8,497 research outputs found

    The application of ANFIS prediction models for thermal error compensation on CNC machine tools

    Get PDF
    Thermal errors can have significant effects on CNC machine tool accuracy. The errors come from thermal deformations of the machine elements caused by heat sources within the machine structure or from ambient temperature change. The effect of temperature can be reduced by error avoidance or numerical compensation. The performance of a thermal error compensation system essentially depends upon the accuracy and robustness of the thermal error model and its input measurements. This paper first reviews different methods of designing thermal error models, before concentrating on employing an adaptive neuro fuzzy inference system (ANFIS) to design two thermal prediction models: ANFIS by dividing the data space into rectangular sub-spaces (ANFIS-Grid model) and ANFIS by using the fuzzy c-means clustering method (ANFIS-FCM model). Grey system theory is used to obtain the influence ranking of all possible temperature sensors on the thermal response of the machine structure. All the influence weightings of the thermal sensors are clustered into groups using the fuzzy c-means (FCM) clustering method, the groups then being further reduced by correlation analysis. A study of a small CNC milling machine is used to provide training data for the proposed models and then to provide independent testing data sets. The results of the study show that the ANFIS-FCM model is superior in terms of the accuracy of its predictive ability with the benefit of fewer rules. The residual value of the proposed model is smaller than ±4 μm. This combined methodology can provide improved accuracy and robustness of a thermal error compensation system

    Machine Learning Applications in Estimating Transformer Loss of Life

    Full text link
    Transformer life assessment and failure diagnostics have always been important problems for electric utility companies. Ambient temperature and load profile are the main factors which affect aging of the transformer insulation, and consequently, the transformer lifetime. The IEEE Std. C57.911995 provides a model for calculating the transformer loss of life based on ambient temperature and transformer's loading. In this paper, this standard is used to develop a data-driven static model for hourly estimation of the transformer loss of life. Among various machine learning methods for developing this static model, the Adaptive Network-Based Fuzzy Inference System (ANFIS) is selected. Numerical simulations demonstrate the effectiveness and the accuracy of the proposed ANFIS method compared with other relevant machine learning based methods to solve this problem.Comment: IEEE Power and Energy Society General Meeting, 201

    Adaptive Balanced Clustering For Wireless Sensor Network Energy Optimization

    Get PDF
    Many researches in wireless sensors network clustering aim to optimize the power and to balance the cluster with respect to cluster head and cluster nodes. The optimization of cluster and node in balanced way, will balance the processing overhead - and thus power consumption - over the clusters and nodes, so, the network nodes death will be balanced. In order to balance the clustering of the network in terms of equi-sizes clusters or equi-potential clusters, in some networks, far nodes will be very far from any clusters, and those nodes couldn't be included in any balanced clusters. This paper finds a solution for the far nodes. The solution that is contributed in this paper is based on balanced clustering of the network ignoring all far nodes temporary or initially, then, building virtual clustering technique. The fart nodes will be clustered independently in virtual clusters. Those clusters don't have heads of clusters that communicates directly with the base station, but instead it implies virtual cluster head that communicates directly with non-cluster head node in the nearest real cluster. The contributed algorithm of this paper where implemented and simulation results were recorded indicating that, it’s efficient power consumption algorithm, and the balance of clusters will not be so affected. The comparison with LEACH, LEACH-M, and LEACH-L is demonstrated, in addition to the EECA algorithm. Keywords: Wireless sensors network, clustering, energy optimizatio

    ECG Classification with an Adaptive Neuro-Fuzzy Inference System

    Get PDF
    Heart signals allow for a comprehensive analysis of the heart. Electrocardiography (ECG or EKG) uses electrodes to measure the electrical activity of the heart. Extracting ECG signals is a non-invasive process that opens the door to new possibilities for the application of advanced signal processing and data analysis techniques in the diagnosis of heart diseases. With the help of today’s large database of ECG signals, a computationally intelligent system can learn and take the place of a cardiologist. Detection of various abnormalities in the patient’s heart to identify various heart diseases can be made through an Adaptive Neuro-Fuzzy Inference System (ANFIS) preprocessed by subtractive clustering. Six types of heartbeats are classified: normal sinus rhythm, premature ventricular contraction (PVC), atrial premature contraction (APC), left bundle branch block (LBBB), right bundle branch block (RBBB), and paced beats. The goal is to detect important characteristics of an ECG signal to determine if the patient’s heartbeat is normal or irregular. The results from three trials indicate an average accuracy of 98.10%, average sensitivity of 94.99%, and average specificity of 98.87%. These results are comparable to two artificial neural network (ANN) algorithms: gradient descent and Levenberg Marquardt, as well as the ANFIS preprocessed by grid partitioning

    A similarity-based cooperative co-evolutionary algorithm for dynamic interval multi-objective optimization problems

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Dynamic interval multi-objective optimization problems (DI-MOPs) are very common in real-world applications. However, there are few evolutionary algorithms that are suitable for tackling DI-MOPs up to date. A framework of dynamic interval multi-objective cooperative co-evolutionary optimization based on the interval similarity is presented in this paper to handle DI-MOPs. In the framework, a strategy for decomposing decision variables is first proposed, through which all the decision variables are divided into two groups according to the interval similarity between each decision variable and interval parameters. Following that, two sub-populations are utilized to cooperatively optimize decision variables in the two groups. Furthermore, two response strategies, rgb0.00,0.00,0.00i.e., a strategy based on the change intensity and a random mutation strategy, are employed to rapidly track the changing Pareto front of the optimization problem. The proposed algorithm is applied to eight benchmark optimization instances rgb0.00,0.00,0.00as well as a multi-period portfolio selection problem and compared with five state-of-the-art evolutionary algorithms. The experimental results reveal that the proposed algorithm is very competitive on most optimization instances

    A Dirichlet Process based type-1 and type-2 fuzzy modeling for systematic confidence bands prediction

    Get PDF
    This paper presents a new methodology for fuzzy logic systems modeling based on the Dirichlet process Gaussian mixture models (DPGMM). The proposed method simultaneously allows for the systematic elicitation of confidence bands as well as the automatic determination of model complexity. This work is new since existing fuzzy model elicitation techniques use ad hoc methods for confidence band estimations, which do not meet the stringent requirements of today's challenging environments where data are sparse, incomplete, and characterized by noise as well as uncertainties. The proposed approach involves an integration of fuzzy and Bayesian topologies and allows for the generation of confidence bands based on both the random and linguistic uncertainties embedded in the data. Additionally, the proposed method provides a “right-first time approach” to fuzzy modeling as it does not require an iterative model complexity determination. In order to see how the proposed framework performs across a variety of challenging data modeling problems, the proposed approach was tested on a nonlinear synthetic dataset as well as two real multidimensional datasets generated by the authors from materials science and bladder cancer studies. Results show that the proposed approach consistently provides better generalization performances than other well-known soft computing modeling frameworks-in some cases, improvements of up to 20% in modeling accuracy were achieved. The proposed method also provides the capability to handle uncertainties via the generation of systematic confidence intervals for informing on model reliability. These results are significant since the generic methodologies developed in this paper should help material scientists as well as clinicians, for example, assess the risks involved in making informed decisions based on model predictions

    Global Research Performance on the Design and Applications of Type-2 Fuzzy Logic Systems: A Bibliometric Analysis

    Get PDF
    There has been a significant contribution to scientific literature in the design and applications of Type-2 fuzzy logic systems (T2FLS). The T2FLSs found applications in many aspects of our daily lives, such as engineering, pure science, medicine and social sciences. The online web of science was searched to identify the 100 most frequently cited papers published on the design and application of T2FLS from 1980 to 2016. The articles were analyzed based on authorship, source title, country of origin, institution, document type, web of science category, and year of publication. The correlation between the average citation per year (ACY) and the total citation (TC) was analyzed. It was found that there is a strong relationship between the ACY and TC (r = 0.91643, P<0.01), based on the papers consider in this research.  The “Type -2 fuzzy sets made simple” authored by Mendel and John (2002), published in IEEE Transactions on Fuzzy Systems received the highest TC as well as the ACY. The future trend in this research domain was also analyzed. The present analysis may serve as a guide for selecting qualitative literature especially to the beginners in the field of T2FLS
    • …
    corecore