsequent noise re-

moval, the algorithm produces a clear image 4.16 in which the events from the dynamic

objects are the only events present on the frame, eliminating the presence of salt-and-

pepper noise.

Figure 4.16: The result of the morphological operation – opening.
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It has been previously noted that the scene contains three dynamic objects and a

moving hand. Therefore, it is important that the algorithm is able to distinguish between

these four dynamic bodies in order to detect potential collisions with the UAVs.

4.5 Clustering

Clustering is a widely used data analysis technique that involves grouping data points

into distinct categories or clusters based on shared characteristics or patterns [1]. An

illustration of the concept being discussed is presented in the accompanying figure 4.17.

This technique is commonly used in a variety of fields, including marketing, finance, and

biology, to identify patterns and trends in large datasets. In the field of image analysis

and computer vision, clustering can be used to detect objects in a dataset by identifying

clusters of data points that represent distinct elements. Clustering is particularly useful

for detecting objects in datasets with high levels of noise or missing data, as it is able to

handle these issues and identify clusters of data points that represent objects. It is also

useful for objects that may be difficult to detect using other methods, such as the ones

that are partially occluded or have irregular shapes. There are a variety of clustering

algorithms available, including K-means and DBSCAN, each with its own strengths and

limitations.

Figure 4.17: Clustering – assigning data points to specific categories or groups based on
shared characteristics or patterns [9].

After conducting a thorough evaluation of various clustering algorithms, it was deter-

mined that Density-Based Spatial Clustering of Applications with Noise (DBSCAN) [16]

was the most suitable method for the object detection task in this case. This decision was

based on the following advantages of DBSCAN:

1. Ability to identify clusters of data points representing objects with irregular shapes

or partial occlusion: DBSCAN’s density-based approach allows it to identify clusters

of data points that may be difficult to detect using other methods, such as K-means,

which are more sensitive to the shape and distribution of the data.
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2. No need to specify the number of clusters: DBSCAN does not require the user to

specify the number of clusters beforehand, making it particularly useful for datasets

with an unknown number of clusters or when the number of clusters is expected to

vary. This allows for more flexibility and adaptability in the clustering process.

Ultimately, the use of DBSCAN for object detection was deemed to be the most appro-

priate based on its ability to handle irregularly shaped and partially occluded objects and

its lack of a requirement for the user to specify the number of clusters beforehand.

DBSCAN is a popular method for detecting objects in a dataset, particularly in image

analysis and computer vision applications. It is an unsupervised machine learning algo-

rithm that is used to identify clusters of data points based on shared characteristics or

patterns.

The DBSCAN algorithm works by identifying dense regions of data points, known

as core points, and then expanding these clusters to include nearby points that meet a

certain density threshold. Points that do not meet this threshold or are not connected to

a cluster are classified as noise (figure 4.18).

There are two key parameters in DBSCAN -– epsilon and minPts. epsilon determines

the radius around each data point in which other points are considered part of the same

cluster. MinPts determines the minimum number of points required within this radius

to form a cluster. These parameters can be adjusted to achieve the desired level of granu-

larity in the clusters.

Figure 4.18: Density-Based Spatial Clustering of Applications with Noise [13].

To implement the DBSCAN algorithm, the following steps are followed:

1. Select appropriate values for epsilon and minPts.

2. Identify all data points that have at least minPts number of points within their

epsilon radius. These points are considered core points.

3. For each core point, create a cluster and add all points within its epsilon radius to

the cluster, including other core points.
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4. Repeat step 3 for all points in the cluster until no more points can be added.

5. Repeat steps 2-4 for all remaining data points until all points have been either

assigned to a cluster or classified as noise.

The sklearn.cluster module [12], which is a part of the popular scikit-learn machine

learning library in Python, was utilized to perform the steps of the DBSCAN algorithm.

This module contains a range of clustering algorithms, including DBSCAN.

To implement DBSCAN using sklearn.cluster, the following steps can be followed:

1. Import the DBSCAN class from sklearn.cluster.

2. Initialize a DBSCAN object with the desired values for epsilon and MinPts.

3. Fit the DBSCAN object to the dataset using the fit method.

4. Use the fit object’s labels attribute to access the clusters and the fit object’s core

sample indices attribute to access the core points.

A visual representation of the implemented code for the DBSCAN algorithm is pro-

vided in 4.19. Through a process of experimentation and evaluation, it was determined

that a value of 2 for epsilon and 50 for MinPts resulted in the best performance.

Figure 4.19: Example of the implemented code for the DBSCAN algorithm.

sklearn.cluster also includes a number of other clustering algorithms, such as K-means

and agglomerative clustering, which can be used depending on the characteristics of the

dataset and the desired level of granularity in the clusters.

Once the clusters have been identified using the DBSCAN algorithm, the next step is

to determine the boundaries of each one. This can be achieved by fitting a bounding box

around each cluster, with the center of the box representing its center. The coordinates

of the center of each cluster can then be output as the result of the algorithm.

In this particular example, there are a total of 4 clusters identified by the DBSCAN

algorithm 4.20.
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Figure 4.20: Result of the clustering in the frame.

The position of the center of each cluster can be obtained by calculating the mean

coordinates of the corners of the bounding box. This method involves computing the sum

of the x and y coordinates of each corner and dividing the result by the total number of

corners. By doing so, one can obtain an accurate estimate of the center of the cluster 4.21.

Figure 4.21: Illustration of the output of the coordinates of the center of each cluster
corresponding to a dynamic object.
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5

Experimental results

This chapter presents the experimental results of a proposed collision detection system

for UAVs using event cameras. The system’s performance is evaluated through a series

of experiments conducted in various scenarios and is compared with other algorithms

previously discussed in the state of the art. The chapter also provides an explanation of

the technical choices that were made in the proposed system.

The evaluation experiments and results for this algorithm were conducted on a system

equipped with an Intel Core i7-7700HQ processor, clocked at 2.80 GHz. The operating

system utilized was Windows 10 Home 64-bit. The system also featured 16 GB of RAM

and an NVIDIA GeForce GTX 1050 graphics card.

5.1 Success rate

To evaluate the effectiveness of the collision detection system, a series of experiments

were conducted using the proposed algorithm.

A new function was created as a derivative of the algorithm to analyze the entire se-

quence. The analysis involved iterating through the sequence at 10 millisecond intervals,

starting from the beginning and continuing to the end. This process was repeated for

all 9 recorded sequences, resulting in the analysis of over 3000 event-based windows

containing diverse dynamic objects.

The success rate for all 9 sequences, as well as the total success rate, was calculated

using two indicators, as presented in table 5.1. The first indicator expressed the success

rate of the algorithm in detecting the area where the dynamic objects are (Detection area),

and the second indicator, which is less detailed, was used to evaluate the algorithm not

only in detecting the area where the dynamic objects are but also their precise number

in the scene (Each object). This was done to keep the algorithm simple, as equating the

success rates of the two instants would make the algorithm more complex, less efficient,

and more expensive. These results provide insight into the effectiveness of the proposed

system in detecting dynamic objects and their locations in the scene in real time.

For example, the clustering process may detect two objects very close to each other
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Success rate
Sequence Detection area [%] Each object [%]
Dynamic 100,00 98,49
Dynamic2 100,00 98,41
Dynamic3 99,34 98,67
Dynamic Camera 100,00 100,00
Static 100,00 100,00
Dynamic Object 100,00 94,09
Dynamic Object2 96,75 91,87
Dynamic Object3 100,00 100,00
Dynamic Object4 99,51 99,51
Total 99,51 97,89

Table 5.1: Success rates for all 9 sequences

when in reality there is only one, and this would not complicate the success of the avoid-

ance algorithm, as it only needs to know the area where there the dynamic objects are

to track their path and, consequently, examine if there is a danger of collision with the

UAVs.

As seen in 5.1, the first image depicts the scene with all the events, and it is evident

that there is only one dynamic object. However, upon examination of the last picture, it

becomes clear that the algorithm has identified two objects in the same area where in fact

there is only one moving.

Figure 5.1: Display of the four phases to detect dynamic objects.
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5.2 Computational cost

In order to accurately determine the computational cost of the algorithm under exami-

nation, it will be necessary to evaluate both the processing time and memory usage of

each individual function. This can be achieved through the utilization of a profiler specif-

ically designed for the Python programming language. The profiler provides detailed

information on the performance of each function, including the amount of time required

for execution and the amount of memory needed for it. This information can then be

used to identify and optimize any areas of the algorithm that may be causing excessive

computational cost. By utilizing this approach, it is possible to accurately determine

the overall computational cost of the algorithm and make any necessary adjustments to

improve performance.

The Python programming language includes a built-in profiler called cProfile [51],

which can be used to measure the performance of code and identify any potential bottle-

necks. The profiler can be invoked by calling the cProfile module and passing the script

to be profiled as an argument. It will then generate a report that includes statistics on the

execution time and memory usage of each function in the script.

The cProfile module provides several options for controlling the output of the profiler,

including the ability to sort the report by different metrics such as total time or cumulative

time. Additionally, it is also possible to specify a certain number of function calls to the

profile, which is useful for targeting specific sections of code.

The profiler report generated by cProfile provides a wealth of information on the

performance of the code. For example, it shows the number of times a function was

called, the amount of time spent inside, the percentage of the total execution time that

was spent in it, the amount of memory used by the function and the number of primitive

function calls that were made. Additionally, it also provides the ability to view callers

of a function. The graph 5.2 illustrates the average processing time in milliseconds for

each primary function. It is evident that the ego-motion function requires the most time,

taking approximately one second to process a 10-millisecond time window.

In addition to the built-in profilers, there are also several third-party ones available for

Python such as line-profiler [30] and memory-profiler [34]. They can provide more detailed

information on the performance of code and can be useful for identifying specific areas

of an application that may be causing performance issues. For example, line-profiler can

be used to measure the performance of each line of code and memory-profiler can be used

to measure the memory usage of a script. So the latter was used to determine the memory

usage of each function.

memory-profiler is a third-party Python package that allows developers to measure the

memory usage of their code. It can be used to identify leaks, track the memory usage of

specific functions and understand how the usage changes over time. The package then

generates a report that shows the memory usage of each function, including the amount

that was allocated (e.g. blocks) and freed. The report can also be used to track how
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Figure 5.2: Average processing time of the functions in the algorithm.

memory usage changes over time and identify the specific lines of code that are causing

the leaks.

The memory package indicates that the majority of the functions do not significantly

impact the algorithm’s memory usage, with the exception of the read_event_file function.

As expected, this function’s memory usage increases proportionally with the number of

events extracted from the dataset. On average, the algorithm’s requirement is approxi-

mately 800 mebibytes (MiB).

5.3 Comparative analysis

In this section, the algorithm is analyzed in terms of any modifications made to it and the

reasoning behind those decisions.

The ego-motion function is a crucial aspect of the algorithm, however, it is also the

most time-consuming one. In order to improve efficiency, a different approach was pro-

posed to handle situations where the new positions of events, after the ego-motion, fall

outside the image limits. Instead of transposing the new positions to the nearest pixel

within the image limits, as it was mentioned in the “Methodology” chapter (4) and “Ego-

motion compensation” sub-chapter (4.2), the decision was made to simply ignore events

that fall outside the image limits. This decision was made with caution as it was feared

that it would negatively impact the performance and success rate of the algorithm, as

each event belonging to a dynamic object is an important piece of information.

However, after analyzing results from the sequence “Dynamic 2”, it was found that

the success rate did not change when evaluating the sequence with this modification.

Furthermore, the processing time of the ego-motion decreased when ignoring events

outside the image limits. On average, the decrease was 100 ms. As the average processing
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time of the ego-motion is around 1 second, this modification improved efficiency by 10%.

Figure 5.3 illustrates the processing time of the ego-motion function for over 60 time

windows (10 ms each) of the sequence “Dynamic 2”. As expected, it was found that

as the number of events increases, the processing time of the ego-motion increases in

a linear manner. The blue line represents the processing time of the ego-motion when

transposing new events to the nearest pixel, while the orange line represents the more

efficient approach of ignoring those events.

Figure 5.3: Comparison of the processing time of the ego-motion with two different
approaches.

A 10 ms time window provides a balance between accuracy and responsiveness, mak-

ing it a reasonable compromise for many scenarios. In this context, the paragraph explores

the reasons why a 10 ms time window is often considered the best option for collision

detection algorithms using event cameras for UAVs.

Upon analyzing the average processing time in seconds for time windows of 1, 5, 10,

50, and 100 ms in the sequence “Dynamic 2”, it becomes evident that the larger the time

window, the longer the processing time, and this occurs in a linear manner 5.4. It is

essential to select a smaller time window as an excessively long time window generates

an excessive number of events to process, thereby slowing down the algorithm without

providing any significant additional value, since the additional events are generated by

past obstacle motion history. However, choosing a too-short time window results in in-

sufficient information being collected for reliable detection. In an experiment conducted

using time windows of 1 and 5 ms to run the detection algorithm, no object was detected.
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Figure 5.4: Average processing time of the algorithm per time window.
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Conclusion and Future Work

6.1 Conclusion

In conclusion, this dissertation presents a comprehensive investigation into the collision

detection problem for Unmanned Aerial Vehicles using event cameras. The primary

objective of this research was to address the limitations of traditional cameras, such as

high computational requirements and low frame rates, by exploring the potential of event

cameras in enhancing the performance of UAVs collision detection.

The research methodology involved developing an event-based collision detection

algorithm that incorporates IMU information for motion compensation. The proposed

algorithm was then evaluated using real-world datasets, and the results demonstrated its

superior performance compared to traditional methods in terms of accuracy, speed, and

robustness to changing lighting conditions and object motion.

Furthermore, this study identified the potential applications of event cameras in en-

hancing the autonomy of UAVs by enabling them to navigate complex environments and

avoid collisions with obstacles in real-time. The proposed algorithm can also be extended

to other applications such as robotics, autonomous vehicles, and virtual reality.

One of the unique aspects of this thesis is that it presents, to the best of the knowledge

of the author, the only collision detection algorithm for event cameras developed in

Python that incorporates IMU information. The proposed algorithm and all datasets used

in this study are publicly accessible for future comparisons and research, as mentioned

in the “Supplementary material” sub-chapter (1.2). This will allow other researchers to

build upon the proposed algorithm and enhance its capabilities for specific applications.

In addition, this thesis emphasizes the importance of making research results openly

available to the scientific community. The proposed algorithm and datasets will be pub-

lished online, allowing researchers to reproduce and expand on this work.

Overall, the findings of this dissertation contribute to the advancement of collision

detection for UAVs and provide insights into the potential of event cameras in enhancing

the performance of robotics and autonomous systems. Future research can focus on

optimizing the proposed algorithm for specific applications and exploring the use of
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event cameras in other areas of computer vision and machine learning. The availability of

the proposed algorithm and datasets will further facilitate research in this area, leading to

the development of more advanced collision detection methods and ultimately improving

the safety of UAVs operations.

6.2 Future work

In this chapter, the limitations of the current system are identified and potential directions

for further development are suggested. Additionally, challenges and opportunities in the

field are highlighted, along with recommendations for future research. The chapter aims

to provide a roadmap for researchers and engineers to advance the technology and create

safer and more efficient UAVs.

6.2.1 Optimization

When it comes to improving an algorithm’s performance, various parameters can be

tweaked to achieve better results. The choices made in parameter selection can have a

significant impact on the effectiveness of the algorithm. The next segment explores the

various parameters that can be modified and the techniques that can be employed to

optimize them, with the ultimate goal of creating more efficient and accurate algorithms.

6.2.1.1 Adaptive time window

The time window is a crucial factor in collision detection algorithms. While a 10 ms time

window has been effective in many scenarios, it may not be optimal for all situations. The

complexity of the scene and the number of dynamic objects can impact the algorithm’s

performance. Hence, an adaptive time window algorithm that adjusts itself based on the

scene and the number of dynamic objects can be proposed to enhance the algorithm’s

accuracy and responsiveness.

The proposed adaptive time window algorithm could begin with a 10 ms fixed value

that provides a good balance between accuracy and responsiveness. However, the algo-

rithm would adjusts the time window dynamically as the scene and number of dynamic

objects change. This adjustment could be done using computer vision techniques and

machine learning algorithms that analyze the scene and identify the number of dynamic

objects. If the scene is more complex, the algorithm would reduce the time window to

ensure sufficient time for obstacle detection. Conversely, if the scene is less complex, the

algorithm would increase the time window to improve accuracy and reduce false alarms.

In a cluttered environment with many obstacles, the adaptive time window algorithm

would reduce the number of false alarms and improve the UAVs’ maneuverability. In

contrast, in a more open environment with fewer obstacles, the adaptive time window al-

gorithm would increase obstacle detection accuracy and reduce the UAVs’ computational

load.
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6.2.1.2 Clustering analysis

An additional aspect that would be worthwhile to investigate is whether the clustering

algorithm utilized, DBSCAN, is the most effective one for this task, by conducting a

thorough comparison and analysis.

Other clustering algorithms that can also be well-suited for object detection with event

cameras are mentioned below:

1. Ordering Points To Identify the Clustering Structure (OPTICS): This is a density-

based clustering algorithm that can handle noise and outliers well. OPTICS can also

detect clusters of different sizes and shapes, which can be useful for object detection

with event cameras [49].

2. Mean-Shift: This is a non-parametric clustering algorithm that can identify clusters

by locating the modes of a density function. Mean-Shift can be used to detect objects

in event camera data by finding the modes of the event density in space and time

[48].

3. K-Means: This is a popular clustering algorithm that can group events into K clus-

ters based on their similarity in space and time. K-Means can be useful for object

detection with event cameras if the number of objects in the scene is known before-

hand [47].

The choice of an appropriate clustering algorithm is determined by the specific re-

quirements of the object detection task, along with the characteristics of the event camera

data. The selection can depend on whether a more accurate or faster algorithm is desired.

It is recommended to experiment with different algorithms and parameter configura-

tions to identify the most effective clustering approach for a given application. Hence, it

may be beneficial to analyze and modify the clustering algorithm based on the specific

requirements of the object detection task and the event camera data.

6.2.1.3 Adaptive threshold

Another potential method for optimizing the algorithm could involve replacing the fixed

threshold, which was previously discussed in the “Normalized Mean Timestamp” sub-

chapter (4.3), with a dynamic function that can calculate the optimal threshold value

based on various factors such as the type of scene being observed, the quantity of events

detected, and the velocity of the camera. By implementing a threshold function that can

adapt to these diverse scenarios, the algorithm can improve its accuracy and efficiency in

detecting objects with greater consistency and reliability.
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6.2.1.4 Filters

The use of filters can help to reduce the number of events, particularly noise, and optimize

the algorithm’s processing time. Two common filters used in this regard are Activity

Filters [46] and Polarity Filters [45].

Activity Filters work by eliminating inactive events that do not have any other similar

events occurring in their 8-point neighbourhood. By filtering them out, the number of

events being processed is reduced, resulting in a decrease of processing time.

Polarity Filters, on the other hand, work by propagating events of a specific polarity.

This means that only positive or negative events are processed, and never both together.

As a result, the number of events processed is reduced by approximately 50%. By reduc-

ing the number of events being processed, the algorithm can be optimized, resulting in

improved performance and reduced processing time.

6.2.1.5 C functions

One possible direction for future work is to use PyObject [10]. This idea has been inspired

by the code from the article [35]. PyObject can be used to interface Python with C

code, which is known for its speed and efficiency. By migrating certain functions to C,

the collision detection algorithm can be processed more efficiently, resulting in faster

response times. One function that would benefit from migration to C is the ego-motion

function, according to the graph presented in 5.2, which is the most time-consuming in

the algorithm. Using PyObject and C functions can also make the code more modular

and easier to maintain.

6.2.2 Hardware implementation

Eventually, the algorithm can be implemented in an Field-Programmable Gate Array

(FPGA). Implementing a collision detection algorithm using event cameras for UAVs in

an FPGA can be beneficial because these platforms offer high processing power and low

latency, which are essential for real-time collision detection [24] [15] [8]. Additionally,

FPGA-based implementations can be more energy-efficient compared to software-based

implementations, because they are designed to perform specific tasks using dedicated

hardware, rather than relying on a general-purpose processor to execute instructions.

When executing software-based collision detection algorithms, the processor must

execute a large number of instructions, which can consume a significant amount of power.

In contrast, FPGAs are optimized for parallel processing, which enables them to perform

multiple tasks simultaneously.

For example, reading the data requires sequential execution. Nonetheless, in certain

aspects, FPGA parallelization plays a critical role:

1. The algorithm can process multiple time windows simultaneously, which means

that it can start processing the next time window without waiting for the current
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one to finish.

2. It is also feasible to parallelize the processing of multiple events within a time

window. For example, when creating the warped image in the ego-motion function,

multiple events can be processed simultaneously.

3. While processing older events for ego-motion and even older events for visualizing

the results, new events can be simultaneously read. In contrast, such simultaneous

processing is not possible with a Central Processing Unit (CPU).

The ability to process data in parallel reduces latency, which is the time needed to

process data from input to output. As a result, this lowers power consumption and

enables UAVs, for example, to fly for longer periods of time.
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