730 research outputs found

    Compressed Sensing Based Reconstruction Algorithm for X-ray Dose Reduction in Synchrotron Source Micro Computed Tomography

    Get PDF
    Synchrotron computed tomography requires a large number of angular projections to reconstruct tomographic images with high resolution for detailed and accurate diagnosis. However, this exposes the specimen to a large amount of x-ray radiation. Furthermore, this increases scan time and, consequently, the likelihood of involuntary specimen movements. One approach for decreasing the total scan time and radiation dose is to reduce the number of projection views needed to reconstruct the images. However, the aliasing artifacts appearing in the image due to the reduced number of projection data, visibly degrade the image quality. According to the compressed sensing theory, a signal can be accurately reconstructed from highly undersampled data by solving an optimization problem, provided that the signal can be sparsely represented in a predefined transform domain. Therefore, this thesis is mainly concerned with designing compressed sensing-based reconstruction algorithms to suppress aliasing artifacts while preserving spatial resolution in the resulting reconstructed image. First, the reduced-view synchrotron computed tomography reconstruction is formulated as a total variation regularized compressed sensing problem. The Douglas-Rachford Splitting and the randomized Kaczmarz methods are utilized to solve the optimization problem of the compressed sensing formulation. In contrast with the first part, where consistent simulated projection data are generated for image reconstruction, the reduced-view inconsistent real ex-vivo synchrotron absorption contrast micro computed tomography bone data are used in the second part. A gradient regularized compressed sensing problem is formulated, and the Douglas-Rachford Splitting and the preconditioned conjugate gradient methods are utilized to solve the optimization problem of the compressed sensing formulation. The wavelet image denoising algorithm is used as the post-processing algorithm to attenuate the unwanted staircase artifact generated by the reconstruction algorithm. Finally, a noisy and highly reduced-view inconsistent real in-vivo synchrotron phase-contrast computed tomography bone data are used for image reconstruction. A combination of prior image constrained compressed sensing framework, and the wavelet regularization is formulated, and the Douglas-Rachford Splitting and the preconditioned conjugate gradient methods are utilized to solve the optimization problem of the compressed sensing formulation. The prior image constrained compressed sensing framework takes advantage of the prior image to promote the sparsity of the target image. It may lead to an unwanted staircase artifact when applied to noisy and texture images, so the wavelet regularization is used to attenuate the unwanted staircase artifact generated by the prior image constrained compressed sensing reconstruction algorithm. The visual and quantitative performance assessments with the reduced-view simulated and real computed tomography data from canine prostate tissue, rat forelimb, and femoral cortical bone samples, show that the proposed algorithms have fewer artifacts and reconstruction errors than other conventional reconstruction algorithms at the same x-ray dose

    Computationally efficient locally adaptive demosaicing of color filter array images using the dual-tree complex wavelet packet transform

    Get PDF
    Most digital cameras use an array of alternating color filters to capture the varied colors in a scene with a single sensor chip. Reconstruction of a full color image from such a color mosaic is what constitutes demosaicing. In this paper, a technique is proposed that performs this demosaicing in a way that incurs a very low computational cost. This is done through a (dual-tree complex) wavelet interpretation of the demosaicing problem. By using a novel locally adaptive approach for demosaicing (complex) wavelet coefficients, we show that many of the common demosaicing artifacts can be avoided in an efficient way. Results demonstrate that the proposed method is competitive with respect to the current state of the art, but incurs a lower computational cost. The wavelet approach also allows for computationally effective denoising or deblurring approaches

    Multiresolution models in image restoration and reconstruction with medical and other applications

    Get PDF

    Research Status and Prospect for CT Imaging

    Get PDF
    Computed tomography (CT) is a very valuable imaging method and plays an important role in clinical diagnosis. As people pay more and more attention to radiation doses these years, decreasing CT radiation dose without affecting image quality is a hot direction for research of medical imaging in recent years. This chapter introduces the research status of low-dose technology from following aspects: low-dose scan implementation, reconstruction methods and image processing methods. Furthermore, other technologies related to the development tendency of CT, such as automatic tube current modulation technology, rapid peak kilovoltage (kVp) switching technology, dual-source CT technology and Nano-CT, are also summarized. Finally, the future research prospect are discussed and analyzed

    Near-optimal Compressed Sensing Guarantees for Total Variation Minimization

    Get PDF
    Consider the problem of reconstructing a multidimensional signal from an underdetermined set of measurements, as in the setting of compressed sensing. Without any additional assumptions, this problem is ill-posed. However, for signals such as natural images or movies, the minimal total variation estimate consistent with the measurements often produces a good approximation to the underlying signal, even if the number of measurements is far smaller than the ambient dimensionality. This paper extends recent reconstruction guarantees for two-dimensional images x ∈ ℂN2 to signals x ∈ ℂNd of arbitrary dimension d ≥ 2 and to isotropic total variation problems. In this paper, we show that a multidimensional signal x ∈ ℂNd can be reconstructed from O(s dlog(Nd)) linear measurements y = Ax using total variation minimization to a factor of the best s-term approximation of its gradient. The reconstruction guarantees we provide are necessarily optimal up to polynomial factors in the spatial dimension d

    Sparsity Promoting Regularization for Effective Noise Suppression in SPECT Image Reconstruction

    Get PDF
    The purpose of this research is to develop an advanced reconstruction method for low-count, hence high-noise, Single-Photon Emission Computed Tomography (SPECT) image reconstruction. It consists of a novel reconstruction model to suppress noise while conducting reconstruction and an efficient algorithm to solve the model. A novel regularizer is introduced as the nonconvex denoising term based on the approximate sparsity of the image under a geometric tight frame transform domain. The deblurring term is based on the negative log-likelihood of the SPECT data model. To solve the resulting nonconvex optimization problem a Preconditioned Fixed-point Proximity Algorithm (PFPA) is introduced. We prove that under appropriate assumptions, PFPA converges to a local solution of the optimization problem at a global O (1/k) convergence rate. Substantial numerical results for simulation data are presented to demonstrate the superiority of the proposed method in denoising, suppressing artifacts and reconstruction accuracy. We simulate noisy 2D SPECT data from two phantoms: hot Gaussian spheres on random lumpy warm background, and the anthropomorphic brain phantom, at high- and low-noise levels (64k and 90k counts, respectively), and reconstruct them using PFPA. We also perform limited comparative studies with selected competing state-of-the-art total variation (TV) and higher-order TV (HOTV) transform-based methods, and widely used post-filtered maximum-likelihood expectation-maximization. We investigate imaging performance of these methods using: Contrast-to-Noise Ratio (CNR), Ensemble Variance Images (EVI), Background Ensemble Noise (BEN), Normalized Mean-Square Error (NMSE), and Channelized Hotelling Observer (CHO) detectability. Each of the competing methods is independently optimized for each metric. We establish that the proposed method outperforms the other approaches in all image quality metrics except NMSE where it is matched by HOTV. The superiority of the proposed method is especially evident in the CHO detectability tests results. We also perform qualitative image evaluation for presence and severity of image artifacts where it also performs better in terms of suppressing staircase artifacts, as compared to TV methods. However, edge artifacts on high-contrast regions persist. We conclude that the proposed method may offer a powerful tool for detection tasks in high-noise SPECT imaging

    Super resolution and dynamic range enhancement of image sequences

    Get PDF
    Camera producers try to increase the spatial resolution of a camera by reducing size of sites on sensor array. However, shot noise causes the signal to noise ratio drop as sensor sites get smaller. This fact motivates resolution enhancement to be performed through software. Super resolution (SR) image reconstruction aims to combine degraded images of a scene in order to form an image which has higher resolution than all observations. There is a demand for high resolution images in biomedical imaging, surveillance, aerial/satellite imaging and high-definition TV (HDTV) technology. Although extensive research has been conducted in SR, attention has not been given to increase the resolution of images under illumination changes. In this study, a unique framework is proposed to increase the spatial resolution and dynamic range of a video sequence using Bayesian and Projection onto Convex Sets (POCS) methods. Incorporating camera response function estimation into image reconstruction allows dynamic range enhancement along with spatial resolution improvement. Photometrically varying input images complicate process of projecting observations onto common grid by violating brightness constancy. A contrast invariant feature transform is proposed in this thesis to register input images with high illumination variation. Proposed algorithm increases the repeatability rate of detected features among frames of a video. Repeatability rate is increased by computing the autocorrelation matrix using the gradients of contrast stretched input images. Presented contrast invariant feature detection improves repeatability rate of Harris corner detector around %25 on average. Joint multi-frame demosaicking and resolution enhancement is also investigated in this thesis. Color constancy constraint set is devised and incorporated into POCS framework for increasing resolution of color-filter array sampled images. Proposed method provides fewer demosaicking artifacts compared to existing POCS method and a higher visual quality in final image
    • …
    corecore