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ABSTRACT 

 

ECG Classification with an Adaptive Neuro-Fuzzy Inference System 

Brad Thomas Funsten 

 

Heart signals allow for a comprehensive analysis of the heart. Electrocardiography (ECG or 

EKG) uses electrodes to measure the electrical activity of the heart. Extracting ECG signals is a non-

invasive process that opens the door to new possibilities for the application of advanced signal processing 

and data analysis techniques in the diagnosis of heart diseases. With the help of today’s large database of 

ECG signals, a computationally intelligent system can learn and take the place of a cardiologist. Detection 

of various abnormalities in the patient’s heart to identify various heart diseases can be made through an 

Adaptive Neuro-Fuzzy Inference System (ANFIS) preprocessed by subtractive clustering. Six types of 

heartbeats are classified: normal sinus rhythm, premature ventricular contraction (PVC), atrial premature 

contraction (APC), left bundle branch block (LBBB), right bundle branch block (RBBB), and paced 

beats. The goal is to detect important characteristics of an ECG signal to determine if the patient’s 

heartbeat is normal or irregular. The results from three trials indicate an average accuracy of 98.10%, 

average sensitivity of 94.99%, and average specificity of 98.87%. These results are comparable to two 

artificial neural network (ANN) algorithms: gradient descent and Levenberg Marquardt, as well as the 

ANFIS preprocessed by grid partitioning. 
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CHAPTER 1: INTRODUCTION 

 

1.1: Project Goal 

 

 Electrocardiograph (ECG) signal tests allow detection of various characteristics in a patient’s 

heart. Characteristics include abnormalities, size and position of chambers, damage to tissue, cardiac 

pathologies present, and heart rate. The problem with today’s ECG signal instruments is the inability to 

characterize the signals without a doctor’s complete evaluation and diagnosis [28]. Research in the field 

of Computational Intelligence gives promising research results in order to solve this problem. An 

Adaptive Neuro-Fuzzy Inference System (ANFIS) is a type of neuro-fuzzy classifier and is one of many 

areas of study in Computational Intelligence (CI). The goal of this project is to explore various 

applications of an ANFIS to classify well known ECG heartbeats. An additional goal is to compare the 

ANFIS with artificial neural network (ANN) algorithms. 

1.2: Overview 

 

 This thesis informs the reader in Chapters 1-4 of theoretical aspects and methodology behind 

ECG classification. Chapters 5 and 6 present results through simulation and experimentation as well as 

conclusions and future works. The MATLAB code and a project analysis report can be found in the 

appendices. 

1.3: Software Environment 

 

 Simulations and programs for this thesis were programmed through MATLAB® 8.1.0.604 

(R2013a) 32-bit version. This environment was selected because of its simplicity in programming and 

debugging signal processing and matrix-based mathematical operation programs.  An extensive number 

of integrated functions for viewing and analyzing ECG signals as well as optimized matrix math 

operations greatly accelerated development through MATLAB. This project was made possible through 
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the MATLAB® NEURAL NETWORK TOOLBOX
TM

 version 8.1.0.604 and MATLAB® FUZZY 

LOGIC TOOLBOX
TM

 version 2.2.17 additions to the MATLAB student version. 

1.4: Research Importance 
 

 Cardiac arrhythmias are one of the reasons for high mortality rate. The study of ECG pattern and 

heart rate variability in terms of computer-based analysis and classification of diseases can be very 

helpful in diagnostics [15]. This thesis falls under the field of CI. Applications range from adaptive 

learning to speech recognition. The field draws from biological concepts such as the brain and the 

physiological decisions of organisms. Breakthroughs in applying CI to medical diagnosis have shown to 

be successful in the past and are thus important to heart signal classification [29]. This type of data 

processing could be effectively applied to other biometrics such as electroencephalograms (EEGs) or 

electromyography (EMGs) to detect the existence of abnormalities in the brain or muscles respectively 

[2]. 

 The purpose of this study is to aid the cardiologist in diagnosis through neuro fuzzy model 

classifiers. The rules of neuro fuzzy model classifiers allow for an increase in the interpretability and 

understandability of the diagnosis. A physician can easily check a fuzzy model classifier for plausibility, 

and can verify why a certain classification result was obtained for a certain heartbeat by checking the 

degree of fulfilment of the individual fuzzy rules [7].  

1.5: Past Research 

 

 Classsifying heartbeats have been performed through an adaptive neuro-fuzzy inference system 

(ANFIS). An ANFIS utilizes both fuzzy logic and ANNs to approximate the way humans process 

information through tuning rule-based fuzzy systems [14]. An ANN is a neural network that is a semi-

parametric, data-driven model capable of learning complex and highly non-linear mappings [1]. It is to be 

noted that both the ANFIS and ANN are supervised learning networks. This means a “teacher” must be 

present in the form of training data in order to train, validate, and test the network. An ANFIS approach to 

classification between a normal heartbeat and a premature ventricular contraction (PVC) heartbeat has 
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been studied with the ANFIS producing classification results at a faster convergence than the ANN in 

addition it allows for human interpretability. The only limitation is its computational complexity. A PVC 

is an abnormal heartbeat that is characterized as an extra heartbeat.  

A decision, whether positive or negative, is exclusively from the ANFIS rule-based structure. 

Classification between normal and PVC heartbeats achieved an accuracy of 98.53%. [7]. Figure 1 shows 

the detected PVCs out of normal beats (N), and a graph showing the degree of fulfillment versus the 

particular rules needed to detect the PVCs. For a more complete analysis of past research in terms of 

different algorithms of classifying ECG signals, see Chapter 3.  

 

Figure 1: ECG signal showing two PVCs detected and corresponding degree of fulfilment versus 

ANFIS decision rule [7] 
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1.6: Brief Approach 

 

For ECG classification, a database of signals is used to observe and extract features. The MIT-

BIH (Massachusetts Institute of Technology-Beth Israel Hospital) Arrhythmia Database consists of 48 

half-hour excerpts of two-channel ambulatory ECG records which were obtained from 47 subjects studied 

by the BIH Arrhythmia Laboratory between 1975 and 1979. The sampling rate of the recordings is 360 

samples per second. The bit resolution is 11 bits. The amplitude range is 10 mV. Two cardiologists have 

made the diagnosis for these various records and they have annotated each cardiac cycle. The annotations 

are important for learning in the neuro-fuzzy classifier [20]. 

 Before classification, the database signals are preprocessed for both observation and training. 

Preprocessing includes passing the signal through a low-pass filter to remove the 60 Hz power noise for 

ease of observation of the signal. The given signal would have a baseline shift and would not represent 

the true amplitude therefore a high pass filter is then used to detrend the signal to direct current (DC) 

baseline level in order to obtain amplitude information from the signals [19]. The cardiologist’s 

annotations of each heartbeat for each ECG signal are then read from a downloadable MATLAB package 

from the online database. A pre-made algorithm for detecting the various parts of an ECG signal is then 

applied to complete the annotation. 

ANFIS would classify each heartbeat of an ECG signal. For example, the ANFIS is used here to 

classify between normal and abnormal heartbeats. It is a binary classifier and thus has one output to the 

network [15]. The normal and abnormal heartbeats are discussed in Section 2.3. The annotations of each 

ECG signal allow for inputs to the classifier to be trained. These inputs are different characteristics of an 

ECG signal. The characteristics are usually temporal intervals and amplitudes of the various parts of the 

signal. The inputs are then passed through an ANFIS for classification. 

To summarize the limitations with traditional methods and advantages over conventional methods 

for the ANFIS, we begin with convergence speed. It has been shown that the ANFIS has a faster 

convergence speed than a typical ANN. This is due to a smaller fan-out for backpropagation and the 

network’s first three layers are not fully connected. Smoothness is also guaranteed by interpolation. 
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Limitations are computational complexity restrictions. This is due to the exponential complexity of the 

number of rules for grid partitioning. There are surface oscillations around points caused by a high 

partition of fuzzy rules for grid partitioning. A large number of samples would slow down the subtractive 

clustering algorithm. Grid partitioning and subtractive clustering are discussed in Section 2.4. [15]. 
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CHAPTER 2: BACKGROUND 

2.1: Electrocardiography 

 

Electrocardiography (ECG or EKG) is an approach to measuring the heart’s electrical activity. It 

is typically a non-invasive approach to detecting abnormalities in the heart. Figure 2 shows an ECG signal 

with various characteristics. A typical heartbeat or cycle begins with a P wave followed by a QRS 

complex. The beat then ends with a T wave. Occasionally, a U wave appears after the T wave.  

 
Figure 2: ECG signal [23] 

 
An ECG test can be performed by a local doctor. An ECG measuring device is usually twelve 

leads. Figure 3 shows this device. ECG interprets the heart’s electrical activity through amplitude over 

time. Ten electrodes are used in a twelve-lead ECG device. Six electrodes are placed across the chest. The 

remaining four electrodes are placed on the limbs: left arm (LA), right arm (RA), left leg (LL), and right 

leg (RL). 
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Figure 3: ECG device 

 
The output of the ECG device is made up of signals from each of the twelve leads printed on a 

piece of paper. Figure 4 shows an example ECG signal printed on paper. From the paper, the doctor can 

diagnose the patient. The paper shows limb leads: I, II, III, and augmented leads: aVR, aVL, aVF, and the 

six chest leads: V1-V6. The three limb electrodes form both the limb leads and augmented leads. Figure 5 

shows the placement of the twelve leads 

 

Figure 4: ECG paper 
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Figure 5: Ten electrodes (Twelve-leads) [9] 

 
 Electrocardiography was developed by Willem Einthoven in 1901. He built a string galvanometer 

to detect low current in order to record the heart’s electrical activity. Instead of having an electrical 

system to perform electrocardiography, he used salt solutions to record results. Over the course of twenty 

years, the setup went from 600 pounds to 30 pounds. Computers and microelectronics increased the 

effectiveness of ECG treatment in terms of accuracy and reliability [20]. 

 

 

 

 

 

RA 

LA 

LL RL 

Chest leads 
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2.2: The Human Heart 

 

 The heart is a muscular organ that pumps blood carrying oxygen and nutrients throughout the 

body through the circulatory system. Figure 6 shows the human heart. It is divided into four chambers: 

upper left and right atria; and lower left and right ventricles.  

 

 
Figure 6: The human heart [27] 

 

 Figure 7 shows the human heart in terms of its electrical activity. In a normal ECG heartbeat there 

are five prominent points. The first is the P wave and corresponds to an atrial depolarization. This 

happens after the sinoatrial (SA) node generates an impulse. The node is located in the right atrium. The 

second is the QRS complex and corresponds to atrial repolarization and ventricular depolarization. By 

this time the ventricular excitation is complete. There is then a ventricular repolarization through the T 

wave. 
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 The depolarization repolarization phenomena of the heart muscle cells are caused by the 

movement of ions. This is the essence of the heart electric activity. Movement of ions in the heart muscle 

cells is the electric current, which generates the electromagnetic field around the heart [8].  

 
Figure 7: Illustrative ECG relation to the human heart [27] 
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2.3: Heart Abnormalities 
 

 This section introduces five heart abnormalities. These beats are not life threatening but pose an 

abnormal characteristic that gives way to a disease. 

Premature Ventricular Contraction (PVC): 

 A PVC is an extra heartbeat resulting from abnormal electrical activation originating in the 

ventricles before a normal heartbeat would occur. This means the purkinje fibers are fired at the ventricles 

rather than the sinoatrial node. PVCs are usually nonthreatening and are common among older people and 

patients with sleep disordered breathing. Frequent PVCs are due to physical or emotional stress, intake of 

caffeine or alcohol, and disorders that cause the ventricles to enlarge such as heart failure and heart valve 

disorders. Figure 8 shows an example PVC heartbeat. 

  

 

Figure 8: Example of a PVC beat from MIT-BIH database, record 100, lead: 

 Modified Limb Lead II (MLII) 

 
 
 
 

PVC beat 
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 PVCs have the following features [5]: 

 Broad QRS complex with duration greater than 120 milliseconds. 

 Single-repeated abnormal QRS morphology or multiple abnormal QRS morphology. 

 Premature with a compensatory pause (lengthened RR with subsequent heartbeat). 

 Either ST depression or T wave inversion in leads with dominant R wave or ST 

elevation with upright T waves in leads with a dominant S wave. 

Atrial Premature Contraction (APC): 

 An APC is an extra heartbeat resulting from abnormal electrical activation originating in the atria 

before a normal heartbeat would occur. This means the purkinje fibers are fired at the atria rather than the 

sinoatrial node. APCs are usually nonthreatening and are common among heathy young and elderly 

people. It can be perceived as a skipped heartbeat. Frequent APCs are mainly due to physical or 

emotional stress and intake of caffeine or alcohol. Figure 9 shows an example APC beat. 

 

 

Figure 9: Example of an APC beat from MIT-BIH database, record 100, lead:  

Modified Limb Lead II (MLII) 

 

APC beat 
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APCs have the following features [5]: 

 Narrow QRS complex with duration less than 120 milliseconds. 

 Shortened RR interval with previous heartbeat. 

 Premature with a compensatory pause (lengthened RR interval with subsequent 

heartbeat). 

Left Bundle Branch Block (LBBB): 

A LBBB is a condition where the left ventricle contracts later than the right ventricle due to 

delayed activation of the left ventricle. Frequent LBBBs are mainly due to hypertension, inadequate blood 

supply to the heart muscles, and heart valve diseases. Figure 10 shows an example LBBB heartbeat. 

 

 

Figure 10: Example of a LBBB from MIT-BIH database, record 109, lead: 

 Modified Limb Lead II (MLII) 

 
 
 
 
 
 
 

LBBB beat 
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LBBBs have the following features [5]: 

 Broad QRS complex with duration greater than 120 milliseconds. 

 ST wave is deflected opposite of the QRS complex. 

 ST segments and T waves always go in the opposite direction to the main vector of 

the QRS complex. 

Right Bundle Branch Block (RBBB): 

A RBBB is a condition where the right ventricle does not completely contract in the right bundle 

branch. The left ventricle contracts normally in the left bundle branch. Frequent RBBBs are mainly due to 

enlargement of the tissue in the right ventricles, inadequate blood supply to the heart muscles, and heart 

valve diseases. Figure 11 shows an example RBBB beat. 

 

Figure 11: Example of a RBBB from MIT-BIH database, record 118, lead:  

Modified Limb Lead II (MLII) 

 
 
 

 

RBBB beat 
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RBBBs have the following features [5]: 

 Broad QRS complex with duration greater than 120 milliseconds. 

 Slurred S waves. 

 T waves deflected opposite the terminal deflection of the QRS complex. 

 ST depression and T wave inversion in the right precordial leads (V1-3) 

Paced beat: 

A paced beat is the result of a patient with an artificial pacemaker. Figure 12 shows an example 

of a paced heartbeat.  

 
Figure 12: Example of a paced beat from MIT-BIH database, record 104, lead:  

Modified Limb Lead II (MLII) 

 
 
 
 
 
 
 
 
 
 
 

Paced beat 
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A paced heartbeat has the following features [7]: 

 Vertical spikes of short duration (usually 2 milliseconds) before either the P or Q 

waves. 

 Morphology on P or Q waves. 

 Prolonged PR interval (280 milliseconds). 

 Morphology on QRS complex. QRS complex resembles a ventricular heartbeatbeat. 

 

2.4: Fuzzy Set Theory 

 

Fuzzy sets provide a framework for incorporating human knowledge in the solution of problems. 

It is the basis of the ANFIS. In Fuzzy Logic theory, sets are associated with set membership. Compared to 

the traditional binary sets or “crisp sets” where membership is either ‘1’ typically indicating true or ‘0’ 

indicating false, fuzzy logic variables ranges between 0 and 1. Thus, Fuzzy Logic deals with approximate 

reasoning rather than fixed and exact reasoning [12]. 

The theory can be defined as follows. Let Z be a set of elements that is equivalent to z: }{zZ   

Let A be a fuzzy set in Z characterized by a membership function, )(zA be a membership function that 

associates with each element of Z a real number in the interval [0, 1]. The elements, z, can be considered 

full, partial, or no membership to their corresponding membership functions. This can be expressed as

}|)(,{ ZzzzA A   . Set theory can be applied to fuzzy sets. There is the possibility of empty sets, 

equivalent sets, complements, subsets, unions, or intersections. Common membership functions are 

gaussian, gaussian-bell, triangle, and trapezoidal shown in Figure 13 [12].  
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µ(z)

z

1

µ(z)

z

1

Triangle Trapezoidal

µ(z)

z

Gaussian Bell

1

µ(z)

z

Gaussian

1

 
Figure 13: Several membership functions µ to choose from for a fuzzy set Z 

 

A Fuzzy Inference System (FIS) formulates the mapping from a given input to an output using 

fuzzy sets. Figure 14 shows a FIS block diagram. The system comprises of five steps: 

1. Fuzzification of the input variables 

2. Application of the fuzzy operator (AND or OR) in the antecedent 

3. Implication from the antecedent to the consequent 

4. Aggregation of the consequents across the rules 

5. Defuzzification 

In Fuzzification, the inputs are mapped by membership functions to determine the degree to 

which the inputs belong. 

In applying a fuzzy operator, the result of the antecedent and consequent of an if-then rule is 

found. From an antecedent or consequent, the fuzzy membership values can be found. An AND operator 

would take the minimum of the two limits of the fuzzy membership values. An OR operator would take 

the maximum of the two limits of the fuzzy membership values.  

Implication from the antecedent to the consequent involves assigning weights to each rule. The 

consequent is a fuzzy set represented by a membership function, which weights appropriately the 

linguistic characteristics that are attributed to it. The consequent is reshaped using a function that either 
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truncates or scales the output fuzzy set. The input of the implication process is a single number given by 

the antecedent. The output is a fuzzy set. Implication is then implemented for each rule.  

Next, aggregating all outputs of each rule into a single fuzzy set is done. Note this step should be 

commutative so that the order in which the rules are executed is unimportant. Three methods of 

aggregations can be applied: maximum, probabilistic OR, or simply the sum of each rule’s output set. 

Defuzzification generates a single number from the aggregation step. The most popular method is 

the centroid calculation, which returns the center of area under the aggregate output curve. Other methods 

are bisector and average of certain ranges of the aggregate output curve [26].  

 

Rule 1

Rule 2

Rule r

4. Aggregator 5. Defuzzifier

2. Apply Fuzzy Operator: 
AND (min), or OR (max)

3. Implication from 
antecedent to consequent

Input Output

1. Fuzzification

If x is A1      AND/OR    y is B1

If x is A2    AND/OR    y is B2

If x is Ar   AND/OR    y is Br

X

y

then f1

then f2

then fr

 
Figure 14: FIS diagram [12] 

 
 

 There are several fuzzy models for FIS. Two prominent models are the Mamdami and Sugeno 

models. The FIS discussed previously adheres to a Mamdami model. The Sugeno model however, 

determines the output not as a membership function, but as a constant or linear term.  

The Sugeno fuzzy model is described as follows. Let 
T

nxxxx ],....,,[ 21 be the input vector and 

io denote the output (consequent). Let iR denote the ith rule, and ini AA ,...,1 are fuzzy sets defined in the 

antecedent space by membership functions )( jAij x defined for all real numbers between ‘0’ and ‘1’. Let 
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)1(1,..., nii pp represent the consequent parameters and M is the number of rules. The set of rules and the 

rule consequents are linear functions defined as: 

:iR if 1x is 1iA and … nx is inA then 

io = 11xpi + …, nin xp + )1( nip , Mi ...,,1  

 

Defuzzification in the model is defined by a hyperplane in the antecedent-consequent product 

space. Let i denote the degree of fulfillment of the ith rule:  

 


n

j jiji xA
1

)( , Mi ...,,1     

 

The output y of the model is computed through the center of gravity of the final fuzzy set [7]: 








M

i

i

M

i

iio

y

1

1





 

 There are several partitioning methods for FIS input spaces to form the antecedents of fuzzy 

rules. The grid partition consists of dividing each input variable domain into a given number of intervals 

whose limits do not necessarily have any physical meaning and do not take into account a data density 

repartition function [12]. Another is Subtractive clustering. This is a fast, one-pass algorithm for 

estimating the number of clusters and the cluster centers in a set of data. A data point with the highest 

potential is selected as a cluster center. Data points in the vicinity of the cluster center are removed to 

determine the next data cluster and center location. The process iterates until it is within radii of a cluster 

center. Section 2.5 discusses the ANFIS algorithm assuming grid partition. Section 2.8 discusses how the 

subtractive clustering can be used in conjunction with the ANFIS as an improvement instead of the grid 

partition in terms of rule reduction and overall classification of heartbeats. Both grid partition and 

subtractive clustering are simulated. Grid partition results are discussed in Section 5.4. Subtractive 

clustering results are discussed in Section 5.1 [26].  

(1) 

(2) 

(3) 
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2.5: ANFIS Algorithm 

 

 An ANFIS, as mentioned before, combines the FIS with neural networks to tune the rule-based 

fuzzy systems. Two common FIS structures can then be applied: Sugeno or Mamdani. The Sugeno 

method is chosen in this thesis because it is computationally efficient, works well with linear techniques, 

works well with optimization and adaptive techniques, and it is well suited to mathematical analysis. The 

advantage of Mamdani is that it’s intuitive and well suited to human input. The disadvantage of Mamdani 

is it’s computationally expensive because another set of parameters is added to increase human 

interpretablity. 

 The Sugeno ANFIS has the premise part of the fuzzy rule as a fuzzy proposition and the 

conclusion part as a linear function. There are five layers of the structure discussed below and shown in 

Figure 15. A rectangle represents an adaptive node. Assuming a Sugeno fuzzy model, fuzzy-if-then rules 

are applied. This is shown in Figure 16. A first-order Sugeno ANFIS structure is used in order to output a 

linear function. A zero-order Sugeno ANFIS structure would output a constant parameter.  

Parameters are calculated by the hybrid learning algorithm. Let 
1S represent the antecedent 

(nonlinear) parameters and 
2S represent the consequent (linear) parameters. The hybrid learning 

algorithm updates both parameters. This algorithm is discussed in Section 2.6. 

 Let n  represent the number of inputs. Let j represent the layers of the ANFIS where  

j = {1, 2, 3, 4, 5}. Let output of node i of layers j be
jiO . Let p represent the number of membership 

functions of each input.  

Layer 1: This is the fuzzification layer. The output of this layer is iO1 where }...,2,1{ npi  . iO1 is a 

membership function that specifies the degree to which the given input satisfies the fuzzy sets kA  for 

}...,2,1{ pk  . The fuzzy sets are represented as membership functions. The functions are expressed as

....}),,,,{;( dcbaxtAk
 for }...,2,1{ nt   where the input n  features are grid partitioned into p

membership functions. Each membership function is a function of the feature mx . 
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....}),,,,{;(1 iiiimAi dcbaxO
k

  

The membership functions represent the antecedent parameters of the ANFIS described as

...},,,{1 iiii cbaS  . The new expression for the output iO1 is as follows:  

);( 11 imAi SxO
k

  

The nodes of this layer are adaptive. See Section 2.6 for details on adaptation of the antecedent 

parameters. There are several membership functions of fuzzy element z  in the Sugeno structure that 

consist of antecedent parameters. They are listed as follows: 

Gaussian: 
2)(

2

1

),;( b

az

ebaz




  

Where a  represents the center and b represents the function’s width. 

Gaussian-bell: 
c

b

az
cbaz

2||1

1
),,;(




  

Where a  represents the center, b represents the function’s width, and c represents both the direction of 

the bell and its width. 

Triangle: ),,;( cbaz         

zc

czb
bc

zc

bza
ab

az

az















,0

,

,

,0

 

Where cba  and },,{ cba represents the z-coordinates of the three corners of the underlying triangle. 

Trapezoid: ),,,;( dcbaz       

zd

dzc
cd

zd

czb

bza
ab

az

az

















,0

,

,1

,

,0

 

(6) 

(7) 

(8) 

(9) 

(4) 

(5) 
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Where dcba  and },,,{ dcba represents the z-coordinates of the four corners of the underlying 

trapezoid. 

Let l represent the number of antecedent parameters for each membership function )(z . The 

total number of antecedent parameters are then equivalent to: 

Total number of antecedent parameters = )( npl   

Layer 2: This is the rule layer. The output of this layer is iO2 where node }...,2,1{ npi  . iO2 are rules 

that are defined either by an AND (minimum of incoming signals) or an OR (maximum of incoming 

signals). Let R represent the rule choice of the second layer nodes in Figure 15. 

]}{min[ANDR  or ]}{max[ORR   

Let iW represent the weights from the rule nodes.  

}{2 kii AruleWO   

Layer 3: This is the normalization layer. Let N represent the normalization of the nodes in layer 3 of 

Figure 15. The output of this layer is iO3 where node }...,2,1{ npi  . Let 
iW represent the normalized 

weight of each rule.  

i

i
ii

WWW

W
WO

...21

3


  

Normalizing guarantees stable convergence of weights and biases. It also avoids the time-

consuming process of defuzzification.  

Layer 4: This is the defuzzification layer. The output of this layer is iO4 where node }...,2,1{ npi  . Let 

},...,,{ 212 inpiii rqqqS n be the consequent parameters. A linear function if is expressed as the 

multiplication of the inputs with the corresponding consequent parameters: 

innpiii rxqxqxqf n  ...2211  

The output iO4 is the product of the normalized firing strength 
iW  with the linear function if : 

(10) 

(11) 

(12) 

(13) 

(14) 
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)...( 2211

____

4 innpiiiiii rxqxqxqWfWO n   

Total number of consequent parameters = 
npn  )1(  

Layer 5: This is the summation layer. The output of this layer is iO5 where node }1{i . Since there is 

only one output, the ANFIS is a binary classifier. The output is the aggregation of all defuzzified outputs 

iO4  from layer 4, and thus it follows the center of gravity equation (3): 




 

i

i

i

ii

i

ii

i

i
W

fW

fWOO
__

451
for }...,2,1{ npi   
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Figure 15: n-input first-order Sugeno Adaptive Neuro-Fuzzy Inference System (ANFIS) [12] 
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An illustrated example of a two-input, two-rule, first order Sugeno ANFIS model is shown in 

Figure 16.  

 

µB1(x2)µA1(x1)

µB2(x2)µA2(x1)

x1 x2

max

min

max

min

21

2211
51

WW

fWfW
O






2211 fWfW 

1W

2W

f1 = q11x1 + q12x2 + r1

f2 = q12x1 + q22x2 + r2

 
Figure 16: Two-input, two-rule, first order Sugeno ANFIS model [12] 
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2.6: Hybrid Learning Algorithm 
 

Determination of optimal values of ANFIS parameters is made from a hybrid learning algorithm 

as discussed in [15]. It combines the least-squares estimator (LSE) method and the backpropagation 

gradient descent method for training. In the forward pass, the antecedent parameters are assumed fixed 

while the consequent parameters are identified by the LSE algorithm. In the backward pass, the 

consequent parameters are assumed fixed while the antecedent parameters are identified by the 

backpropagation algorithm through gradient descent. This is described in Table 1. This algorithm could 

be made for both online and offline learning. However, this thesis uses the offline learning approach. As 

discussed in [37], the advantage of this algorithm is overall optimization of the consequent parameters for 

the given antecedent parameters. In this way we can, not only reduce the number of dimensions used in 

the gradient descent algorithm, but also accelerate the rate of convergence of the parameters. 

 

Table 1: Hybrid learning applied to ANFIS [15] 

 
Forward pass Backward pass 

Antecedent parameters 

(Non-linear) 
Fixed Gradient Descent 

Consequent parameters  

(Linear) 
LSE Fixed 

Signals Node outputs Error signals 

 

 

 Let 
1S represent the set of the antecedent parameters and 

2S represent the set of consequent 

parameters as discussed in Section 2.5. Following equation (17), we can develop an expression involving 

the normalized weights iW
__

multiplied by the inputs tx : 

])(...)()[
____

22

__

11

__

51  
i

iininiiiii rWqxWqxWqxWO  

for }...,2,1{ npi   

(18) 
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 As discussed in [16], we can represent equation (18) as: 

)()()( 2211 uuu jj fXfXfXy    

To identify the unknown consequent parameters lX , usually a set of iterations (experiments) are 

performed to obtain a training data set composed of data pairs },,1),:{( mlyll u . Subsitiuting each 

data pair into equation (19) yields a set of m linear equations: 

mjmjmm

jj

jj

yXfXfXf

yXfXfXf

yXfXfXf







)()()(

)()()(

)()()(

2211

22222121

11212111

uuu

uuu

uuu









 

Let m and j represent the number of training data and consequent parameters respectively. Let 

A represent a jxm matrix of weights multiplied by inputs as represented in equation (18). This can be 

represented as a design matrix denoted as:  
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Let X represent a 1xj vector of the unknown consequent parameters (assuming one rule 1i ) 

be expressed as: 






























1

11

111

rX

qX

qX

j

nj


X  

and y represent a 1xm output vector and equivalent as 51O for m iterations: 



















my

y


1

y  

(19) 

(20) 

(21) 

(22) 

(23) 
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 Let the l th row of the joint data matrix  yA  be denoted by  l

T

l ya  is related to the l th input-

output data pair through: 

)](,),([ 1 ljl

T

l ff uua   

 If A is square ( jm  ) and nonsingular, then we can solve for X in the following equation: 

yAX   

To obtain:  

yAX
1  

 However, usually this is an overdetermined solution ( jm  ) and thus the data might be 

contaminated with noise. Thus an error vector e is used to account for this random noise and is expressed 

as: 

yeAX   

 A search for a minimum parameter (LSE) vector 
*

XX  is made through a sum of squared error 

as discussed in [16]: 

)()()()( 2

1

AXyAXyXaX  


T
m

l

T

llyE  

The least squares estimator 
*

X is found when the squared error is minimized satisfying the 

following equation: 

yAAXA
TT *

 

 If AA
T

is nonsingular and 
*

X is unique, then the LSE is:  

yAAAX
TT 1* )(   

If AA
T

is singular, a sequential method of LSE is used. The sequential method of the LSE is the 

recursive least squares estimate and is used in this thesis. Here we assume the row dimensions of A and 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 

(30) 
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y are k , which represents a measure of time if the data pairs become available in sequential order. This 

means kX is used to calculate 1kX : 

                                                     yAAAX
TT

k

1)(   
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A
X
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 For simplification, we let jxm matrices kP and 1kP be defined as: 

1)(  AAP
T

k
 

1

1

1 )( 
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a

A
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 The two matrices can be expressed as: 

T

kk aaPP  



 1

1

1  

 kX and 1kX can be expressed as:  

)(11 yT

kk

T

kk

ayAPX

yAPX







 

To express 1kX in terms of kX , an elimination of yA
T

is made in equation (37):  

kk

T
XPyA

1  

Equation (37) is then plugged into equation (36) to obtain: 

)( 1

11 ynkkk aXPPX  


 

                        ])[( 1

11 yk

T

kk aXaaPP  


 

                 )(1 k

T

kk y XaaPX  
 

 However, calculating 1kP involves an inversion calculation and is computationally expensive as 

explained in [16]. From equation (35), we have:  

11

1 )( 

  T

kk aaPP  

 

 

 

(31) 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 

(38) 

(39) 
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A matrix inversion formula in [16] can be applied:  

111111 )()(   CTBCAIBTTBCT  

Let T and BCTI
1 be nonsingular square matrices and let 1 kPT , aB  , and 

T
aC  .  

Then 1kP can be expressed as:  

                         
k

T

k

T

kkk a PaaPaIPPP
1

1 )( 
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In summary, the recursive LSE for equation (25) where the k th ( )1 mk  row of  yA 

denoted by  k

T

k ya is sequentially obtained and is calculated as: 
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where k ranges from 0 to m -1 and the overall LSE 
*

X is equal to mX (the consequent parameters 2S for 

all i rules in the ANFIS), the estimator using m data pairs. In order to initialize the algorithm in equation 

(43), initial values of 0X and 0P is set. In practice [16] and in the thesis, 0X is set to a zero matrix for 

convenience and 0P is expressd as: 

IP 0  

 is set to a positive large number to fulfill the following condition as explained in [16]:  

0
1

limlim 1

0  



 IP


  

The gradient descent backpropagation can be applied once the parameters in 
2S are identified 

through equation (42). In the backward pass, the derivative of the error measure w.r.t each node output 

(including layer 5 of the ANFIS) toward the input end is determined, and thus the parameters of 
1S are 

updated by the gradient descent backpropagation algorithm.  

(40) 

(41) 

(42) 

(43) 

(44) 
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 As was discussed in Section 2.5, let the output of node i of layers j be j

iO . In the ANFIS there are 

five layers: }5,4,3,2,1{j .  The node outputs depend on both the incoming signals and its parameter 

set in ,...},,{1 cbaS  . Let t  represent the number of nodes for the 1j  layer. The node output can then 

be expressed as:  

,...),,,,...( 11

1 cbaOOOO j

t

jj

i

j

i

  

 Assume the given training data set has P entries. Let 
pE represent an objective function that is a 

function of an error measure for the p th ( Pp 1 ) entry of training data. This is equivalent to the 

difference of the target output vector PT and the actual output vector of layer 5, 
5

pO : 

25 )(
2

1
ppp OTE   

 Let the error rate be represented as 
5

p

p

O

E




and calculated as: 
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 Let z represent the number of nodes for the j th layer. An internal node error rate can be 

expressed through the chain rule: 
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 Let  represent an antecedent parameter of the ANFIS. Let *O represent all nodes that depend on 

 , then we have: 
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where N is the set of nodes whose outputs depend on  . 

 

(45) 
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 The parameter  can then be updated through:  









E
 

where  represents the learning rate. This rate can be expressed as: 







 


2)(

E

k
 

where k represents the step size. This factor controls the speed of convergence. In the case of the ANFIS, 

the step size is initially set to 0.01 by default. A step size decrease rate and increase rate are set to 0.9 and 

1.1 respectively by default. The step size is decreased (by multiplying it with the decrease rate) if the error 

measure undergoes two consecutive combinations of an increase followed by a decrease. The step size is 

increased (by multiplying it with the increase rate) if the error measure undergoes four consecutive 

decreases [19], [15].  

 

2.7: ANFIS Overview 

 
 The ANFIS algorithm discussed in Section 2.5 and 2.6 is the basis for this thesis. This thesis 

makes use of the MATLAB function in the Fuzzy Logic Toolbox called ‘anfis’ [26]. There have been 

research papers on various ANFIS algorithms that have been configured effectively for classificiation. 

The paper briefly presented in [7], discussed in Section 1.5 was able to classify between two heartbeats: 

PVCs and normal. Configurations include decreasing the computational complexity of the layers in the 

ANFIS as well as increasing the number of output nodes in layer five in order to classify more than two 

heartbeats. However, this thesis attempts to classify heartbeats under the original ANFIS algorithm 

described by Jyh-Shing Roger Jang in [15].  

Since the original algorithm is only able to classify between two labels, multiple ANFIS’ are run 

in parallel. This method is discussed in Section 4.1. There are several reasons for executing this method. 

The first is that multiple heartbeats can be classified effectively and compared with ANN algorithms. By 

(50) 

(51) 
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implementing several ANFIS’ in parallel, an assumption is made that multiple ANFIS’ in parallel is not a 

burden to the user in terms of computational complexity. However, it is true the ANFIS itself is 

computationally expensive. The second reason is that the original algorithm is preserved. This again 

allows for comparison with various ANN algorithms as well as ease of repeatability of the results.  

The advantages of ANFIS can be first described through the advantages of Fuzzy Logic [26]. 

Fuzzy logic is conceptually easy to understand because the mathematical concepts described in Section 

2.4 are intuitive. Fuzzy logic is flexible because each layer can add more functionality without starting the 

algorithm from scratch. Fuzzy logic is tolerant of imprecise data as it can model nonlinear functions of 

arbitrary complexity through the ANFIS. The most important advantage is that fuzzy logic is based on 

natural language. It is the basis for human communication because it is built on structures of qualitative 

description. In terms of the ANFIS itself, the advantage of the algorithm as discussed in Section 1.6 is its 

fast convergence speed. Smoothness is also guaranteed by interpolation. Also fuzzy sets as discussed in 

[37] are a depiction of prior knowledge into a set of constraints to reduce the optimization research space. 

The disadvantage of ANFIS is its computational complexity. The algorithm performs slower than 

common classification algoirthms. There is exponential complexity with the number of rules as the 

number of inputs to the ANFIS increases for grid partitioning. This means fewer membership functions 

for each input must be used in the ANFIS to be able to classify in a fair amount of time. Lastly, is surface 

oscillations occur when there are an increased number of fuzzy rules. This might cause convergence 

issues. A solution to this issue is by implementing a checking or validation error to converge when 

overfitting or loss of generality occurs. ANFIS had no rule sharing. This means, rules cannot share the 

same output membership function [15]. 

2.8: Subtractive Clustering as a Preprocessor to ANFIS Classification 

 
 As discussed in Section 2.4, subtractive clustering (also called cluster estimation) is another 

method for partitioning input data into a FIS besides grid partition. It was proposed by Chiu in [30]. This 

algorithm is one of several fuzzy clustering methods: K-means clustering [31], fuzzy C-means clustering 



33 
 

(FCM) [32], and the mountain clustering method [33]. It has been proven that the subtractive clustering 

method is computationally more efficient than the mountain clustering method. FCM was proposed as an 

improvement to K-means clustering [16]. In the comparative study [34], it has been shown that both FCM 

and subtractive clustering produces similar results in fuzzy modeling with the training error of subtractive 

clustering considerably lower. However, a modified K-means clustering algorithm in [35] shows higher 

reliability in terms of both execution time and decreased error than subtractive clustering in an object 

recognition application. In the same paper, [35], it was shown subtractive clustering behaves better with 

noisy input data than K-means. 

 Advantages of subtractive clustering include the ability to determine the number of clusters for a 

given set of data under a given radial parameter discussed in this section. This is especially an advantage 

over FCM because the algorithm does not require a clear idea of how many clusters there should be for a 

given input. Another advantage is its fast execution time compared to most clustering algorithms. It has 

an advantage over mountain clustering because instead of considering a grid point, in the case of mountan 

clustering, each data point is considered. Computation in mountain clustering grows exponentially with 

the dimension of the problem. For example, a clustering problem with four variables and each resoltution 

of ten grid lines would result in 10
4
 grid points that must be evaluated. Subtractive clustering is an offline 

clustering technique that can be used for both radial basis function networks (RBFNs) and fuzzy 

modeling [16]. 

 An important difference over grid partition method in terms of preprocessing the ANFIS is that 

the number of membership functions does not have to be defined intitially. Subtractive clustering sets the 

number of membership functions based on the clusters found. The idea of fuzzy clustering is to divide the 

data space into fuzzy clusters, each representing one specific part of the system behavior. After projecting 

the clusters into the input space, the antecedent parts of the fuzzy rules can be found. The consequent 

parts of the rules can then be simple functions. In this way, the number of clusters equals the number of 

rules for the Sugeno model discussed in Section 2.5. This clustering method has the advantage of 

avoiding the explosion of the rule base, a problem known as the “curse of dimensionality” [16].  
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 Disadvantages of subtractive clustering include having to set a radial parameter to determine the 

range of influence of each cluster. An evolutionary algorithm has been proposed in [36] and shown to 

perform more effectively than subtractive custering. Subtractive clustering limits membership functions 

for ANFIS preprocessing as gaussian. This can be a disadvantage considering other membership function 

types have the possibility to evaluate test data more effectively. 

 Unlike FCM, the subtractive clustering is non-iterative and is similar to modeling RBFNs. 

Clusters are considered gaussian membership functions. The program flowchart for the subtractive 

clustering algorithm is shown in Figure 17. Let }..,,,{ 21 nxxx represent n input data points in an M

dimensional space. The data points are first normalized within a hypercube discussed in [30]. Each data 

point ix is considered as a potential cluster center under a density measure iD : 
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where ar represents a radius that defines a neighborhood or range of influence. ar is a positive constant 

given by the user and ranges from zero to one. Data points outside the radius contribute slightly to the 

density measure. The data point with the highest density measure is considered as the center of the 

first cluster and is denoted as 
1cx under the density measure

1cD . A new density measure is calculated in 

order to determine another possible cluster center: 
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where br represents the radius of the second fuzzy cluster. It has been determined in [30] that  is 

generally equal to 1.5 . This is to prevent closely spaced cluster centers. The process of determining the 

cluster centers is repeated until the k th cluster center density measure 
kcD satisfies the condition: 
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Where  represented as a small fraction. In [30], the factor is divided into two thresholds for 

accepting/rejecting cluster centers. This is because it was difficult to determine the best since a high 

produces too few clusters and a low produces too many clusters. 

 A membership function can then be expressed given a cluster center 
kcx as: 
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where represents an input vector. Once the cluster centers are established, the number of fuzzy rules 

and antecedent parameters through the membership functions are found, an optimization of the rule 

consequent parameters are made through the LSE in the same way discussed in Section 2.6. The method 

of determining consequent parameters through the subclustering algorithm is discussed in [30].  

 The ‘subclust’ MATLAB function from the Fuzzy Logic Toolbox is used in this thesis to 

generate k clusters each with cluster center 
kcx and standard deviation ( 2/ar ) given the radius ar by the 

user [26]. 
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Start

Stop

Calculate density measure 
Di for each data point

Selection of the data with the 
biggest density (max Di)

max Di > ε 

New cluster

Cluster center = data(max Di)

Obtain cluster members according to 
the distance to the cluster center and 

reset density measure Di  

Subtract (max Di) to all 

densities

No

Yes

 

Figure 17: Program flowchart for subtractive clustering [30] 
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CHAPTER 3: LITERATURE REVIEW 

3.1: Time Domain Based Classifier for ECG Signals 

 

 A particular algorithm that is time domain based is called the Dynamic Time Warping algorithm 

for classification in the paper [25]. The process can take two signals of different frame length and 

duration and aligns them using a nonlinear dynamic process. The Euclidean distance is taken as a decisive 

measurement for the difference between a reference signal and a query signal (test signal) in order to 

warp the signals in time so as to reduce the difference between them. A root-mean-square (RMS) error 

measurement then determines the similarity between the two signals. Classification was done between the 

normal heartbeats and arrhythmia heartbeats and the results showed a mean error of 4 milliseconds for 

one sample under a sampling frequency of 250 Hz. 

 The advantage of the Dynamic Time Warping algorithm is its simplicity, as all the features are in 

the time domain. Hence it is not computationally intensive to implement. Barely noticeable features such 

as the P, Q, S, and T waves can be matched. However, due to their small time difference, the Dynamic 

Time Warping algorithm must accept these differences. The disadvantage of this method of classification 

is the choice of reference signals. If there is a slight mismatch after time warping the query signal with 

respect to the reference signal, then the heartbeats will be incorrectly classified. 

 Dynamic Time Warping algorithm can be described as method of compressing or stretching a 

query signal with respective to a reference signal. Compression or stretching depends on if the query 

signal’s has a time difference. In [25], the paper differentiates between past approaches by reducing the 

error in classification of a query signal after the query and reference signals have been warped together. 
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A RMS difference calculation to measure the amplitude difference of time aligned query and 

reference signals offers insight into the two signal’s similarity. It is a convenient calculation because it 

can serve as a measure how far on average the error is from 0. The minimum normalized RMS difference, 

Z, means the reference signal R and query signal Q are similar and hence classified. Let R(i) and Q(i) be 

samples of the reference and query signals respectively. It can be calculated as follows: 
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 When the RMS reaches a minimum value, the query signal is considered classified for a 

particular heartbeat. 

 

3.2: Radial-Basis-Function (RBF) Neural Network with the Genetic Algorithm for ECG Classification 

 

 The RBF neural network was used as a nonlinear mapping between input and output vector 

spaces in [17]. The paper proposed a four stage, denoising, feature extraction, optimization and 

classification method for detection of PVCs. In the first stage, a wavelet denoising in noise reduction of a 

multi-channel high resolution ECG signal was done. A stationary wavelet transform (SWT) was used. A 

feature extraction module extracted ten ECG morphological features and one time interval feature. A RBF 

neural network with different value of spread parameter was used. The difference in past approaches with 

the RBF neural network is that the genetic algoirthm was used to find the best value for the RBF 

parameters. A classification accuracy of 100% for training dataset and 95.66% for testing dataset and an 

overall accuracy of detection of 95.83% were achieved over seven records (100, 101, 102, 104, 105, 106, 

and 107) from the MIT-BIH arrhythmia database. 

 For preprocessing, a stationary wavelet transform for denoising is performed through the 

Savitsky-Golay filter for smoothing and normalization. Using the SWT has the advantage of reducing the 

noise from electronic activity of muscles (EMG) and instability of electrode-skin contact. It also has the 

(56) 
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advantage of being a time-varying transform in which the sensitivity of alignment of the signal in time is 

removed compared to the discrete wavelet transform (DWT). The advantage of using the Savitsky-Golay 

filter is it’s possible to achieve high level of smoothing without attenuation of the data features. It can 

preserve high frequency components. 

 Morphological and timing features were extracted from the heartbeats. Features that describe the 

basic shape were the amplitudes of the P-peak, Q-valley, R-peak, S-valley, and T-peak. Features that 

describe the position of the waves in the window are positions of the following: P-peak, Q-valley, R-peak, 

S-valley, and T-peak. An RR interval ratio reflecting the deviation from a constant heartbeat rate was also 

extracted. 

 The exact RBF network was used. The number of RBF centers was made equal to the number of 

input vectors. Three classifications were implemented: normal, PVC, and other arrhythmia heartbeats. 

Therefore three neurons were used in the output layer. The output (target) vector is defined as one-hot-

encoded. A random slection of 200 heartbeats from each class was made. This means 600 heartbeats were 

used for training. The disadvantage of using the RBF network was that the spread parameter was not 

optimum. The genetic algorithm was used to find the optimal spread parameter.  

The advantage of the RBF network is its exectution time is fast compared to other feedforward 

algorithms. Multi-dimensional, non-differentiable, non-continouous, and non-parametrical problems can 

be solved. The disadvantage is the possibility that it will not completely classify the training data. Trial 

and error is a must. The number of hidden neurons for exact RBF networks is a large size when the 

training patters are large. The advantage of the genetic algorithm is that it is not dependent on the error 

surface. Limitations include the possiblily of converging towards a local minimum instead of global 

minimum. The genetic algorithm cannot solve certain problems due to poorly selected fitness functions. 
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3.3: Hyperellipsoidal Classifier for ECG Classification 

 

 One recent study on classification of ECG signals is the family of hyperbox classifiers in [8] 

paper. Hyperbox classifiers allow for a simple feature space structure to interpret results. Since 

hyperboxes do not possess differentiable boundaries, a learning process is induced. Particularly, a hybrid 

learning strategy of both fuzzy C-means clustering (FCM) and genetic algorithms are used. The 

advantage of this classification approach is that a simple structure can be used to achieve a high level of 

interpretability of the classification rules. The disadvantage is that the learning process is not directly 

suitable for gradient-based optimization techniques.  

In the paper, 26 morphological features were extracted representing amplitude, area, specific 

interval durations, and measurements from the QRS vector in the vectorcardiographic (VCG) plane. The 

features were extracted from two leads from the MIT-BIH arrhythmia database.  

The ECG signals from the MIT-BIH arrhythmia database were preprocessed. A notch filter was 

used to eliminate power-line interference. This was done through a moving average of samples in one 

period of the interference. A low pass filter suppressed tremor noise by the moving average of samples in 

a certain time interval. A high pass recursive filter was implemented for baseline suppression. An analysis 

was done to classify between normal and PVC heartbeats. A comparison between using a hyperbox and 

hyperellispsoid to classify the heartbeats was made. It was found that both structures performed 

reasonably well with the hyperellispoid performing slightly better.  Three methods obtained a mean 

performance accuracy of 97.7-98.2% with the FCM combined with the genetic algorithm, 99.2-99.4% 

with the genetic algorithm used to provide optimal hyperboxes, and 99.5% with the genetic algorithm 

used to provide optimal hyperellipsoids using one or more hyperboxes/hyperellipsoids. 
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 The FCM algorithm clusters data located in a certain feature space. Advantages include an 

effective method of clustering for overlapped data compared to the k-means algorithm. The k-means 

algorithm must have data points exclusively belonging to one cluster center. On the other hand, for FCM, 

the data points are assigned membership to each cluster. One disadvantage includes a priori specification 

of the number of clusters and Euclidean distance measurements. An objective function is applied: 
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Equation (57) represents the n-dimensional patterns defined in the space, 
n

k Rx  , ][ ikuU  represents 

the partition matrix, ||.|| stands for the distance function, c is the number of clusters, and cvv ,...,1 are the 

centers of the clusters (prototypes). Minimization is carried out for the number of clusters c through the 

partition matrix U : 
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 The algorithm starts with a random distribution of clusters c and iteratively modifies the 

prototypes and the partition matrix U in order to minimize the objective function Q . It iteratively locates 

the clusters in regions where there is the highest density of homogenous data. FCM is introduced in order 

to orient the search process of the genetic algorithm mechanism to explore only areas around the selected 

clusters. 

 The genetic algorithm optimizes the location and dimension of hyperboxes built around the c 

clusters determined by the FCM algorithm. The algorithm uses the idea of population growth through a 

selection of rules (parents), crossover rules (children), and mutation rules (random changes that are user-

defined). It iterates until an optimal hyperbox configuration is produced. 

 The hyperboxes can translate into well-known format of rule-based classifications where interval 

limits are the respective edges of the corresponding hyperbox. There are several other geometric 

(57) 
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constructs for classification. A hyperellipsoid, being another geometric construct, can describe all other 

geometric constructs through the following equation of a hyperellipsoid, where m = 4:  
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where rx , ry , and rz are the equatorial and polar radii, and the parameter m determines the form or 

shape of the object.  

 

3.4: Adaptive Parameter Estimation Using Sequential Bayesian Methods for ECG Classification 

 

 In [3], a ECG signal classification using estimated parameters from proposed models including 

adaptive multi-harmonic ECG modeling, interactive multiple modeling, and sequential Markov chain 

Monte Carlo modeling as features for the classifier was demonstrated in a Bayes maximum-likelihood 

(ML) classifier. The adaptive multi-harmonic ECG model made use of the following MIT-BIH databases: 

supraventricular arrhythmia, normal sinus rhythm, malignant ventricular ectopy, and atrial fibrillation. 

The interactive multiple model and sequential Markov chain Monte Carlo model made use of the MIT-

BIH arrhythmia database.  

The adaptive multi-harmonic ECG model showed 90% accuracy in classifying three of the four 

classes. For more information on the specific classes classified for this model and features extracted see 

[3]. The interactive multiple model and sequential Markov chain Monte Carlo model showed 98% 

accuracy in classifying the normal, LBBB, RBBB, ventricular escape, and junctional or nodal escape 

heartbeats. 

Six features were extracted for the interactive multiple model and the sequential Markov chain 

Monte Carlo model. The first five features were obtained from average estimates of a coefficient from the 

state vector discussed in [3] at five regions in the QRS complex (local averages are used for robustness to 

abrupt signal changes). The sixth feature is obtained from the mean of the coefficients in the P-wave.  

(59) 
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 The classifer used in the three models is a supervised learning technique. Let y represent a 

feature vector of dimension
yN . The Bayes ML classifer calculates the ranks of the likelihood )|( qCp y

of the feature vector conditioned on each of the considered classes
qC , which are assumed to follow 

multivariate Gaussian distributions. Considering 
qN classes, the likelihood of the feature vector y in class 

qC is given by: 




 



q

q
T

q

eCp

q

Nq

)()(
2

1

2

1

2

1

||)2(

1
)|(





yy

y
y  

for 
qNq ,...,1  

where 
q and q

are the Gaussian mean and covariance for class
qC . The means and covariances are 

determined using a set of training feature vectors from each class. For classification of a given test feature

y , the likelihood in equation (60) is evaluated for each class 
qC using the corresponding mean and 

covariance. The classifier output is the class 
*C which maximizes the log-likelihood and is expressed as: 

)|(logmaxarg*

qq CpC y  

 The 
qN classes would then correspond to the various ECG signal types and the feature vector y is 

formed using the appropriate parameter estimates that are unique to each class based on the proposed 

ECG models in [3]. 

The difference between past approaches compared to this method is that there is no requirement 

for early-stage processing to obtain prior signal information. The reason for the success of the proposed 

method was its ability of features generation of Gaussian distribution of small standard deviation due to 

small fluctuation between features of the same arrhythmia type of different signals. The proposed models 

in [3] have the advantages of not requiring user-defined parameters, early stage processing to obtain a 

priori ECG signal information for filter initialization or ECG fiducial point delineation, and adaptivity to 

changes in ECG signal morphology. One disadvantage of the classifier is that it has a strong assumption 

(60) 
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of feature independence. The classifier also had a small feature set and is based on a supervised learning 

approach, and thus does not perform well when tested with ECG heartbeats that belong to arrhythmia 

classes that were different from those used to train the classsifer.  

 

3.5: Fast Fourier Transform and Levenberg-Marquardt Classifier for ECG Signals 

 

 Feature extraction was performed through the Fast Fourier Transform and the Levenberg-

Marquardt algorithm to classify heartbeats in [22]. The Tachycardia, Bradycardia, Super Ventricular 

Tachycadria, Incomplete Bundle Branch Block, Bundle Branch Block, and Ventricular Tachycardia were 

classified. Four features were extracted through the Fast Fourier Transform and annotations made by 

cardiologists in the MIT-BIH arrhythmia database. They were the maximum QRS interval, average QRS 

interval, minimum QRS interval, and the heart rate. The most effective classification was done through a 

network of 5 hidden neurons in the first layer and 4 hidden neurons in the second layer. The accuracy of 

the classifer was 98.48% with a dataset of 20 heartbeats trained with another dataset of 20 heartbeats 

independently. 

 The Fast Fourier Transform was used to extract the R peaks. The Q peak and S peak were then 

detected through a derivative approximation in equations (3-4) of [22]. The heart rate was also used as an 

input feature by dividing 60 beats per minute by the RR intervals extracted by the Fast Fourier Transform.  

The difference between past approaches compared to the Levenberg-Marquardt classifier is the 

creation of two hidden layers. The first hidden layer consisted of the hyperbolic tangent activation 

function. The second hidden layer consisted of the logistic sigmoid activation functions. A mean square 

error for ending training was set to 0.001. 

The advantage of using this method is guarenteed classification of six heartbeat types discussed in 

[22]. This is from having two hidden layers in addition to a quick and simple approach to extracting the 

fundamental features for discriminating the heartbeats. One disadvantage of this algorithm is that it 

cannot detect other features that might improve the classifier. In addition, this network structure is not 
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computationally efficient because there is more than one hidden layer. Most effective networks can be 

built using one hidden layer. 

Note the training phase of a neural network is assuming the features of an ECG signal is extracted 

and normalized. One advantage of the Levenberg-Marquardt Classifier is that it converges faster 

compared to gradient descent backpropagation algorithm discussed in Section 2.6. It combines the 

gradient descent and the Gauss-Newton method. The gradient descent is assured convergence through 

proper selection of the learning rate parameter but converges slowly. The Gauss-Newton method 

converges rapidly near a loca or global minimum, but also may diverge. 

 The algorithm involves a second order derivative matrix of the scalar-valued error functions 

known as the Hessian matrix. It allows the algorithm to converge faster than the learning rate parameter 

discussed in Section 2.6. The disadvantages of the Levenberg-Marquardt algorithm is that the calculation 

of the Hessian matrix is computationally expensive and needs to be positive definite. The Hessian matrix 

requires Jacobian matrix. It is a first order derivative matrix of the network errors with respect to the 

weights and biases of the neural network.  

 Let n represent the iteration count of the algorithm. Let )(nw and )1( nw represent the weight at 

a specific iteration and updated weight respectively. Let H and J represent the Hessian and Jacobian 

matrices. Let g represent the gradient vector to be minimized with respect to the error vectore . The 

Hessian matrix can then be calculated as an inner product of the Jacobian matrix: 
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The gradient can be computed as: 
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where I  is the identity matrix and  is a small constant. When  is zero, the algorithm becomes the 

Gauss-Newton method. When large, the algorithm becomes the gradient descent with a learning rate. 

 

3.6: Support Vector Machine (SVM) and Wavelet Decomposition for ECG Classification 

 

 A method of classification was made involving both SVM and wavelet decomposition on ECG 

signals in [10]. Three types of heartbeats were classified: LBBB, normal, and PVC. Wavelet 

decomposition was applied to obtain features for each heartbeat, namely – mean, variance, standard 

deviation, minimum and maximum of detail coefficients. From the MIT-BIH arrhythmia database, the 

accuracy of the classifier was 98.46%, 98.47%, and 99.92% for the LBBB, normal, and PVC heartbeats 

respectively. Four records from the database were trained and tested: records 111, 115, 116, and 119. 

The advantage of SVM is its ability to define classes that are linearly separable in order to 

reconstruct an optimal separating hyperplane upon projecting input data into a higher dimensional space. 

SVM relies on kernel functions to adjust weight vectors. The disadvantage of SVM is its inability to 

decide an optimal kernel function in a data-dependent way [4]. Past approaches used the daubechies 4 

wavelet. 25 features were extracted for each heartbeat from wavelet analysis: mean, variance, standard 

deviation, and minimum and maximum detail coefficients. Three RR interval features were extracted 

from QRS detection as proposed in [10]. The features were the RR intervals of the heartbeat, previous 

heartbeat, and after the heartbeat. The linear kernel function, also called the dot product, was used to train 

the SVMs. 

A One Against One (also called One Against All) SVM was performed as discussed in [10]. The 

advantage of One Against One SVM is that it allows for a multiclass SVM. Three SVMs were 

constructed. Classification of an unknown pattern was done according to the maximum voting, where 

each SVM votes for one class. The disadvantage here is that multiple SVMs are necessary for 

multiclassification. This increases computational complexity to the proposed algorithm. One SVM 

classifier is trained to classify between LBBB and normal heartbeats. For this SVM, all 28 features were 
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used. The second SVM was trained to classify between normal and PVC heartbeats. For this SVM, only 3 

RR interval features were used. The third SVM was trained to classify between LBBB and PVC 

heartbeats. For this SVM, again 3 RR interval features were used. 

 The SVM was introduced as a learning method used for binary supervised classification. It uses a 

training set of known objects. It can be explained as follows: 

Let there be n  training examples denoted as ),( ii yx  ni ,...1  where each example has d inputs where 

),( d

ix  and a class label with one of two values ])1,1[( iy . Hyperplanes, expressed by the 

equation: 0))(( bxw are used to separate the d-dimensional data perfectly into classes. w is a vector 

orthogonal to the hyperplane and b is a constant. A function: )))(sgn(()( bxwxf  is used to correctly 

classify the training data. The geometric distance from the hyperplane to a data point is normalized by the 

magnitude of w :  
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 Eventually a hyperplane is found that maximizes the geometric distance to the closest data points. 

This is done through the minimization of |||| w . 

 

3.7: Past Research on ANFIS for ECG Classification 

 
  As mentioned in Section 1.5 in [7], a classification was done to detect PVC and normal heartbeats 

under an ANFIS classifier. The measure of actual positives (sensitivity) and negatives (specificity) 

identified correctly was found to be 97.92% and of 94.52% respectively. The accuracy of the classifier 

was 98.53%. A Sugeno ANFIS structure discussed in Section 2.5 was used on nine records of the MIT-

BIH arrhythmia database. Three features were extracted: previous RR interval, the ratio between the 

distance RR interval following the previous one, and the QRS interval. An algorithm based on the Pan 

and Tompkins algorithm in [21] was used in [7] to extract the features. 

(65) 
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 In [7], five ANFIS’ were created with a different structure under the trapezoidal and triangular 

membership functions. One of the structures used 2 membership functions for each input. Another used 3 

membership functions for each input. It was shown that increasing the number of membership functions 

did not decrease the training and validation error significantly. The best structure was found to be 2 

membership functions for the previous RR interval, 3 membership functions for the ratio between the 

distance RR interval following the previous one, and 3 membership functions for the QRS interval. 

 One advantage is the analysis of different ANFIS structures in addition to a fuzzy rule fulfillment 

allowed for an improved search for the most effective ANFIS structure. One disadvantage includes the 

choice of using grid partitioning to partition the inputs into membership functions. This approach should 

not be considered for a large number of inputs since the number of rules becomes too large. This adds to 

an increase in computational complexity. 

 In [37] a DWT was used to extract features in addition to five ANFIS’ trained to classify normal, 

atrial fibrillation, PVC, ventricular fibrillation, and ventricular flutter myocardioal ischemia heartbeats. 

Classification accuracy was determined to be 98.24%. The ANFIS structures were trained and tested 

through several records of the MIT-BIH arrhythmia database, atrial arrhythmia database, and malignant 

ventricular arrhythmia database. 

 Features were extracted in [37] through a symlet wavelet. The proposed symlet wavelet based 

QRS detection algorithm in [37] was used to extract the slopes of five features: the Q point, R point, S 

point, a point between the Q and R points, and a point between the R and S points. 70% and 30% of the 

data were trained and tested respectively for the five ANFIS’. The gaussian bell membership function was 

used. It was not specified in [37] how many membership functions were used for each input. 

 One advantage of using the approach in [37] is that the features extracted through the DWT QRS 

algorithm produced a high average sensitivity. One disadvantage is the necessity of a new category of 

unclassified heartbeats since the ANFIS can only classifiy between two classes. This adds to a 

complication in verifying results with previous ANFIS classifiers.  
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 In [38] four ANFIS classifiers: normal, congestive heart failure, ventricular tachyarrhythmia, and 

atrial fibrillation heartbeats were trained and tested. The databases of the MIT-BIH normal sinus rhythm, 

Beth Israel Deaconess Medical Center congestive heart failure, Creighton University ventricular 

tachyarrthymia, and MIT-BIH atrial fibrillation were used.  Classification accuracy was 96.39%. Features 

were extracted through the Lyapunov exponents of each heartbeat. Four Lyapunov exponent features 

were extracted: maximum, minimum, mean, and standard deviation. The fifth layer of the ANFIS was 

divided into five nodes in order to generate a one-hot-encoding scheme for a binary classification. 

 The ANFIS classifier in [38] made use of three gaussian bell membership functions for each 

input. 360 training data in 850 training iterations were performed to test 360 testing data. The advantage 

of this method is the fact that the multiple output nodes in the fifth layer of the ANFIS allowed for a 

multiclassification of four heartbeat types. This eliminates the unclassified results in [37]. Lyapanov 

exponents have proven to be an effective descriminator of various heartbeats. The disadvantage of this 

method is the fact that multiple databases were used to train and test heartbeat types. This makes it 

difficult to construct a machine that can effectively classify multiple heartbeat types. 
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CHAPTER 4: CLASSIFICATION APPROACH 
 

4.1: ANFIS of ECG Signals 

 

 Figure 18 shows an overall approach to classification. In this case, a raw signal is first 

preprocessed. This means the signal is filtered and annotated. Filtering involves both a low pass and high 

pass filter. The low pass filter filters out unwanted noise such as power noise. Power noise is around 60 

Hz. The high pass filter is used to detrend or center the signal on a base-level of zero volts in order to later 

extract the true amplitude of the various parts of the signal. For example, the amplitude of the P wave 

from an ECG signal can be extracted and compared with the other P wave amplitudes. 

  

Pre-Processing
(filtering and 
annotating)

 Post-Processing 
(feature extraction 

through 
morphological and 
temporal features)

Classification
Raw signal Class Label

 
Figure 18: Process of classification 

 
 Inputs of the system consist of characteristics of the signal. Characteristics can either be 

annotated or calculated. Input features are composed of both temporal and amplitude characteristics of an 

ECG heartbeat. Let n and m  represent the number of input features and the number of heartbeats to 

classify respectively. Obviously an increase in input features increases the system’s ability to classify the 

beat.  

Input features from an ECG signal can be extracted through a database. Figure 19 shows eight 

input temporal features of an ECG signal. Figure 20 shows the RR previous interval is from the R peak of 

the heartbeat being analyzed to the previous R peak. The RR subsequent interval is from the R peak of the 

heartbeat being analyzed to the subsequent R peak. Figure 21 shows the amplitudes of the P, Q, R, S, and 

T waves. 
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Figure 19: Several temporal input features of an ECG signal [6] 
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Figure 20: RR previous interval (RRp) and RR subsequent interval (RRs) input features [6] 
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Figure 21: Amplitude input features [6] 

 

Input features are listed in Table 2. The inputs vary based off heart rate. A normal heart rate or 

normal sinus rhythm is 60-100 bpm (beats per minute). The table shows seven inputs ( 7n ) chosen 

based off three sources [5], [24], and [8] to be put through an ANFIS. ‘NF’ means that there is no feature 

information to discriminate the particular heartbeat. The left column shows the six heartbeats of an ECG 

signal to be classified. Inputs, especially the amplitudes vary between the limb leads and precordial leads. 

The ratio, RRs / RRp, was used as an input because it reveals variations in heart rate. 

 

Table 2: Input features of an ECG signal [5], [8], [24] 

  

R 

Amplitude 

(mV) 

RRp 

Interval 

(sec) 

RRs 

Interval 

(sec) 

RRs/RRp 

PR 

Interval 

(msec) 

QRS 

Interval 

(msec) 

ST Segment 

(msec) 

Normal 1.5-2  0.6-1.2 0.6-1.2 1 120-200 80-100 80-120 

PVC < 2  < 0.6 > 1.2 > 1 NF > 120 NF 

APC > 2  < 0.6 > 1.2 > 1 NF < 80 NF 

LBBB NF NF NF NF NF > 120 NF 

RBBB NF NF NF NF NF > 120 > 120 

Paced > 2 NF NF NF > 280 > 120 NF 
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 Figure 22 shows the general block diagram for classifying ECG signals for this thesis. The left 

side shows the seven input features used. The beats are then classified as Normal, PVC, APC, LBBB, 

RBBB, or Paced.  

 

Adaptive Neuro-Fuzzy System

RRs Interval

RRp Interval

RRs/RRp

PR Interval

QRS Interval

ST Segment

R Amplitude

Heartbeat 
type

Inputs Output

 
Figure 22: General ECG block diagram for this thesis 

 

 Since the ANFIS is a binary classifier, and hence one output, six ANFIS’ were trained, validated, 

and tested. A threshold was used at the output of each ANFIS to classify a heartbeat as either a specific 

heartbeat (denoted as ‘1’) or the entire set of heartbeats without the specific heartbeat being classified 

(denoted as ‘0’). Let N represent normal heartbeats, V  represent PVC heartbeats, A  represent APC 

heartbeats, L  represent LBBB heartbeats, R  represent RBBB heartbeats, and P  represent paced 

heartbeats. Let All represent the combination of all six heartbeat types. Let N represent all the heartbeats 

without the normal heartbeats, V  represent all heartbeats without PVC heartbeats, A  represent all the 

heartbeats without the APC heartbeats, L  represent all the heartbeats without the LBBB heartbeats, R  
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represent all the heartbeats without the RBBB heartbeats, and P  represent all heartbeats without the 

paced heartbeats. The method of classifying is illustrated in Figure 23.  
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Figure 23: Method of classification with ANFIS 

 

 A threshold after each ANFIS determines if the heartbeat is the specific heartbeat denoted as a 

target of ‘1’ or all heartbeats without the specific heartbeat denoted as a target of ‘0’. Let f represent the 

output of an ANFIS. Let Thf represent the value of the output after a threshold, either ‘0’ or ‘1’. The 

threshold is as follows: 

If f < 0.5, then Thf = 0; 

Else Thf = 1 

 

Figure 23 shows each ANFIS structure based on Figure 15. This diagram shows the internal 

functionality of the system. First, each input feature is passed through two membership functions for the 

case of grid partitioning or k clusters for the case of subtractive clustering. Two membership functions, 

for example, would capture the ‘high’ and ‘low’ linguistic information for each input feature. Three 

membership functions would capture the ‘high’, ‘medium’, and ‘low’ linguistic information for each 

input feature. For more membership functions, linguistic information would encompass more ranges for 

each input feature. Since the number of input features is seven, the number of nodes for each layer can be 

calculated. For the first layer, the number of nodes was calculated to be 14 nodes (grid partition) and nk   
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nodes (subtractive clustering). For the second, third, and fourth layers, the number of nodes was 

calculated to be 128 nodes (grid partition) and k nodes (subtractive clustering). 
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Figure 24: General ANFIS structure 

 

4.2: Extracting Input Features  

 

 It is necessary to annotate the signal to extract the features. The MIT-BIH website, collectively 

known as Physionet, holds multiple tools for analyzing and annotating various heart signals (most being 

ECG records). This ECG classification is based off the Arrhythmia Database [11].  

 In order to begin preprocessing the ECG records of the database, the signal files had to be 

downloaded from Physionet’s ‘Physiobank Automated Teller Machine’, this machine allows for a graph 

of each signal from 10 second-length signals to the full 30 minute-length signals. The full 30 minute-

length signals were chosen for a complete analysis of each patient’s record. For the purpose of analyzing 

the signal in MATLAB, data (‘.dat’), header (‘.hea’), and annotation (‘.atr’) files for each record needed 

to be downloaded. The data file holds the amplitude values and samples for two leads. Most records 

consist of a modified limb lead II signal, also called MLII, and a “lower” precordial lead such as V1 
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(occasionally V2 or V5, and in one instance V4). For example, the first record: record ‘100’, consists of 

both the MLII and V5 leads [11].  

 A MATLAB toolbox, called the Physionet Waveform Database (WFDB) toolbox, is specialized 

for analyzing the ECG signals. It can be downloaded from the Physionet website. This toolbox consists of 

functions that annotate the signal and specialized algorithms for detecting various points of an ECG 

signal. One of the annotation functions allow for classifying each heartbeat as normal or abnormal as 

determined by two cardiologists. Several records could not be simulated under the toolbox. Table 3 shows 

the MIT-BIH records and the number of corresponding heartbeat types. Another function that uses an 

algorithm for detecting the QRS complex onset and offset of an ECG signal is called the Pan-Tompkins 

algorithm. The same function detects the P wave onset and offset as well as the T wave onset and offset 

[11]. Two cardiologists detected the P wave while the T wave was detected through the Pan-Tompkins 

algorithm 

Preprocessing MATLAB functions, some from the WFDB toolbox and some made from scratch 

are defined below (a more comprehensible view of these functions can be found in Appendix B): 

rdsamp: Reads the ECG records from the MIT-BIH arrhythmia database. The record name is taken as 

input as well as the number samples to read from. The amplitude of the signal is then outputted as well as 

the sampling rate. 

l_or_hpf: Takes the one dimension ECG signal, desired cutoff frequency, butterworth order, and a choice 

between performing a low or high pass filter as input arguments. In this thesis, a 30 Hz cutoff, 3
rd

 order 

butterworth low pass filter and a 1 Hz cutoff, 3
rd

 order butterworth high pass filter is used. The design of 

these filters was taken from [8]. 

rdann: Takes the annotation file of the specific record to extract the R peaks and heartbeat types for each 

heartbeat. 

sqrs: Extracts the QRS points under Pan-Tompkins algorithm of each heartbeat given the annotation file. 

ecgpuwave: Extracts the P and T peaks as well as the onset and offsets of each point. 
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input_layer: Takes the samples of each point from the ECG signal as well as the signal itself. The output 

is the seven input features extracted as discussed in Table 2.  

hist: Generates a histogram of each feature extracted for verification that input features were extracted 

correctly. 
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Table 3: MIT-BIH records and corresponding heartbeat types: ‘N’ being normal, ‘V’ being PVC, 

‘A’ being APC, ‘L’ being LBBB, ‘R’ being RBBB, and ‘P’ being paced beats 

Record N V A L R P 

100 2239 1 33 0 0 0 

101 1860 0 3 0 0 0 

102 99 4 0 0 0 2028 

103 2082 0 2 0 0 0 

104 163 2 0 0 0 1380 

105 2526 41 0 0 0 0 

106 1507 520 0 0 0 0 

107 0 9 0 0 0 2078 

108 1739 17 4 0 0 0 

109 0 38 0 2492 0 0 

111 0 1 0 2123 0 0 

112 2537 0 2 0 0 0 

114 1820 43 10 0 0 0 

115 1953 0 0 0 0 0 

116 2302 109 1 0 0 0 

117 1534 0 1 0 0 0 

118 0 16 96 0 2166 0 

121 1861 1 1 0 0 0 

122 2476 0 0 0 0 0 

123 1515 3 0 0 0 0 

200 1743 826 30 0 0 0 

201 1625 198 30 0 0 0 

202 2061 19 36 0 0 0 

203 2529 444 0 0 0 0 

205 2571 71 3 0 0 0 

208 1586 992 0 0 0 0 

209 2621 1 383 0 0 0 

212 923 0 0 0 1825 0 

213 2641 220 25 0 0 0 

214 0 256 0 2003 0 0 

215 3195 164 3 0 0 0 

220 1954 0 94 0 0 0 

222 2062 0 208 0 0 0 

223 2029 473 72 0 0 0 

228 1688 362 3 0 0 0 

230 2255 1 0 0 0 0 

231 314 2 1 0 1254 0 

233 2230 831 7 0 0 0 

234 2700 3 0 0 0 0 

  

 



59 
 

The Pan-Tompkins algorithm, discussed in [21], detects the QRS complexes and T intervals 

based upon digital analyses of slope, amplitude, and width. Thresholds are adjusted periodically to adapt 

to QRS morphology changes and heart rate throughout the signal. In evaluating the MIT-BIH arrhythmia 

database, the algorithm failed to properly detect only 0.675 percent of the heartbeats. The disadvantage of 

this method is the threshold technique is only useful if the heart rate is regular. For the case of irregular 

heart rates, two thresholds are reduced by half in order to increase the sensitivity of detection in order to 

avoid missing valid heartbeats. 

 Figure 25 shows the program flowchart of the Pan-Tompkins algorithm for detecting QRS 

complexes. For all transfer functions used in this algorithm, please refer to [21]. First, a DC drift and 

normalization is performed. The signal is subtracted by the overall mean of the signal and then 

normalized at each sample. This straightens out the signal along the zero volt base-line. A digital 

bandpass filter consisting of a cascade of a low pass filter and a high pass filter with a passband from 5-15 

Hz is then applied to the signal. This reduces the influence of muscle noise, 60 Hz interference, base-line 

wander, and T-wave interference. A derivative filter is then applied to provide the QRS complex slope 

information. A squaring function is applied to make all data points positive and does nonlinear 

amplification of the output of the derivative emphasizing the higher frequencies (i.e. predominantly the 

ECG frequencies). The squaring is done by squaring the signal point by point. A moving-window 

integration is performed to obtain waveform feature information in addition to the slope of the R wave. 

Let T represent the sampling period. Let N represent the number of samples in the width of the 

integration window. For our case of 360 samples per second, the window is 30 samples wide (150 ms). 

The difference equation of this integration is: 

)](....))2(())1(([)/1()( nTxTNnTxTNnTxNnTy   

 A lower set of thresholds is then placed based on the bandpass filtered ECG signal. An upper set 

of thresholds is placed based on the moving-window integration. The higher of the two thresholds in each 

of the two sets is used for the first analysis of the signal. The lower threshold is used if no QRS is 

(66) 
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detected in a certain time interval so that a seach-back technique is necessary to look back in time for the 

QRS complex. Thresholds of a signal and noise peak detect the QRS complex. They are expressed in 

equations (12-20) referenced in the paper, [21].  

 Two RR intervals averages are calculated and maintained in [21]. The reason for maintaining the 

RR intervals is to be able to adapt to quickly changing or irregular heart rates. When an RR interal is less 

than 360 ms, a judgement is made to determine whether a QRS complex or a T wave is identified. If the 

maximal slope that occurs during this waveform is less than half of the QRS waveform that preceded it, it 

is identified to be a T wave; otherwise, it is a QRS complex. 
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Figure 25: The Pan-Tompkins algorithm for QRS complexes [21] 
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Figure 26 shows the result of the function that annotates and detects the various points of MIT-

BIH arrhythmia database record ‘100’ modified limb-lead (MLII) signal. The full 30-minute length and 

360 samples per second ECG signal consist of about 646,400 samples. Normal heartbeats are denoted as 

‘N’ in the figure. The P wave, QRS complex, and T wave has been detected along with an onset and 

offset.  

 
Figure 26: One heartbeat showing the results of the WFDB toolbox function 

  

One problem with the function was the occasional detection of two T wave points as shown in 

Figure 26. Most signals plot one T wave point. For this reason, in addition to a lack of sources to 

discriminate the T amplitude feature, the feature was not used in the ANFIS classifier.  

Histograms of these three heartbeats were plotted for each input to verify that the extraction of the 

features in Table 2 from the annotation function was done correctly. Figure 27 shows a histogram of 

normal P amplitudes. 

 



63 
 

 

Figure 27: Histogram of normal P amplitudes 

 

4.3: Program Flow 

 

 Figure 28 shows a program flowchart for classification of the ECG record(s). The program starts 

with choosing which ECG record(s) to classify. Normalization of the input features from the ECG signals 

was done through the subtractive clustering algorithm. The signal was detrended and cleansed of noise 

through a high and low pass filter for preprocessing. Seven features are extracted as discussed in Table 2. 

Since the ANFIS has one output, the output vector is created. Each output index of the vector is assigned 

to a specific heartbeat type. For example, normal heartbeats would be defined as ‘1’ and other heartbeat 

types (five other heartbeats) would be defined as ‘0’. An input data matrix of features was generated and 

concatenated with an output vector. The matrix was divided for each heartbeat type into training data 

(55% of the input data), checking data for validation (10% of the input data), and testing data (35% of the 

input data). 100 random heartbeats were selected from six specific heartbeat records that were randomly 

selected from the database. Therefore only specific heartbeat records with more than 100 heartbeats of the 

specific type were selected. 

 Classification begins by choosing the number and type of membership functions for the ANFIS. 

Figure 13 and equations (6-9) show the membership functions to choose from. It is good practice to start 
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with a triangle membership function [15]. If computational performance is an issue, a gaussian 

membership function would be used due to having the smallest number of antecedent parameters. If 

smoothness is required to perform a better classification, then a gaussian-bell would be an effective 

membership function for fuzzification. Fuzzification is performed by generating an initial FIS. This could 

either be done by grid partitioning or subtractive clustering. 

 The number of membership functions needs to be taken into account with respect to the 

generation of fuzzy rules as discussed in Section 2.5. The MATLAB function ‘anfis’ can only support at 

most 256 fuzzy rules [11]. Since there are seven inputs and the number of fuzzy rules is equivalent to 

number of membership functions p to the power of the number of inputs n for grid partitioning, three 

membership functions is not supported. For this reason, two membership functions are chosen for grid 

portioning: representing linguistically ‘high’ and ‘low’ partitions of each input feature.  

 The number of antecedent and consequent parameters can then be calculated using equation (10) 

and (15) respectively for grid partitioning. They were calculated as 42 and 1024 respectively. 

 The rule layer as discussed in Section 2.5 was chosen to be an AND function. This means the 

output of the rule layer is a minimum of two membership functions as opposed to the maximum through 

the OR function.  

 The ANFIS algorithm generates an output FIS for training, validating, and testing data. Training 

and checking (also called validation) RMSE (root-mean-square error) is calculated for each data sample i . 

The RMSE compares the desired output value y , and the actual output of the FIS ŷ . Let t represent the 

number of heartbeats of training. The RMSE for training can be expressed as: 





t

i

ii yy
t

RMSE
1

2)ˆ(
1

 

The RMSE gives a more accurate value of the error between a model (output of FIS) and 

observed data (training/validation data output value). There are statistical properties such as variance and 

(67) 
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standard deviation that makes RMSE a desirable measurement. It is desirable to have a RMSE decrease or 

converge as the number of iterations increase. 

 The RMSE of the checking data is used to prevent overfitting. Overfitting occurs when the RMSE 

of the checking data increases. It is a result of fitting the fuzzy system to the training data so well that it 

no longer fits the testing data effectively. This leads to a loss of generality. The ANFIS algorithm chooses 

model parameters associated with the minimum checking error prior to overfitting (if it exists). Once 

RMSE of the training data is shown to decrease as the number of iterations increases and overfitting is 

eliminated, evaluation of the ANFIS is made. 

 In evaluating the ANFIS, the trained FIS is used to evaluate the test data. The output is a result of 

classification. A threshold, as was discussed in Section 4.2, on the training, checking, and testing output 

vectors is used to convert fractional numerical assignments for each heartbeat to integers, either ‘0’ or ‘1’.  
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Figure 28: Classification program flowchart 
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4.4: Performance Evaluation Method 

 
 As discussed in Section 3.7: accuracy, sensitivity, and specificity can be used as performance 

measurements to evaluate the effectiveness of a classifier. All three measurements include heartbeats that 

define true positive, true negative, false positive, and false negative. Let TP represent the true positive 

heartbeats classified. Let TN represent the true negative heartbeats classified. Let FP represent the false 

positive heartbeats classified. Let FN represent the false negative heartbeats classified. Let N represent 

the total number of heartbeats being classified. The three performance measurements can then be 

expressed as [8]: 
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CHAPTER 5: SIMULATION RESULTS 

5.1: ANFIS on Several ECG Records under Subtractive Clustering 

 

 For ANFIS classification results under grid partitioning see Section 5.4. Before implementing the 

program flowchart of Figure 28, several ECG records from the MIT-BIH arrhythmia database are chosen. 

The seven input features as shown in Table 2 are extracted using both the Pan-Tompkins algorithm and 

the annotations made by the cardiologists. Table 4 shows the input features by input number. This table is 

important for discussing the FIS membership functions illustrated later in this section. Since the ANFIS 

classifies between only two classes, six ANFIS’ were created for classification method based on Figure 

23. The heartbeat types are normal, PVC, APC, LBBB, RBBB, and paced. 

 

Table 4: The seven features associated with a corresponding input number 

Input 1 2 3 4 5 6 7 

Feature 
QRS 

Interval 

PR 

Interval 

R 

amplitude 

ST 

Segment 
RRs/RRp 

RRp 

Interval 

RRs 

Interval 

 

 The records chosen (shown in Table 5) to train, check (validate), and test were the second 

modified limb leads (MLII) randomly selected for each specific heartbeat. The heartbeat types extracted 

from the records were normal, PVC, APC, LBBB, RBBB, and paced. Each heartbeat type was divided 

into 55% training, 10% checking, and 35% testing data as discussed in Section 4.3. A justification for the 

record choice is discussed in Section 5.2. Three trials of training, validating, and testing six ANFIS’ were 

done. This allowed for a more comprehensible classification across the entire database. In training and 

validating the six ANFIS’ it was found that using three membership functions for each of the seven input 

features produced a reasonable balance between interpretability through the rules and effective 

classification results. 

 An analysis of the parameters updated through the learning rate can be performed through the 

training and checking (validation) error curves. This gives a general observation of the parameters being 

updated. Since the learning rate of equation (51) is dependent on the initial step size, two trials were 
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analyzed to obtain the best convergence with the least amount of oscillations: the first being when the 

initial step size is 0.01 by default, the second being when the initial step size is low (low learning rate). 

 

Table 5: Heartbeats (including each heartbeat type) chosen from records of the MIT-BIH database 

randomly 

Total Training Checking Testing 

600 330 60 210 

 

 Starting with the first ANFIS from Figure 23, a classification was made between normal 

heartbeats N and all six heartbeat types without the specific normal heartbeats denoted as N . By setting 

the radius ar to 0.45 for subtractive clustering as discussed in Section 2.8, three clusters (gaussian 

membership functions) were generated for each input. As discussed in Section 2.8, the subtractive 

clustering algorithm normalizes the input features about a hypercube. Normalization is also performed in 

the ANFIS’ at layer 3 for the weights. The initial FIS generated from subtractive clustering was then fed 

into the ANFIS for 1000 iterations. Figure 29 shows the RMSE curves for the training and checking 

(validation) data under the default learning rate. It can be observed that overfitting of the data starts 

around 80 iterations.  
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Figure 29: RMSE training and checking curves for the first ANFIS under three membership 

functions for each input for 1000 iterations. Initial step size is 0.01. 

 

 Since there were oscillations in Figure 29, the learning rate was decreased by setting the initial 

step size to 0.001. Figure 30 shows the result of decreasing the learning rate. Convergence is usually 

reached at minimum checking error. However, the checking error in this ANFIS did not increase as 

overfitting was not apparent. Overfitting would occur when the checking error starts to increase. 

Convergence was then chosen to be 78 iterations where the training error begins to flatten out. The 

training RMSE dropped from 8.38% to 1.82%.  
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Figure 30: RMSE training and checking curves for the first ANFIS under three membership 

functions for each input for 1000 iterations. Initial step size is 0.001. Convergence was reached at 78 

iterations. 

 
 
 Figure 31 shows the step curve recording the step size during training of the first ANFIS. This 

step size profile serves as a reference for adjusting the initial step size and corresponding step size 

increase and decrease rates. Usually, the step size profile is a curve that increases initially, reaches some 

maximum, and then decreases for the remainder of the training. 

Checking RMSE 

Training RMSE 
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Figure 31: Step curve for the first ANFIS under three membership functions for each input for 100 

iterations. Initial step size is 0.001.  

 

 Figure 32 shows the initial FIS generated from subtractive clustering. For all membership 

functions, the input range is determined by the lowest and highest value input. The antecedent parameters 

(standard deviation and center gaussian function parameters) are then fed into the ANFIS for adaptation. 

Figure 33 shows the adapted FIS. It is obvious that the first input membership functions show the most 

adaptation. This means the QRS interval (first input) is an exceptional feature for training the ANFIS. 
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Figure 32: Initial subtractive clustering FIS for the first ANFIS. The solid dark function represents 

the first membership function. The dashed function represents the second membership function. 

The gray function represents the third membership function. 



74 
 

 
Figure 33: Adapted FIS for the first ANFIS. The solid dark function represents the first 

membership function. The dashed function represents the second membership function. The gray 

function represents the third membership function. 
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 Figure 34 shows an example of the first input’s first membership function parameters generated 

from subtractive clustering and adapted after 78 iterations from the first ANFIS. As discussed in Section 

2.5, a and b represents the center and standard deviation respectively for the gaussian membership 

functions. Figure 34 also shows the first rule’s consequent parameters generated from subtractive 

clustering and adapted after 78 iterations from the first ANFIS. 

 
 

Antecedent Parameters: 

}052.0,15.0{},{ ba  

 

}021.0,17.0{},{ ba  

Consequent Parameters: 

}74.0,62.0,50.0,53.0,019.0,029.0,031.0,06.1{},,,,,,,{ 171615141312111 rqqqqqqq  

 

}00061.0,0013.0

,00074.0,0010.0,00079.0,000023.0,00016.0,00022.0{},,,,,,,{ 171615141312111



rqqqqqqq
 

Figure 34: Antecedent and consequent parameters before and after training for subtractive 

clustering FIS. This is the first input’s first membership function parameters for the antecedent 

parameters and the first rule’s consequent parameters. 

 

 
 Figure 35 shows a decision surface generated from the first ANFIS. This surface is generated 

between the first input (QRS interval) and the fifth input (RR ratio). There are 21 different surfaces that 

can be observed because there are seven inputs. This is one of the advantages of ANFIS because a user 

can interpret this surface as to how the inputs were mapped based on the ANFIS. 
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Figure 35: Decision surface generated from the first ANFIS after 246 iterations between the first 

input (QRS interval) and the fifth input (RR ratio)  

 

 Testing data was then evaluated through the ANFIS. As discussed in Table 5, 210 heartbeats were 

evaluated: 35 for the specific heartbeat ( N for the first ANFIS) and 175 for the heartbeats without the 

specific heartbeats ( N ). Evaluation of the first ANFIS showed all heartbeats correctly classified. This 

means there was 100% accuracy, sensitivity, and specificity. 

 The rest of the five ANFIS’ were trained, validated, and tested under the same procedure. The 

procedure was to develop the best trained ANFIS in order to obtain an effective classification. The best 

trained ANFIS is through trial and error by specifying the radius ar for subtractive clustering in order to 

obtain three membership functions for each input, and the initial step size for controlling the learning rate. 

Convergence is reached when either the checking RMSE starts to overfit (increase). In other words the 

iteration with the minimum checking RMSE defines convergence, or when the training RMSE itself 

levels off while checking RMSE continues to decrease or levels off. Figure 36 shows the best training and 

checking RMSE curves for each of the six ANFIS’ (1-6) after trial and error. 
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Figure 36: Trial 1 RMSE training and checking curves for the six ANFIS’ (1-6) under three 

membership functions for each input 

(1) (2) 

(3) (4) 

(5) (6) 

Checking RMSE 

Training RMSE 

Checking RMSE 

Training RMSE 

Training RMSE 

Checking RMSE 

Checking RMSE 

Training RMSE 

Training RMSE 

Checking RMSE Training RMSE 

Checking RMSE 



78 
 

 From trial and error in generating the six ANFIS’, it can be observed that ANFIS 1 and 5 

represents a convergence when the training RMSE curve flattens out and when the checking RMSE 

continues to decrease. The rest of the ANFIS’ (2, 3, 4, and 6) represent convergence when the checking 

RMSE reaches a minimum before overfitting. Oscillations can be observed in ANFIS 3, 4, and 6. An 

attempt to decrease the initial step size for these ANFIS’ was made to remove the oscillations. Table 6 

shows the training and checking results for the six ANFIS’.  

 

Table 6: Trial 1 training and checking results for the six ANFIS’ 

ANFIS ar  Initial step size Training iterations Training RMSE (%) Checking RMSE (%) 

1 0.45 0.001 77 1.82 5.47 

2 0.45 0.001 383 15.27 25.20 

3 0.45 0.01 13 6.45 9.23 

4 0.45 0.02 27 16.79 18.79 

5 0.60 0.01 254 2.73 6.39 

6 0.40 0.13 15 9.11 11.18 

 

ar -- User specified radius or range of influence for subtractive clustering to generate three membership 

functions for each input 

 

 Table 7 shows the classification results for the six ANFIS’. Classifications of the true positive 

specific heartbeats are denoted by TP. These heartbeats represent the normal ( N ), PVC (V ), APC ( A ), 

LBBB ( L ), RBBB ( R ), and paced ( P ) heartbeats. Classification of the true negative heartbeats without 

the specific heartbeat is denoted as TN. These beats are represented by N , V , A , L , R , and P in 

Figure 23. 
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Table 7: Trial 1 classification results for the six ANFIS’ 

ANFIS TP TN Accuracy (%) Sensitivity (%) Specificity (%) 

1 35 175 100 100 100 

2 32 158 90.48 65.31 98.14 

3 34 175 99.52 100 99.43 

4 34 175 99.52 100 99.43 

5 34 175 99.52 100 99.43 

6 34 175 99.52 100 99.43 

 

TP – True positive specific heartbeats being classified. These are the six heartbeat types corresponding to 

the six ANFIS’: normal ( N ), PVC (V ), APC ( A ), LBBB ( L ), RBBB ( R ), and paced ( P ) heartbeats. 

TN—True negative heartbeats without the specific heartbeat classified. These are represented through the 

six ANFIS’ by N , V , A , L , R , and P in Figure 23. 

 

Sample calculations from the second ANFIS for classification results in Table 7 using equations (68-70) 

where N here represents the total number of heartbeats tested: 
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 The results in Table 7 shows the ANFIS classifier is effective at detecting specific heartbeats. The 

second ANFIS was a poor classification between PVC heartbeats and all heartbeat types without the PVC 

heartbeats. This can be observed from the 90.48% classification and the sensitivity (measure of actual 

PVC heartbeats) of 65.31%. An analysis was done to observe why this was the case. The PVC heartbeats 

resemble that of the LBBB heartbeats for this trial. Table 8 shows how the input features of the PVC and 

LBBB heartbeats are similar in value. This can be shown in inputs 1, 3, and 5. 

(72) 

(71) 

(73) 
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Table 8: Analysis of a PVC and LBBB heartbeat that were classified incorrectly 

Input 1 2 3 4 5 6 7 

PVC 0.20 0.32 1.42 0.053 1.04 0.69 0.73 

LBBB 0.21 0.20 1.45 0.017 1.06 0.60 0.63 

 

 

 Two more trials were performed on random heartbeat records as discussed in the beginning of 

this section. Figures 37 and 38 shows the trials 2 and 3 training and checking RMSE curves for each of 

the six ANFIS’. Tables 9 and 11 shows the trials 2 and 3 training and checking results for the six ANFIS’. 

Tables 10 and 12 shows the trials 2 and 3 classification results for the six ANFIS’. 
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Figure 37: Trial 2 RMSE training and checking curves for the six ANFIS’ (1-6) under three 

membership functions for each input 
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Table 9: Trial 2 training and checking results for the six ANFIS’ 

ANFIS ar  Initial step size Training iterations Training RMSE (%) Checking RMSE (%) 

1 0.80 0.001 45 12.95 9.69 

2 0.80 0.001 256 17.34 30.74 

3 0.80 0.0001 182 15.66 13.78 

4 0.90 0.03 619 8.80 10.32 

5 0.90 0.05 1200 0.020 0.020 

6 0.80 0.07 151 5.28 14.17 

 

ar -- User specified radius or range of influence for subtractive clustering to generate three membership 

functions for each input 

 

Table 10: Trial 2 classification results for the six ANFIS’ 

ANFIS TP TN Accuracy (%) Sensitivity (%) Specificity (%) 

1 35 173 99.05 94.59 100 

2 25 169 92.38 80.65 94.41 

3 31 175 98.10 100 97.77 

4 32 173 97.62 94.12 98.30 

5 35 175 100 100 100 

6 34 174 99.05 97.14 99.43 

 

TP – True positive specific heartbeats being classified. These are the six heartbeat types corresponding to 

the six ANFIS’: normal ( N ), PVC (V ), APC ( A ), LBBB ( L ), RBBB ( R ), and paced ( P ) heartbeats. 

TN—True negative heartbeats without the specific heartbeat classified. These are represented through the 

six ANFIS’ by N , V , A , L , R , and P in Figure 23. 
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Figure 38: Trial 3 RMSE training and checking curves for the six ANFIS’ (1-6) under three 

membership functions for each input 
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Table 11: Trial 3 training and checking results for the six ANFIS’ 

ANFIS ar  Initial step size Training iterations Training RMSE (%) Checking RMSE (%) 

1 0.73 0.1 96 0.11 13.67 

2 0.70 0.07 2441 8.99 8.53 

3 0.80 0.001 355 13.74 9.58 

4 0.80 0.1 553 0.011 3.16 

5 0.90 0.1 244 8.76 11.81 

6 0.70 0.03 202 6.40 7.43 

 

ar -- User specified radius or range of influence for subtractive clustering to generate three membership 

functions for each input 

 

 

Table 12: Trial 3 classification results for the six ANFIS’ 

ANFIS TP TN Accuracy (%) Sensitivity (%) Specificity (%) 

1 33 174 98.57 97.06 98.86 

2 28 175 96.67 100 96.15 

3 33 174 98.57 97.06 98.86 

4 35 172 98.57 92.11 100 

5 35 174 99.52 97.22 100 

6 35 173 99.05 94.59 100 

 

TP – True positive specific heartbeats being classified. These are the six heartbeat types corresponding to 

the six ANFIS’: normal ( N ), PVC (V ), APC ( A ), LBBB ( L ), RBBB ( R ), and paced ( P ) heartbeats. 

TN—True negative heartbeats without the specific heartbeat classified. These are represented through the 

six ANFIS’ by N , V , A , L , R , and P in Figure 23. 

 

 The average training RMSE for all three trials was calculated as 8.35%. The average training 

iterations calculated was about 405 iterations. The average run time to train each ANFIS coded in 

MATLAB for all trials was 2.83 seconds on a Windows 7 Intel Core i5 CPU running at 2.30 GHz. 
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 Table 13 shows the average accuracies, sensitivies, and specificites for trials 1, 2, and 3. The 

average accuracy from the three trials was 98.10%. The average sensitivity from the three trials was 

94.99%. The average specificity from the three trials was 98.87%.  

 

Table 13: Average accuracy, sensitivity, and specificity results for 3 trials for subtractive clustering 

preprocessed ANFIS 

Trial Average Accuracy (%) Average Sensitivity (%) Average Specificity (%) 

1 98.10 94.22 99.31 

2 97.70 94.42 98.32 

3 98.49 96.34 98.98 

 

 

5.2: Justification of Chosen Input Records 

 
 There are several justifications for the choice of ECG records for the ANFIS classifier. First 

justification is the different heart rates from patient to patient. This makes it especially difficult to 

differentiate heartbeats of the same type from patient to patient. Different orientations of probe placement 

relative to the heart in measuring the ECG signals are another factor in the choice of input records [20]. 

Performing a 12-lead ECG analysis from patient to patient is bound to expose a difference in heartbeats of 

the same type. Movement noise is another factor for the choice of input records. It was discussed in [20] 

as well as observed that the ECG records exhibited movement noise over the course of thirty minutes. 

This would cause a difference in heartbeats of the same type. 

 In observing these factors, this thesis emphasizes the comparison between the proposed ANFIS 

classifier under subtractive clustering, two ANN algorithms, and ANFIS under grid partitioning. And for 

this reason, the classifiers simulated are patient specific. Patient to patient tests would have to be retrained 

to make sure the classifier is optimized for a specific patient. This thesis does not address the immediate 

problem of classifying heartbeats from patient to patient. As of now the doctor would have to aid in the 

training in order to allow for an effective patient to patient classification. 
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 However, having classified six records of six different heartbeats proves the effectiveness of the 

ANFIS classifier. The proposed method discussed in Section 4.1 and the results discussed in Section 5.1 

show the ANFIS classifier can be comparable to an ANN and the ANFIS under grid partitioning. For 

future improvements in addition to being able to classify patient to patient effectively, see Chapter 6. 

5.3: Comparison to ANN 

 

 In comparing to the ANN, the same three trials as in Section 5.1 were performed. This means the 

same heartbeats were used for training, validating, and testing the classifiers. The ANN algorithms used 

for classification were the gradient descent backpropagation and Levenberg-Marquardt.  

  The ANN classifiers were tested through trial and error. One hidden layer was used, as it is was 

enough to perform classification. Hyperbolic tangent activation functions were chosen for the hidden 

neurons and one ouput neuron, as this type of output activation function has been proven effective for 

pattern recognition [26].  A logistic sigmoid has been considered to be more biologically realistic due to 

its range from ‘0’ to ‘1’, however, it runs into theoretical and experimental difficulties with certain types 

of computational problems. One of the difficulties is getting “stuck” during training. This is due to the 

fact that if a strongly-negative input is provided to the logistic-sigmoid, then its output values are near 

zero. A hyperbolic tangent function has strong negative inputs that will map to negative outputs.  

Additionally, only zero-valued inputs are mapped to near-zero outputs. These properties make the 

network less likely to get “stuck” during training [15]. The number of hidden neurons needed to be at 

least greater than seven (the number of inputs) for an effective classification. Both layers (hidden and 

output) have biases with corresponding weights that are updated. Figure 39 shows the neural network 

structure for both the gradient descent and Levenberg-Marquardt algorithms. From this figure, it can be 

shown that there are 56 weights and 8 biases that need to be updated. Initially the weights and biases are 

randomly set between -1 and 1.  
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Figure 39: Neural network structure for gradient descent and Levenberg-Marquardt algorithms 

 
 
 The gradient descent network was trained, validated, and tested for all three trials. Trial and error 

in an attempt to classify the six heartbeats was performed. It was found that a learning rate of one for all 

six ANFIS’ produced a reasonable training and validating result. An attempt to increase the performance 

was made by increasing the number of hidden neurons. The error curve reached the same convergence as 

when the hidden neuron count was seven. For this reason, the number of hidden neurons was kept at 

seven. The error curve of Figure 40 shows the performance result of the gradient descent algorithm for the 

training data of normal heartbeats N and all the heartbeats without the specific normal heartbeats N . All 

heartbeats were correctly classified when the same testing data from Section 5.1 was presented to the 

trained gradient descent network. 
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Figure 40: Trial 1 RMSE training and checking curves for the first ANFIS training and checking 

data for gradient descent. Convergence was reached at 566 iterations from overfitting (minimum 

checking RMSE reached). 

 
 
 Tables 14 and 15 shows the trial 1 training, checking, and classification results using the same 

trial 1 data used to train the six ANFIS’ in Section 5.1. Tables16 and 17 shows trial 2 training, checking, 

and classification results. Tables 18 and 19 shows trial 3 training, checking, and classification results. 

 

Table 14: Trial 1 training and checking results for the six ANFIS training and checking data for 

gradient descent 

ANFIS Training iterations Training RMSE (%) Checking RMSE (%) 

1 566 8.24 6.58 

2 114 22.54 31.74 

3 3584 7.95 5.67 

4 177 30.14 30.16 

5 188 25.18 24.67 

6 707 10.16 6.25 

 

 

Checking RMSE 

Training RMSE 
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Table 15: Trial 1 classification results for the six gradient descent neural networks (NN) 

NN TP TN Accuracy (%) Sensitivity (%) Specificity (%) 

1 35 175 100 100 100 

2 30 146 83.81 50.85 96.69 

3 31 175 98.10 100 97.77 

4 35 171 98.10 89.74 100 

5 32 171 96.67 88.89 98.28 

6 34 175 99.52 100.00 99.43 

 

TP -- Specific heartbeats being classified. These are the six heartbeat types corresponding to the six 

neural networks: normal ( N ), PVC (V ), APC ( A ), LBBB ( L ), RBBB ( R ), and paced ( P ) heartbeats. 

TN -- Heartbeats without the specific heartbeat classified. These are represented through the six neural 

networks by N , V , A , L , R , and P in Figure 23 (similar to the ANFIS’). 

 

Table 16: Trial 2 training and checking results for the six ANFIS training and checking data for 

gradient descent 

ANFIS Training iterations Training RMSE (%) Checking RMSE (%) 

1 314 25.34 28.26 

2 430 25.86 24.40 

3 659 15.90 13.76 

4 136 13.00 17.77 

5 338 12.19 20.80 

6 65 13.61 18.86 
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Table 17: Trial 2 classification results for the six gradient descent neural networks (NN) 

NN TP TN Accuracy (%) Sensitivity (%) Specificity (%) 

1 32 172 97.14 91.43 98.29 

2 16 169 88.10 72.73 89.89 

3 32 170 96.19 86.49 98.27 

4 33 167 95.24 80.49 98.82 

5 35 170 97.62 87.50 100 

6 32 173 97.62 94.12 98.30 

 

TP -- Specific heartbeats being classified. These are the six heartbeat types corresponding to the six 

neural networks: normal ( N ), PVC (V ), APC ( A ), LBBB ( L ), RBBB ( R ), and paced ( P ) heartbeats. 

TN -- Heartbeats without the specific heartbeat classified. These are represented through the six neural 

networks by N , V , A , L , R , and P in Figure 23 (similar to the ANFIS’). 

 

Table 18: Trial 3 training and checking results for the six ANFIS training and checking data for 

gradient descent 

ANFIS Training iterations Training RMSE (%) Checking RMSE (%) 

1 82 17.42 14.31 

2 239 23.71 22.43 

3 1358 12.23 2.49 

4 1551 6.90 8.57 

5 263 27.82 29.03 

6 1038 5.93 6.10 
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Table 19: Trial 3 classification results for the six gradient descent neural networks (NN) 

NN TP TN Accuracy (%) Sensitivity (%) Specificity (%) 

1 34 167 95.71 80.95 99.40 

2 13 175 89.52 100 88.83 

3 33 175 99.05 100 98.87 

4 35 172 98.57 92.11 100.00 

5 31 159 90.48 65.96 97.55 

6 35 174 99.52 97.22 100.00 

 

TP -- Specific heartbeats being classified. These are the six heartbeat types corresponding to the six 

neural networks: normal ( N ), PVC (V ), APC ( A ), LBBB ( L ), RBBB ( R ), and paced ( P ) heartbeats. 

TN -- Heartbeats without the specific heartbeat classified. These are represented through the six neural 

networks by N , V , A , L , R , and P in Figure 23 (similar to the ANFIS’). 

 

 The averge training RMSE was calculated from all three trials as 16.90%. The average training 

iterations calculated was about 656 iterations. The average run time to train each gradient descent ANN 

coded in MATLAB for all trials was 1.44 seconds on a Windows 7 Intel Core i5 CPU running at 2.30 

GHz. 

 Table 20 shows the average classification results for the three trials under the gradient descent. 

The average accuracy from the three trials was 95.61%. The average sensitivity from the three trials was 

87.69%. The average specificity from the three trials was 97.80%. 

 

Table 20: Average accuracy, sensitivity, and specificity results for 3 trials for gradient descent 

Trial Average Accuracy (%) Average Sensitivity (%) Average Specificity (%) 

1 96.03 88.25 98.69 

2 95.32 85.46 97.26 

3 95.48 89.37 97.44 
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 A Levenberg-Marquardt neural network, as discussed in Section 3.5, network was then trained, 

validated, and tested. Trial and error in an attempt to classify the six heartbeats was performed. The error 

curve of Figure 41 shows the performance result of the Levenberg-Marquardt algorithm for the training 

data of normal heartbeats N and all the heartbeats without the specific normal heartbeats N . All 

heartbeats were correctly classified when the same testing data from Section 5.1 was presented to the 

trained Levenberg-Marquardt network. Note several of the trained neural networks needed to be trained at 

a lower learning rate than a learning rate of one. However, most trained neural networks were trained at a 

learning rate of one. 

 

 

Figure 41: Trial 1 RMSE training and checking curves for the first ANFIS training and checking 

data for Levenberg-Marquardt. Convergence was reached at 13 iterations from overfitting 

(minimum checking RMSE reached). 

 

Training RMSE 

Checking RMSE 
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 Tables 21 and 22 shows the trial 1 training, checking, and classification results using the same 

trial 1 data used to train the six ANFIS’ in Section 5.1. Tables 23 and 24 shows trial 2 training, checking, 

and classification results. Tables 25 and 26 shows trial 3 training, checking, and classification results. 

 

Table 21: Trial 1 training and checking results for the six ANFIS training and checking data for 

Levenberg-Marquardt 

ANFIS 

Training 

iterations 

Training RMSE 

(%) 

Checking RMSE 

(%) 

1 13 0.65 0.54 

2 10 12.20 33.02 

3 13 5.83 10.53 

4 13 13.11 33.53 

5 21 1.62 4.50 

6 13 0.12 0.12 

 

Table 22: Trial 1 classification results for the six Levenberg-Marquardt neural networks (NN) 

NN TP TN Accuracy (%) Sensitivity (%) Specificity (%) 

1 35 175 100 100 100 

2 30 171 95.71 88.24 97.16 

3 31 175 98.10 100 97.77 

4 30 171 95.71 88.24 97.16 

5 35 173 99.05 94.59 100 

6 35 173 99.05 94.59 100 

 

TP -- Specific heartbeats being classified. These are the six heartbeat types corresponding to the six 

neural networks: normal ( N ), PVC (V ), APC ( A ), LBBB ( L ), RBBB ( R ), and paced ( P ) heartbeats. 

TN -- Heartbeats without the specific heartbeat classified. These are represented through the six neural 

networks by N , V , A , L , R , and P in Figure 23 (similar to the ANFIS’). 
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Table 23: Trial 2 training and checking results for the six ANFIS training and checking data for 

Levenberg-Marquardt 

ANFIS Training iterations Training RMSE (%) Checking RMSE (%) 

1 14 7.89 18.78 

2 19 0.040 18.29 

3 22 10.27 14.20 

4 18 0.039 12.94 

5 17 0.078 10.10 

6 15 0.066 15.11 

 

Table 24: Trial 2 classification results for the six Levenberg-Marquardt neural networks (NN) 

NN TP TN Accuracy (%) Sensitivity (%) Specificity (%) 

1 33 175 99.05 100 98.87 

2 30 167 93.81 78.95 97.09 

3 31 171 96.19 88.57 97.71 

4 32 173 97.62 94.12 98.30 

5 35 174 99.52 97.22 100 

6 35 175 100.00 100.00 100 

 

TP -- Specific heartbeats being classified. These are the six heartbeat types corresponding to the six 

neural networks: normal ( N ), PVC (V ), APC ( A ), LBBB ( L ), RBBB ( R ), and paced ( P ) heartbeats. 

TN -- Heartbeats without the specific heartbeat classified. These are represented through the six neural 

networks by N , V , A , L , R , and P in Figure 23 (similar to the ANFIS’). 

 

Table 25: Trial 3 training and checking results for the six ANFIS training and checking data for 

Levenberg-Marquardt 

ANFIS Training iterations Training RMSE (%) Checking RMSE (%) 

1 15 0.060 12.91 

2 21 0.065 0.43 

3 21 5.51 8.07 

4 16 0.074 0.074 

5 20 0.021 0.021 

6 12 0.16 0.16 
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Table 26: Trial 3 classification results for the six Levenberg-Marquardt neural networks (NN) 

NN TP TN Accuracy (%) Sensitivity (%) Specificity (%) 

1 35 174 99.52 97.22 100 

2 28 175 96.67 100 96.15 

3 34 173 98.57 94.44 99.43 

4 35 173 99.05 94.59 100 

5 35 172 98.57 92.11 100 

6 35 175 100 100 100 

 

TP -- Specific heartbeats being classified. These are the six heartbeat types corresponding to the six 

neural networks: normal ( N ), PVC (V ), APC ( A ), LBBB ( L ), RBBB ( R ), and paced ( P ) heartbeats. 

TN -- Heartbeats without the specific heartbeat classified. These are represented through the six neural 

networks by N , V , A , L , R , and P in Figure 23 (similar to the ANFIS’). 

 

The averge training RMSE was calculated from all three trials as 3.21%. The average training 

iterations calculated was about 16 iterations. The average run time to train each Levenberg-Marquardt 

ANN coded in MATLAB for all trials was 702 milliseconds on a Windows 7 Intel Core i5 CPU running 

at 2.30 GHz. 

 Table 27 shows the average classification results for the three trials under the Levenberg-

Marquardt algorithm. The average accuracy from the three trials was 97.98%. The average sensitivity 

from the three trials was 94.09%. The average specificity from the three trials was 98.81%. 

 

Table 27: Average accuracy, sensitivity, and specificity results for 3 trials for Levenberg-

Marquardt 

Trial Average Accuracy (%) Average Sensitivity (%) Average Specificity (%) 

1 97.94 94.28 98.68 

2 97.43 91.77 98.62 

3 98.57 96.23 99.12 
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5.4: Comparison to ANFIS under Grid Partitioning 

 
 The six ANFIS’ from Section 5.1 was then trained, validated, and tested under grid partitioning. 

As discussed in Section 4.3, two triangle membership functions were chosen for each of the six ANFIS’. 

The triangle membership function was described in Section 2.5 under equation (8). The same three trials 

of data used in Section 5.1 are used in this section. Figure 42 shows the training and checking RMSE 

curves of the first ANFIS for the first trial. Figure 43 shows the initial FIS generated from grid 

partitioning. The range of each input is determined by minimum and maximum input feature in their 

corresponding input feature range. The figure shows first (solid function) and second membership 

functions (dashed function) linguistically as ‘low’ and ‘high’ partitions respectively for each input feature. 

Figure 44 shows the FIS after training the first ANFIS.  

 

 

Figure 42: Trial 1 RMSE training and checking curves for the first ANFIS under two membership 

functions grid partitioned for each input for 100 iterations. Initial step size is 0.01. Convergence 

was reached at 33 iterations (minimum checking error before overfitting). 

Checking RMSE 

Training RMSE 



97 
 

 

Figure 43: Trial 1 initial grid partition FIS for the first ANFIS. The solid dark function represents 

the first membership function. The dashed function represents the second membership function.  
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Figure 44: Trial 1 adapted FIS for the first ANFIS. The solid dark function represents the first 

membership function. The dashed function represents the second membership function.  
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 An example of the first input 1 (QRS Interval) membership function parameters and a set of 

consequent parameters before and after training are shown in Figure 45. 

 

Antecedent Parameters: 

}361.0,0333.0,294.0{},,{ cba  

 

}339.0,0117.0,294.0{},,{ cba  

Consequent Parameters: 

}0,0,0,0,0,0,0,0{},,,,,,,{ 171615141312111 rqqqqqqq  

 

}51.0,50.1,36.3,04.0,22.9,11.1,92.9,96.5{},,,,,,,{ 171615141312111 rqqqqqqq  

Figure 45: Antecedent and consequent parameters before and after training for grid partion FIS 

 
 

Due to both the exponential complexity of grid partitioning for seven inputs and the run time to 

train each ANFIS, the initial step size remained at 0.01. Tables 28 and 29 shows the first trial training, 

checking, and classification results for the six ANFIS’ under grid partitioning two triangle membership 

functions.  

 

Table 28: Trial 1 training and checking results for the six grid partitioned ANFIS’ 

ANFIS Training iterations Training RMSE (%) Checking RMSE (%) 

1 33 1.30 12.13 

2 18 8.05 39.46 

3 15 3.51 18.46 

4 16 10.05 82.80 

5 42 7.55 93.79 

6 39 1.33 39.68 
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Table 29: Trial 1 classification results for the six grid partitioned ANFIS’ 

ANFIS TP TN Accuracy (%) Sensitivity (%) Specificity (%) 

1 35 173 99.05 94.59 100 

2 32 140 81.90 47.76 97.90 

3 31 172 96.67 91.18 97.73 

4 22 164 88.57 66.67 92.66 

5 35 169 97.14 85.37 100 

6 30 175 97.62 100 97 

 

TP – True positive specific heartbeats being classified. These are the six heartbeat types corresponding to 

the six ANFIS’: normal ( N ), PVC (V ), APC ( A ), LBBB ( L ), RBBB ( R ), and paced ( P ) heartbeats. 

TN—True negative heartbeats without the specific heartbeat classified. These are represented through the 

six ANFIS’ by N , V , A , L , R , and P in Figure 23. 

 

 From Tables 28 it can be shown there is a high checking RMSE at convergence compared to the 

training and checking results in previous algorithms. Table 29 shows two classification results that are 

noteworthy for discussion. Specifically, the second and fourth ANFIS resulted in a poor classification. 

The second ANFIS classified between PVCs and the other five heartbeats without the PVC heartbeats. 

The fourth ANFIS classified between LBBBs and the other five heartbeats without the LBBB heartbeats. 

As discussed in Section 5.1 under the same data used to train, validate, and test the six ANFIS’ that the 

PVCs are being misclassified as LBBBs as well as the LBBBs being misclassified as PVCs. The second 

and third trials show similar results. Tables 30 and 31 shows the second trial training, checking, and 

classification results. Tables 32 and 33 shows the third trial training, checking, and classification results. 
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Table 30: Trial 2 training and checking results for the six grid partitioned ANFIS’ 

ANFIS Training iterations Training RMSE (%) Checking RMSE (%) 

1 17 4.65 52.86 

2 100 2.56 58.84 

3 87 3.71 31.19 

4 12 1.89 42.48 

5 43 1.41 33.95 

6 39 1.17 27.97 

 

 

Table 31: Trial 2 classification results for the six grid partitioned ANFIS’ 

ANFIS TP TN Accuracy (%) Sensitivity (%) Specificity (%) 

1 35 162 93.81 72.92 100 

2 27 165 91.43 72.97 95.38 

3 28 168 93.33 80.00 96.00 

4 32 169 95.71 84.21 98.26 

5 35 170 97.62 87.50 100 

6 34 172 98.10 91.89 99.42 

 

TP – True positive specific heartbeats being classified. These are the six heartbeat types corresponding to 

the six ANFIS’: normal ( N ), PVC (V ), APC ( A ), LBBB ( L ), RBBB ( R ), and paced ( P ) heartbeats. 

TN—True negative heartbeats without the specific heartbeat classified. These are represented through the 

six ANFIS’ by N , V , A , L , R , and P in Figure 23. 

 

Table 32: Trial 3 training and checking results for the six grid partitioned ANFIS’ 

ANFIS Training iterations Training RMSE (%) Checking RMSE (%) 

1 1 3.80 77.11 

2 1 5.10 47.79 

3 27 3.44 33.78 

4 1 5.54 51.31 

5 99 4.10 67.92 

6 78 0.28 9.63 
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Table 33: Trial 3 classification results for the six grid partitioned ANFIS’ 

ANFIS TP TN Accuracy (%) Sensitivity (%) Specificity (%) 

1 35 170 97.62 87.50 100 

2 27 173 95.24 93.10 95.58 

3 31 165 93.33 75.61 97.63 

4 32 172 97.14 91.43 98.29 

5 35 155 90.48 63.64 100 

6 35 173 99.05 94.59 100 

 

TP – True positive specific heartbeats being classified. These are the six heartbeat types corresponding to 

the six ANFIS’: normal ( N ), PVC (V ), APC ( A ), LBBB ( L ), RBBB ( R ), and paced ( P ) heartbeats. 

TN—True negative heartbeats without the specific heartbeat classified. These are represented through the 

six ANFIS’ by N , V , A , L , R , and P in Figure 23. 

  

The average training RMSE for all three trials was calculated as 3.86%. The average training 

iterations calculated was about 37 iterations. The average run time to train each ANFIS coded in 

MATLAB for all trials was 15.27 minutes on a Windows 7 Intel Core i5 CPU running at 2.30 GHz. 

 Table 34 shows the average accuracies, sensitivies, and specificites for trials 1, 2, and 3. The 

average accuracy from the three trials was 94.59%. The average sensitivity from the three trials was 

82.64%. The average specificity from the three trials was 97.90%.  

 

Table 34: Average accuracy, sensitivity, and specificity results for 3 trials for grid partitioned 

ANFIS 

Trial Average Accuracy (%) Average Sensitivity (%) Average Specificity (%) 

1 93.49 80.93 97.58 

2 95.24 83.32 97.81 

3 95.05 83.67 98.30 
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Three other types of membership functions were then performed for grid partitioning the seven 

inputs. These functions were gaussian, gaussian bell, and trapezoid. These functions were described in 

Section 2.5 under equations (6, 7, and 9). Again two membership functions were performed for each input 

in training, validating, and testing the six ANFIS’. The average training RMSE, average training 

iterations, and average run time was similar to the grid partitioned ANFIS’ under the triangle membership 

functions. Table 35 shows the average accuracies, sensitivies, and specificites for three trials for each of 

type of membership function. Due to similar average accuracies, sensitivities, and specificies for the 

different membership function types, it can be concluded that there is no particular effective membership 

function type. However, clearly the trapezoid membership function type performed at a slightly higher 

average accuracy due to having the highest number of antecedent parameters (four parameters). 

 

Table 35: Different membership function type average accuracy, sensitivity, and specificity results 

for 3 trials for grid partitioned ANFIS 

Membership Function Average Accuracy (%) Average Sensitivity (%) Average Specificity (%) 

Triangle 94.59 82.64 97.90 

Gaussian 94.60 85.79 96.99 

Gaussian Bell 94.44 83.58 97.29 

Trapezoid 94.84 88.14 97.23 
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CHAPTER 6: CONCLUSIONS AND FUTURE WORKS 

 
The ANFIS had the advantage of integrating the best features of fuzzy systems and neural 

networks in ECG classificiation. The fuzzy system was able to represent prior knowledge into a set of 

constraints to reduce the optimization search space. Consequently, fuzzy systems provided smoothness 

from the interpolation among the rules. The neural network was able to adapt through backpropagation to 

automate the fuzzy parametric tuning. Table 36 shows the classification results of the four algorithms 

performed for three trials under the same data used to train, validate, and test for randomized ECG record 

selection and randomized heartbeats. ANFIS under subtractive clustering has a higher performance in 

terms of average accuracy, average sensitivity, and average specificity. 

 

Table 36: Average accuracy, sensitivity, and specificity results for 3 trials for several algorithms 

Algorithm Average Accuracy (%) Average Sensitivity (%) Average Specificity (%) 

ANFIS under subtractive clustering 98.10 94.99 98.87 

Gradient Descent ANN 95.61 87.69 97.80 

Levenberg-Marquardt ANN 97.98 94.09 98.81 

ANFIS under grid partitioning (Triangle) 94.59 82.64 97.90 

 

 

The ANFIS under subtractive clustering converged faster than the gradient descent ANN. 

However, the Levenberg-Marquardt ANN convergence was much faster even though the computational 

requirements are much higher per iteration. The higher convergence speed was because the algorithm is 

comprised of both the Guass-Newton method and gradient descent. As discussed in Section 3.5, Gauss-

Newton method converges rapidly near a local or global minimum, but may also diverge. The gradient 

descent assures convergence through proper selection of the step size parameter but convergence is slow 

[22]. 

The average run time of the ANFIS under subtractive clustering was reasonable compared to the 

the two ANN algorithms even though it was performing two algorithms: subtractive clustering and 
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ANFIS. Both made use of LSE while the ANFIS performed an additional algorithm being the gradient 

descent. It is clear that the ANFIS under grid partititoning underperforms as far as convergence speed. 

ANFIS has strong computational complexity restrictions. One way to reduce the complexity is 

integrating “don’t care” values in rules. This means an elimination of a connection is done between the 

fuzzification layer and the rule layer. It was also observed that because of large number of rules in grid 

partitioning, there was an increase in oscillations particularly for the checking error. 

In comparing the performance of classifiers described in the literature review of Chapter 3, the 

ANFIS was shown to be an effective classifier. In fact, the method used to create a multiclass SVM in 

[10] is related to the proposed method of Figure 23 and Section 4.1. This is because both the ANFIS and 

SVM are binary classifiers. 

 In terms of updating the antecedent parameters, further speedup learning is possible using 

variants of the gradient method or other optimization techniques. Several include the conjugate gradient 

descent, second-order backpropagation, quick propagation, etc. In terms of updating the consequent 

parameters, further speedup learning is possible by implementing the Widrow-Hoff Least-Mean-Square 

algorithm. The algorithm is computationally efficient by parallel hardware implementation. However, it 

has been proven to converge slower than the LSE [15]. 

 Future work on improving the ANFIS classifier could be done by analyzing the rules. Having an 

advantage of tuning rules over black box systems such as ANNs, the user could measure the degree of 

fulfillment for several rules. This was shown in Figure 1 and done in [7]. This could bring about a more 

effective FIS for evaluating test data. 

 Another possible future work is expanding the range of input features. Temporal and amplitude 

features were enough to bring about reasonable results. However, the analysis of classification could be 

expanded by introducing frequency domain features. In particular, it has been shown that discrete wavelet 

transform (DWT) or Lyapunov exponents could extract coefficients that effectively discriminate between 

different heartbeats [10], [38]. 
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APPENDICES 

APPENDIX A – List of Acronyms 

 
ANN – Artificial Neural Network 

ECG or EKG – Electrocardiograph(y) 

MIT-BIH – Massachusetts Institute of Technology-Beth Israel Hospital 

WFDB – Waveform Database Toolbox 

FIS – Fuzzy Inference System 

ANFIS – Adaptive Neuro-Fuzzy Inference System 

SVM – Support Vector Machine 

LMS – Least Mean Square(s) 

LSE – Least Squares Estimator 

RBF – Radial Basis Function  

MLP – Multi-layer Perceptron 

SWT – Stationary Wavelet Transform 

DWT – Discrete Wavelet Transform 

FCM – Fuzzy C-means Algorithm 

VCG – Vectorcardiography 

EMG – Electromyography  

EEG – Electroencephalography 

CI – Computational Intelligence 

PVC – Premature Ventricular Contraction 

APC – Atrial Premature Ventricular Contraction 

LBBB – Left Bundle Branch Block 

RBBB – Right Bundle Branch Block 
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APPENDIX B – MATLAB Code 
 

Plot ECG Signal from MIT-BIH Arrhythmia Database with Annotations: 
 
function [yt, awaves, a_type,num] = WFDB_QRS(filename, num); 
% This script uses the WFDB (Waveform Database) Toolbox from Physionet 

  
% Input paramters (arguments) are: 
%   filename from MIT-Arrhythmia database 

  
% Output values returned are: 
%   Annotations for input layer of classifier 

  
% Revised: 10/18/14 - by Brad Funsten 
%          11/10/14 - Switched input type from annotation file to ecgpuwave 
%          type file for not only normal beats, but abnormal as well. 
%          1/6/15 - Integrated script as a function 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% clear all; 
% close all; 
% clc; 
num = 1; 
fs = 360; % sample rate for MIT-BIH Arrhytmia Database 
samples = 646400; % samples for 30 minutes 

  
%filename = 'mitdb/207'; 
[tm, signal]=rdsamp(filename, 1, samples); % first signal--double precision 
                                           % (64 bits) 
%[tm, signal]=rdsamp(filename,[2], samples); % second signal-- 
                                           %double precision (64 bits) 
%[tm, signal]=rdsamp(filename,[],[],[],2); % single precision (32 bits) 

  
signal = signal(:,1); 

  
% Time axis 
horizontal_axis = 0:1:size(signal,2) - 1; 
time = horizontal_axis .* 1 / fs; 

  
% LPF of signal  
[zt, num] = l_or_hpf(signal, 30, 3, fs, time, 'low', num); 

  
% HPF of signal to detrend (remove baseline shift) 
[yt, num] = l_or_hpf(zt, 1, 3, fs, time, 'high', num); 

  
plot(yt); 
num = num + 1; 
grid on; 
xlabel('Samples'); 
ylabel('Amplitude (mV)'); 
title(filename); 

  
% r peak 
[ann,type,~,~]=rdann(filename,'atr'); 
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for k = 1 : size(ann,1) 
  if ann(k) <= samples 
      stop = k; 
  end 
end 

  
ann = ann(1 : stop); 
type = type(1 : stop); 
hold on; 
plot(ann, yt(ann),'rv','MarkerFaceColor','y'); 

  
% Type of beat 
text(ann, yt(ann) + 0.2, type); 

  
% Extract PQRST information: 
% Create qrs file through sqrs function 
sqrs(filename, 'qrs'); 
% Create test file through ecgpuwave function 
ecgpuwave(filename,'test',[],[],'qrs'); 

  
% p wave 
pwaves=rdann(filename,'test',[],[],[],'p'); 

  
for k = 1 : size(pwaves,1) 
  if pwaves(k) <= samples 
      stop = k; 
  end 
end 

  
pwaves = pwaves(1 : stop); 
hold on; 
plot(pwaves, yt(pwaves), 'ro', 'MarkerFaceColor', 'b'); 

  
% t wave 
[twaves,t_type,t_subtype,t_chan,t_num]=rdann(filename,'test',[],[],[],'t'); 

  
for k = 1 : size(twaves,1) 
  if twaves(k) <= samples 
      stop = k; 
  end 
end 

  
twaves = twaves(1 : stop); 
hold on; 
plot(twaves, yt(twaves),'bv', 'MarkerFaceColor', 'c'); 

  
% onset 
[onset,o_type,o_subtype,o_chan,o_num]=rdann(filename,'test',[],[],[],'('); 

  
for k = 1 : size(onset,1) 
  if onset(k) <= samples 
      stop = k; 
  end 
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end 

  
onset = onset(1 : stop); 
hold on; 
plot(onset, yt(onset),'rs','MarkerFaceColor','k'); 

  
% offset 
[offset,f_type,f_subtype,f_chan,f_num]=rdann(filename,'test',[],[],[],')'); 

  
for k = 1 : size(offset,1) 
  if offset(k) <= samples 
      stop = k; 
  end 
end 

  
offset = offset(1 : stop); 

  
hold on; 
plot(offset, yt(offset),'yo', 'MarkerFaceColor', 'm'); 

  

  
% beat type 
[beat,b_type,b_subtype,b_chan,b_num]=rdann(filename,'test',[],[],[],'N'); 

  
for k = 1 : size(beat,1) 
  if beat(k) <= samples 
      stop = k; 
  end 
end 

  
beat = beat(1 : stop); 

  
hold on; 
plot(beat, yt(beat),'y^', 'MarkerFaceColor', 'b'); 

  
% Overall legend 
legend('ECG Signal', 'R','P','T', 'Onset', 'Offset','beat'); 

  
% Input layer 
[awaves,a_type,a_subtype,a_chan,a_num]=rdann(filename,'test',[],[],[]); 

  
% Replace annotation type characters with ecgpuwave type (a_type) 
% characters 
ann(1) = []; 
type(1) = []; 

  
j = 1; 
for i = 1 : length(a_type) 

     
    if j == length(ann) 
      break; 
    end 

           
    if (a_type(i) == 'N') 
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      while(ann(j) < (awaves(i) - 100)) 
          j = j + 1;   
          if j == length(ann) 
              break; 
          end 
      end   

       
      a_type(i) = type(j); 
    end      
end 
awaves = awaves(awaves <= 646400); 
a_type = a_type(1:length(awaves)); 
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ECG Input Layer: 
 
function [inputN, inputV, inputA, inputL, inputR, inputP, num] = 

input_layer_NVALRP(yt, awaves, a_type, num); 
% This script makes use of WFDB_QRS script and determines the input layer 
% to the Artificial Neuro-Fuzzy Inference 

  
% Input paramters (arguments) are: 
%   MIT-BIH ECG signal with annotation information 

  
% Output values returned are: 
%   Input layer for ANFIS 

  
% Revised: 11/9/14 - by Brad Funsten 
%           3/27/15 - Added all six heartbeats to extract input features. 
%           There are 15 input features extracted. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
num = 2; 
snum = 6; 
%close all; 

  
% Delete the first heart beat 
lengthSig = length(a_type); 
for i = 1 : lengthSig 
    if a_type(i) == 'N' || a_type(i) == 'V' || a_type(i) == 'A' ||... 
            a_type(i) == 'L' || a_type(i) == 'R' || a_type(i) == '/' 
        a_type(i) = []; 
        awaves(i) = []; 
        break; 
    end 
end 

  
% Delete the last heart beat 
lengthSig = length(a_type); 
for i = lengthSig:-1:1 
    if a_type(i) == 'N' || a_type(i) == 'V' || a_type(i) == 'A' ||... 
            a_type(i) == 'L' || a_type(i) == 'R' || a_type(i) == '/' 
        a_type(i) = []; 
        awaves(i) = []; 
        break; 
    end 
end 

  
%% QRS interval 
figure(num); num = num + 1; 

  
% QRS interval for normal beats 
if find(a_type == 'N') 
N = find(a_type == 'N'); 
QN = N - 1; 
SN = N + 1; 
QN_sample = awaves(QN); 
SN_sample = awaves(SN); 
QRS_N = (SN_sample - QN_sample) ./ 360; 
subplot(snum,1,1); 
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% QRSi=.04:.008:.12; 
% bar(QRSi,histc(QRS_N,QRSi),'hist'); 
hist(QRS_N); 
grid on; 
title('Histogram of Normal QRS intervals'); 
ylabel('# of bins'); 
xlabel('seconds'); 
end 

  
% QRS interval for PVC beats 
if find(a_type == 'V') 
V = find(a_type == 'V'); 
QV = V - 1; 
SV = V + 1; 
QV_sample = awaves(QV); 
SV_sample = awaves(SV); 
QRS_V = (SV_sample - QV_sample) ./ 360; 
subplot(snum,1,2); 
%QRSi=.04:.008:.12; 
%bar(QRSi,histc(QRS_R,QRSi),'hist'); 
hist(QRS_V); 
grid on; 
title('Histogram of PVC QRS intervals'); 
ylabel('# of bins'); 
xlabel('seconds'); 
end 

  
% QRS interval for APC beats 
if find(a_type == 'A') 
A = find(a_type == 'A'); 
QA = A - 1; 
SA = A + 1; 
QA_sample = awaves(QA); 
SA_sample = awaves(SA); 
QRS_A = (SA_sample - QA_sample) ./ 360; 
subplot(snum,1,3); 
% bar(QRSi,histc(QRS_A,QRSi),'hist'); 
hist(QRS_A); 
grid on; 
title('Histogram of APC QRS intervals'); 
ylabel('# of bins'); 
xlabel('seconds'); 
end 

  
% QRS interval for LBBB beats 
if find(a_type == 'L') 
L = find(a_type == 'L'); 
QL = L - 1; 
SL = L + 1; 
QL_sample = awaves(QL); 
SL_sample = awaves(SL); 
QRS_L = (SL_sample - QL_sample) ./ 360; 
subplot(snum,1,4); 
%bar(QRSi,histc(QRS_L,QRSi),'hist'); 
hist(QRS_L); 
grid on; 
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title('Histogram of LBBB QRS intervals'); 
ylabel('# of bins'); 
xlabel('seconds'); 
end 

  
% QRS interval for RBBB beats 
if find(a_type == 'R') 
R = find(a_type == 'R'); 
QR = R - 1; 
SR = R + 1; 
QR_sample = awaves(QR); 
SR_sample = awaves(SR); 
QRS_R = (SR_sample - QR_sample) ./ 360; 
subplot(snum,1,5); 
%bar(QRSi,histc(QRS_R,QRSi),'hist'); 
hist(QRS_R); 
grid on; 
title('Histogram of RBBB QRS intervals'); 
ylabel('# of bins'); 
xlabel('seconds'); 
end 

  
% QRS interval for Paced beats 
if find(a_type == '/') 
P = find(a_type == '/'); 
QP = P - 1; 
SP = P + 1; 
QP_sample = awaves(QP); 
SP_sample = awaves(SP); 
QRS_R = (SP_sample - QP_sample) ./ 360; 
subplot(snum,1,6); 
%bar(QRSi,histc(QRS_R,QRSi),'hist'); 
hist(QRS_R); 
grid on; 
title('Histogram of Paced QRS intervals'); 
ylabel('# of bins'); 
xlabel('seconds'); 
end 

  
%% PR interval (P wave onset to R wave onset (Q onset)) 
figure(num); num = num + 1; 

  
% Normal beat PR interval 
if find(a_type == 'N') 
PNO = N - 4; 
PRN = (awaves(QN) - awaves(PNO)) ./ 360; 
subplot(snum,1,1); 
% PRi=0:.05:.5; 
% bar(PRi,histc(PRN,PRi),'hist'); 
hist(PRN); 
grid on; 
title('Histogram of Normal PR intervals'); 
ylabel('# of bins'); 
xlabel('seconds'); 
end 
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% PVC beat PR interval 
if find(a_type == 'V') 
PVO = V - 4; 
PRV = (awaves(QV) - awaves(PVO)) ./ 360; 
subplot(snum,1,2); 
% bar(PRi,histc(PRV,PRi),'hist'); 
hist(PRV); 
grid on; 
title('Histogram of PVC PR intervals'); 
ylabel('# of bins'); 
xlabel('seconds'); 
end 

  
% APC beat PR interval 
if find(a_type == 'A') 
PAO = A - 4; 
PRA = (awaves(QA) - awaves(PAO)) ./ 360; 
subplot(snum,1,3); 
%bar(PRi,histc(PRA,PRi),'hist'); 
hist(PRA); 
grid on; 
title('Histogram of APC PR intervals'); 
ylabel('# of bins'); 
xlabel('seconds'); 
end 

  
% LBBB beat PR interval 
if find(a_type == 'L') 
PLO = L - 4; 
PRL = (awaves(QL) - awaves(PLO)) ./ 360; 
subplot(snum,1,4); 
% PRi=0:.05:.5; 
% bar(PRi,histc(PRL,PRi),'hist'); 
hist(PRL); 
grid on; 
title('Histogram of LBBB PR intervals'); 
ylabel('# of bins'); 
xlabel('seconds'); 
end 

  
% RBBB beat PR interval 
if find(a_type == 'R') 
PRO = R - 4; 
PRR = (awaves(QR) - awaves(PRO)) ./ 360; 
subplot(snum,1,5); 
% PRi=0:.05:.5; 
% bar(PRi,histc(PRR,PRi),'hist'); 
hist(PRR); 
grid on; 
title('Histogram of RBBB PR intervals'); 
ylabel('# of bins'); 
xlabel('seconds'); 
end 

  
% Paced beat PR interval 
if find(a_type == '/') 
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PPO = P - 4; 
PRP = (awaves(QP) - awaves(PPO)) ./ 360; 
subplot(snum,1,6); 
% PRi=0:.05:.5; 
% bar(PRi,histc(PRP,PRi),'hist'); 
hist(PRP); 
grid on; 
title('Histogram of Paced PR intervals'); 
ylabel('# of bins'); 
xlabel('seconds'); 
end 

  
%% PR segment (P wave offset to R wave onset (Q onset)) 
figure(num); num = num + 1; 

  
% Normal beat PR interval 
if find(a_type == 'N') 
PNF = N - 2; 
PRN_seg = (awaves(QN) - awaves(PNF)) ./ 360; 
subplot(snum,1,1); 
% PR_seg_i=0:.02:.2; 
% bar(PR_seg_i,histc(PRN_seg,PR_seg_i),'hist'); 
hist(PRN_seg); 
grid on; 
title('Histogram of Normal PR segments'); 
ylabel('# of bins'); 
xlabel('seconds'); 
end 

  
% PVC beat PR interval 
if find(a_type == 'V') 
PVF = V - 2; 
PRV_seg = (awaves(QV) - awaves(PVF)) ./ 360; 
subplot(snum,1,2); 
% bar(PR_seg_i,histc(PRV_seg,PR_seg_i),'hist'); 
hist(PRV_seg); 
grid on; 
title('Histogram of PVC PP segments'); 
ylabel('# of bins'); 
xlabel('seconds'); 
end 

  
% APC beat PR interval 
if find(a_type == 'A') 
PAF = A - 2; 
PRA_seg = (awaves(QA) - awaves(PAF)) ./ 360; 
subplot(snum,1,3); 
%bar(PR_seg_i,histc(PRA_seg,PR_seg_i),'hist'); 
hist(PRA_seg); 
grid on; 
title('Histogram of APC PR segments'); 
ylabel('# of bins'); 
xlabel('seconds'); 
end 

  
% LBBB beat PR interval 
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if find(a_type == 'L') 
PLF = L - 2; 
PRL_seg = (awaves(QL) - awaves(PLF)) ./ 360; 
subplot(snum,1,4); 
% PR_seg_i=0:.02:.2; 
% bar(PR_seg_i,histc(PRL_seg,PR_seg_i),'hist'); 
hist(PRL_seg); 
grid on; 
title('Histogram of LBBB PR segments'); 
ylabel('# of bins'); 
xlabel('seconds'); 
end 

  
% RBBB beat PR interval 
if find(a_type == 'R') 
PRF = R - 2; 
PRR_seg = (awaves(QR) - awaves(PRF)) ./ 360; 
subplot(snum,1,5); 
% PR_seg_i=0:.02:.2; 
% bar(PR_seg_i,histc(PRR_seg,PR_seg_i),'hist'); 
hist(PRR_seg); 
grid on; 
title('Histogram of RBBB PR segments'); 
ylabel('# of bins'); 
xlabel('seconds'); 
end 

  
% Paced beat PR interval 
if find(a_type == '/') 
PPF = P - 2; 
PRP_seg = (awaves(QP) - awaves(PPF)) ./ 360; 
subplot(snum,1,6); 
% PR_seg_i=0:.02:.2; 
% bar(PR_seg_i,histc(PRP_seg,PR_seg_i),'hist'); 
hist(PRP_seg); 
grid on; 
title('Histogram of Paced PP segments'); 
ylabel('# of bins'); 
xlabel('seconds'); 
end 

  

  
%% P wave 

  
figure(num); num = num + 1; 

  
% Normal beat P wave 
if find(a_type == 'N') 
PN_sample = (awaves(PNF) - awaves(PNO)) ./ 360; 
subplot(snum,1,1); 
% P_sample_i=0:.035:.35; 
% bar(P_sample_i,histc(PN_sample,P_sample_i),'hist'); 
hist(PN_sample); 
grid on; 
title('Histogram of Normal P wave intervals'); 
ylabel('# of bins'); 
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xlabel('seconds'); 
end 

  
% PVC beat PP interval 
if find(a_type == 'V') 
PV_sample = (awaves(PVF) - awaves(PVO)) ./ 360; 
subplot(snum,1,2); 
% bar(P_sample_i,histc(PV_sample,P_sample_i),'hist'); 
hist(PV_sample); 
grid on; 
title('Histogram of PVC P wave intervals'); 
ylabel('# of bins'); 
xlabel('seconds'); 
end 

  
% APC beat PR interval 
if find(a_type == 'A') 
PA_sample = (awaves(PAF) - awaves(PAO)) ./ 360; 
subplot(snum,1,3); 
% bar(P_sample_i,histc(PA_sample,P_sample_i),'hist'); 
hist(PA_sample); 
grid on; 
title('Histogram of APC P wave intervals'); 
ylabel('# of bins'); 
xlabel('seconds'); 
end 

  
% LBBB beat P wave 
if find(a_type == 'L') 
PL_sample = (awaves(PLF) - awaves(PLO)) ./ 360; 
subplot(snum,1,4); 
% P_sample_i=0:.035:.35; 
% bar(P_sample_i,histc(PL_sample,P_sample_i),'hist'); 
hist(PL_sample); 
grid on; 
title('Histogram of LBBB P wave intervals'); 
ylabel('# of bins'); 
xlabel('seconds'); 
end 

  
% RBBB beat P wave 
if find(a_type == 'R') 
PR_sample = (awaves(PRF) - awaves(PRO)) ./ 360; 
subplot(snum,1,5); 
% P_sample_i=0:.035:.35; 
% bar(P_sample_i,histc(PR_sample,P_sample_i),'hist'); 
hist(PR_sample); 
grid on; 
title('Histogram of RBBB P wave intervals'); 
ylabel('# of bins'); 
xlabel('seconds'); 
end 

  
% Paced beat P wave 
if find(a_type == '/') 
PP_sample = (awaves(PPF) - awaves(PPO)) ./ 360; 
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subplot(snum,1,6); 
% P_sample_i=0:.035:.35; 
% bar(P_sample_i,histc(PP_sample,P_sample_i),'hist'); 
hist(PP_sample); 
grid on; 
title('Histogram of Paced P wave intervals'); 
ylabel('# of bins'); 
xlabel('seconds'); 
end 

  
%% P amplitude 

  
figure(num); num = num + 1; 

  
% Normal beat P amplitude 
if find(a_type == 'N') 
PN = awaves(N - 3); 
PampN = yt(PN); 
subplot(snum,1,1); 
% Pamp_i=-.2:.04:.2; 
% bar(Pamp_i,histc(PampN,Pamp_i),'hist'); 
hist(PampN); 
grid on; 
title('Histogram of Normal P amplitudes'); 
ylabel('# of bins'); 
xlabel('mV'); 
end 

  
% PVC beat P amplitude 
if find(a_type == 'V') 
PV = awaves(V - 3); 
PampV = yt(PV); 
subplot(snum,1,2); 
% bar(Pamp_i,histc(PampV,Pamp_i),'hist'); 
hist(PampV); 
grid on; 
title('Histogram of PVC P amplitudes'); 
ylabel('# of bins'); 
xlabel('mV'); 
end 

  
% APC beat P amplitude 
if find(a_type == 'A') 
PA = awaves(A - 3); 
PampA = yt(PA); 
subplot(snum,1,3); 
%bar(Pamp_i,histc(PampA,Pamp_i),'hist'); 
hist(PampA); 
grid on; 
title('Histogram of APC P amplitudes'); 
ylabel('# of bins'); 
xlabel('mV'); 
end 

  
% LBBB beat P amplitude 
if find(a_type == 'L') 
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PL = awaves(L - 3); 
PampL = yt(PL); 
subplot(snum,1,4); 
% Pamp_i=-.2:.04:.2; 
% bar(Pamp_i,histc(PampL,Pamp_i),'hist'); 
hist(PampL); 
grid on; 
title('Histogram of LBBB P amplitudes'); 
ylabel('# of bins'); 
xlabel('mV'); 
end 

  
% RBBB beat P amplitude 
if find(a_type == 'R') 
PR = awaves(R - 3); 
PampR = yt(PR); 
subplot(snum,1,5); 
% Pamp_i=-.2:.04:.2; 
% bar(Pamp_i,histc(PampR,Pamp_i),'hist'); 
hist(PampR); 
grid on; 
title('Histogram of RBBB P amplitudes'); 
ylabel('# of bins'); 
xlabel('mV'); 
end 

  
% Paced beat P amplitude 
if find(a_type == '/') 
PP = awaves(P - 3); 
PampP = yt(PP); 
subplot(snum,1,6); 
% Pamp_i=-.2:.04:.2; 
% bar(Pamp_i,histc(PampP,Pamp_i),'hist'); 
hist(PampP); 
grid on; 
title('Histogram of Paced P amplitudes'); 
ylabel('# of bins'); 
xlabel('mV'); 
end 

  
%% R amplitude 

  
figure(num); num = num + 1; 

  
% Normal beat R amplitude 
if find(a_type == 'N') 
RN = awaves(N); 
RampN = yt(RN); 
subplot(snum,1,1); 
% Ramp_i=-2.5:.41:2.6; 
% bar(Ramp_i,histc(RampN,Ramp_i),'hist'); 
hist(RampN); 
grid on; 
title('Histogram of Normal R amplitudes'); 
ylabel('# of bins'); 
xlabel('mV'); 
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end 

  
% PVC beat P amplitude 
if find(a_type == 'V') 
RV = awaves(V); 
RampV = yt(RV); 
subplot(snum,1,2); 
% bar(Ramp_i,histc(RampV,Ramp_i),'hist'); 
hist(RampV); 
grid on; 
title('Histogram of PVC R amplitudes'); 
ylabel('# of bins'); 
xlabel('mV'); 
end 

  
% APC beat R amplitude 
if find(a_type == 'A') 
RA = awaves(A); 
RampA = yt(RA); 
subplot(snum,1,3); 
% bar(Ramp_i,histc(RampA,Ramp_i),'hist'); 
hist(RampA); 
grid on; 
title('Histogram of APC R amplitudes'); 
ylabel('# of bins'); 
xlabel('mV'); 
end 

  
% LBBB beat R amplitude 
if find(a_type == 'L') 
RL = awaves(L); 
RampL = yt(RL); 
subplot(snum,1,4); 
% Ramp_i=-2.5:.41:2.6; 
% bar(Ramp_i,histc(RampL,Ramp_i),'hist'); 
hist(RampL); 
grid on; 
title('Histogram of LBBB R amplitudes'); 
ylabel('# of bins'); 
xlabel('mV'); 
end 

  
% RBBB beat R amplitude 
if find(a_type == 'R') 
RR = awaves(R); 
RampR = yt(RR); 
subplot(snum,1,5); 
% Ramp_i=-2.5:.41:2.6; 
% bar(Ramp_i,histc(RampR,Ramp_i),'hist'); 
hist(RampR); 
grid on; 
title('Histogram of RBBB R amplitudes'); 
ylabel('# of bins'); 
xlabel('mV'); 
end 
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% Paced beat R amplitude 
if find(a_type == '/') 
RP = awaves(P); 
RampP = yt(RP); 
subplot(snum,1,6); 
% Ramp_i=-2.5:.41:2.6; 
% bar(Ramp_i,histc(RampP,Ramp_i),'hist'); 
hist(RampP); 
grid on; 
title('Histogram of Paced R amplitudes'); 
ylabel('# of bins'); 
xlabel('mV'); 
end 

  
%% Q onset amplitude 

  
figure(num); num = num + 1; 

  
% Normal beat Q onset amplitude 
if find(a_type == 'N') 
QampN = yt(QN_sample); 
subplot(snum,1,1); 
% Qamp_i=-.25:.03:.05; 
% bar(Qamp_i,histc(QampN,Qamp_i),'hist'); 
hist(QampN); 
grid on; 
title('Histogram of Normal Q onset amplitudes'); 
ylabel('# of bins'); 
xlabel('mV'); 
end 

  
% PVC beat Q onset amplitude 
if find(a_type == 'V') 
QampV = yt(QV_sample); 
subplot(snum,1,2); 
% bar(Qamp_i,histc(QampV,Qamp_i),'hist'); 
hist(QampV); 
grid on; 
title('Histogram of PVC Q onset amplitudes'); 
ylabel('# of bins'); 
xlabel('mV'); 
end 

  
% APC beat Q onset amplitude 
if find(a_type == 'A') 
QampA = yt(QA_sample); 
subplot(snum,1,3); 
% bar(Qamp_i,histc(QampA,Qamp_i),'hist'); 
hist(QampA); 
grid on; 
title('Histogram of APC Q onset amplitudes'); 
ylabel('# of bins'); 
xlabel('mV'); 
end 
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% LBBB beat Q onset amplitude 
if find(a_type == 'L') 
QampL = yt(QL_sample); 
subplot(snum,1,4); 
% Qamp_i=-.25:.03:.05; 
% bar(Qamp_i,histc(QampL,Qamp_i),'hist'); 
hist(QampL); 
grid on; 
title('Histogram of LBBB Q onset amplitudes'); 
ylabel('# of bins'); 
xlabel('mV'); 
end 

  
% RBBB beat Q onset amplitude 
if find(a_type == 'R') 
QampR = yt(QR_sample); 
subplot(snum,1,5); 
% Qamp_i=-.25:.03:.05; 
% bar(Qamp_i,histc(QampR,Qamp_i),'hist'); 
hist(QampR); 
grid on; 
title('Histogram of RBBB Q onset amplitudes'); 
ylabel('# of bins'); 
xlabel('mV'); 
end 

  
% Paced beat Q onset amplitude 
if find(a_type == '/') 
QampP = yt(QP_sample); 
subplot(snum,1,6); 
% Qamp_i=-.25:.03:.05; 
% bar(Qamp_i,histc(QampP,Qamp_i),'hist'); 
hist(QampP); 
grid on; 
title('Histogram of Paced Q onset amplitudes'); 
ylabel('# of bins'); 
xlabel('mV'); 
end 

  
%% S offset amplitude 

  
figure(num); num = num + 1; 

  
% Normal beat S offset amplitude 
if find(a_type == 'N') 
SampN = yt(SN_sample); 
subplot(snum,1,1); 
% Samp_i=-1.2:.04:0.4; 
% bar(Samp_i,histc(SampN,Samp_i),'hist'); 
hist(SampN); 
grid on; 
title('Histogram of Normal S offset amplitudes'); 
ylabel('# of bins'); 
xlabel('mV'); 
end 
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% PVC beat S offset amplitude 
if find(a_type == 'V') 
SampV = yt(SV_sample); 
subplot(snum,1,2); 
% bar(Samp_i,histc(SampV,Samp_i),'hist'); 
hist(SampV); 
grid on; 
title('Histogram of PVC S offset amplitudes'); 
ylabel('# of bins'); 
xlabel('mV'); 
end 

  
% APC beat S offset amplitude 
if find(a_type == 'A') 
SampA = yt(SA_sample); 
subplot(snum,1,3); 
%bar(Samp_i,histc(SampA,Samp_i),'hist'); 
hist(SampA); 
grid on; 
title('Histogram of APC S offset amplitudes'); 
ylabel('# of bins'); 
xlabel('mV'); 
end 

  
% LBBB beat S offset amplitude 
if find(a_type == 'L') 
SampL = yt(SL_sample); 
subplot(snum,1,4); 
% Samp_i=-1.2:.04:0.4; 
% bar(Samp_i,histc(SampL,Samp_i),'hist'); 
hist(SampL); 
grid on; 
title('Histogram of LBBB S offset amplitudes'); 
ylabel('# of bins'); 
xlabel('mV'); 
end 

  
% RBBB beat S offset amplitude 
if find(a_type == 'R') 
SampR = yt(SR_sample); 
subplot(snum,1,5); 
% Samp_i=-1.2:.04:0.4; 
% bar(Samp_i,histc(SampR,Samp_i),'hist'); 
hist(SampR); 
grid on; 
title('Histogram of RBBB S offset amplitudes'); 
ylabel('# of bins'); 
xlabel('mV'); 
end 

  
% Paced beat S offset amplitude 
if find(a_type == '/') 
SampP = yt(SP_sample); 
subplot(snum,1,6); 
% Samp_i=-1.2:.04:0.4; 
% bar(Samp_i,histc(SampP,Samp_i),'hist'); 
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hist(SampP); 
grid on; 
title('Histogram of Paced S offset amplitudes'); 
ylabel('# of bins'); 
xlabel('mV'); 
end 

  
%% T wave 

  
% remove t character from a_type 
new_a_type = a_type; 
for i = length(awaves):-1:1 
    if a_type(i) == 't' 
        new_a_type(i) = []; 
    end 
end 

  
figure(num); num = num + 1; 

  
% Normal beat T wave 
if find(a_type == 'N') 
TNO = N + 2; 
TNF = N + 3; 
TN_sample = (awaves(TNF) - awaves(TNO)) ./ 360; 
subplot(snum,1,1); 
% T_sample_i=0:.016:.16; 
% bar(T_sample_i,histc(TN_sample,T_sample_i),'hist'); 
hist(TN_sample); 
grid on; 
title('Histogram of Normal T wave intervals'); 
ylabel('# of bins'); 
xlabel('seconds'); 
end 

  
% PVC beat T wave 
if find(a_type == 'V') 
TVO = V + 2; 
TVF = V + 3; 
TV_sample = (awaves(TVF) - awaves(TVO)) ./ 360; 
subplot(snum,1,2); 
% bar(T_sample_i,histc(TV_sample,T_sample_i),'hist'); 
hist(TV_sample); 
grid on; 
title('Histogram of PVC T wave intervals'); 
ylabel('# of bins'); 
xlabel('seconds'); 
end 

  
% APC beat T wave 
if find(a_type == 'A') 
TAO = A + 2; 
TAF = A + 3; 
TA_sample = (awaves(TAF) - awaves(TAO)) ./ 360; 
subplot(snum,1,3); 
%bar(T_sample_i,histc(TA_sample,T_sample_i),'hist'); 
hist(TA_sample); 
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grid on; 
title('Histogram of APC T wave intervals'); 
ylabel('# of bins'); 
xlabel('seconds'); 
end 

  
% LBBB beat T wave 
if find(a_type == 'L') 
TLO = L + 2; 
TLF = L + 3; 
TL_sample = (awaves(TLF) - awaves(TLO)) ./ 360; 
subplot(snum,1,4); 
% T_sample_i=0:.016:.16; 
% bar(T_sample_i,histc(TL_sample,T_sample_i),'hist'); 
hist(TL_sample); 
grid on; 
title('Histogram of LBBB T wave intervals'); 
ylabel('# of bins'); 
xlabel('seconds'); 
end 

  
% RBBB beat T wave 
if find(a_type == 'R') 
TRO = R + 2; 
TRF = R + 3; 
TR_sample = (awaves(TRF) - awaves(TRO)) ./ 360; 
subplot(snum,1,5); 
% T_sample_i=0:.016:.16; 
% bar(T_sample_i,histc(TR_sample,T_sample_i),'hist'); 
hist(TR_sample); 
grid on; 
title('Histogram of RBBB T wave intervals'); 
ylabel('# of bins'); 
xlabel('seconds'); 
end 

  
% Paced beat T wave 
if find(a_type == '/') 
TPO = P + 2; 
TPF = P + 3; 
TP_sample = (awaves(TPF) - awaves(TPO)) ./ 360; 
subplot(snum,1,6); 
% T_sample_i=0:.016:.16; 
% bar(T_sample_i,histc(TP_sample,T_sample_i),'hist'); 
hist(TP_sample); 
grid on; 
title('Histogram of Paced T wave intervals'); 
ylabel('# of bins'); 
xlabel('seconds'); 
end 

  
%% ST interval (beginning of the S wave to the end of the T wave) 

  
figure(num); num = num + 1; 
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% Normal beat ST interval 
if find(a_type == 'N') 
STN_sample = (awaves(TNF) - awaves(SN)) ./ 360; 
subplot(snum,1,1); 
% ST_sample_i=0:.02:1.4; 
% bar(ST_sample_i,histc(STN_sample,ST_sample_i),'hist'); 
hist(STN_sample); 
grid on; 
title('Histogram of Normal ST intervals'); 
ylabel('# of bins'); 
xlabel('seconds'); 
end 

  
% PVC beat ST interval 
if find(a_type == 'V') 
STV_sample = (awaves(TVF) - awaves(SV)) ./ 360; 
subplot(snum,1,2); 
%bar(ST_sample_i,histc(STV_sample,ST_sample_i),'hist'); 
hist(STV_sample); 
grid on; 
title('Histogram of PVC ST intervals'); 
ylabel('# of bins'); 
xlabel('seconds'); 
end 

  
% APC beat ST interval 
if find(a_type == 'A') 
STA_sample = (awaves(TAF) - awaves(SA)) ./ 360; 
subplot(snum,1,3); 
% bar(ST_sample_i,histc(STA_sample,ST_sample_i),'hist'); 
hist(STA_sample); 
grid on; 
title('Histogram of APC ST intervals'); 
ylabel('# of bins'); 
xlabel('seconds'); 
end 

  
% LBBB beat ST interval 
if find(a_type == 'L') 
STL_sample = (awaves(TLF) - awaves(SL)) ./ 360; 
subplot(snum,1,4); 
% ST_sample_i=0:.02:1.4; 
% bar(ST_sample_i,histc(STL_sample,ST_sample_i),'hist'); 
hist(STL_sample); 
grid on; 
title('Histogram of LBBB ST intervals'); 
ylabel('# of bins'); 
xlabel('seconds'); 
end 

  
% RBBB beat ST interval 
if find(a_type == 'R') 
STR_sample = (awaves(TRF) - awaves(SR)) ./ 360; 
subplot(snum,1,5); 
% ST_sample_i=0:.02:1.4; 
% bar(ST_sample_i,histc(STR_sample,ST_sample_i),'hist'); 
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hist(STR_sample); 
grid on; 
title('Histogram of RBBB ST intervals'); 
ylabel('# of bins'); 
xlabel('seconds'); 
end 

  
% Paced beat ST interval 
if find(a_type == '/') 
STP_sample = (awaves(TPF) - awaves(SP)) ./ 360; 
subplot(snum,1,6); 
% ST_sample_i=0:.02:1.4; 
% bar(ST_sample_i,histc(STP_sample,ST_sample_i),'hist'); 
hist(STP_sample); 
grid on; 
title('Histogram of Paced ST intervals'); 
ylabel('# of bins'); 
xlabel('seconds'); 
end 

  
%% QT interval (beginning of the Q wave to the end of the T wave) 

  
figure(num); num = num + 1; 

  
% Normal beat QT interval 
if find(a_type == 'N') 
QTN_sample = (awaves(TNF) - awaves(QN)) ./ 360; 
subplot(snum,1,1); 
% QT_sample_i=.1:.025:1.6; 
% bar(QT_sample_i,histc(QTN_sample,QT_sample_i),'hist'); 
hist(QTN_sample); 
grid on; 
title('Histogram of Normal QT intervals'); 
ylabel('# of bins'); 
xlabel('seconds'); 
end 

  
% PVC beat QT interval 
if find(a_type == 'V') 
QTV_sample = (awaves(TVF) - awaves(QV)) ./ 360; 
subplot(snum,1,2); 
% bar(QT_sample_i,histc(QTV_sample,QT_sample_i),'hist'); 
hist(QTV_sample); 
grid on; 
title('Histogram of PVC QT intervals'); 
ylabel('# of bins'); 
xlabel('seconds'); 
end 

  
% APC beat QT interval 
if find(a_type == 'A') 
QTA_sample = (awaves(TAF) - awaves(QA)) ./ 360; 
subplot(snum,1,3); 
% bar(QT_sample_i,histc(QTA_sample,QT_sample_i),'hist'); 
hist(QTA_sample); 
grid on; 
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title('Histogram of APC QT intervals'); 
ylabel('# of bins'); 
xlabel('seconds'); 
end 

  
% LBBB beat QT interval 
if find(a_type == 'L') 
QTL_sample = (awaves(TLF) - awaves(QL)) ./ 360; 
subplot(snum,1,4); 
% QT_sample_i=.1:.025:1.6; 
% bar(QT_sample_i,histc(QTL_sample,QT_sample_i),'hist'); 
hist(QTL_sample); 
grid on; 
title('Histogram of LBBB QT intervals'); 
ylabel('# of bins'); 
xlabel('seconds'); 
end 

  
% RBBB beat QT interval 
if find(a_type == 'R') 
QTR_sample = (awaves(TRF) - awaves(QR)) ./ 360; 
subplot(snum,1,5); 
% QT_sample_i=.1:.025:1.6; 
% bar(QT_sample_i,histc(QTR_sample,QT_sample_i),'hist'); 
hist(QTR_sample); 
grid on; 
title('Histogram of RBBB QT intervals'); 
ylabel('# of bins'); 
xlabel('seconds'); 
end 

  
% Paced beat QT interval 
if find(a_type == '/') 
QTP_sample = (awaves(TPF) - awaves(QP)) ./ 360; 
subplot(snum,1,6); 
% QT_sample_i=.1:.025:1.6; 
% bar(QT_sample_i,histc(QTP_sample,QT_sample_i),'hist'); 
hist(QTP_sample); 
grid on; 
title('Histogram of Paced QT intervals'); 
ylabel('# of bins'); 
xlabel('seconds'); 
end 

  
%% ST segment (beginning of the S wave to the beginning of the T wave) 

  
figure(num); num = num + 1; 

  
% Normal beat ST segment 
if find(a_type == 'N') 
STN_seg = (awaves(TNO) - awaves(SN)) ./ 360; 
subplot(snum,1,1); 
% ST_seg_i=0:.08:.8; 
% bar(ST_seg_i,histc(STN_seg,ST_seg_i),'hist'); 
hist(STN_seg); 
grid on; 
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title('Histogram of Normal ST segments'); 
ylabel('# of bins'); 
xlabel('seconds'); 
end 

  
% PVC beat ST segment 
if find(a_type == 'V') 
STV_seg = (awaves(TVO) - awaves(SV)) ./ 360; 
subplot(snum,1,2); 
% bar(ST_seg_i,histc(STV_seg,ST_seg_i),'hist'); 
hist(STV_seg); 
grid on; 
title('Histogram of PVC ST segments'); 
ylabel('# of bins'); 
xlabel('seconds'); 
end 

  
% APC beat ST segment 
if find(a_type == 'A') 
STA_seg = (awaves(TAO) - awaves(SA)) ./ 360; 
subplot(snum,1,3); 
% bar(ST_seg_i,histc(STA_seg,ST_seg_i),'hist'); 
hist(STA_seg); 
grid on; 
title('Histogram of APC ST segments'); 
ylabel('# of bins'); 
xlabel('seconds'); 
end 

  
% LBBB beat ST segment 
if find(a_type == 'L') 
STL_seg = (awaves(TLO) - awaves(SL)) ./ 360; 
subplot(snum,1,4); 
% ST_seg_i=0:.08:.8; 
% bar(ST_seg_i,histc(STL_seg,ST_seg_i),'hist'); 
hist(STL_seg); 
grid on; 
title('Histogram of LBBB ST segments'); 
ylabel('# of bins'); 
xlabel('seconds'); 
end 

  
% RBBB beat ST segment 
if find(a_type == 'R') 
STR_seg = (awaves(TRO) - awaves(SR)) ./ 360; 
subplot(snum,1,5); 
% ST_seg_i=0:.08:.8; 
% bar(ST_seg_i,histc(STR_seg,ST_seg_i),'hist'); 
hist(STR_seg); 
grid on; 
title('Histogram of RBBB ST segments'); 
ylabel('# of bins'); 
xlabel('seconds'); 
end 

  
% Paced beat ST segment 
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if find(a_type == '/') 
STP_seg = (awaves(TPO) - awaves(SP)) ./ 360; 
subplot(snum,1,6); 
% ST_seg_i=0:.08:.8; 
% bar(ST_seg_i,histc(STP_seg,ST_seg_i),'hist'); 
hist(STP_seg); 
grid on; 
title('Histogram of Paced ST segments'); 
ylabel('# of bins'); 
xlabel('seconds'); 
end 

  

  
%% RR intervals (Subsequent RP (RRs) and Previous RP (RRp)) 

  
figure(num); num = num + 1; 

  
% Normal RR intervals 

  
if find(a_type == 'N') 
Nprev = N - 9; 
RRp_N = awaves(N(2:length(N) - 1)) - awaves(Nprev(2:length(N) - 1)); 
Nsubseq = N + 9; 
RRs_N = awaves(Nsubseq(2:length(N) - 1)) - awaves(N(2:length(N) - 1)); 

  
RRp_N_time = RRp_N ./ 360; 
RRs_N_time = RRs_N ./ 360; 

  
ratio_RR_N = RRs_N./RRp_N; 
subplot(snum,1,1); 
% ratio_RR_i=.5:.2:2.5; 
% bar(ratio_RR_i,histc(ratio_RR_N,ratio_RR_i),'hist'); 
hist(ratio_RR_N); 
grid on; 
title('Histogram of Normal RRs/RRp intervals'); 
ylabel('# of bins'); 
xlabel('seconds'); 
end 

  
% PVC RP intervals 

  
if find(a_type == 'V') 
Vprev = V - 9; 
Vsubseq = V + 9; 

  
if length(V) == 1 % If there is one PVC 
    RRp_V =  awaves(V) - awaves(Vprev); 
    RRs_V = awaves(Vsubseq) - awaves(V); 
else 
    RRp_V = awaves(V(2:length(V) - 1)) - awaves(Vprev(2:length(V) - 1)); 
    RRs_V = awaves(Vsubseq(2:length(V) - 1)) - awaves(V(2:length(V) - 1)); 
end 

  
RRp_V_time = RRp_V ./ 360; 
RRs_V_time = RRs_V ./ 360; 



134 
 

  
ratio_RR_V = RRs_V./RRp_V; 
subplot(snum,1,2); 
% bar(ratio_RR_i,histc(ratio_RR_V,ratio_RR_i),'hist'); 
hist(ratio_RR_V); 
grid on; 
title('Histogram of PVC RRs/RRp intervals'); 
ylabel('# of bins'); 
xlabel('seconds'); 
end 

  
% APC RR intervals 

  
if find(a_type == 'A') 
Aprev = A - 9; 
Asubseq = A + 9; 

  
if length(A) == 1 % If there is one APC 
    RRp_A =  awaves(A) - awaves(Aprev); 
    RRs_A = awaves(Asubseq) - awaves(A); 
else 
    RRp_A = awaves(A(2:length(A) - 1)) - awaves(Aprev(2:length(A) - 1)); 
    RRs_A = awaves(Asubseq(2:length(A) - 1)) - awaves(A(2:length(A) - 1)); 
end 

  

  
RRp_A_time = RRp_A ./ 360; 
RRs_A_time = RRs_A ./ 360; 

  
ratio_RR_A = RRs_A./RRp_A; 
subplot(snum,1,3); 
% bar(ratio_RR_i,histc(ratio_RR_A,ratio_RR_i),'hist'); 
hist(ratio_RR_A); 
grid on; 
title('Histogram of APC RRs/RRp intervals'); 
ylabel('# of bins'); 
xlabel('seconds'); 
end 

  
% LBBB RR intervals 

  
if find(a_type == 'L') 
Lprev = L - 9; 
RRp_L = awaves(L(2:length(L) - 1)) - awaves(Lprev(2:length(L) - 1)); 
Lsubseq = L + 9; 
RRs_L = awaves(Lsubseq(2:length(L) - 1)) - awaves(L(2:length(L) - 1)); 

  
RRp_L_time = RRp_L ./ 360; 
RRs_L_time = RRs_L ./ 360; 

  
ratio_RR_L = RRs_L./RRp_L; 
subplot(snum,1,4); 
% ratio_RR_i=.5:.2:2.5; 
% bar(ratio_RR_i,histc(ratio_RR_N,ratio_RR_i),'hist'); 
hist(ratio_RR_L); 
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grid on; 
title('Histogram of LBBB RRs/RRp intervals'); 
ylabel('# of bins'); 
xlabel('seconds'); 
end 

  
% RBBB RR intervals 

  
if find(a_type == 'R') 
Rprev = R - 9; 
RRp_R = awaves(R(2:length(R) - 1)) - awaves(Rprev(2:length(R) - 1)); 
Rsubseq = R + 9; 
RRs_R = awaves(Rsubseq(2:length(R) - 1)) - awaves(R(2:length(R) - 1)); 

  
RRp_R_time = RRp_R ./ 360; 
RRs_R_time = RRs_R ./ 360; 

  
ratio_RR_R = RRs_R./RRp_R; 
subplot(snum,1,5); 
% ratio_RR_i=.5:.2:2.5; 
% bar(ratio_RR_i,histc(ratio_RR_N,ratio_RR_i),'hist'); 
hist(ratio_RR_R); 
grid on; 
title('Histogram of RBBB RRs/RRp intervals'); 
ylabel('# of bins'); 
xlabel('seconds'); 
end 

  
% Paced RR intervals 

  
if find(a_type == '/') 
Rprev = P - 9; 
RRp_P = awaves(P(2:length(P) - 1)) - awaves(Rprev(2:length(P) - 1)); 
Rsubseq = P + 9; 
RRs_P = awaves(Rsubseq(2:length(P) - 1)) - awaves(P(2:length(P) - 1)); 

  
RRp_P_time = RRp_P ./ 360; 
RRs_P_time = RRs_P ./ 360; 

  
ratio_RR_P = RRs_P./RRp_P; 
subplot(snum,1,6); 
% ratio_RR_i=.5:.2:2.5; 
% bar(ratio_RR_i,histc(ratio_RR_N,ratio_RR_i),'hist'); 
hist(ratio_RR_P); 
grid on; 
title('Histogram of Paced RRs/RRp intervals'); 
ylabel('# of bins'); 
xlabel('seconds'); 
end 

  
%% Input matrix 

  
% Normal 
if find(a_type == 'N') 
if find(a_type == 'N') & length(N) > 1 
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    QRS_N = QRS_N(2:end-1); 
    PRN = PRN(2:end-1); 
    PRN_seg = PRN_seg(2:end-1); 
    PN_sample = PN_sample(2:end-1); 
    PampN = PampN(2:end-1); 
    RampN = RampN(2:end-1); 
    QampN = QampN(2:end-1); 
    SampN = SampN(2:end-1); 
    TN_sample = TN_sample(2:end-1); 
    STN_sample = STN_sample(2:end-1); 
    QTN_sample = QTN_sample(2:end-1); 
    STN_seg = STN_seg(2:end-1); 

     
    inputN = [QRS_N PRN PRN_seg PN_sample PampN RampN QampN SampN... 
        TN_sample STN_sample QTN_sample STN_seg ratio_RR_N RRp_N_time... 
        RRs_N_time]; 
else 
    inputN = [QRS_N PRN PRN_seg PN_sample PampN RampN QampN SampN... 
        TN_sample STN_sample QTN_sample STN_seg ratio_RR_N RRp_N_time... 
        RRs_N_time]; 
end 
else 
    inputN = 0; 
end 

  

     
% PVC 
if find(a_type == 'V') 
if find(a_type == 'V') & length(V) > 1 
    QRS_V = QRS_V(2:end-1); 
    PRV = PRV(2:end-1); 
    PRV_seg = PRV_seg(2:end-1); 
    PV_sample = PV_sample(2:end-1); 
    PampV = PampV(2:end-1); 
    RampV = RampV(2:end-1); 
    QampV = QampV(2:end-1); 
    SampV = SampV(2:end-1); 
    TV_sample = TV_sample(2:end-1); 
    STV_sample = STV_sample(2:end-1); 
    QTV_sample = QTV_sample(2:end-1); 
    STV_seg = STV_seg(2:end-1); 

    
    inputV = [QRS_V PRV PRV_seg PV_sample PampV RampV QampV SampV... 
        TV_sample STV_sample QTV_sample STV_seg ratio_RR_V RRp_V_time... 
        RRs_V_time]; 
else 
    inputV = [QRS_V PRV PRV_seg PV_sample PampV RampV QampV SampV... 
        TV_sample STV_sample QTV_sample STV_seg ratio_RR_V RRp_V_time... 
        RRs_V_time]; 
end 
else 
    inputV = 0; 
end 

  
% APC 
if find(a_type == 'A') 
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if find(a_type == 'A')& length(A) > 1 
    QRS_A = QRS_A(2:end-1); 
    PRA = PRA(2:end-1); 
    PRA_seg = PRA_seg(2:end-1); 
    PA_sample = PA_sample(2:end-1); 
    PampA = PampA(2:end-1); 
    RampA = RampA(2:end-1); 
    QampA = QampA(2:end-1); 
    SampA = SampA(2:end-1); 
    TA_sample = TA_sample(2:end-1); 
    STA_sample = STA_sample(2:end-1); 
    QTA_sample = QTA_sample(2:end-1); 
    STA_seg = STA_seg(2:end-1); 

     
    inputA = [QRS_A PRA PRA_seg PA_sample PampA RampA QampA SampA... 
        TA_sample STA_sample QTA_sample STA_seg ratio_RR_A RRp_A_time... 
        RRs_A_time]; 
else 
    inputA = [QRS_A PRA PRA_seg PA_sample PampA RampA QampA SampA... 
        TA_sample STA_sample QTA_sample STA_seg ratio_RR_A RRp_A_time... 
        RRs_A_time]; 
end 
else 
    inputA = 0; 
end 

  
% LBBB 
if find(a_type == 'L') 
if find(a_type == 'L') & length(L) > 1 
    QRS_L = QRS_L(2:end-1); 
    PRL = PRL(2:end-1); 
    PRL_seg = PRL_seg(2:end-1); 
    PL_sample = PL_sample(2:end-1); 
    PampL = PampL(2:end-1); 
    RampL = RampL(2:end-1); 
    QampL = QampL(2:end-1); 
    SampL = SampL(2:end-1); 
    TL_sample = TL_sample(2:end-1); 
    STL_sample = STL_sample(2:end-1); 
    QTL_sample = QTL_sample(2:end-1); 
    STL_seg = STL_seg(2:end-1); 

     
    inputL = [QRS_L PRL PRL_seg PL_sample PampL RampL QampL SampL ... 
        TL_sample STL_sample QTL_sample STL_seg ratio_RR_L RRp_L_time... 
        RRs_L_time]; 
else 
    inputL = [QRS_L PRL PRL_seg PL_sample PampL RampL QampL SampL... 
        TL_sample STL_sample QTL_sample STL_seg ratio_RR_L RRp_L_time... 
        RRs_L_time]; 
end 
else 
    inputL = 0; 
end 

  
% RBBB 
if find(a_type == 'R') 
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if find(a_type == 'R') & length(R) > 1 
    QRS_R = QRS_R(2:end-1); 
    PRR = PRR(2:end-1); 
    PRR_seg = PRR_seg(2:end-1); 
    PR_sample = PR_sample(2:end-1); 
    PampR = PampR(2:end-1); 
    RampR = RampR(2:end-1); 
    QampR = QampR(2:end-1); 
    SampR = SampR(2:end-1); 
    TR_sample = TR_sample(2:end-1); 
    STR_sample = STR_sample(2:end-1); 
    QTR_sample = QTR_sample(2:end-1); 
    STR_seg = STR_seg(2:end-1); 

     
    inputR = [QRS_R PRR PRR_seg PR_sample PampR RampR QampR SampR... 
        TR_sample STR_sample QTR_sample STR_seg ratio_RR_R RRp_R_time... 
        RRs_R_time]; 
else 
    inputR = [QRS_R PRR PRR_seg PR_sample PampR RampR QampR SampR... 
        TR_sample STR_sample QTR_sample STR_seg ratio_RR_R RRp_R_time... 
        RRs_R_time]; 
end 
else 
    inputR = 0; 
end 

  
% Paced 
if find(a_type == '/') 
if find(a_type == '/') & length(P) > 1 
    QRS_R = QRS_R(2:end-1); 
    PRP = PRP(2:end-1); 
    PRP_seg = PRP_seg(2:end-1); 
    PP_sample = PP_sample(2:end-1); 
    PampP = PampP(2:end-1); 
    RampP = RampP(2:end-1); 
    QampP = QampP(2:end-1); 
    SampP = SampP(2:end-1); 
    TP_sample = TP_sample(2:end-1); 
    STP_sample = STP_sample(2:end-1); 
    QTP_sample = QTP_sample(2:end-1); 
    STP_seg = STP_seg(2:end-1); 

     
    inputP = [QRS_R PRP PRP_seg PP_sample PampP RampP QampP SampP ... 
        TP_sample STP_sample QTP_sample STP_seg ratio_RR_P RRp_P_time... 
        RRs_P_time]; 
else 
    inputP = [QRS_R PRP PRP_seg PP_sample PampP RampP QampP SampP... 
        TP_sample STP_sample QTP_sample STP_seg ratio_RR_P RRp_P_time... 
        RRs_P_time]; 
end 
else 
    inputP = 0; 
end 
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Input to ANFIS for One ECG Signal: 
 
% Input data for ANFIS including both training, testing, and checking data 

  
% Input paramters (arguments) are: 
%   filename from MIT-Arrhythmia database 

  
% Output values returned are: 
%   Input training, testing, and checking data that contains input and  
%   output layer for ANFIS. 

  
% Revised: 2/7/2015 -- by Brad Funsten 
%          2/23/2015 -- Added checking data for testing 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clear all; 
clc; 
close all; 
num = 1; 

  
% Read the record ECG signal from MIT-BIH Arrhythmia Database 
record = 'mitdb/101'; 
[sig, sampleIn, charIn,num] = WFDB_QRS(record, num); 

  
% Obtain input layer 
[inputN, inputV, inputA, inputL, inputR, inputP, num] = input_layer(sig,… 

sampleIn, charIn, num); 

  
% Output layer 
outputN = ones(size(inputN,1),1); 
outputV = ones(size(inputV,1),1); 
outputV(1:end) = 2; 
outputA = ones(size(inputA,1),1); 
outputA(1:end) = 3; 
outputL = ones(size(inputL,1),1); 
outputL(1:end) = 4; 
outputR = ones(size(inputR,1),1); 
outputR(1:end) = 5; 
outputP = ones(size(inputP,1),1); 
outputP(1:end) = 6; 

  
% Input to ANFIS 
N_101 = [inputN outputN]; 
V_101 = [inputV outputV]; 
A_101 = [inputA outputA]; 
L_101 = [inputL outputL]; 
R_101 = [inputR outputR]; 
P_101 = [inputP outputP]; 
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Input to ANFIS for Multiple ECG Signals: 

 
% Input data for ANFIS including both training, testing, and checking data 

% for multiple ECG records 

  

% Input paramters (arguments) are: 

%   filenames from MIT-Arrhythmia database associated as stored matrices 

  

% Output values returned are: 

%   Input training, testing, and checking data that contains input and  

%   output layer for ANFIS. 

  

% Revised: 2/7/2015 -- by Brad Funsten 

%          2/23/2015 -- Added checking data for testing 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

clear all; 

clc; 

close all; 

num = 1; 

% Load Normal beats (34 of them) 

 load N_100; load N_101; load N_102; load N_103; load N_104; load N_105; 

 load N_106; load N_108; load N_112; 

 load N_114; load N_115; load N_116; load N_117; load N_121; 

 load N_122; load N_123; load N_200; load N_201; load N_202; load N_203; 

 load N_205; load N_208; load N_209; load N_212; load N_213; 

 load N_215; load N_220; load N_222; load N_228; load N_230; load N_231; 

 load N_233; load N_234; load N_223; 

% Normal = randswap([N_100; N_101; N_102; N_103; N_104; N_105; N_106;... 

%     N_108; N_112; N_114; N_115; N_116; N_117; N_121; N_122; N_123; 

N_200;... 

%     N_201; N_202; N_203; N_205; N_208; N_209; N_212; N_213; N_215; 

N_220;... 

%     N_222; N_228; N_230; N_231; N_233; N_234; N_223]); 

  

 a = randi([1 33],1); 

% a = 26; 

if (a==1) input_dataN=randswap(N_100); elseif (a==2) 

input_dataN=randswap(N_101); 

elseif (a==3) input_dataN=randswap(N_102);  elseif (a==4) 

input_dataN=randswap(N_103); 

elseif (a==5) input_dataN=randswap(N_104);  elseif (a==6) 

input_dataN=randswap(N_105); 

elseif (a==7) input_dataN=randswap(N_106);  elseif (a==8) 

input_dataN=randswap(N_108); 

elseif (a==9) input_dataN=randswap(N_112);  elseif (a==10) 

input_dataN=randswap(N_114); 

elseif (a==11) input_dataN=randswap(N_115);  elseif (a==12) 

input_dataN=randswap(N_116); 

elseif (a==13) input_dataN=randswap(N_117);  elseif (a==14) 

input_dataN=randswap(N_121); 

elseif (a==15) input_dataN=randswap(N_122);  elseif (a==16) 

input_dataN=randswap(N_123); 

elseif (a==17) input_dataN=randswap(N_200);  elseif (a==18) 

input_dataN=randswap(N_201); 

elseif (a==19) input_dataN=randswap(N_202);  elseif (a==20) 

input_dataN=randswap(N_203); 
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elseif (a==21) input_dataN=randswap(N_205);  elseif (a==22) 

input_dataN=randswap(N_208); 

elseif (a==23) input_dataN=randswap(N_209);  elseif (a==24) 

input_dataN=randswap(N_212); 

elseif (a==25) input_dataN=randswap(N_213);  elseif (a==26) 

input_dataN=randswap(N_215); 

elseif (a==27) input_dataN=randswap(N_220);  elseif (a==28) 

input_dataN=randswap(N_222); 

elseif (a==29) input_dataN=randswap(N_228);  elseif (a==30) 

input_dataN=randswap(N_230); 

elseif (a==31) input_dataN=randswap(N_231);  elseif (a==32) 

input_dataN=randswap(N_233); 

elseif (a==33) input_dataN=randswap(N_234);  

end; 

  

% Load PVC beats (30 of them) 

 load V_208; load V_106; load V_116; load V_200; load V_228; load V_105; 

 load V_223; load V_233; load V_215; load V_214; load V_213; load V_203; 

 load V_201; load V_100; load V_102; load V_104; load V_108; load V_111; 

 load V_114; load V_118; load V_123; load V_202; load V_205; load V_209; 

 load V_234; load V_107; load V_109; load V_121; load V_203; load V_230; 

% PVC = randswap([V_208; V_106; V_116; V_200; V_228; V_105; V_223; V_233;... 

%     V_215; V_214; V_213; V_203; V_201; V_100; V_102; V_104; V_108; 

V_111;... 

%     V_114; V_118; V_123; V_202; V_205; V_209; V_234; V_107; V_109; 

V_121;... 

%     V_203; V_230]);  

b = randi([1 12],1); 

% b = 6; 

if (b==1) input_dataV=randswap(V_208); elseif (b==2) 

input_dataV=randswap(V_106); 

elseif (b==3) input_dataV=randswap(V_116);  elseif (b==4) 

input_dataV=randswap(V_200); 

elseif (b==5) input_dataV=randswap(V_228);  elseif (b==6) 

input_dataV=randswap(V_223); 

elseif (b==7) input_dataV=randswap(V_215);  elseif (b==8) 

input_dataV=randswap(V_214); 

elseif (b==9) input_dataV=randswap(V_213);  elseif (b==10) 

input_dataV=randswap(V_203); 

elseif (b==11) input_dataV=randswap(V_201);  elseif (b==12) 

input_dataV=randswap(V_233); 

end; 

% Load APC beats (21 of them) 

 load A_209; load A_222; load A_100; load A_101; load A_108; 

 load A_114; load A_116; load A_117; load A_118; load A_121; 

 load A_200; load A_201; load A_202; load A_205; load A_213; load A_228; 

 load A_215; load A_220; load A_223; load A_231; load A_233; 

% APC = randswap([A_209; A_222; A_100; A_101; A_108; A_114;... 

%     A_116; A_117; A_118; A_121; A_200; A_201; A_202; A_205; A_213; 

A_228;... 

%     A_215; A_220; A_223; A_231; A_233]); 

  

c = randi([1 2],1); 

% c = 2; 

if (c==1) input_dataA=randswap(A_209); elseif (c==2) 

input_dataA=randswap(A_222); 

end; 
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% Load LBBB beats (3 of them) 

 load L_109; load L_111; load L_214; 

% LBBB = randswap([L_109; L_111; L_214]); 

d = randi([1 3],1); 

% d = 1; 

if (d==1) input_dataL=randswap(L_109); elseif (d==2) 

input_dataL=randswap(L_111); 

elseif (d==3) input_dataL=randswap(L_214);  

end; 

  

 % Load RBBB beats 

 load R_118; load R_212; load R_231; 

%  RBBB = randswap([R_118; R_212; R_231]); 

 e = randi([1 3],1); 

% e = 3; 

if (e==1) input_dataR=randswap(R_118); elseif (e==2) 

input_dataR=randswap(R_212); 

elseif (e==3) input_dataR=randswap(R_231);  

end 

  

 % Load Paced beats 

 load P_107; load P_102; load P_104; 

% Paced = randswap([P_107; P_102; P_104]); 

 f = randi([1 3],1); 

% f = 3; 

if (f==1) input_dataP=randswap(P_107); elseif (f==2) 

input_dataP=randswap(P_102); 

elseif (f==3) input_dataP=randswap(P_104);  

end 

  

%  load N2; load V2; load A2; load L2; load R2; load P2; 

% load N3; load V3; load A3; load L3; load R3; load P3; 

  

input_dataN = N_100; 

input_dataV = V_208; 

input_dataA = A_209; 

input_dataL = L_109; 

input_dataR = R_118; 

input_dataP = P_107; 

  

% input_dataN = randswap(N_101); 

% input_dataV = randswap(V_233); 

% input_dataA = randswap(A_222); 

% input_dataL = randswap(L_111); 

% input_dataR = randswap(R_212); 

% input_dataP = randswap(P_102); 

  

% input_dataN = randswap([N_100(1:100,:); N_101(1:100,:)]); 

% input_dataV = randswap([V_208(1:100,:); V_233(1:100,:)]); 

% input_dataA = randswap([A_209(1:100,:); A_222(1:100,:)]); 

% input_dataL = randswap([L_109(1:100,:); L_111(1:100,:)]); 

% input_dataR = randswap([R_118(1:100,:); R_212(1:100,:)]); 

% input_dataP = randswap([P_107(1:100,:); P_102(1:100,:)]); 

  

% Train data: 55% of total data 

input_trnN = input_dataN(1:55,:); % 55% of input_dataN 
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input_trnV = input_dataV(1:55,:); % 55% of input_dataV 

input_trnA = input_dataA(1:55,:); % 55% of input_dataA 

input_trnL = input_dataL(1:55,:); % 55% of input_dataL 

input_trnR = input_dataR(1:55,:); % 55% of input_dataR 

input_trnP = input_dataP(1:55,:); % 55% of input_dataP 

  

% input_trnN = Normal(1:538,:); % 55% of input_dataN 

% input_trnV = PVC(1:538,:); % 55% of input_dataV 

% input_trnA = APC(1:538,:); % 55% of input_dataA 

% input_trnL = LBBB(1:538,:); % 55% of input_dataL 

% input_trnR = RBBB(1:538,:); % 55% of input_dataR 

% input_trnP = Paced(1:538,:); % 55% of input_dataP 

  

% input_trnN = N_100(1:55,:); 

% input_trnV = V_208(1:55,:); 

% input_trnA = A_209(1:55,:); 

% input_trnL = L_109(1:55,:); 

% input_trnR = R_118(1:55,:); 

% input_trnP = P_107(1:55,:); 

  

input_trn = [input_trnN; input_trnV; input_trnA; input_trnL; ... 

    input_trnR; input_trnP]; 

output_trn_all = input_trn(:,16); 

  

% Check data: 10% of total data 

input_chkN = input_dataN(56:65,:); % 10% of input_dataN 

input_chkV = input_dataV(56:65,:); % 10% of input_dataV 

input_chkA = input_dataA(56:65,:); % 10% of input_dataA 

input_chkL = input_dataL(56:65,:); % 10% of input_dataL 

input_chkR = input_dataR(56:65,:); % 10% of input_dataR 

input_chkP = input_dataP(56:65,:); % 10% of input_dataP 

  

% input_chkN = Normal(539:636,:); % 55% of input_dataN 

% input_chkV = PVC(539:636,:); % 55% of input_dataV 

% input_chkA = APC(539:636,:); % 55% of input_dataA 

% input_chkL = LBBB(539:636,:); % 55% of input_dataL 

% input_chkR = RBBB(539:636,:); % 55% of input_dataR 

% input_chkP = Paced(539:636,:); % 55% of input_dataP 

  

% input_chkN = N_100(56:65,:); 

% input_chkV = V_208(56:65,:); 

% input_chkA = A_209(56:65,:); 

% input_chkL = L_109(56:65,:); 

% input_chkR = R_118(56:65,:); 

% input_chkP = P_107(56:65,:); 

  

input_chk = [input_chkN; input_chkV; input_chkA; input_chkL; input_chkR;... 

    input_chkP]; 

output_chk_all = input_chk(:,16); 

  

% Test data: 35% of total data 

input_testN = input_dataN(66:100,:); % 35% of input_dataN 

input_testV = input_dataV(66:100,:); % 35% of input_dataV 

input_testA = input_dataA(66:100,:); % 35% of input_dataA 

input_testL = input_dataL(66:100,:); % 35% of input_dataL 

input_testR = input_dataR(66:100,:); % 35% of input_dataR 

input_testP = input_dataP(66:100,:); % 35% of input_dataP 
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% input_testN = Normal(637:978,:); % 55% of input_dataN 

% input_testV = PVC(637:978,:); % 55% of input_dataV 

% input_testA = APC(637:978,:); % 55% of input_dataA 

% input_testL = LBBB(637:978,:); % 55% of input_dataL 

% input_testR= RBBB(637:978,:); % 55% of input_dataR 

% input_testP = Paced(637:978,:); % 55% of input_dataP 

  

% input_testN = N_100(66:100,:); 

% input_testV = V_208(66:100,:); 

% input_testA = A_209(66:100,:); 

% input_testL = L_109(66:100,:); 

% input_testR = R_118(66:100,:); 

% input_testP = P_107(66:100,:); 

  

input_test = [input_testN; input_testV; input_testA; input_testL; ... 

    input_testR; input_testP]; 

output_test_all = input_test(:,16); 

  

% Total Data 

input_data = [input_trnN ; input_chkN; input_testN; input_trnV; ... 

    input_chkV; input_testV; input_trnA; input_chkA; input_testA; ... 

    input_trnL; input_chkL; input_testL; input_trnR; input_chkR; ... 

    input_testR; input_trnP; input_chkP; input_testP]; 

output_data = input_data(:,16); 

  

% Choose input features 

input_data = [input_trnN ; input_trnV; input_trnA; input_trnL; ... 

    input_trnR; input_trnP; input_chkN ; input_chkV; input_chkA;... 

    input_chkL; input_chkR; input_chkP; input_testN ; input_testV;... 

    input_testA; input_testL; input_testR; input_testP]; 

input_data = input_data(:,[1,2,6,12,13,14,15,16]); 

input_trn = input_trn(:,[1,2,6,12,13,14,15,16]); 

input_chk = input_chk(:,[1,2,6,12,13,14,15,16]); 

input_test = input_test(:,[1,2,6,12,13,14,15,16]); 

  

  

% % For NN toolbox: Remove the target column from the training matrix 

% input_data(:,8) = []; % overall data 

% input_trn(:,8) = []; % training 

% input_chk(:,8) = []; % validation 

% input_test(:,8) = []; % testing 

%  

% % NN: output train 

% outputN_on = ones(length(input_trnN),1); 

% outputN_off = zeros((length(input_trnV)+length(input_trnA)+... 

%     length(input_trnL)+length(input_trnR)+length(input_trnP)),1); 

% outputN = [outputN_on; outputN_off]; 

%  

% outputV_on = ones(length(input_trnV),1); 

% outputVN = zeros(length(input_trnN),1); 

% outputV_off = zeros((length(input_trnA)+length(input_trnL)+... 

%     length(input_trnR)+length(input_trnP)),1); 

% outputV = [outputVN; outputV_on; outputV_off]; 

%  

% outputA_on = ones(length(input_trnA),1); 

% outputANV = zeros(length(input_trnN)+length(input_trnV),1); 
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% outputA_off = zeros(length(input_trnL)+length(input_trnR)+... 

%     length(input_trnP),1); 

% outputA = [outputANV; outputA_on; outputA_off]; 

%  

% outputL_on = ones(length(input_trnL),1); 

% outputLNVA = zeros(length(input_trnN)+length(input_trnV)+... 

%     length(input_trnA),1); 

% outputL_off = zeros(length(input_trnR)+length(input_trnP),1); 

% outputL = [outputLNVA; outputL_on; outputL_off]; 

%  

% outputR_on = ones(length(input_trnR),1); 

% outputRNVAL = zeros(length(input_trnN)+length(input_trnV)+... 

%     length(input_trnA)+length(input_trnL),1); 

% outputR_off = zeros(length(input_trnP),1); 

% outputR = [outputRNVAL; outputR_on; outputR_off]; 

%  

% outputP_on = ones(length(input_trnP),1); 

% outputPNVALR = zeros(length(input_trnN)+length(input_trnV)+... 

%     length(input_trnA)+length(input_trnL)+length(input_trnR),1); 

% outputP = [outputPNVALR; outputR_on]; 

% output_trn = [outputN outputV outputA outputL outputR outputP]; 

%  

% % NN: output check 

% outputN_on = ones(size(input_chkN),1); 

% outputN_off = zeros(size(input_chkV)+size(input_chkA)+... 

%     size(input_chkL)+size(input_chkR)+size(input_chkP),1); 

% outputN = [outputN_on; outputN_off]; 

%  

% outputV_on = ones(size(input_chkV),1); 

% outputVN = zeros(size(input_chkN),1); 

% outputV_off = zeros((size(input_chkA)+size(input_chkL)+... 

%     size(input_chkR)+size(input_chkP)),1); 

% outputV = [outputVN; outputV_on; outputV_off]; 

%  

% outputA_on = ones(size(input_chkA),1); 

% outputANV = zeros(size(input_chkN)+size(input_chkV),1); 

% outputA_off = zeros(size(input_chkL)+size(input_chkR)+size(input_chkP),1); 

% outputA = [outputANV; outputA_on; outputA_off]; 

%  

% outputL_on = ones(size(input_chkL),1); 

% outputLNVA = zeros(size(input_chkN)+size(input_chkV)+size(input_chkA),1); 

% outputL_off = zeros(size(input_chkR)+size(input_chkP),1); 

% outputL = [outputLNVA; outputL_on; outputL_off]; 

%  

% outputR_on = ones(size(input_chkR),1); 

% outputRNVAL = zeros(size(input_chkN)+size(input_chkV)+size(input_chkA)+... 

%     size(input_chkL),1); 

% outputR_off = zeros(size(input_chkP),1); 

% outputR = [outputRNVAL; outputR_on; outputR_off]; 

%  

% outputP_on = ones(size(input_chkP),1); 

% outputPNVALR = zeros(size(input_chkN)+size(input_chkV)+size(input_chkA)+... 

%     size(input_chkL)+size(input_chkR),1); 

% outputP = [outputPNVALR; outputR_on]; 

% output_chk = [outputN outputV outputA outputL outputR outputP]; 

%  

% % NN: output test 
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% outputN_on = ones(length(input_testN),1); 

% outputN_off = zeros((length(input_testV)+length(input_testA)+... 

%     length(input_testL)+length(input_testR)+length(input_testP)),1); 

% outputN = [outputN_on; outputN_off]; 

%  

% outputV_on = ones(length(input_testV),1); 

% outputVN = zeros(length(input_testN),1); 

% outputV_off = zeros((length(input_testA)+length(input_testL)+... 

%     length(input_testR)+length(input_testP)),1); 

% outputV = [outputVN; outputV_on; outputV_off]; 

%  

% outputA_on = ones(length(input_testA),1); 

% outputANV = zeros(length(input_testN)+length(input_testV),1); 

% outputA_off = zeros(length(input_testL)+length(input_testR)+... 

%     length(input_testP),1); 

% outputA = [outputANV; outputA_on; outputA_off]; 

%  

% outputL_on = ones(length(input_testL),1); 

% outputLNVA = zeros(length(input_testN)+length(input_testV)+... 

%     length(input_testA),1); 

% outputL_off = zeros(length(input_testR)+length(input_testP),1); 

% outputL = [outputLNVA; outputL_on; outputL_off]; 

%  

% outputR_on = ones(length(input_testR),1); 

% outputRNVAL = zeros(length(input_testN)+length(input_testV)+... 

%     length(input_testA)+length(input_testL),1); 

% outputR_off = zeros(length(input_testP),1); 

% outputR = [outputRNVAL; outputR_on; outputR_off]; 

%  

% outputP_on = ones(length(input_testP),1); 

% outputPNVALR = zeros(length(input_testN)+length(input_testV)+... 

%     length(input_testA)+length(input_testL)+length(input_testR),1); 

% outputP = [outputPNVALR; outputR_on]; 

% output_test = [outputN outputV outputA outputL outputR outputP]; 

%  

% output_data = [output_trn; output_chk; output_test]; 

  

% % Method 2: Run ANFIS 6 times to classify heartbeats 

  

% Normal beat vs. abnormal beat 

N_trn = [input_trnN]; N_chk = [input_chkN]; N_test = [input_testN]; 

N_trn(:,16) = 1; N_chk(:,16) = 1; N_test(:,16) = 1; 

abnormal_trn = [input_trnV; input_trnA; input_trnL; input_trnR; ... 

    input_trnP]; abnormal_chk = [input_chkV; input_chkA; input_chkL;... 

    input_chkR; input_chkP]; abnormal_test = [input_testV; input_testA;... 

    input_testL; input_testR; input_testP]; 

abnormal_trn(:,16) = 0; abnormal_chk(:,16) = 0; abnormal_test(:,16) = 0; 

input_trn = [N_trn; abnormal_trn]; 

input_chk = [N_chk; abnormal_chk]; 

input_test = [N_test; abnormal_test]; 

output_trn = input_trn(:,16); 

output_chk = input_chk(:,16); 

output_test = input_test(:,16); 

input_chk = input_chk(:,[1,2,6,12,13,14,15,16]); 

input_trn = input_trn(:,[1,2,6,12,13,14,15,16]); 

input_test = input_test(:,[1,2,6,12,13,14,15,16]); 
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input_trn_all = [input_trnN; input_trnV; input_trnA; input_trnL;... 

    input_trnR; input_trnP]; 

output_trn_all = input_trn_all(:,16); 

     

input_chk_all = [input_chkN; input_chkV; input_chkA; input_chkL;... 

    input_chkR; input_chkP]; 

output_chk_all = input_chk_all(:,16); 

  

input_test_all = [input_testN; input_testV; input_testA; input_testL; ... 

    input_testR; input_testP]; 

output_test_all = input_test_all(:,16); 

output_data = [input_trn(:,8); input_chk(:,8); input_test(:,8)]; 

  

% % PVC beat vs. abnormal beat 

% V_trn = [input_trnV]; V_chk = [input_chkV]; V_test = [input_testV]; 

% V_trn(:,16) = 1; V_chk(:,16) = 1; V_test(:,16) = 1; 

% abnormal_trn = [input_trnN; input_trnA; input_trnL; input_trnR;... 

%     input_trnP]; abnormal_chk = [input_chkN; input_chkA; input_chkL; ... 

%     input_chkR; input_chkP]; abnormal_test = [input_testN; input_testA;... 

%     input_testL; input_testR; input_testP]; 

% abnormal_trn(:,16) = 0; abnormal_chk(:,16) = 0; abnormal_test(:,16) = 0; 

% input_trn = [V_trn; abnormal_trn]; 

% input_chk = [V_chk; abnormal_chk]; 

% input_test = [V_test; abnormal_test]; 

% output_trn = input_trn(:,16); 

% output_chk = input_chk(:,16); 

% output_test = input_test(:,16); 

% input_chk = input_chk(:,[1,2,6,12,13,14,15,16]); 

% input_trn = input_trn(:,[1,2,6,12,13,14,15,16]); 

% input_test = input_test(:,[1,2,6,12,13,14,15,16]); 

%  

% input_trn_all = [input_trnV; input_trnN; input_trnA; input_trnL;... 

%     input_trnR; input_trnP]; 

% output_trn_all = input_trn_all(:,16); 

%      

% input_chk_all = [input_chkV; input_chkN; input_chkA; input_chkL;... 

%     input_chkR; input_chkP]; 

% output_chk_all = input_chk_all(:,16); 

%  

% input_test_all = [input_testV; input_testN; input_testA; input_testL;... 

%     input_testR; input_testP]; 

% output_test_all = input_test_all(:,16); 

% output_data = [input_trn(:,8); input_chk(:,8); input_test(:,8)]; 

  

% % APC beat vs. abnormal beat 

% A_trn = [input_trnA]; A_chk = [input_chkA]; A_test = [input_testA]; 

% A_trn(:,16) = 1; A_chk(:,16) = 1; A_test(:,16) = 1; 

% abnormal_trn = [input_trnN; input_trnV; input_trnL; input_trnR;... 

%     input_trnP]; abnormal_chk = [input_chkN; input_chkV; input_chkL;... 

%     input_chkR; input_chkP]; abnormal_test = [input_testN; input_testV;... 

%     input_testL; input_testR; input_testP]; 

% abnormal_trn(:,16) = 0; abnormal_chk(:,16) = 0; abnormal_test(:,16) = 0; 

% input_trn = [A_trn; abnormal_trn]; 

% input_chk = [A_chk; abnormal_chk]; 

% input_test = [A_test; abnormal_test]; 

% output_trn = input_trn(:,16); 

% output_chk = input_chk(:,16); 



148 
 

% output_test = input_test(:,16); 

% input_chk = input_chk(:,[1,2,6,12,13,14,15,16]); 

% input_trn = input_trn(:,[1,2,6,12,13,14,15,16]); 

% input_test = input_test(:,[1,2,6,12,13,14,15,16]); 

%  

% input_trn_all = [input_trnA; input_trnN; input_trnV; input_trnL;... 

%     input_trnR; input_trnP]; 

% output_trn_all = input_trn_all(:,16); 

%      

% input_chk_all = [input_chkA; input_chkN; input_chkV; input_chkL;... 

%     input_chkR; input_chkP]; 

% output_chk_all = input_chk_all(:,16); 

%  

% input_test_all = [input_testA; input_testN; input_testV; input_testL;... 

%     input_testR; input_testP]; 

% output_test_all = input_test_all(:,16); 

% output_data = [input_trn(:,8); input_chk(:,8); input_test(:,8)]; 

  

  

% % LBBB beat vs. abnormal beat 

% L_trn = [input_trnL]; L_chk = [input_chkL]; L_test = [input_testL]; 

% L_trn(:,16) = 1; L_chk(:,16) = 1; L_test(:,16) = 1; 

% abnormal_trn = [input_trnN; input_trnV; input_trnA; input_trnR; ... 

%     input_trnP]; abnormal_chk = [input_chkN; input_chkV; input_chkA;... 

%     input_chkR; input_chkP]; abnormal_test = [input_testN; input_testV;... 

%     input_testA; input_testR; input_testP]; 

% abnormal_trn(:,16) = 0; abnormal_chk(:,16) = 0; abnormal_test(:,16) = 0; 

% input_trn = [L_trn; abnormal_trn]; 

% input_chk = [L_chk; abnormal_chk]; 

% input_test = [L_test; abnormal_test]; 

% output_trn = input_trn(:,16); 

% output_chk = input_chk(:,16); 

% output_test = input_test(:,16); 

% input_chk = input_chk(:,[1,2,6,12,13,14,15,16]); 

% input_trn = input_trn(:,[1,2,6,12,13,14,15,16]); 

% input_test = input_test(:,[1,2,6,12,13,14,15,16]); 

%  

% input_trn_all = [input_trnL; input_trnN; input_trnV; input_trnA; ... 

%     input_trnR; input_trnP]; 

% output_trn_all = input_trn_all(:,16); 

%      

% input_chk_all = [input_chkL; input_chkN; input_chkV; input_chkA; ... 

%     input_chkR; input_chkP]; 

% output_chk_all = input_chk_all(:,16); 

%  

% input_test_all = [input_testL; input_testN; input_testV; input_testA;... 

%     input_testR; input_testP]; 

% output_test_all = input_test_all(:,16); 

% output_data = [input_trn(:,8); input_chk(:,8); input_test(:,8)]; 

  

% % RBBB beat vs. abnormal beat 

% R_trn = [input_trnR]; R_chk = [input_chkR]; R_test = [input_testR]; 

% R_trn(:,16) = 1; R_chk(:,16) = 1; R_test(:,16) = 1; 

% abnormal_trn = [input_trnN; input_trnV; input_trnA; input_trnL;... 

%     input_trnP]; abnormal_chk = [input_chkN; input_chkV; input_chkA;... 

%     input_chkL; input_chkP]; abnormal_test = [input_testN; input_testV;... 

%     input_testA; input_testL; input_testP]; 
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% abnormal_trn(:,16) = 0; abnormal_chk(:,16) = 0; abnormal_test(:,16) = 0; 

% input_trn = [R_trn; abnormal_trn]; 

% input_chk = [R_chk; abnormal_chk]; 

% input_test = [R_test; abnormal_test]; 

% output_trn = input_trn(:,16); 

% output_chk = input_chk(:,16); 

% output_test = input_test(:,16); 

% input_chk = input_chk(:,[1,2,6,12,13,14,15,16]); 

% input_trn = input_trn(:,[1,2,6,12,13,14,15,16]); 

% input_test = input_test(:,[1,2,6,12,13,14,15,16]); 

%  

% input_trn_all = [input_trnR; input_trnN; input_trnV; input_trnA;... 

%     input_trnL; input_trnP]; 

% output_trn_all = input_trn_all(:,16); 

%      

% input_chk_all = [input_chkR; input_chkN; input_chkV; input_chkA;... 

%    input_chkL; input_chkP]; 

% output_chk_all = input_chk_all(:,16); 

%  

% input_test_all = [input_testR; input_testN; input_testV; input_testA; ... 

%     input_testL; input_testP]; 

% output_test_all = input_test_all(:,16); 

% output_data = [input_trn(:,8); input_chk(:,8); input_test(:,8)]; 

  

% % Paced beat vs. abnormal beat 

% P_trn = [input_trnP]; P_chk = [input_chkP]; P_test = [input_testP]; 

% P_trn(:,16) = 1; P_chk(:,16) = 1; P_test(:,16) = 1; 

% abnormal_trn = [input_trnN; input_trnV; input_trnA; input_trnL; ... 

%     input_trnR]; abnormal_chk = [input_chkN; input_chkV; input_chkA;... 

%     input_chkL; input_chkR]; abnormal_test = [input_testN; input_testV;... 

%     input_testA; input_testL; input_testR]; 

% abnormal_trn(:,16) = 0; abnormal_chk(:,16) = 0; abnormal_test(:,16) = 0; 

% input_trn = [P_trn; abnormal_trn]; 

% input_chk = [P_chk; abnormal_chk]; 

% input_test = [P_test; abnormal_test]; 

% output_trn = input_trn(:,16); 

% output_chk = input_chk(:,16); 

% output_test = input_test(:,16); 

% input_chk = input_chk(:,[1,2,6,12,13,14,15,16]); 

% input_trn = input_trn(:,[1,2,6,12,13,14,15,16]); 

% input_test = input_test(:,[1,2,6,12,13,14,15,16]); 

%  

% input_trn_all = [input_trnP; input_trnN; input_trnV; input_trnA;... 

%     input_trnL; input_trnR]; 

% output_trn_all = input_trn_all(:,16); 

%      

% input_chk_all = [input_chkP; input_chkN; input_chkV; input_chkA; ... 

%     input_chkL; input_chkR]; 

% output_chk_all = input_chk_all(:,16); 

%  

% input_test_all = [input_testP; input_testN; input_testV; input_testA;... 

%     input_testL; input_testR]; 

% output_test_all = input_test_all(:,16); 

% output_data = [input_trn(:,8); input_chk(:,8); input_test(:,8)]; 
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ANFIS (grid partitioning or subtractive clustering) for ECG Signals and Evaluation of Test Data: 

 
% This script is the Adaptive Nuero-Fuzzy Inference System for the ECG 
% classification. 
%  
% Input paramters (arguments) are: 
%    Input and checking data from input ANFIS script. 

  
% Output results: 
%    Classified results of ANFIS for two beat types: a specific heartbeat 
%    and every heartbeat type without the specific heartbeat type. 

  
% Revised: 11/15/14 - by Brad Funsten using record 100 
%           2/8/15 - More user friendly and coded ANFIS with confusion 
%                    matrix for multiple records 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clc; 
% clear all; 
close all; 
num = 15; 

  
% Initialize ANFIS 
numMFs = 2; 

  
% mfType = 'gbellmf'; % Gaussian bell MF 
mfType = 'trimf'; % Triangular MF 
% mfType = 'trapmf'; % Trapezoidal MF 
% mfType = 'gaussmf'; % Gaussian curve MF 
%mfType = 'gauss2mf'; % Gaussian combination MF 
%mfType = 'pimf'; % Pi MF 
%mfType = 'dsigmf'; % Difference between 2 Sigmoid MFs 
%mfType = 'psigmf'; % Product of 2 Sigmoid MFs 

  
strMFTYPE = str2mat(mfType); 

  
% Grid Partition under specified MF and number 
% in_fis = genfis1(input_trn,numMFs,mfType); % default is linear output MFs 

  
% Subclustering under Gaussian MF with radii (range of influence) r 
r = 0.45; 
in_fis = genfis2(input_trn(:,1:7),input_trn(:,8),r,[],[1.25 0.5 0.15 1]);  

  
% Fuzzy C means clustering under Gaussian MF with clusters k 
k = 3; 
% in_fis = genfis3(input_trn(:,1:7),input_trn(:,8),'sugeno',k);  
%% 
% Plot initial membership functions 
figure(num); num = num + 1; 

  
NumInput = size(input_trn, 2) - 1; 
for i = 1:NumInput; 
    subplot(NumInput, 1, i); 
    plot_mf_new(in_fis, 'input', i);  
    %plotmf(in_fis, 'input', i);  
    xlabel(['input ' num2str(i)]); 
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    y = strcat('\mu','(z)'); 
    ylabel(y); 
    set(get(gca,'YLabel'),'Rotation',0); 
end 
subplot(7,1,1); 
title('Adapted ANFIS Membership Functions'); 
%% 
% Training 
epoch_n = 100; 
[trnFIS, trnErr, ss, chkFIS, chkErr] = anfis(input_trn,in_fis,[epoch_n NaN 

0.001 0.9 1.1],1,input_chk); 

  
% Plot output training FIS membership functions 
figure(num); num = num + 1; 

  
NumInput = size(input_trn, 2) - 1; 
for i = 1:NumInput; 
    subplot(NumInput, 1, i); 
    plotmf(trnFIS, 'input', i);  
    title('Membership Functions'); 
    xlabel(['input ' num2str(i) ' (' strMFTYPE ')']); 
end 

  
%Plot checking FIS membership functions 
figure(num); num = num + 1; 

  
NumInput = size(input_chk, 2) - 1; 
for i = 1:NumInput; 
    subplot(NumInput, 1, i); 
    plotmf(chkFIS, 'input', i);  
    title('Membership Functions'); 
    xlabel(['input ' num2str(i) ' (' strMFTYPE ')']); 
end 

  
% Plot step size vs. epochs 
figure(num); num = num + 1; 
plot(1:epoch_n, ss); 
xlabel('Iterations'); 
ylabel('Step size'); 
title('Step Curve'); 
grid on; 

  
% Plot RMSE for both training and checking data vs. epochs 
figure(num); num = num + 1; 
%plot(1:epoch_n, trnErr,'bo','linewidth',2); 
plot(1:epoch_n, trnErr*100,'linewidth',2); 
xlabel('Iterations'); 
ylabel('RMSE (%)'); 
title('Error curves'); 
grid on; 
hold on; 
plot(1:epoch_n, chkErr*100,'g--','linewidth',2); 
legend('Training Error','Checking Error'); 
%  ylim([-20 180]); 
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% Plot RMSE for only training 
figure(num); num = num + 1; 
%plot(1:epoch_n, trnErr,'bo','linewidth',2); 
plot(1:epoch_n, trnErr*100,'linewidth',2); 
xlabel('Iterations'); 
ylabel('RMSE (%)'); 
title('Error curve'); 
grid on; 

  
% Evaluate ANFIS 
trnOut = evalfis(input_trn(:,1:size(input_trn,2) - 1),chkFIS); 
chkOut = evalfis(input_chk(:,1:size(input_chk,2) - 1),chkFIS); 
testOut = evalfis(input_test(:,1:size(input_test,2) - 1),chkFIS); 

  
% Training classified 
figure(num); num = num + 1; 
plot(1:size(input_trn,1), input_trn(:,size(input_trn,2)),'o'); 
hold on; 
plot(1:size(input_trn,1), trnOut,'rx'); 
grid on; 
xlabel('Heart beats'); 
ylabel('Classification of heart beat'); 
title('Training Evaluation of ANFIS'); 
legend('Acutal values','Trained data tested'); 

  
% Checking classified 
figure(num); num = num + 1; 
plot(1:size(input_chk,1), input_chk(:,size(input_chk,2)),'o'); 
hold on; 
plot(1:size(input_chk,1), chkOut,'rx'); 
grid on; 
xlabel('Heart beats'); 
ylabel('Classification of heart beat'); 
title('Checking Evaluation of ANFIS'); 
legend('Acutal values','Checking data tested'); 

  
% Testing classified 
figure(num); num = num + 1; 
plot(1:size(input_test,1), input_test(:,size(input_test,2)),'o'); 
hold on; 
plot(1:size(input_test,1), testOut,'rx'); 
grid on; 
xlabel('Heart beats'); 
ylabel('Classification of heart beat'); 
title('Testing Evaluation of ANFIS'); 
legend('Acutal values','Testing data tested'); 

  
% Threshold training 
outThresh_Training = zeros(length(trnOut),1); 
for i = 1 : length(trnOut) 
    if trnOut(i) < 0.5 
        outThresh_Training(i) = 0; 
    elseif trnOut(i) >= 0.5 
        outThresh_Training(i) = 1; 
    end 
end 
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% Threshold checking 
outThresh_Checking = zeros(length(chkOut),1); 
for i = 1 : length(chkOut) 
    if chkOut(i) < 0.5 
        outThresh_Checking(i) = 0; 
    elseif chkOut(i) >= 0.5 
        outThresh_Checking(i) = 1; 
    end 
end 

  
% Threshold testing 
outThresh_Testing = zeros(length(testOut),1); 
for i = 1 : length(testOut) 
    if testOut(i) < 0.5 
        outThresh_Testing(i) = 0; 
    elseif testOut(i) >= 0.5 
        outThresh_Testing(i) = 1; 
    end 
end 

  
beatClassified = 0; 
for i = 1 : 35 
    if outThresh_Testing(i) == 1; 
        beatClassified = beatClassified + 1; 
    end 
end 

  
notBeatClassified = 0; 
for i = 36 : 210 
    if outThresh_Testing(i) == 0; 
        notBeatClassified = notBeatClassified + 1; 
    end 
end 

  
% Training results 
figure(num); num = num + 1; 
plot(1:size(input_trn,1), input_trn(:,size(input_trn,2)),'o'); 
hold on; 
plot(1:size(input_trn,1), outThresh_Training,'rx'); 
grid on; 
xlabel('Heart beats'); 
ylabel('Classification of heart beat'); 
title('Training ANFIS Results After Thresholding'); 
legend('Acutal values','Trained data tested'); 
ylim([-1 2]); 

  
% Checking results 
figure(num); num = num + 1; 
plot(1:size(input_chk,1), input_chk(:,size(input_chk,2)),'o'); 
hold on; 
plot(1:size(input_chk,1), outThresh_Checking,'rx'); 
grid on; 
xlabel('Heart beats'); 
ylabel('Classification of heart beat'); 
title('Checking ANFIS Results After Thresholding'); 
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legend('Acutal values','Checking data tested'); 
ylim([-1 2]); 

  
% Testing results 
figure(num); num = num + 1; 
plot(1:size(input_test,1), input_test(:,size(input_test,2)),'o'); 
hold on; 
plot(1:size(input_test,1), outThresh_Testing,'rx'); 
grid on; 
xlabel('Heart beats'); 
ylabel('Classification of heart beat'); 
title('Testing ANFIS Results After Thresholding'); 
legend('Acutal values','Testing data tested'); 
ylim([-1 2]); 

  
% % Training confusion matrix 
% [CTrain, order1] = confusionmat(output_trn, outThresh_Training); 
% abnormalClass_Training = CTrain(1,1)./size(abnormal_trn,1).*100 
% beatClass_Training = CTrain(2,2)./size(P_trn,1).*100 
%  
% % Checking confusion matrix 
% [CCheck, order2] = confusionmat(output_chk, outThresh_Checking); 
% abnormalClass_Checking = CCheck(1,1)./size(abnormal_chk,1).*100 
% beatClass_Checking = CCheck(2,2)./size(P_chk,1).*100 
%  
% % Testing confusion matrix 
% [CTest, order3] = confusionmat(output_test, outThresh_Testing); 
% abnormalClass_Testing = CTest(1,1)./size(abnormal_test,1).*100 
% beatClass_Testing = CTest(2,2)./size(P_test,1).*100 

  

  
% surfview(chkFIS); 

  
% Evaluate initial FIS 
fuzout = evalfis(input_trn(:,1:7),in_fis); 
chkfuzout = evalfis(input_chk(:,1:7),in_fis); 
trnRMSE1 = norm(fuzout - input_trn(:,8))/sqrt(length(fuzout))*100 
chkRMSE1 = norm(chkfuzout - input_chk(:,8))/sqrt(length(chkfuzout))*100 

  
% Min ANFIS trn and chk error 
min_chkErr = min(chkErr); 
min_ckkRMSE = min_chkErr*100 
iteration_chkErr = find(chkErr == min_chkErr) 
min_trnErr = trnErr(iteration_chkErr)*100 

  
beatClassified 
notBeatClassified 
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Comparison with ANN (Gradient Descent and Levenberg-Marquardt): 

 
% This script compares the ANFIS with ANN under three training algorithms: 
% Gradient Descent, Levenberg-Marquardt, and Radial Basis Networks. 
%  
% Input paramters (arguments) are: 
%    Input training, testing, and checking data with target data as one-hot 
%    encoding scheme. 

  
% Output results: 
%    Classified results of ANN for six heartbeat types: Normal, PVC, APC, 
%    LBBB, RBBB, and Paced beats. RMSE curves for training and checking. 
%    Confusion matrices for performance evaluation. 

  
% Revised: 4/15/15 -- by Brad Funsten 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clc; 
close all; 
%clear all; 

  
num = 1; % figure number 

  
%% 

  
% Create a Pattern Recognition Network 
net = patternnet(7,'traingd'); 

  
% List of Training algorithms: 
%trainlm  Levenberg-Marquardt 
%trainbr  Bayesian Regularization 
%trainbfg BFGS Quasi-Newton 
%trainrp  Resilient Backpropagation 
%trainscg Scaled Conjugate Gradient 
%traincgb Conjugate Gradient with Powell/Beale Restarts 
%traincgf Fletcher-Powell Conjugate Gradient 
%traincgp Polak-Ribiére Conjugate Gradient 
%trainoss One Step Secant 
%traingdx Variable Learning Rate Gradient Descent 
%traingdm Gradient Descent with Momentum 
%traingd  Gradient Descent 

  
% Divide train, validation, and test data 
[trainInd,valInd,testInd] = 

divideind(length(input_data),1:length(input_trn),length(input_trn)+1:length(i

nput_trn)+length(input_chk),length(input_trn) + length(input_chk) + 1: 

length(input_trn)+length(input_chk)+length(input_test)); 
%trainInd = 1:length(input_trn); 

  
net.divideFcn = 'divideind';  % Divide data randomly 
net.divideMode = 'sample';  % Divide up every sample 
net.divideParam.trainInd = trainInd; % put in training data 
net.divideParam.valInd = valInd; % put in validation data 
net.divideParam.testInd = testInd; % put in testing data 
net.trainParam.lr = 1; % learning rate 
net.trainParam.goal=1e-7; % reach mse of 10^-7 
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net.trainParam.epochs = 10000; % number of iterations 
net.layers{1}.transferfcn = 'tansig';  % hidden layer 1 activation function 
net.layers{2}.transferFcn = 'tansig'; % output layer activation function 

  
% Train the Network 
data = input_data'; 
target = output_data'; 
% [net,tr] = train(net,data,target); 
%  
% % Weights and bias' 
% weight_final = net.iw; 
% weight_final_layer = net.lw; 
% bias_final = net.b; 
%  
% % Put same training data through NN 
% out = net(data); 
% errors = gsubtract(target,out); 
% performance = perform(net,target,out); 
%  
% % Test trained NN 
% out_test = net(input_test'); 
%  
% %figure(num); num = num + 1; 
% %plotperform(tr); 
% mse_tr = tr.perf(1:tr.num_epochs); 
% mse_val = tr.vperf(1:tr.num_epochs); 
% mse_test = tr.tperf(1:tr.num_epochs); 
% rmse_tr = sqrt(mse_tr); 
% rmse_val = sqrt(mse_val); 
% rmse_test = sqrt(mse_test); 
%  
% % RMSE 
% figure(num); num = num + 1; 
% plot(1:tr.num_epochs, rmse_tr*100,'b','linewidth', 2); 
% hold on; 
% plot(1:tr.num_epochs, rmse_val*100,'r--','linewidth', 2); 
% %hold on; 
% %plot(1:tr.num_epochs, rmse_test*100,'r','linewidth', 2); 
% legend('Training Error','Checking Error'); 
% %legend('Train','Validation','Test'); 
% title('Error curves'); 
% xlabel('Iterations'); 
% ylabel('RMSE (%)'); 
% grid on; 
%  
% % Classes assined 
% classes = (vec2ind(out))'; 
%  
% % Plots 
% % Uncomment these lines to enable various plots. 
% %figure, plotperform(tr); 
% figure(num); num = num + 1; 
% plotconfusion(output_test',out_test); 
% %figure, plotroc(target,outputs); 
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APPENDIX C – Project Analysis 

 
Project Title: ECG Classifiation with an Adaptive-Neuro Fuzzy Inference System 

Student’s Name: Brad Thomas Funsten 

 

Summary of Functional Requirements 

This project detects abnormalities in ECG signals using an adaptive neuro-fuzzy system. In addition, an 

algorithm is used to extract features in an ECG signal for the proposed classification system.  

 

Primary Constraints 

Heart rate variability, nonlinear heartbeats between patient to patient makes it difficult for an effective 

classificiation. Proposed system is computationally expensive in terms of inputs and updating parameters. 

 

Economic 

Human Capital – This project is mean to use minimal human capital. This project aims to reduce the need 

for humans in ECG classificiation. 

Financial Capital – Only man-hours to deploy system is used, as no physical materials were used. 

Manufactured or Real Capital – Program should be able to run on any general purpose computer.  

Natural Capital – Due to the program’s ability to run on any general purpose computer, natural capital 

should only be limited to the cost of computers already made in use. 

 

The only costs accruing in the project lifestyle was the purchase of MATLAB ® student edition, Fuzzy 

Logic Toolbox, and Neural Network Toolbox ($160). Benefits accrue at the completion of the various 

tests for the program. 

 

Inputs required to the system are ECG data taken by a user or doctor. This project costs $160 from 

beginning to end and is paid by the designer of the project. 

 

This project earns no money. It can both help reduce cost for patient care and increase accessibility to 

care. 

 

No additional maintenance or operation costs occur apart from regular computer maintenance. 

 

Estimated Development Time: 12 months 

 

After the project ends, future work can be done to improve results or add more features. 

 

If manufactured on a commercial basis: 

Manufacturing is anticipated to not be on a commercial basis. Higher accuracy would be necessary to be 

competitive in the medical industry. 

 

Environmental 

The only environmental resources needed are electricity to run a computer. This project only uses natural 

resources indirectly to generate power (e.g. coal, oil, and natural gas). This project affects species other 

than humans indirectly. The project affects humans through input data and output results of patients and 

users control of the program. 

 

Manufacturability 

As there is no physical component to the project (only software), manufacturability is limited to software 

distribution. This can be done over the internet for little cost. Issues associated with manufacturing 

include the creation of a link to upload the program. This would involve a log-in and registration in order 
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to purchase the program. A free trial for a certain number of days would be required in order to provide 

incentive to buy the program.  

 

Sustainability 

Manufacturing and upgrading/updating the system are limited to software distribution. The only end of 

life concern is indirect (computer disposal). Updating the design would be through an increase of the 

amount of nodes for the neural network leading to an increase in computational power. An issue in 

updating the project is increased consumption of electrical power through the project designer’s time used 

in updating the project. 

 

Ethical 

Under IEEE ethical code one, the user or doctor must accept responsibility in making decisions through 

this program in terms of safety, health and welfare of the public. The user or doctor must not endanger the 

public or environment with false results from the program. The code goes along with the third code where 

users must be honest and realistic in stating claims or estimates based on available data (ECG results). 

Once sold on the internet, the implications of the program being cited or modified would have to be 

permissible by the designer of the project. 

 

In terms of utilitarianism, where the standard of the greatest good for the greatest number is practiced, this 

program would provide a way for any user to diagnose a heart disease. This benefits the greatest number 

because there are more people benefited than having only doctors diagnose the heart disease. 

 

Health and Safety 

The only concern is the patient’s ability to partake in an ECG test. 

 

Social and Political 

A political issue associated with the design is indirect. If this project leads to a government issue into 

which it is purchased by the government or restricted for some reason, then political implications are 

involved. This project impacts patients socially through the results. The patient’s behavior is a social 

implication from the ECG results.  

Direct stakeholders: Patients, doctors, cardiologists and users. 

Indirect stakeholders: humans affected socially, politically, environmentally, and ethically. 

The extent to which the stakeholders benefit equally is the both the high accuracy and the valid results of 

the ECG test. The user or doctor and patient do not pay equally in terms of buying the program and 

performing tests with it on patients. The doctor pays for one program per computer and receives income 

from their patients who go through the tests. This may cause inequities since the number of computers 

with the program must equal the number of patients being tested. 

 

Development 

A new tool used in the development that was learned independently during the course of the project was 

the Adaptive Neuro-Fuzzy System in the Fuzzy Logic Toolbox. A new technique that was learned 

independently during the course of the project was to effectively classify six type of heartbeat types and 

compare with several artificial neural networks. 

 


