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Abstract
The purpose of this research is to develop an advanced reconstruction 
method for low-count, hence high-noise, single-photon emission computed 
tomography (SPECT) image reconstruction. It consists of a novel 
reconstruction model to suppress noise while conducting reconstruction and 
an efficient algorithm to solve the model. A novel regularizer is introduced 
as the nonconvex denoising term based on the approximate sparsity of the 
image under a geometric tight frame transform domain. The deblurring term 
is based on the negative log-likelihood of the SPECT data model. To solve 
the resulting nonconvex optimization problem a preconditioned fixed-point 
proximity algorithm (PFPA) is introduced. We prove that under appropriate 
assumptions, PFPA converges to a local solution of the optimization problem 
at a global O(1/k) convergence rate. Substantial numerical results for 
simulation data are presented to demonstrate the superiority of the proposed 
method in denoising, suppressing artifacts and reconstruction accuracy. We 
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simulate noisy 2D SPECT data from two phantoms: hot Gaussian spheres on 
random lumpy warm background, and the anthropomorphic brain phantom, at 
high- and low-noise levels (64k and 90k counts, respectively), and reconstruct 
them using PFPA. We also perform limited comparative studies with selected 
competing state-of-the-art total variation (TV) and higher-order TV (HOTV) 
transform-based methods, and widely used post-filtered maximum-likelihood 
expectation-maximization. We investigate imaging performance of these 
methods using: contrast-to-noise ratio (CNR), ensemble variance images 
(EVI), background ensemble noise (BEN), normalized mean-square error 
(NMSE), and channelized hotelling observer (CHO) detectability. Each of the 
competing methods is independently optimized for each metric. We establish 
that the proposed method outperforms the other approaches in all image 
quality metrics except NMSE where it is matched by HOTV. The superiority 
of the proposed method is especially evident in the CHO detectability tests 
results. We also perform qualitative image evaluation for presence and severity 
of image artifacts where it also performs better in terms of suppressing 
‘staircase’ artifacts, as compared to TV methods. However, edge artifacts 
on high-contrast regions persist. We conclude that the proposed method may 
offer a powerful tool for detection tasks in high-noise SPECT imaging.

Keywords: SPECT image reconstruction, denoising, approximate sparsity, 
nonconvex nonsmooth optimization, staircase artifact

(Some figures may appear in colour only in the online journal)

1. Introduction

Single photon emission computed tomography (SPECT) is a noninvasive molecular imaging 
modality that requires administration of radioactive tracer to patients. SPECT data are count 
limited due to the necessity of balancing the collected counts with a patient’s radiation dose 
and imaging time [54]. Using conventional image reconstruction methods, such low-count 
data leads to very noisy non-clinical quality images. Consequently, suppressing noise while 
preserving desired image quality in low-count SPECT image reconstruction is an important 
problem with the potential for significant clinical impact.

A number of researchers have proposed regularization-based reconstruction methods to 
address the problem of excessive noise in low-count SPECT images [19, 20, 30]. Specifically, 
Pannin, Zeng, and Gullberg [38] introduced the total variation regularization (TV) model for 
SPECT image reconstruction. It was initially proposed by Rudin, Osher, and Fatemi [44] for 
general denoising. TV-type models have also been applied to other image modalities such as 
CT and MRI due to TV’s efficacy in edge-preserving and resolution enhancement [12, 27, 
39, 40, 50, 57]. However, TV denoising has certain disadvantages, which might include the 
loss of fine structures and/or diminished contrast, and the introduction of piecewise constant 
regions, often referred to as staircase artifacts. All these shortcomings reduce clinical utility 
of TV-based regularization. In addition, the algorithm developed in [38] for solving the result-
ing optimization problem converges relatively slowly. The higher-order TV (HOTV) model 
[30] and the infimal convolution model [55] have been proposed for SPECT reconstruction to 
suppress the staircase artifacts associated with the TV model. These methods are effective at 
reducing the artifacts stemming from the first-order TV term with only minimal loss of spatial 
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resolution. Moreover, the resulting optimization problem for TV regularized SPECT image 
reconstruction can be efficiently solved using a fixed-point methodology with the proximity 
operator [33], as was demonstrated by the preconditioned alternating projection algorithm 
(PAPA) [28, 30].

Total variation methods use the gradient transform (and higher-order gradients) to seek 
solutions that are sparse in that transform domain. They represent a specific case of a larger 
methodology known as sparsity-based methods, which are considered to be among the best 
methods available for image recovery problems such as deblurring, denoising, inpainting, 
matrix completion, image scale-up, and image compression [22]. The power of these methods 
stems from the use of particular transforms with which salient image features can be sparsely 
represented. However, the optimal transform is generally unknown and determination of a best 
alternative can be difficult. In addition, because the selected transform might not be optimal, 
the image may still have many small non-sparse elements in the transform domain and may 
not be truly sparse. Also, the �0 norm, though considered the best measure of sparseness due to 
its discrete structure [4, 47], is computationally intractable. An alternative to the �0 norm, the 
�1 norm, though inferior, is typically used instead, as its ‘best’ convex approximation [21, 34]. 
Finally, it can be challenging to combine the sparsity-based methods with the denoising task. 
Despite these difficulties various researchers have introduced a number of transforms provid-
ing domains where signals and images may have sparse representations. They include tight 
frames and dictionaries, which have been widely used in image processing, signal restoration 
[11, 56, 61], and recently in SPECT image reconstruction [16, 59].

Of various types of sparsifying transforms, wavelet frames have been widely used in image 
restoration and medical image reconstruction [13, 14, 60]. This approach is based on the dis-
covery that images can be approximately restored (reconstructed) by a few (sparse) wavelet 
frame coefficients. The tight wavelet frame-based models have been very successful in noise 
reduction in images due to their flexibility and redundancy property. That motivates us to 
implement a geometric tight framelet (GTF) system [31] in our novel noise-suppressing regu-
larizer. The GTF system has an additional advantage because it can detect multi-orientation 
variations of the images.

Under well-defined conditions, the �1 norm-based model can produce the sparse solution of 
a particular problem. The resulting model is always convex and can be solved efficiently with 
many available tools. However, compared with the convex �1 norm-based model, a nonconvex 
�0 norm-based model has certain advantages in the context of image processing [4, 58]. Here, 
we propose a novel regularization model that combines the sparsity maximization and denois-
ing task, and we introduce the Moreau envelope of the �0 norm to reformulate the problem. We 
define the regularization term in the model as the composition of the Moreau envelope of the 
�0 norm with the GTF system (L0METF), forming an �0 norm model based on a tight framelet 
system. The use of the Moreau envelope has an added advantage in that it separates the sparse 
representation from the reconstructed denoised image. This allows the reconstructed image 
to be approximately sparse, preserving small non-sparse components in its transform domain 
that might otherwise have been lost. Such an approximately sparse model for the SPECT 
image reconstruction problem integrates the denoising task and sparsity a priori information 
through the use the Moreau envelope of the �0 norm of a GTF transform.

At present, there are very few efficient algorithms available for the �0 norm-based mod-
els because of both nonconvexity and nondifferentiability of such models. Convex relaxation 
approach for the �0 norm model and some greedy pursuit algorithms have been proposed 
[52, 53]. Iterative hard thresholding algorithms have been extensively studied and applied 
to solving compressed sensing recovery problems [8]. Zhang, Dong, and Lu proposed the 
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adapted penalty decomposition method to solve one class of �0 norm-based minimization 
models and used the block coordinate descent (BCD) method to solve each of the model’s 
subproblems [60]. More recently, two accelerating algorithms, extrapolation proximal itera-
tive hard thresholding (EPIHT) algorithm and EPIHT with line search (EPIHT-LS), have been 
proposed to solve the �0 norm based model [4]. Zeng, Shen, and Xu have also recently devel-
oped a two-step fixed-point algorithm to solve an �0 norm-based model [47]. Attouch, Bolte, 
Redont, and Soubeyran have proposed the well-known proximal alternating minimization 
algorithm (PAMA) for solving nonconvex problems [2]. This algorithm has been studied in  
[9, 20] under the framework of the Kurdyka–Łojasiewicz (KL) property [3]. Under the assump-
tion that the objective function satisfies the KL property, the convergence of sequence gener-
ated by PAMA to solve the nonconvex problem is guaranteed to converge to the critical point. 
In the present study, we develop a preconditioned fixed-point proximity algorithm (PFPA) to 
solve our proposed model. The algorithm PFPA can be simplified as PAMA. Thus, our method 
can be incorporated into the PAMA approach based on the framework of the KL property. 
However, such approach has two deficiencies: (i) methodology of parameter selections is not 
clear; and (ii) it is only proved that PAMA converges to a critical point of the corresponding 
nonconvex problem. Based on our observation, we have established that under appropriate 
conditions PFPA solving the �0 norm-based model can converge to a local minimizer. We 
also report the theoretical convergence rate for PFPA. Moreover, EM preconditioner has been 
applied to accelerate convergence based on its effectiveness, as reported in [28]. We have cho-
sen a variant EM preconditioner in PFPA to accelerate the convergence in practice.

To assess PFPA performance, we compare our method with two state-of-art approaches 
(TV-PAPA and HOTV-PAPA) and the most common technique (expectation-maximization 
with Gaussian post-filter, GPF-EM). We note that the GPF-EM model contains solely the 
fidelity term, while a penalty term (regularizer) is absent. We simulate noisy parallel-beam 
SPECT data from a phantom with hot Gaussian spheres on warm lumpy background, and an 
anthropomorphic brain phantom. The following metrics are evaluated: contrast-to-noise ratio 
(CNR), ensemble variance images (EVI), background ensemble noise (BEN), lesion detect-
ability using channelized hotelling observer (CHO), and reconstruction error via normalized 
mean square error (NMSE). A task-based strategy is used to determine optimal parameters 
individually for each metric (e.g. CNR, EVI, BEN, NMSE, and CHO) and each method.

Main contributions of this paper include:

 •  A novel regularization model exploiting the Moreau envelope of the �0 norm as a penalty 
function imposed on the GTF coefficients for the SPECT reconstruction problem is intro-
duced leading to a nonconvex approximately sparse regularization model.

 •  A preconditioned fixed-point proximity algorithm (FPPA) is developed to solve the 
resulting nonconvex model, and it is established that the sequence generated by FPPA 
converges to a local minimizer of the objective function.

 •  Superior performance of the proposed method in reconstruction of low-count SPECT 
data, as compared with two state-of-the-art approaches and commonly used technique is 
validated by numerical experiments.

The remainder of this paper is divided into six sections. In section 2, we propose a noncon-
vex approximately sparse regularization model using the Moreau envelope of the �0 norm. 
In section 3, we characterize the solution of the nonconvex optimization model via a sys-
tem of fixed-point equations. In section 4, we develop a preconditioned fixed-point proxim-
ity algorithm to solve the model based on the characterization. Section 5 is devoted to the 
conv ergence result of the iterative algorithm. In section 6, we compare the proposed method 
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with the existing methods by means of simulations, and we demonstrate numerical results 
including CNR performance, reconstruction images, BEN, NMSE, and CHO, etc. We arrive 
at conclusions in section 7.

2. SPECT reconstruction with an approximately sparse regularizer

In this section, we present an approximately sparse denoising reconstruction model for SPECT 
imaging based upon the emission tomography data model given by

g = Poisson(Af + γ), (1)

where g ∈ Rm, f ∈ Rd , and γ ∈ Rm  are the observed projection data, the unknown tracer 
distribution, and the additive counts, respectively. The observed data g follows a Poisson dis-
tribution [25, 48, 49]. Additive counts may originate from scatter, a hot lab, leakage from other 
injected patients, and/or numerous other sources. The system matrix A ∈ Rm×d  describes 
SPECT imaging process with each entry aij representing the mean contribution of activity 
in pixel j  to the signal (counts) recorded in the detector bin i, and it can be used to model 
physical phenomena involved in the imaging process, i.e. attenuation, scatter and detector 
response, as well as blurring process. In this study we approximate A using a discretization 
of the Radon transform. The reference [37] adopted the singular value decomposition method 
and the Sobolev space estimate technique to show that the singular values of Radon transform 
decay to zero polynomially. Hence, model (1) is ill-posed in the sense that very small changes 
in the observed data g may lead to disproportionate difference between the true image f  and 
its estimate.

The SPECT reconstruction problem shown in (1) can be formulated as an optimization 
model via the maximum likelihood (ML) criterion [29, 48, 49]. The ML estimate is obtained 
by maximizing a log-likelihood function of g conditioned on f . Since the likelihood function 
in SPECT imaging is assumed to be in a Poisson form, the traditional EM-method [29, 49] 
attempts to find the expected image by the following model

argmin
f�0

{〈Af , 1〉 − 〈ln (Af + γ) , g〉} , (2)

where 1 is a column vector of all ones. The objective function in model (2) is closely related 
to the Kullback–Leibler divergence, which is frequently applied to Poisson data recovery. The 
Kullback–Leibler divergence of Af + γ from g, up to an additive constant, can be defined as 
[7, 17]

DKL(Af + γ, g) :=
m∑

i=1

{
giln

gi

(Af + γ)i
+ (Af + γ)i − gi

}
.

The difference between DKL(Af + γ, g) and the objective function 〈Af , 1〉 − 〈ln(Af + γ), g〉 
is 
∑m

i=1(gilngi + γi − gi), which is independent of the optimization variable f . When one uses 
an iteration scheme to solve model (2), the fitting noise and the spatial resolution of the recon-
structed images increase, as the number of iterations increases, and thus the model produces 
noisy reconstructed image f  [23]. This is typically dealt with by prematurely stopping the 
iterations followed by some post-smoothing filtration of the reconstructed images. It is based 
on an ad hoc stopping criterion in an attempt to reach the optimal trade-off between the noise 
and the spatial resolution. An alternative is to formulate the SPECT reconstruction problem 
as an optimization model via the penalized maximum likelihood (PML) criterion [24, 25]:
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argmin
f�0

{〈Af , 1〉 − 〈ln(Af + γ), g〉+ λU ( f )} , (3)

where the regularization term U was introduced to arrive at a more realistic solution, that is, to 
enforce desirable properties of the estimate. Specifically, model (3) penalizes solutions with 
low probability, as specified by the prior. Here, λ is a positive regularization parameter and U 
represents a Gibbs real-valued energy function. Note that the constraint f � 0 is feasible and 
necessary due to the nonnegativity of the physical tracer distribution.

To address the issue of conventional methods when applied to low-count SPECT data pro-
ducing noisy images that are not clinically acceptable, we propose a novel reconstruction 
model that can effectively suppress noise in the low-count (lower-dose or shorter acquisition 
time) data. To this aim, we design a regularization term that can effectively denoise the under-
lying image f  with only limited and acceptable loss of spatial resolution under a given redun-
dant representation system D during the reconstruction process. Such a redundant system may 
better capture different image features, and suppress undesirable noise and artifacts. Thus, it 
provides robust image representations. However, the noise in the latent image will not vanish 
in the representation space. We call an image approximately sparse in an appropriate trans-
form domain, when most of its transform coefficients are very close to zero (instead of actu-
ally being zero), in contrast to the remaining few coefficients. For this reason, we approximate 
the transform coefficients Df by a sparse vector y  and minimize the �2 norm of the discrepancy 
between the transform coefficients Df and y . Sparsity of a vector is measured by the number 
of its nonzero components, that is, its �0 norm. Specifically, we propose the following two-
variable optimization model for SPECT reconstruction:

argmin
f�0

{
〈Af , 1〉 − 〈ln (Af + γ) , g〉+ λ

2β
‖y − Df‖2

2 + λ‖y‖0 : (y, f ) ∈ Rn × Rd
}

, (4)

where β is a positive parameter. Parameter β allows adjusting the approximation of the �0 
norm. In this study, we choose matrix D ∈ Rn×d as a discrete tight wavelet frame system, 
because redundancy is fostering incorporation of prior information to images more effica-
ciously, as comparing with orthogonal systems. The selected tight wavelet frame system will 
be described later. Because the objective function of model (4) contains the nonconvex �0 
norm, the optimization model (4) is nonconvex, as well.

Model (4) belongs to a constrained minimization class. For computational convenience 
we convert it to an unconstrained one by using the indicator function of the nonnegativity 
constraint set Rd

+ :=
{

x : x ∈ Rd and x � 0
}
. Let H be a finite-dimensional real vector space. 

The indicator function of a closed convex set C in H for a given vector x ∈ H is defined by

ιC(x) :=

{
0 if x ∈ C,
+∞ otherwise. (5)

Employing this notation, we rewrite the constrained minimization model (4) as

argmin

{
〈Af , 1〉 − 〈ln (Af + γ) , g〉+ λ

2β
‖y − Df‖2

2 + λ‖y‖0 + ιRd
+
( f ) : (y, f ) ∈ Rn × Rd

}
,

 (6)

where ιRd
+
( f ) is the indicator function defined by (5).

We note that the regularization term appearing in (6) may be describe as the Moreau enve-
lope of the �0 norm. We recall the definition of the Moreau envelope provided in [35]. For a 
proper lower semi-continuous function φ : H → R ∪ {+∞}, the Moreau envelope of φ with 
positive parameter β is defined as

W Zheng et alInverse Problems 35 (2019) 115011
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envβφ(·) := min

{
φ(z) +

1
2β

‖ · −z‖2
2 : z ∈ H

}
. (7)

Using the Moreau envelope of the �0 norm, we rewrite minimization model (6) as

argmin
{
〈Af , 1〉 − 〈ln(Af + γ), g〉+ λ envβ‖·‖0(Df ) + ιRd

+
( f ) : f ∈ Rd

}
.

 (8)
We remark that the penalty term envβ‖·‖0 is a nonconvex approximation of the �0 norm 

‖ · ‖0, and as β → 0+, envβ‖·‖0 → ‖ · ‖0. In summary, the regularization term λ envβ‖·‖0(Df ) 
for appropriately chosen parameter β can promote the sparsity of the image f  under the redun-
dant system D. Moreover, model (8) is more physically realistic than the �0-regularized optim-
ization model because images under the redundant system D are approximately sparse, but not 
absolutely sparse. Finally, introduction of the model (6) facilitates development of efficient 
optimization algorithms. We note that the �0-regularized optimization model is an NP hard 
problem [36]. We explore the computational advantages of model (6) in detail and the equiva-
lence of model (8) and (6) in section 3.

3. Solution of the nonconvex optimization model

In this section, we present the characterization of solutions of model (6) and show the equiva-
lence of models (8) and (6). To characterize the solution of the proposed nonconvex optim-
ization model, we first denote the objective functional in model (6) by

G(y, f ) := F( f ) +
λ

2β
‖y − Df‖2

2 + λ‖y‖0 + ιRd
+
( f ), (y, f ) ∈ Rn × Rd, (9)

where F( f ) := 〈Af , 1〉 − 〈ln(Af + γ), g〉 is the data fidelity term. We derive that

∇F( f ) = At
(

1 − g
Af + γ

)
, (10)

where At is the transpose of A. One can check that ∇F( f ) is Lipschitz continuous with con-

stant L := ‖A‖2
2‖g‖∞
γ2 .

We recall both the subdifferential and the proximity operator [5, 35]. The subdifferential of 
a function φ defined on an inner product space H at a given vector x ∈ H is given by the set

∂φ(x) := { p : p ∈ H and 〈z − x, p〉+ φ(x) � φ(z) for all z ∈ H} .

An element in ∂φ(x) is called subgradient. It is closely related to the proximity operator 
proxβφ of φ defined at x ∈ H by

proxβφ (x) := argmin
z∈H

{
φ(z) +

1
2β

‖z − x‖2
2

}
. (11)

By recalling equation (7), we note that proxβφ is the set of the minimizers of function envβφ. 
The subdifferential and the proximity operator of the function φ are closely related: for any 
x, p ∈ H,

p ∈ β∂φ(x) if and only if x = proxβφ(x + p). (12)

We then need a useful property of the subdifferential of the indicator function of the set 
Rd

+. We define

W Zheng et alInverse Problems 35 (2019) 115011
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P := {P : P is a d × d diagonal matrix with positive diagonal entries}

and consider the indicator function ιRd
+

. Note that for any P ∈ P, the following equation holds

P ◦ ∂ιRd
+
= ∂ιRd

+
. (13)

With the above preparation, we next present a fixed-point formulation of a solution to the 
model (6).

Proposition 3.1. Let λ,β be positive numbers and D ∈ Rn×d be a discrete transform ma-
trix. If a pair (y�, f �) is a solution of model (6), then for any α ∈ (0, 1] and P ∈ P,

{
y� ∈ proxαβ‖·‖0

(αDf � + (1 − α)y�)
f � = proxιRd

+

( f � + λPDt (y� − Df �)− βP∇F( f �)) . (14)

Proof. Let (y�, f �) be a solution of model (6). We first show the inclusion relation

y� ∈ proxβ‖·‖0
(Df �) . (15)

That is, we shall establish the inequality

‖y∗‖0 +
1

2β
‖y∗ − Df �‖2

2 � ‖y‖0 +
1

2β
‖y − Df �‖2

2, for any y ∈ Rn. (16)

According to the assumption of this proposition, we have that

G(y�, f �) � G(y, f �), for any y ∈ proxβ‖·‖0
(Df �). (17)

On the other hand, by the definition of the proximity operator, we get from the inclusion 
y ∈ proxβ‖·‖0

(Df �) that

‖y‖0 +
1

2β
‖y − Df �‖2

2 � ‖y�‖0 +
1

2β
‖y� − Df �‖2

2.

This implies that

G(y, f �) � G(y�, f �), for any y ∈ proxβ‖·‖0
(Df �). (18)

Combining (17) and (18), we obtain the equation

G(y�, f �) = G(y, f �), for any y ∈ proxβ‖·‖0
(Df �).

This yields for any y ∈ proxβ‖·‖0
(Df �) that

‖y∗‖0 +
1

2β
‖y∗ − Df �‖2

2 = ‖y‖0 +
1

2β
‖y − Df �‖2

2. (19)

By employing the proximity operator again, for any y ∈ Rn \ proxβ‖·‖0
(Df �), we get that

‖y∗‖0 +
1

2β
‖y∗ − Df �‖2

2 < ‖y‖0 +
1

2β
‖y − Df �‖2

2. (20)
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Combining (19) and (20), we obtain (16). Thus, inclusion relation (15) holds true.
We next show that (15) is equivalent to the first inclusion relation of (14) for any α ∈ (0, 1]. 

Note that (15) is a special case of the first inclusion relation of (14) when α = 1. It suffices 
to prove that (15) implies the first inclusion relation of (14) for any α ∈ (0, 1). By writing the 
difference y − Df � in the right hand side of (16) as the sum of y − y� and y� − Df �, expand-
ing the norm of the difference and cancelling the same term in the both sides of the resulting 
inequality, we get that

‖y�‖0 � ‖y‖0 +
1

2β
‖y − y�‖2

2 +
1
β
〈y − y�, y� − Df �〉, for any y ∈ Rn.

For any α ∈ (0, 1), we add 1
2αβ ‖αy� − αDf �‖2

2 to both sides of the above inequality and rear-
range the right hand side of the resulting inequality to obtain the estimate that for any y ∈ Rn,

‖y�‖0+
1

2αβ
‖y�−

(
αDf �+(1−α)y�

)
‖2

2 � ‖y‖0+
1

2αβ
‖y−

(
αDf �+(1−α)y�

)
‖2

2+
α− 1
2αβ

‖y−y�‖2
2.

Since α ∈ (0, 1), the last term in the right hand side of the inequality above is non-positive. 
Hence, we have for any y ∈ Rn that

‖y�‖0 +
1

2αβ
‖y� −

(
αDf � + (1 − α)y�

)
‖2

2 � ‖y‖0 +
1

2αβ
‖y −

(
αDf � + (1 − α)y�

)
‖2

2.

That is, we have established the first inclusion relation of (14) for any α ∈ (0, 1).
It remains to prove the second equation of (14). If (y�, f �) is a solution of model (6), then 

by virtue of the Fermat rule [41], the inclusion relation holds

0 ∈ β∇F( f �)− λDt (y� − Df �) + ∂ιRd
+
( f �) ,

where Dt is the transpose of D. Multiplying the above relation by matrix P from the left and 
using (12) and (13), we observe that (y�, f �) satisfies the second equation of (14). □ 

We remark that proposition 3.1 serves as the basis of the algorithm development to be 
presented in the next section.

Finally, we establish the equivalence of models (8) and (6).

Proposition 3.2. Let λ,β be positive numbers, and D ∈ Rn×d be a discrete transform ma-
trix. A pair (y�, f �) is a solution of model (6) if and only if f � is a solution of model (8) with 
y� satisfying the first inclusion relation of (14) for any α ∈ (0, 1].

Proof. We define

J( f ) := F( f ) + λenvβ‖·‖0(Df ) + ιRd
+
( f ).

By the definitions of the proximity operator and the Moreau envelope, there holds the equation

J( f ) = G(y, f ), for any y ∈ proxβ‖·‖0
(Df ). (21)

If a pair (y�, f �) is a solution of model (6), proposition 3.1 implies that y� ∈ proxβ‖·‖0
(Df �). 

We confirm that f � is the solution of model (8). If this is not true, then there exists a vector f̃  
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such that J(f̃ ) < J( f �), which, by (21), implies G(ỹ, f̃ ) = J(f̃ ) < J( f �) = G(y�, f �) for any 

ỹ ∈ proxβ‖·‖0
(Df̃ ). This contradicts the assumption that (y�, f �) is a solution of model (6).

Conversely, if f � is a solution of model (8) with y� ∈ proxβ‖·‖0
(Df �), we assert that 

(y�, f �) is a solution of model (6). If this is not true, one can find another vector f̄  such that 
G(ȳ, f̄ ) < G(y�, f �) for any ȳ ∈ proxβ‖·‖0

(Df̄ ), which together with (21) implies J(f̄ ) < J( f �). 
This contradicts the assumption that f � is a solution of model (8). □ 

4. A preconditioned fixed-point proximity algorithm

In this section, we describe the preconditioned fixed-point proximity algorithm that we derived 
for solving the nonconvex minimization problem (6). Its development relies on certain useful 
properties of the proximity operator [10, 41], and the iterative computing schemes rely on the 
fixed-point formulation of model (6) described henceforth.

Below, we present the preconditioned fixed-point proximity algorithm for solving model 
(6). Based on (14), one can get the following two-step iterative scheme for solving model (6)




yk+1 ∈ proxαβ‖·‖0

(
αDf k +

(
1 − α

)
yk
)

f k+1 = proxιRd
+

(
f k + λPDt

(
yk+1 − Df k

)
− βP∇F( f k)

)
,

 (22)

where α ∈ (0, 1). In the first step, we have used a splitting technique with which we have 
replaced Df by αDf + (1 − α) y. The use of such a technique allows us to guarantee conv-
ergence and improve the speed of the iteration convergence by adjusting the parameter α.

The first step of the above iterative scheme is to exploit the sparsity of images in the trans-
form domain, while the second step is to simultaneously tomographically reconstruct and 
denoise the images. The preconditioned fixed-point proximity algorithm derived from this 
iterative scheme is denoted by PFPA. Recall that proxαβ‖·‖0

 is known as the hard thresholding 
operator. It is easy to see that for every α,β > 0 and x ∈ Rn the proximity operator of the �0 
norm is given by

proxαβ‖·‖0
(x) = proxαβ|·|0(x1)× proxαβ|·|0(x2)× · · · × proxαβ|·|0(xn),

where

proxαβ|·|0(xi) :=





{xi}, if |xi| >
√

2αβ,
{xi, 0}, if |xi| =

√
2αβ,

{0}, otherwise.

The proximity operator of the indicator function proxιRd
+

 (the projection operator onto the non-
negative orthant Rd

+) also has an explicit computing expression. That is, for x ∈ Rd, we have

(proxιRd
+

(x))i = max{xi, 0}, i ∈ {1, 2, . . . , d}.

Therefore, algorithm (22) is straightforward for implementation with no need to resorting to 
more complicated computing methods.

The redundant system D that appears in model (6) and in algorithm (22) has to be specified. 
Frame theory, developed in [18, 43] that relies on redundant representation of signals using 
the wavelet frames has been proved very successful in extracting salient features of images 
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[14, 32, 46]. In this work, we shall choose a geometric tight framelet system [31]. The details 
are provided hereafter.

The specific geometric tight framelet transform D that we construct here is a block matrix 
having 18 row blocks Dj , j = 0, 1, . . . , 17. The matrices Dk are represented in terms of the 
matrices

W0 :=




1
2

1
4

1
4

1
4

1
2

1
4

. . . . . . . . .
1
4

1
2

1
4

1
4

1
4

1
2




, W1 :=




0
√

2
4 −

√
2

4

−
√

2
4 0

√
2

4
. . . . . . . . .

−
√

2
4 0

√
2

4√
2

4 −
√

2
4 0




, W2 :=




1
2 − 1

4 − 1
4

− 1
4

1
2 − 1

4
. . . . . . . . .

− 1
4

1
2 − 1

4
− 1

4 − 1
4

1
2




.

Specifically, we define Wi,j := Wi ⊗ Wj with i, j = 0, 1, 2, where ⊗ denotes the Kronecker 
product. We note that {Wi,j}2

i,j=0 provides a tight framelet system that is a generalization of the 
total variation. We then let

D0 := W0,0, D1 :=

√
2

2
W0,1, D2 :=

√
2

2
W1,0, D3 :=

1
2
(W0,1 + W1,0),

D4 :=
1
2
(W1,0 − W0,1), D5 :=

√
7

3
W1,1, D6 :=

1
3

W0,2, D7 :=
1
3

W2,0,

D8 :=
1
3
(W1,1 + W0,2 + W2,0), D9 :=

1
3
(W0,2 + W2,0 − W1,1),

D10 :=

√
2

3
(W0,2 − W2,0), D11 := W2,1, D12 := W1,2, D13 :=

1
3

W2,2,

D14 :=

√
2

3
(W0,2 + W2,2), D15 :=

√
2

3
(W0,2 − W2,2),

D16 :=

√
2

3
(W2,0 + W2,2), D17 :=

√
2

3
(W2,0 − W2,2).

Finally, the GTF transform matrix D is given by

D := [Dt
0 Dt

1 · · · Dt
17]

t. (23)

One can verify that DtD  =  I, and as a result, D is a tight framelet transform matrix. It is known 
that this GTF transform can detect multiorientation and high-order variations of the images. 
The quotient Nn  is generally used to measure the redundancy of a framelet system {Di}N−1

i=0  for 
an n-dimensional real inner product space. In comparison with the frame system, {Wi,j}2

i,j=0, 
the framelet system {Di}17

i=0 has a higher level of redundancy that ensures its resilience to 
noise in the reconstruction process. Increasing in redundancy of the framelet system leads 
to a higher level of approximate sparsity in the resulting regularization model. However, it 
might also increase the computational complexity when solving the corresponding model. 
Therefore, it requires balancing the level of redundancy in the model and the computational 
complexity needed to solve the model.

The matrix applied to the latent image f  under a proper boundary condition (for example, 
the periodic boundary condition) is denoted by Dkf . We note that Dkf  are framelet coefficients 
of f .
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5. Convergence analysis

In this section, we present convergence analysis for the proposed algorithm PFPA. The analy-
sis is done in two stages. We observe that PFPA in fact first searches the invariant support set 
of a solution of the nonconvex model (6), and then solves a convex minimization problem 
on the support set. As a result, in stage one of the convergence analysis, we first identify the 
support set of a solution of the nonconvex model (6) and in stage two, we establish that the 
solution of the convex model defined on the support set is a local minimizer of the noncon-
vex model (6). We also show that PFPA solving the proposed nonconvex model has a global 
O(1/k) convergence rate.

We now identify the support set of a solution of model (6). To this end, we estab-
lish several technical lemmas. The first lemma regards a property of the proximity opera-

tor proxιRd
+

(· − T∇Q(·)). For a symmetric positive definite (SPD) matrix T, we define the 

weighted inner product by 〈x, y〉T := 〈x, T−1y〉 and the corresponding weighted norm by 
‖x‖T :=

√
〈x, x〉T . The proximity operator with respect to a SPD matrix T of a convex func-

tion φ is defined by

proxT
φ(x) := argmin

u

{
φ(u) +

1
2
‖u − x‖2

T

}
.

Clearly, proxI
φ = proxφ.

Lemma 5.1. Let T be a positive diagonal matrix and Q be a differentiable convex function 
defined on Rd. If v ∈ Rd is defined by

v := proxιRd
+

(x − T∇Q(x)) , for x ∈ Rd,

then for all z ∈ Rd
+ there holds the inequality

‖v − z‖2
T � ‖x − z‖2

T − ‖v − x‖2
T − 2〈∇Q(x), v − z〉. (24)

Proof. Direct computation leads to the equation

‖v − z‖2
T = ‖x − z‖2

T − ‖v − x‖2
T + 2〈T−1(v − x), v − z〉. (25)

We then split the last term of (25) into the sum of two terms, namely,

〈T−1(v − x), v − z〉 = 〈T−1(x − T∇Q(x)− v), z − v〉+ 〈−∇Q(x), v − z〉.
 (26)

The inequality (24) is proved once we establish that the first term in the right hand side of 
equation (26) is non-positive.

We next prove that 〈T−1(x − T∇Q(x)− v), z − v〉 � 0. One can easily verify that 

proxιRd
+

= proxT
ιRd

+

. Hence, we have that v = proxT
ιRd

+

(x − T∇Q(x)). By the Fermat rule, we 

get the inclusion

x − T∇Q(x)− v ∈ T∂ιRd
+
(v).
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For details of reasoning for the above inclusion, see, [33]. Multiplying both sides of the above 
inclusion by T−1 and recalling the definition of subdifferential, one arrives at

〈T−1(x − T∇Q(x)− v), z − v〉 � ιRd
+
(z)− ιRd

+
(v) = 0

for any z ∈ Rd
+. This estimate combined with equations (25) and (26) completes the proof of 

(24). □ 

For given positive numbers λ and β, a vector yk+1 ∈ Rn, an n × d  matrix D, we define a 
smooth convex function Q at any f ∈ Rd  by

Q( f ) := βF( f ) +
λ

2
‖Df‖2

2 − λ〈Df , yk+1〉. (27)

The next lemma is needed in identifying the support set of a solution of model (6).

Lemma 5.2. Let Q be a function defined by (27). If {(yk, f k)} is the sequence generated by 
PFPA, then the inequality

〈 f k+1 − f k,∇Q( f k)〉 � −〈P−1( f k+1 − f k), f k+1 − f k〉 (28)

holds for P ∈ P.

Proof. By the definition of Q in (27), we derive that

∇Q( f ) = β∇F( f ) + λDt(Df − yk+1). (29)

Since {(yk, f k)} is the sequence generated by PFPA, combining with (29) we observe that

f k+1 = proxιRd
+

(
f k − P∇Q( f k)

)
.

By lemma 5.1, with identifying T, v, x and z in (24) as P, f k+1, f k , and f k, respectively, we 
obtain that

〈 f k+1 − f k,∇Q( f k)〉 � −‖f k+1 − f k‖2
P,

which completes the proof. □ 

Let ω := ‖D‖2 and L̃ := βL + λω2. The next lemma confirms the Lipschitz continuity of 
∇Q.

Lemma 5.3. If Q is a function defined by (27), then ∇Q is Lipschitz continuous with a 
Lipschitz constant L̃, that is, for every x, v ∈ Rd ,

‖∇Q(x)−∇Q(v)‖2 � L̃‖x − v‖2. (30)

Proof. By (29), for every x, v ∈ Rd , we have that

∇Q(x)−∇Q(v) = β∇F(x)− β∇F(v) + λDtD(x − v).

Hence, we obtain that

‖∇Q(x)−∇Q(v)‖2 � ‖β(∇F(x)−∇F(v))‖2 + ‖λDtD(x − v)‖2.
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This inequality together with the Lipschitz continuity of ∇F with a Lipschitz constant L gives 
(30). □ 

We are now ready to present a proposition which is at the core of the convergence analysis. 
To this end, for positive parameters λ,β, and diagonal matrix P ∈ P, we define a matrix

Mλ,β,P :=
1
β
(P−1 − L̃

2
I).

Proposition 5.4. Let {(yk, f k)} be a sequence generated by PFPA with an initial 
(y0, f 0) ∈ Rn × Rd

+ for model (6). If α ∈ (0, 1), the positive parameters λ,β, and precondi-
tioner P ∈ P are selected such that matrix M := Mλ,β,P is symmetric positive definite, then 
the following statements hold:

 (i)  G(yk+1, f k+1) � G(yk, f k) for all k � 0 and the sequence {G(yk, f k)} converges.
 (ii)  limk→∞ ‖yk+1 − yk‖2 = limk→∞ ‖f k+1 − f k‖2 = 0.
 (iii)  The sequence {(yk, f k)} has a finite length, that is

+∞∑
k=0

(
‖yk+1 − yk‖2

2 + ‖f k+1 − f k‖2
M−1

)
< +∞. (31)

 (iv)  The sequence {(yk, f k)} is a Cauchy sequence in Rn × Rd
+.

Proof. We first show (i). This is done by establishing that

V := G(yk+1, f k+1)− G(yk, f k) � 0, for all k � 0.

To this end, we write

V = V1 + V2, (32)

where V1 := G(yk+1, f k+1)− G(yk+1, f k) and V2 := G(yk+1, f k)− G(yk, f k). We next estimate 
V1 and V2 separately.

We first consider V1. By the definition of the objective function (9), noting f k, f k+1 ∈ Rd
+, 

we have that

V1 = F( f k+1) +
λ

2β
‖yk+1 − Df k+1‖2

2 − F( f k)− λ

2β
‖yk+1 − Df k‖2

2.

Recalling (27), from a direct computation we obtain that

V1 =
1
β

[
Q( f k+1)− Q( f k)

]
. (33)

By lemma 5.3, we know that ∇Q( f ) is Lipschitz continuous with constant L̃. Using lemma 
2.1 in [6], we have

Q( f k+1) � Q( f k) + 〈 f k+1 − f k,∇Q( f k)〉+ L̃
2
‖f k+1 − f k‖2

2.

Combining this inequality with equation (33) leads to
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V1 �
1
β

[
〈 f k+1 − f k,∇Q( f k)〉+ L̃

2
‖f k+1 − f k‖2

2

]
.

By the proof of lemma 5.2, we obtain the estimate that

V1 �
1
β

[
− ‖f k+1 − f k‖2

P +
L̃
2
‖f k+1 − f k‖2

2

]
.

Expanding the right hand side of the above inequality and using the definition of matrix 
Mλ,β,P, we find that

V1 � −〈M( f k+1 − f k), f k+1 − f k〉. (34)

Recalling the definition of the weighted norm, estimate (34) becomes

V1 � −‖f k+1 − f k‖2
M−1 . (35)

Next, we estimate V2. Note that

V2 = λ
( 1

2β
‖yk+1 − Df k‖2

2 + ‖yk+1‖0 −
1

2β
‖yk − Df k‖2

2 − ‖yk‖0

)
. (36)

Since

yk+1 ∈ proxαβ‖·‖0

(
αDf k + (1 − α) yk) ,

by the definition of the proximity operator, we have that

‖yk+1‖0 +
1

2αβ
‖yk+1 − (αDf k + (1 − α)yk)‖2

2 � ‖yk‖0 +
1

2αβ
‖yk − (αDf k + (1 − α)yk)‖2

2.

Expanding the quadratic terms in the above inequality and simplifying the resulting inequality 
yield that

‖yk+1‖0 � ‖yk‖0 −
1

2αβ
‖yk+1 − yk‖2

2 −
1
β
〈yk − Df k, yk+1 − yk〉. (37)

Substituting inequality (37) into the right hand side of (36), we obtain that

V2 �λ

(
1

2β
‖yk+1 − Df k‖2

2 + ‖yk‖0 −
1

2αβ
‖yk+1 − yk‖2

2 −
1
β
〈yk − Df k, yk+1 − yk〉

− 1
2β

‖yk − Df k‖2
2 − ‖yk‖0

)
.

A direct computation simplifies the right hand side of the above inequality and gives

V2 � −λ(1 − α)

2αβ
‖yk+1 − yk‖2

2. (38)
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Finally, substituting (35) and (38) into (32) we deduce

V � −‖f k+1 − f k‖2
M−1 −

λ(1 − α)

2αβ
‖yk+1 − yk‖2

2. (39)

Because λ(1−α)
2αβ > 0 and M is symmetric positive definite, we conclude that V � 0. Moreo-

ver, since {G(yk, f k)} is nonincreasing and bounded from blow, it follows that the sequence 
{G(yk, f k)} converges.

(ii) From (39), we have that

λ(1 − α)

2αβ
‖yk+1 − yk‖2

2 � −V = G(yk, f k)− G(yk+1, f k+1) (40)

and

‖f k+1 − f k‖2
M−1 � −V = G(yk, f k)− G(yk+1, f k+1). (41)

Because {G(yk, f k)} converges, by letting k tend to infinity in (41) and (40), we obtain that 
limk→∞ ‖ f k+1 − f k‖M−1 = 0 and limk→∞ ‖yk+1 − yk‖2 = 0. The norm equivalence of the 
finite dimensional space in turn implies that limk→∞ ‖ f k+1 − f k‖2 = 0. This proves item (ii) 
in this proposition.
(iii) For K � 1, summing the inequality (40) from k  =  0 to K  −  1 yields

λ(1 − α)

2αβ

K−1∑
k=0

‖yk+1 − yk‖2
2 � G(y0, f 0)− G(yK , f K).

Likewise, summing (41) from k  =  0 to K  −  1 yields

K−1∑
k=0

‖f k+1 − f k‖2
M−1 � G(y0, f 0)− G(yK , f K).

Let ρ := 1
2 min{1, λ(1−α)

2αβ }. We then have that

K−1∑
k=0

(
‖yk+1 − yk‖2

2 + ‖f k+1 − f k‖2
M−1

)
�

1
ρ

(
G(y0, f 0)− G(yK , f K)

)
.

Since sequence {G(yk, f k)} converges by statement (i), letting K → ∞, we thus obtain (31).

(iv) By (iii), we have that

+∞∑
k=K

(
‖yk+1 − yk‖2

2 + ‖f k+1 − f k‖2
M−1

)
→ 0, as K → +∞.

Since M is a SPD matrix, the above relation yields that

+∞∑
k=K

‖yk+1 − yk‖2
2 → 0, as K → +∞ (42)
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and

+∞∑
k=K

‖f k+1 − f k‖2
M−1 → 0, as K → +∞. (43)

These observations confirm that sequences {y k} and {f k} are Cauchy sequences. Indeed, for 
any m  >  n  >  K, by (42) we have that

‖ym − yn‖2 =

∥∥∥∥∥
m−1∑
k=n

(yk+1 − yk)

∥∥∥∥∥
2

�
m−1∑
k=n

‖yk+1 − yk‖2 → 0.

From (42), it follows that {y k} is a Cauchy sequence in Rn. Likewise, using (43) we see that 
{f k} is a Cauchy sequence in Rd

+. We conclude that the sequence {(yk, f k)} is a Cauchy se-
quence in Rn × Rd

+ and hence a convergent sequence. □ 

We next confirm the existence of the invariant support set of the sequence generated by 
PFPA for the nonconvex model (6). For a vector y ∈ Rn, we denote the index set of all nonzero 
entries of y  by N(y), that is N(y) = {i : i ∈ Nn, yi �= 0}, where Nn := {1, 2, . . . , n}. The set 
N(y) is called the support set of y . The next lemma shows that if the support sets of two con-
secutive terms of the sequence generated by PFPA are not identical, then the terms must differ 
by a big margin.

Lemma 5.5. Let {y k} be the sequence generated by PFPA. If N(yk) �= N(yk+1), then

‖yk+1 − yk‖2 �
√

2αβ.

Proof. The result may be proved in a way similar to the proof of lemma 3 in [47]. □ 

Lemma 5.6. Let {(yk, f k)} be a sequence generated by PFPA with an initial 
(y0, f 0) ∈ Rn × Rd

+ for model (6). If α ∈ (0, 1), the positive parameters λ,β, and precondi-
tioner P ∈ P are selected such that matrix M := Mλ,β,P is symmetric positive definite, then 
there exists K  >  0 such that N(yk) = N(yK) for all k � K .

Proof. The proposition 5.4 (ii) ensures that there exists a number K  >  0 such that

‖yk+1 − yk‖2 <
√

2αβ, for all k � K. (44)

This guarantees that the support set of y k remains unchanged for all k � K , name-
ly, N(yk) = N(yK) when k � K . If this is not true, then there exists j � K  such that 
N(y j) �= N(y j+1). However, this combined with lemma 5.5 implies that ‖y j+1 − y j‖2 �

√
2αβ . 

This contradicts (44) and thus completes the proof of the lemma. □ 

Lemma 5.6 allows us to identify the support set Λ� := N(yk) for all k � K , which is a 
subset of Nn. Associated with the support set Λ�, we introduce a subspace of Rn by letting

SΛ� := {y : y ∈ Rn, N(y) ⊆ Λ�}. (45)

Clearly, SΛ� is convex and moreover, function G(y, f ) restricted to (y, f ) ∈ SΛ� × Rd is con-
vex. As a result, for k � K , iteration algorithm PFPA is basically solving a convex optim-
ization model on SΛ� × Rd . To make this point clear, for (y, f ) ∈ Rn × Rd, we define
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H(y, f ) := F( f ) +
λ

2β
‖y − Df‖2

2 + ιSΛ� (y) + ιRd
+
( f ), (46)

where ιSΛ� is the indicator function of SΛ�. Since ιSΛ� is convex, H defined by (46) is convex 
on Rn × Rd . We introduce the convex optimization model

min{H(y, f ) : (y, f ) ∈ Rn × Rd}. (47)

Since function F( f ) + λ
2β ‖y − Df‖2

2 is convex and coercive with respect to variables y  and f  

on the unbounded convex set SΛ� × Rd
+, the solution set of model (47) is nonempty.

The convex optimization problem (47) is intimately related to the nonconvex optimization 
problem (6) because the functions H and G are connected by the relation

G(y, f ) = H(y, f ) + λ‖y‖0 − ιSΛ� (y). (48)

It follows from lemma 5.6 that for k � K , the cardinality card(Λ�) = ‖yk‖0 and ιSΛ� (yk) = 0. 
Thus, for sequence {(yk, f k)} generated by PFPA, we have that

G(yk, f k) = H(yk, f k) + λcard(Λ�), for all k � K.

Consequently, after step K, the iteration PFPA is essentially solving the convex optimization 
model (47). We confirm this point in next proposition.

Proposition 5.7. Let {(yk, f k)} be a sequence generated by PFPA with an initial 
(y0, f 0) ∈ Rn × Rd

+ for model (6). If α ∈ (0, 1), the positive parameters λ,β, and precon-
ditioner P ∈ P are selected such that matrix Mλ,β,P is symmetric positive definite, then the 
subsequence {(yk, f k)}k�K  converges to a solution of model (47).

Proof. We first establish that the subsequence {(yk, f k)}k�K  satisfies the equations
{

yk+1 = proxιSΛ�

(
αDf k + (1 − α) yk

)

f k+1 = proxιRd
+

(
f k + λPDt

(
yk+1 − Df k

)
− βP∇F( f k)

)
. (49)

For sequence {(yk, f k)} generated by PFPA, we let

dk := αDf k + (1 − α) yk.

Comparing (49) with PFPA (22), we only need to show that the subsequence {(yk, f k)}k�K  
satisfies

yk+1 = proxιSΛ�
(dk). (50)

Equivalently, we need to prove the inequality

ιSΛ� (yk+1) +
1
2
‖yk+1 − dk‖2

2 � ιSΛ� (y) +
1
2
‖y − dk‖2

2, for all y ∈ Rn. (51)

To prove (51), we consider two cases: (i) y /∈ SΛ� and (ii) y ∈ SΛ�. In case (i), since 
y /∈ SΛ�, by the definition of indicator function ιSΛ�, one obtains that ιSΛ� (y) = ∞. Thus, 
inequality (51) holds in this case.

We now consider case (ii). Since by the hypothesis that {(yk, f k)} is generated by PFPA, 
we find that
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yk+1 ∈ proxαβ‖·‖0
(dk).

This is equivalent to

‖yk+1‖0 +
1

2αβ
‖yk+1 − dk‖2

2 � ‖y‖0 +
1

2αβ
‖y − dk‖2

2, for all y ∈ Rn. (52)

In particular, for any y ∈ SΛ�, by the definition of Λ�, we have that

‖y‖0 = card(N(y)) � card(Λ�).

We thus get from (52) the inequality

‖yk+1‖0 +
1

2αβ
‖yk+1 − dk‖2

2 � card(Λ�) +
1

2αβ
‖y − dk‖2

2, for y ∈ SΛ� .

 (53)

By lemma 5.6, we have that N(yk+1) = Λ� for k � K . Thus, inequality (53) becomes

1
2αβ

‖yk+1 − dk‖2
2 �

1
2αβ

‖y − dk‖2
2, for y ∈ SΛ� . (54)

By the definition of SΛ� it is clear that yk+1 ∈ SΛ�. It follows that ιSΛ� (yk+1) = ιSΛ� (y) = 0 
for y ∈ SΛ�. This together with (54) gives us that

ιSΛ� (yk+1) +
1
2
‖yk+1 − dk‖2

2 � ιSΛ� (y) +
1
2
‖y − dk‖2

2 for y ∈ SΛ� .

Summarizing the results proved above we conclude inequality (51) and thus inclusion 
relation (50).

We next establish the result that {(yk, f k)}k�K  converges to a solution of model (47). By 
lemma 5.6, we observe that {(yk, f k)}k�K ⊂ SΛ� × Rd

+. This together with Item (iv) of proposi-
tion 5.4 ensures that the subsequence {(yk, f k)}k�K  is a convergent sequence in SΛ� × Rd

+. Let 
(y�, f �) denote its limit point. Since SΛ� × Rd

+ is complete, we have that (y�, f �) ∈ SΛ� × Rd
+. 

Since subsequence {(yk, f k)}k�K  satisfies (49), we conclude that (y�, f �) satisfies the fixed-
point equations

{
y� = proxιSΛ�

(αDf � + (1 − α) y�) ,

f � = proxιRd
+

( f � + λPDt (y� − Df �)− βP∇F( f �)) . (55)

By employing (12), we observe that the fixed-point equations (55) are equivalent to the inclu-
sion relations

0 ∈ λ

β
(y� − Df �) + ∂ιSΛ� (y�) and 0 ∈ ∇F( f �)− λ

β
Dt(y� − Df �) + ∂ιRd

+
( f �),

 (56)

where ∂ denotes the Fréchet subdifferntial. Applying ∂ιSΛ� = λ
αβ∂ιSΛ� and (13) to the first 

and second inclusions above, respectively, inclusion relations (56) are equivalent to

α(Df � − y�) ∈ ∂ιSΛ� (y�) and λPDt (y� − Df �)− βP∇F( f �) ∈ ∂ιRd
+
( f �).
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Namely,

0 ∈ ∂yH(y�, f �) and 0 ∈ ∂f H(y�, f �).

According to the Fermat rule, we conclude that (y�, f �) is a solution of model (47). □ 

The next lemma confirms that a solution of convex model (47) is a local minimizer of the 
nonconvex model (6).

Lemma 5.8. If (y�, f �) is a solution of the convex model (47), then (y�, f �) is a local mini-
mizer of G(y, f ) in the nonconvex model (6).

Proof. We prove that there exists δ > 0 such that

G(y�, f �) � G(y� +∇y, f � +∇f ), for all ‖∇y‖ � δ, ‖∇f‖ � δ. (57)

We first consider the case f � +∇f /∈ Rd
+. According to the definition of the indica-

tor function, we see that ιRd
+
( f � +∇f ) = +∞. We then get immediately that in this case 

G(y�, f �) � G(y� +∇y, f � +∇f ).
It remains to consider the case f � +∇f ∈ Rd

+. To this end, we let

h(y, f ) := F( f ) +
λ

2β
‖y − Df‖2

2 for (y, f ) ∈ Rn × Rd.

Thus,

H(y, f ) = h(y, f ) + ιSΛ� (y) + ιRd
+
( f ).

By hypothesis, for any ∇y and ∇f , we have that

H(y�, f �) � H(y� +∇y, f � +∇f ). (58)

We consider two subcases: (i) N(∇y) ⊂ Λ� and (ii) N(∇y) �⊂ Λ�. Choose σ1 := mini∈Λ�{|y�i |}.
We first consider subcase (i). From (58), we have that

h(y�, f �) + ιSΛ� (y�) + ιRd
+
( f �) � h(y� +∇y,� +∇f ) + ιSΛ� (y� +∇y) + ιRd

+
( f � +∇f ).

Since N(∇y) ⊂ Λ�, this implies y� +∇y ∈ SΛ�. Thus, the above inequality yields

h(y�, f �) � h(y� +∇y,� +∇f ). (59)

When ‖∇y‖∞ < σ1, we have

card
(
N(y� +∇y)

)
= card(Λ�).

This together with (59) give us that

G(y�, f �) � G(y� +∇y, f � +∇f ).

We next consider subcase (ii). The continuity of function h implies that

lim
∇y,∇f→0

h(y� +∇y, f � +∇f ) = h(y�, f �).

Hence, there exist σ2 > 0 and σ3 > 0 such that
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h(y�, f �) � h(y� +∇y, f � +∇f ) + λ, (60)

whenever ‖∇y‖∞ < σ2 and ‖∇f‖∞ < σ3. Let σ := min{σ1,σ2}. When ‖∇y‖∞ < σ , we 
have that

card
(
N(y� +∇y)

)
� card(Λ�) + 1. (61)

By a direct computation, we obtain that

G(y�, f �)−G(y�+∇y, f �+∇f )=h(y�, f �)+λcard(Λ�)− h(y�+∇y, f �+∇f )− λcard
(
N(y�+∇y)

)
.

This together with (60) and (61) leads to

G(y�, f �)− G(y� +∇y, f � +∇f ) � 0.

Choosing δ := min{σ,σ3}, we conclude that (57) holds true. □ 

We are now ready to present the main result of this section.

Theorem 5.9. Let {(yk, f k)} be a sequence generated by PFPA with an initial 
(y0, f 0) ∈ Rn × Rd

+ for model (6). If α ∈ (0, 1), the positive parameters λ,β, and precon-
ditioner P ∈ P are selected such that matrix Mλ,β,P is symmetric positive definite, then {(

yk, f k
)}

 converges to a local minimizer of model (6).

Proof. By proposition 5.7, the sequence {(yk, f k)} converges to a solution (y�, f �) of model 
(47). It follows from lemma 5.8 that (y�, f �) is a local minimizer of model (6). □ 

The following corollary specializes theorem 5.9 to the case of D being a tight frame trans-
form, that is, DtD  =  I.

Corollary 5.10. Let D ∈ Rn×d be a tight frame system. If positive parameters λ,β and 
matrix P ∈ P are selected such that the inequality βL + λ < 2‖P‖∞ holds, then the sequence {(

yk, f k
)}

 generated by PFPA converges to a local minimizer of model (6).

Proof. For P ∈ P, if positive parameters λ,β and matrix P are selected such that 
βL + λ < 2‖P‖∞, then one can verify Mλ,β,P is symmetric positive definite for ω = 1. By 
theorem 5.9, the sequence 

{(
yk, f k

)}
 generated by PFPA converges to a local minimizer of 

model (6). □ 

The following result shows the convergence rate for PFPA.

Theorem 5.11. Let {(yk, f k)} be a sequence generated by PFPA with an initial 
(y0, f 0) ∈ Rn × Rd

+ for model (6). If α ∈ (0, 1), the positive parameters λ,β, and precondi-
tioner P ∈ P are selected such that matrix Mλ,β,P is symmetric positive definite, then there 
exists a real number ρ > 0 such that for any integer K′ > 0

inf
k�K′

{
‖yk+1 − yk‖2

2 + ‖f k+1 − f k‖2
M−1

λ,β,P

}
�

1
ρK′

(
G(y0, f 0)− G(y�, f �)

)
.

W Zheng et alInverse Problems 35 (2019) 115011



22

Proof. By the proof of Item (iii) of proposition 5.4, for any integer K′ > 0, we have that

K′−1∑
k=0

(
‖yk+1 − yk‖2

2 + ‖f k+1 − f k‖2
M−1

λ,β,P

)
�

1
ρ

(
G(y0, f 0)− G(yK′

, f K′
)
)

,

where

ρ :=
1
2
min

{
1,

λ(1 − α)

2αβ

}
.

By Item (i) of proposition 5.4, we obtain that

G(y�, f �) � G(yK′
, f K′

).

Consequently, we conclude that

inf
k�K′

{‖yk+1 − yk‖2
2 + ‖f k+1 − f k‖2

M−1
λ,β,P

} �
1

ρK′

(
G(y0, f 0)− G(y�, f �)

)

proving the result of this theorem. □ 

This theorem confirms that theoretically the proposed algorithm can reach a O(1/k) conv-
ergence rate.

6. Numerical experiments

We apply the proposed algorithm PFPA to solve the L0METF-regularized optimization 
model (8), leading to a novel reconstruction method L0METF-PFPA. We compare the method 
L0METF-PFPA with: (1) conventional EM algorithm with Gaussian post-filter (GPF-EM) 
[29, 49], (2) PAPA with a TV regularizer (TV-PAPA) [28], and (3) PAPA with a HOTV regu-
larizer (HOTV-PAPA) [30].

A number of phantoms are used to simulate noisy SPECT data, see below. The data are 
reconstructed using the aforementioned four methods. In emission computed tomography 
(SPECT and PET) inverse problem models are nonlinear due to the random nature of photon 
emission and detection. Because the geometric sensitivity, scatter (and randoms in PET), and 
photon attenuation, are non-stationary, the reconstructed images are shift-variant with non-
stationary noise properties.

For this reason, one needs to carefully select metrics suitable for studying quality of images 
produced by such systems. In the present study, to evaluate image quality, we apply contrast-
to-noise ratio (CNR), ensemble variance images (EVI), background ensemble noise (BEN), 
channelized hotelling observer (CHO) and normalized mean-squared error (NMSE). For 
evaluating the accuracy of the reconstruction of the data, we analyze line profiles through 
reconstructed images, and compare them with ground truth—the line profiles through the 
phantoms. We establish that the method L0METF-PFPA created images with better consid-
ered image quality metrics, as compared with GPF-EM, TV-PAPA, and HOTV-PAPA.
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6.1. Numerical phantom and simulations

The spatially inhomogeneous (lumpy) backgrounds are commonly observed in molecular 
imaging (PET and SPECT). They result from several causes including nonuniform distri-
bution of radioactive metabolites in blood, highly variable blood perfusion, irregular tumor 
vasculature, and heterogeneous tracer kinetics in blood, normal tissue and tumor. Under such 
circumstances, the model observer detection performance becomes nonlinear and thus more 
difficult to assess, as compared to the uniform background [42]. For this reason, in an attempt 
to perform more realistic model observer studies, we used a phantom with the spatially inho-
mogeneous warm background [30]. The lumpy warm background was obtained by super-
imposing randomly distributed Gaussian blobs within a cylinder with fixed uniform activity 
(diameter 20.8 cm and height 14.1 cm). The lumpy background has the advantage of being 
statistically tractable and stationary. It can be used to simulate variability of emission tomo-
graphic images and it has also been proven useful in the investigation of image reconstruc-
tion algorithms [1]. Six ‘hot’ Gaussian spheres representing lesions are inserted to the lumpy 
background (see figures 1(a) and (b)). The spheres, together with the lumpy background, form 
the phantom f  which is the object to be reconstructed. We define the mean background as an 
average of activity in the cylinder without hot spheres. The ratio of maximum activity of the 
hot spheres to mean background is set to 8:1. The radii of the six spheres are 9, 8, 7, 6, 5, and 
4 mm, respectively. The phantom is defined in 128 × 128 matrix.

In addition, an emission tomography brain image in a 256 × 256 matrix is used as a numer-
ical phantom for simulating SPECT data from human brain (figure 1(c)). In this case, the 
mean background activity is 0.4. In all the reconstructions, the additive counts term γ = 0.001 
is used, which avoids division by zero in the reconstruction algorithms.

To simulate the system matrix in a simplified manner, neither scatter nor attenuation 
is modeled, and ideal detectors (no blurring, no deadtime losses, no septal penetration, 
etc) are assumed. A parallel-collimated SPECT projection data consists of 120 views in a 
 128-dimensional detector array with a 2.2 mm detector bin size. We assume that the system 

matrix A is defined by a geometric projection matrix only, i.e. aij =
∑4

k=1 lkij, where lkij is 

the length of intersection with pixel j  of the kth ray normal to the detector face and directed 
towards the detector bin i (see figure 2(a)). For better trade-off between accuracy and compu-
tational efficiency, we use four rays in the calculation of aij for each detector bin. Assuming 
that the system matrix A has 128 × 120 rows and 128 × 128 columns, we extract a submatrix 
from the system matrix A (see figure 2(b)). This submatrix is sparse, and we observe that A is 
also sparse. Based on the noise-free projection Af, we use the built-in Matlab imnoise func-
tion to create Poisson-distributed SPECT projection data with two different total photon count 
numbers per view: 90 K and 64 K. The phantom with lower (more noisy) and higher (less 
noisy) total counts are called ‘high-noise phantom’ and ‘low-noise phantom’, respectively. 
Simulated SPECT projection sinograms examples for the Gaussian sphere phantom for the 
two noise levels are shown in figure 3. We apply the same procedure to the anthropomorphic 
brain phantom, and obtain the SPECT projection data (sinogram) with 390 K photon counts 
and size of 256 × 120.

6.2. Review of three competing reconstruction methods

In this subsection, we review three competing reconstruction methods that will be compared 
to the proposed method (L0METF-PFPA).
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 •  GPF-EM: While OSEM [26], an ordered-subset version of ML-EM [49], is the most 
widely used method for SPECT and PET image reconstruction, in this study we used 
ML-EM to simplify algorithm development. The ML-EM method attempts to find the 
most likely image given the data, i.e., the image that maximizes the likelihood of pro-
ducing the acquired projection data. For Poisson data, the EM algorithm is applied to 
solve the model described in (2). It is well known that for unconstrained ML-EM, as 
iterations increase the fitting noise of reconstructed images also increases. In the case 
of reconstructing sparse objects, the reconstructed images can be strongly affected by a 
specific effect of the noise called checkerboard effect [7, 37]. A common solution to regu-
larization of the reconstructed images is starting from a uniform initial image, thenceforth 
stopping the algorithm at a predetermined iteration number, and subsequently removing 
excessive noise by application of a smoothing post-filter. We note that stopping iterations 
too early can lead to poor detail recovery, especially in low count regions. In the experi-

Figure 1. Transaxial cross-sections through phantom containing: (a) and (b) 
Background with and without six Gaussian spheres (radii  =  4, 5, 6, 7, 8, and 9 mm), 
respectively with maximum-activity-to-mean-background ratio of 8:1, size 128 × 128; 
(c) An anthropomorphic brain phantom with size 256 × 256.

Figure 2. An example of the geometric SPECT system matrix used for the Gaussian 
spheres phantom reconstruction: (a) each system matrix entry aij is estimated by using 
the lengths of intersections lkij with pixel j  of four rays normal to the detector face and 
directed towards the detector bin i; (b) the submatrix A(6 : 14, 1153 : 1278) of the 
system matrix A.
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ments, we stop ML-EM at the 100th iteration and apply a 2D Gaussian post-smoothing 
filter to obtain the GPF-EM images.

 •  TV-PAPA: In this method, images are reconstructed using PAPA algorithm with a penalty 
term in the form of composition of a convex nonnegative function ϕ1 and a first order dif-
ference matrix B1. The model of TV-PAPA method is based on (3) with the regularization 
term,

λU( f ) := λϕ1(B1f ). (62)

  PAPA is developed to solve the regularization model, where given any initial ( f 0, b0), for 
any k = 0, 1, . . ., the TV-PAPA iterative scheme reads




hk = proxιRd
+

(
PAt g

Af k+γ
− λµPBt

1bk
)

,

bk+1 =
(

I − prox(λ/µ)ϕ1

) (
bk + B1hk

)
,

f k+1 = proxιRd
+

(
PAt g

Af k+γ
− λµPBt

1bk+1
)

.

  In the above scheme, b ∈ R2d is the dual variable in the gradient domain, P is the 
d × d diagonal, positive definite, preconditioning matrix, and µ is a positive param-
eter. Following [28], we choose P as the diagonal matrix Pk = diag

(
f k/At1

)
 at the kth 

iteration, and µ = 1/(2λ‖B1‖2
2‖Pk‖∞). TV-PAPA has several advantages over other 

algorithms designed to solve the model with the regularization term (62). It outperforms 
the nested EM-TV method [45] in the convergence speed while providing comparable 
image quality. It also surpasses GPF-EM in all aspects including the convergence speed, 
the noise suppression and the lesion detectability. However, TV-PAPA has some disad-
vantages. It may suffer from loss of fine structure or contrast and may produce staircase 
artifacts.

 •  HOTV-PAPA: In this case, images are reconstructed using a penalty term in the form 
of composition of convex nonnegative functions ϕ1 and ϕ2, and the first and the second 
order difference matrices B1 and B2. The regularization term of HOTV-PAPA model reads

λU( f ) := λ1ϕ1 (B1f ) + λ2ϕ2(B2f ).

  PAPA is utilized to solve the regularization model, therefore we denote this method by 
HOTV-PAPA. The HOTV-PAPA [30] is able to significantly reduce staircase artifacts 

Figure 3. Simulated SPECT projection data for the Gaussian spheres phantom: (a) 90 
K; (b)64 K counts.
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while avoiding unacceptable resolution loss at tolerable noise level. When dealing with 
high-noise projection data, we find that the staircase artifacts in the reconstructed images 
are not adequately suppressed, which likely results in lowering the contrast-to-noise ratio 
(CNR) and the detectability for the lesions.

We have two remarks about P and D that appear in the proposed algorithm PFPA.

Remark 6.1. The PFPA, convergence of which we proved in section 5, uses a fixed matrix 
P. Motivated by the PAPA algorithm, we change the preconditioner P dynamically from step 
to step, and we choose P in PFPA as the diagonal matrix Pk = τkdiag

(
f k/At1

)
 at the kth itera-

tion. We adopt an adaptive strategy for updating parameter τ . The algorithmic parameter τk is 
decreasing such that algorithm 1 is convergent by theorem 5.9. Consequently, the selection of 
matrix Pk depends on the current reconstruction f k and the algorithmic parameter τk. There-
fore, to solve model (6), we propose a dynamic PFPA shown as algorithm 1.

Algorithm 1. Preconditioned fixed-point proximity (PFPA) algorithm for SPECT 
reconstruction.

       Preparation: ∇F and D are defined in (10) and (23), respectively. The parameter α ∈ (0, 1), 
λ,β and τ  are positive integers.

      Initialization: yk ← y0, f k ← f 0 , τk ← τ  and τmin = τ
2 × 10−10 .

      repeat
        Step 1: If k  >  1, τk > τmin and ‖f k − f k−1‖2/‖f k−1‖2 > ‖f k−1 − f k−2‖2/‖f k−2‖2,  

update τk ← max{τk/2, τmin}
        Step 2: Pk ← τkdiag

(
f k/At1

)

        Step 3: yk+1 ← proxαβ‖·‖0

(
αDf k + (1 − α) yk

)

        Step 4: f (k+1) ← proxιRd
+

(
f k + λPkDt

(
yk+1 − Df k

)
− βPk∇F( f k)

)
      until ‘Convergence’

Remark 6.2. In practical implementation of algorithms, f  is a two dimensional signal. We 
notice that using formulating matrices for tight frame transforms and difference operators 
provides a convenient way to present algorithms and analysis. Nonetheless, the actual con-
struction of matrix representations for Dk, k = 0, 1, 2, . . . , 17 and Bi,i  =  1,2 is not necessary, 
because it can be accomplished by the associated operators applied to the latent two dimen-
sional image f  [30, 47].

More details on the GTF matrix D are provided hereafter. Exploiting the tensor product of 
the averaging mask, the first-order difference mask, and the second-order difference mask, 
we can obtain the corresponding filters {Li}17

i=0 associated with the tight framelet transform 
matrix D. Specifically, the masks are sequences of Fourier coefficients of the corresponding 
filters, which are given as follows

ω0 =
1
4
[1 2 1], ω1 =

√
2

4
[1 0 − 1], ω2 =

1
4
[−1 2 − 1]. (63)

The 2D refinement masks denoted by Mi,j  can be calculated by

Mi,j := ωt
iωj, i, j = 0, 1, 2,

where ωi  and ωj  are defined by (63). Let
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L0 := M0,0, L1 :=

√
2

2
M0,1, L2 :=

√
2

2
M1,0, L3 :=

1
2
(M0,1 + M1,0),

L4 :=
1
2
(M1,0 − M0,1), L5 :=

√
7

3
M1,1, L6 :=

1
3

M0,2, L7 :=
1
3

M2,0,

L8 :=
1
3
(M1,1 + M0,2 + M2,0), L9 :=

1
3
(M0,2 + M2,0 − M1,1),

L10 :=

√
2

3
(M0,2 − M2,0), L11 := M2,1, L12 := M1,2, L13 :=

1
3

M2,2,

L14 :=

√
2

3
(M0,2 + M2,2), L15 :=

√
2

3
(M0,2 − M2,2),

L16 :=

√
2

3
(M2,0 + M2,2), L17 :=

√
2

3
(M2,0 − M2,2).

We thus obtain the filters which we utilize in the implementation of the algorithm PFPA. We 
remark that {Li}17

i=0 are consistent with {Di}17
i=0. They are just different formulations for the 

GTF. We verify that all matrices Lk, k = 0, 1, . . . , 17 are size of 3 × 3 with L0 acts as low-pass 
filters and Lk, k = 1, 2, . . . , 17, act as high-pass filters for the corresponding framelet system. 
Specifically, L0 acts as a weighted averaging operator, and L1, L2, L3, L4 act as the Sobel opera-
tors (scaled by a constant) in the horizontal, vertical, −π/4 , and π/4 directions, respectively. 
L8 acts as the second order difference operator in the π/4 direction while L9 acts as the second 
order difference operator in the −π/4 direction; L14 and L15 serve as the second order differ-
ence operator in the horizontal direction while L16 and L17 serve as the second order differ-
ence operator in the vertical direction. The other not yet discussed operators can be viewed 
as composite of the averaging, Sobel, and the difference operators, or they can act separately. 

As an example consider L10. We realize that because L10 = L14 + L15 −
√

2
2 (L8 + L9), L10 

acts as composite of the second order difference operators in the horizontal, π/4, and −π/4 
directions, respectively. This explains why the GTF transform can detect multiorientation and 
high-order variations of the images.

6.3. Quantification of reconstructions

We define the image quality metrics used in this study, as follows:

Table 1. Optimal parameters (λ,β, τ) for four metrics at two different noise levels for 
L0METF-PFPA method.

Method
Low-noise phantom (90 K 
counts) High-noise phantom (64 counts)

CNR (1.9 × 10−2, 4 × 10−6, 1.7 × 105) (1.3 × 10−2, 2 × 10−6, 3.5 × 105)
BEN (1.8 × 10−2, 4 × 10−6, 1.72 × 105) (1.8 × 10−2, 1 × 10−6, 7 × 105)
NMSE (1.8 × 10−2, 4 × 10−6, 1.72 × 105) (1.8 × 10−2, 1 × 10−6, 7 × 105)
CHO (2.1 × 10−2, 9 × 10−6, 4.6 × 104) (1.4 × 10−2, 4 × 10−6, 1.8 × 105)
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 (i)  Contrast-to-noise ratio (CNR): A local quality metric, CNR, of images is used to 
measure the conspicuity of the lesions. Too low CNR might result in inability of an 
observer to detect a lesion. The CNR for a reconstructed image is defined as a ratio of a 
lesion contrast to the background noise

CNR := |mi − mbkg|/sbkg.

  Here, for the Gaussian hot spheres in the lumpy background phantom, the mi is the mean 
of reconstructed counts for the ith sphere, and the mean counts of the background, mbkg, is 
estimated in a circular region-of-interest(ROI)located within the central region that does 
not intersect any sphere. The standard deviation of the background is denoted by sbkg.

 (ii)  Ensemble variance image (EVI): Ensemble variance is a metric that can be used to 
measure the overall image quality, as well as the sensitivity of algorithmic parameters 
with respect to multiple noise realizations. It is defined as [51]

Var :=
1

N − 1

N∑
j=1

( fj − f̄ )2,

  where N is the number of noise realizations, while f j  is the reconstructed activity at noise 

realization j , and f̄ = 1/N
∑N

j=1 fj is the average activity over N noise realizations.
 (iii)  Background ensemble noise (BEN): BEN provides a useful metric of noise across 

independent realizations, because it is inversely proportional to detection-task perfor-
mance. For the k  −  th region-of-interest ROIk (k = 1, 2, . . . , K and K is the total number 
of background ROI), the BEN is defined as the variance of ROI mean activity mj ,k across 
multiple noise realizations j = 1, 2, . . . , N [51]

σ2
ensemble,k :=

1
N − 1

N∑
j=1

(mj,k − m̄k)
2,

  where m̄k = 1/N
∑N

j=1 mj,k is the average of mean activities in ROIk over N noise realiza-
tions, and σ2

ensemble,k  is defined for each ROIk. We can further average this variance over 

the K background ROIs to generate the final BEN metric σ2
ensemble =

1
K

∑K
k=1 σ

2
ensemble,k.

 (iv)  Normalized mean squared error (NMSE): The NMSE can be used to assess accuracy of 
reconstructions. It is a global image quality metric and quantifies the difference between 
the activity reconstruction f k and the true mean activity f� in the whole object. It is defined 
by

NMSE := ‖f k − f�‖2
2/‖f�‖2

2.

 (v)  Channelized hotelling observer (CHO): CHO is another important metric for investi-
gating lesion detectability. It is widely accepted that the CHO correlates well with human 
observer when using proper channels and an optimal internal noise model. We select 
five channels, as follows: 1/64-1/32, 1/32-1/16, 1/16-1/8, 1/8-1/4, 1/4-1/2 cycles/pixel. 
To quantify the CHO signal-to-noise ratios (SNRs) for Gaussian sphere phantom recon-
structions, we calculate the full width at half maximum (FWHM) for each Gaussian hot 
sphere. The corresponding values are 21.2, 18.8, 16.5, 14.1, 11.7, and 9.4 mm. For each 
method, 300 noise realizations are investigated.
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6.4. Parameter selection

Using a task-based strategy, we independently optimize penalty parameters for each metric. 
In the case of CNR, we use the smallest sphere in the Gaussian hot sphere phantom. The 
optimal value of the TV-type hyperparameter(s) λ for TV-PAPA (λ1,λ2 for HOTV-PAPA) are 
obtained by performing sets of trial reconstructions with λ ranging from 0.5 to 10 (λ1 ranging 
from 0.5 to 10, and λ2 ranging from 0.5 to 10). For the L0METF-PFPA method, as shown in 
algorithm 1, we have three parameters to optimize, namely, λ, β, and initial τ . We use λ rang-
ing from 0.008 to 0.035, β ranging from 4 × 10−7 to 1 × 10−5, and τ  ranging from 2 × 104 to 
9.5 × 105. For GPF-EM, we choose the standard deviation (radius) of the Gaussian post-filter 
σ ranging from 1 to 4. We note that tuning parameters is a time consuming and tedious effort, 
especially for our method, which has three parameters. Table 1 displays the task-optimized 
parameters for each metric and for both noise levels. We note that both of parameters, λ and 
β, act as penalty weights in our proposed method.

The algorithmic parameters introduced by TV-PAPA, HOTV-PAPA are estimated by the 
equalities described in [30]. The algorithmic parameter τ  in algorithm 1 is tuned by using an 
adaptive strategy. For comparison, 100 iterations are used for all the algorithms. In fact, for 
predefined tolerance value tol, one can terminate the iterative process of an algorithm when 
the following requirement is satisfied

‖f k − f (k−1)‖/‖f k‖ � tol.

In the numerical experiments, we establish that under the stopping criterion of 100 iterations, 
the relative errors ‖f k − f k−1‖/‖f k‖ of the three competing methods TV-PAPA, HOTV-PAPA, 
and L0METF-PFPA are always lower than 10−3.

6.5. Results

We access the performance of the competing methods by measuring CNR, visually assessing 
the images with optimized CNR, analyzing background noise properties using BEN measure-
ment and EVI, quantifying the overall reconstruction error via the NMSE, and examining hot 
lesions detectability using CHO. We also discuss some aspects of the subjective characteris-
tics of the reconstructed images.

 (i)  CNR Comparison: For CNR comparisons, the spheres regions-of-interest (ROIs) are 
selected within the six spheres and the background region in the central disk that do not 
intersect with any sphere. The CNR values corresponding to the ROIs from the biggest 
sphere to the smallest, in counterclockwise direction, as shown in figure 1, are denoted 
by S1, S2, S3, S4, S5, and S6, respectively. Tables  2 and 3 show the CNR values of 
images reconstructed by GPF-EM, TV-PAPA, HOTV-PAPA, and L0METF-PFPA method 
for different noise level data, respectively. As expected, CNRs of GPF-EM are the lowest 
among the four methods. The L0METF-PFPA method outperforms other three methods 
significantly in terms of CNR, especially for low-count (64k) projection data.

 (ii)  CNR-optimized Reconstructed Images: Figure  4 displays reconstructed examples of 
GPF-EM, TV-PAPA, HOTV-PAPA and L0METF-PFPA for different noise levels, corre-
sponding to the images with best CNR. After reviewing the reconstructed images, several 
observations can be made. First, TV-PAPA, HOTV-PAPA, and L0METF-PFPA have a 
better noise-suppression ability than GPF-EM. Second, for images reconstructed using 
TV-PAPA, HOTV-PAPA the staircase artifacts are more apparent with lower count pro-
jection data (64 K counts). Third, L0METF-PFPA suppresses staircase artifacts, even for 
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Table 2. Comparison of CNRs obtained for SPECT data with 90 K counts per projection 
for GPF-EM with σ = 2.6, TV-PAPA with λ = 6, HOTV-PAPA with (λ1,λ2) = (5, 1), 
and L0METF-PFPA with (λ,β, τ) = (1.9 × 10−2, 4 × 10−6, 1.7 × 105).

Method S1 S2 S3 S4 S5 S6

GPF-EM 23.8 21.2 19.3 13.3 12.9 7.0
TV-PAPA 34.1 31.2 27.2 23.3 22.2 11.5
HOTV-PAPA 35.9 32.4 28.9 23.9 22.8 11.9
L0METF-PFPA 46.5 42.0 37.6 30.6 30.1 13.0

Table 3. Comparison of CNRs obtained for SPECT data with 64 K counts per projection 
for GPF-EM with σ = 2.8, TV-PAPA with λ = 6.5, HOTV-PAPA with (λ1,λ2) = (4, 1.5), 
and L0METF-PFPA with (λ,β, τ) = (1.3 × 10−2, 2 × 10−6, 3.5 × 105).

Method S1 S2 S3 S4 S5 S6

GPF-EM 18.1 15.1 14.7 10.1 8.9 5.0
TV-PAPA 26.3 21.2 21.8 15.5 14.4 10.2
HOTV-PAPA 27.4 22.9 22.8 16.9 14.8 10.7
L0METF-PFPA 38.9 32.3 32.5 23.3 21.5 13.5

Figure 4. Images from the first column to the fourth column were respectively 
reconstructed by GPF-EM, TV-PAPA, HOTV-PAPA, and L0METF-PFPA at the 
100th iteration. The first row and the second row correspond to 90 K and 64 K counts, 
respectively. Reconstructions in the third row correspond to the anthropomorphic brain 
phantom with 390 K counts.

W Zheng et alInverse Problems 35 (2019) 115011



31

data with 64 K counts per projection. Finally, HOTV-PAPA and L0METF-PFPA percep-
tual image quality is better than GPF-EM and TV-PAPA, and our proposed method better 
suppresses staircase artifacts than HOTV-PAPA. Images in the third row in figure 4 are 
reconstructed for the anthropomorphic brain phantom by the four methods. In figure 6, 
horizontal line profiles are provided to access the differences between images recon-
structed by TV-PAPA, HOTV-PAPA, and L0METF-PFPA, respectively.

 (iii)  BEN Comparison: BEN is calculated using 300 noise realizations of 7 background 
ROIs, which do not intersect with any sphere. Following the task-based parameter tuning 
strategy, parameter choices are different from that used for CNR. The results are shown in 
table 4, where we observe that L0METF-PFPA surpasses the other methods. We note that 
despite the fact that perceptually the images reconstructed by HOTV-PAPA and L0METF-
PFPA appear very similar for data with 64 K counts per projection, there is substantial 
noise reduction in L0METF-PFPA compared to HOTV-PAPA. This shows that using 
appropriate tight framelet systems, combined with Moreau envelope of �0 norm, results 
in better noise suppression effect, as compared to the total variation transform models.

 (iv)  Mean Images and Ensemble Variance Images: We access the mean images and EVIs 
using the same multiple noise realizations that are used for analyzing the ensemble noise. 
In figure 5, different features of variance images can be appreciated. Edge artifacts have 
stronger variance for images reconstructed by TV-PAPA than that of HOTV-PAPA, and 
L0METF-PFPA. That is, the TV-PAPA variance images have the strongest edge artifacts 
while GPF-EM the slightest. The GPF-EM exhibits almost no edge artifacts. When con-
sidering the mean images for the high-noise data, we find that the smallest spheres are 
relatively difficult to discern. This is reasonable because images obtained from high-noise 
data exhibit reduction in contrast.

 (v)  NMSE Comparison: We calculate the NMSE for SPECT data simulated for Gaussian 
spheres phantom reconstructed at two noise levels by L0METF-PFPA, HOTV-PAPA, 
TV-PAPA, and GPF-EM. Using NMSE-task-based parameter tuning strategy, we have 
performed sets of experiments for each method, assuring that the optimal parameters are 
estimated. Table 5 shows the results. For low-noise phantom, L0METF-PFPA is compa-
rable with HOTV-PAPA, while both surpass the other two methods (TV and GPF). For 
high-noise phantom, L0METF-PFPA outperforms other three methods. We remark that 
our method has the best performance in terms of NMSE for the two noise levels.

 (vi)  CHO Comparison: To quantify the CHO detectability for the four methods, we calculate 
the full width at half maximum (FWHM) for each Gaussian hot sphere. The corresponding 
values are 21.2,18.8,16.5,14.1,11.7,and 9.4 mm. For each method, 300 noise realizations 
are conducted. Following the task-based parameter tuning strategy, the optimal CHO 
detectability values for each method are estimated. The results are shown in tables 6 and 
7. We observe that CHO performance for L0METF-PFPA is the best, followed by HOTV-
PAPA, TV-PAPA, with GPF-EM performing the worst.

Table 4. Comparison of BEN values for reconstructions by GPF-EM, TV-PAPA, 
HOTV-PAPA, and L0METF-PFPA.

Method Low-noise phantom High-noise phantom

GPF-EM 3.51×10−5 2.40×10−5

TV-PAPA 3.27×10−5 1.61×10−5

HOTV-PAPA 2.07×10−5 1.62×10−5

L0METF-PFPA 1.03×10−5 1.21×10−5
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   (vii)  Line Profiles: To evaluate the difference between images reconstructed by TV-PAPA, 
HOTV-PAPA, and L0METF-PFPA, we obtain one-channel wide line profiles through 
the 168th horizontal line in the reconstructed images for the anthropomorphic brain 
phantom. They are shown in figure  6. We observe that images reconstructed by 
L0METF-PFPA provide slightly better contrast and spatial resolution, as compared to 
those created by TV-PAPA and HOTV-PAPA, figure 4.

  (viii)  Convergence Comparison: In order to show the convergence performance of 
L0METF-PFPA compared to that of ML-EM, we provide plots of NMSE versus itera-
tion number showing the convergence of L0METF-PFPA and GPF-EM for Gaussian 
sphere phantom reconstruction at two noise levels. We perform this comparison using 

Figure 5. Mean (odd rows) and variance (even rows) images for 90 K (top two rows), 
and 64 K (bottom two rows) data from 300 noise realizations for GPF-EM, TV-PAPA, 
HOTV-PAPA, and L0METF-PFPA using 100th iterations.

Table 5. Comparison of NMSE values for reconstructions by GPF-EM, TV-PAPA, 
HOTV-PAPA, and L0METF-PFPA.

Method Low-noise phantom High-noise phantom

GPF-EM 0.042 0.048
TV-PAPA 0.026 0.039
HOTV-PAPA 0.017 0.027
L0METF-PFPA 0.017 0.026
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Table 6. CHOs detectability and the standard deviation of the mean values for 
reconstructions of projection data with 90 K counts and 300 noise realizations by GPF-
EM with σ = 2.7, TV-PAPA with λ = 4.5, HOTV-PAPA with (λ1,λ2) = (4, 4), and 
L0METF-PFPA with (λ,β, τ) = (1.8 × 10−2, 4 × 10−6, 1.72 × 105).

Method 21.2 18.8 16.5 14.1 11.7 9.4

GPF-EM 29.3 ± 0.9 22.7 ± 0.7 16.3 ± 0.5 16.2 ± 0.5 9.8 ± 0.3 6.2 ± 0.2
TV-PAPA 33.4 ± 1.0 32.0 ± 1.0 23.9 ± 0.7 16.5 ± 0.5 9.3 ± 0.3 5.5 ± 0.2
HOTV-PAPA 41.4 ± 1.2 36.0 ± 1.1 24.5 ± 0.7 17.1 ± 0.5 10.7 ± 0.3 5.3 ± 0.2
L0METF-PFPA 55.3 ± 1.8 48.3 ± 1.4 34.3 ± 1.0 30.0 ± 0.9 16.4 ± 0.5 7.2 ± 0.2

Table 7. CHO detectability and the standard deviation of the mean values for 
reconstructions of projection data with 64 K counts and 300 noise realizations by GPF-
EM with σ = 2.8, TV-PAPA with λ = 7, HOTV-PAPA with (λ1,λ2) = (4, 5), and 
L0METF-PFPA with (λ,β, τ) = (1.8 × 10−2, 1 × 10−6, 7 × 105).

Method 21.2 18.8 16.5 14.1 11.7 9.4

GPF-EM 24.9 ± 0.9 18.4 ± 0.6 14.7 ± 0.4 12.8 ± 0.4 7.7 ± 0.2 5.2 ± 0.2
TV-PAPA 32.9 ± 1.0 25.8 ± 0.8 19.0 ± 0.6 14.3 ± 0.4 7.7 ± 0.2 4.8 ± 0.2
HOTV-PAPA 33.1 ± 1.0 26.4 ± 0.8 18.8 ± 0.6 14.1 ± 0.4 8.3 ± 0.3 5.0 ± 0.2
L0METF-PFPA 41.8 ± 1.3 28.0 ± 0.8 22.5 ± 0.7 15.6 ± 0.5 9.6 ± 0.3 5.5 ± 0.2

Figure 6. Horizontal line profiles through the 168th horizontal line of the reconstructed 
images by TV-PAPA, HOTV-PAPA, and L0METF-PFPA, compared with the ground 
truth.
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optimal parameters for both competing methods. In figure  7, we observe that our 
proposed method L0METF-PFPA has similar convergence performance to GPF-EM, 
while it obtains images with lower reconstruction error than GPF-EM does. We note 
that for now our parameter selection strategy is time-consuming, which reduces the 
applicability of the proposed method. Using the aggregation method proposed in [15], 
we will discuss the additional effort required to optimize the various parameters and 
develop an efficient parameter selection strategy for SPECT image reconstruction in 
future research.

The apparent improved resolution of the regularized images shown in figure 4 results in 
irregular boundaries of the 6 Gaussian spheres in the lumpy background phantom. However, 
the mean images demonstrate excellent registration with the reference activity distributions in 
the phantoms (shown in figure 5). It indicates that the improved apparent resolution is a random 
process stemming from the actual noise realization in the SPECT data used. Consequently, 
the deblurring process makes the lesion boundaries in any single realization artificially sharp 
and irregular. While it does not effect the performance of the tasks used in this study, it may 
effect segmentation tasks when conducted without taking into account the system’s intrinsic 
resolution.

7. Conclusions

In this study, we have introduced a new model for SPECT image reconstruction which can 
effectively suppress noise while reconstructing by employing an approximately sparse regu-
larization. In addition, an algorithm to efficiently solve this model has been developed. We 
have proved its convergence, and show that it can reach a global O(1/k) convergence rate. 
We call this method L0METF-PFPA, and compare it to the widely used EM algorithm with 
Gaussian post-filter smoothing (GPF-EM), and two recently developed TV-type methods: 
TV-PAPA and HOTV-PAPA, where, TV-PAPA corresponds to a model with first-order total 
variation penalty function, and HOTV-PAPA to a model with both first- and second-order 
total variation. To investigate the performance of L0METF-PFPA, a 2D phantom with lumpy 
background has been generated for two different noise levels in SPECT projection data sets. 
We analyze the reconstructed images quantitatively and qualitatively via the contrast-to-noise 
ratio (CNR), background ensemble noise (BEN), normalized mean squared error (NMSE), 

Figure 7. Plots of NMSE versus iteration number for SPECT projection data with: 
(a) 90 K total number of photons (low-noise phantom); and (b) 64 K total number of 
photons (high-noise phantom).
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and channelized hotelling observer (CHO) detectability. We also use a simulated anthropo-
morphic brain phantom SPECT data and compare the performance of L0METF-PFPA with 
TV-PAPA and HOTV-PAPA by analyzing line profiles.

In all but one case (low-noise NMSE, where it tied HOTV), we have shown that our 
L0METF-PFPA method outperforms the GPF-EM approach, and both the TV-type methods 
(TV-PAPA and HOTV-PAPA), in terms of CNR, BEN, NMSE, and CHO detectability. When 
investigating the difference between the reconstructions and the reference images (using 
NMSE as metric), we find that L0METF-PFPA is comparable with HOTV-PAPA for low-
noise data and outperforms all the evaluated methods for high-noise data. These results are 
consistent with our subjective image quality assessments. Further, we establish that images 
reconstructed by L0METF-PFPA demonstrate higher contrast. We conclude that our proposed 
method based on Moreau envelope of �0 norm as a penalty function in the tight framelet trans-
form domain for SPECT reconstruction provides an effective means of noise suppression, and 
hence can lead to improved quality in SPECT reconstruction. Consequently, it may allow use 
of higher noise data i.e. the lower radiation dose or shorter imaging time in SPECT studies, as 
compared to conventional GPF-EM approach.
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