
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. **, NO. **, FEBRUARY 2019 1

A Similarity-based Cooperative Co-evolutionary
Algorithm for Dynamic Interval Multi-objective

Optimization Problems
Dunwei Gong, Member, IEEE, Biao Xu, Yong Zhang, Yinan Guo, and Shengxiang Yang, Senior Member, IEEE

Abstract—Dynamic interval multi-objective optimization prob-
lems (DI-MOPs) are very common in real-world applications.
However, there are few evolutionary algorithms that are suitable
for tackling DI-MOPs up to date. A framework of dynamic
interval multi-objective cooperative co-evolutionary optimization
based on the interval similarity is presented in this paper to
handle DI-MOPs. In the framework, a strategy for decompos-
ing decision variables is first proposed, through which all the
decision variables are divided into two groups according to the
interval similarity between each decision variable and interval
parameters. Following that, two sub-populations are utilized
to cooperatively optimize decision variables in the two groups.
Furthermore, two response strategies, i.e., a strategy based on the
change intensity and a random mutation strategy, are employed
to rapidly track the changing Pareto front of the optimization
problem. The proposed algorithm is applied to eight benchmark
optimization instances as well as a multi-period portfolio selection
problem and compared with five state-of-the-art evolutionary
algorithms. The experimental results reveal that the proposed
algorithm is very competitive on most optimization instances.

Index Terms—Multi-objective optimization, dynamic optimiza-
tion, cooperative co-evolutionary optimization, interval similarity,
response strategy.

I. INTRODUCTION

THERE are various multi-objective optimization problems
(MOPs) with the interval characteristic in real-word

applications. Each of these optimization problems generally
contains more than one objective conflicting with each other,
and has the interval characteristic in at least one objective
and (or) constraint. One representative instance is production
planning in a steel-making continuous casting-hot rolling
(SCC-HR) process [1]. The process can be formulated as an
MOP with the interval characteristic. For this problem, there
are various uncertainties in the production process, e.g., the
processing time, the production leading time, to name a few,
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which are contained in such objectives as the throughput,
the hot charge ratio, the utilization rate, and the additional
cost, and embodied with intervals. Another typical instance is
robot path planning. When planning the path of a robot, the
workspace of the robot often involves various danger sources,
such as fire, landmines and enemies. Given the fact that it is
too expensive or even impossible to get the precise positions
of these danger sources, decision-makers only know their
ranges in most cases. Along this line, taking two performance
metrics, i.e. the risk and the path distance, into consideration,
the problem of robot path planning in the environment with
uncertain danger sources can be formulated as a bi-objective
optimization problem with interval parameters [2]. To illustrate
the popularity of MOPs with the interval characteristic, let us
investigate the reliability redundancy allocation problem. For
this problem, the reliability of an individual component may
be imprecise, and is generally represented with an interval,
which results in an interval MOP where the reliability of the
whole system and its cost are simultaneously optimized [3].

In practice, an uncertain optimization problem can also be
modeled as stochastic programming [4], [5], [6] or fuzzy pro-
gramming [7], [8], [9], [10] instead of interval programming.
However, additional functions or information are required
when formulating the problem, such as probability distribution
in stochastic programming and membership functions in fuzzy
programming. On the one hand, additional functions or infor-
mation generally result in a complex model. On the other hand,
much history information is required for describing probability
distribution and membership functions, which is often hard to
obtain. Furthermore, probability distribution and membership
functions can be converted to intervals using the confidence
level and cut set, respectively. On this circumstance, stochastic
and fuzzy optimization problems can be transformed into
interval optimization problems.

Interval programming is employed to tackle problems with
the interval characteristic. These optimization problems gener-
ally contain a number of parameters represented with intervals
[11], [12], [13], [14], and the left and right endpoints or the
midpoints and radius of these intervals are known a priori.
It is relatively easier to obtain an interval than a probability
distribution or membership function. When tackling an interval
MOP, previous studies generally convert it to a deterministic
single- or multi-objective optimization problem [11], [15],
[16], [17]. The converted problem, however, is largely different
from the original one. In addition, for the same interval MOP,
different transformation approaches generally bring about dif-
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ferent deterministic optimization problems. As a consequence,
optimal solutions to these deterministic problems may be too
diverse, which raises a big problem when selecting optimal
solutions from a number of solution sets. Compared with the
conversion approach, the direct approach can avoid losing
valuable information and adding redundant information, thus
obtaining more precise solutions.

An MOP with changing ranges of interval parameters in
at least one objective and (or) constraint over time is called
as a dynamic interval multi-objective optimization problem
(DI-MOP). Taking the problem of robot path planning as an
example, the ranges of interval parameters will change when
the positions of danger sources change over time. At this point,
decision-makers should rapidly adjust the robot path so as to
successfully fulfill a mission.

Different from traditional dynamic MOPs (DMOPs) with
precise objectives, a DI-MOP generally has objectives with in-
terval values, which makes previous approaches, e.g., selecting
non-dominated solutions, detecting whether an optimization
problem changes or not, and responding the change, unsuitable
for this problem. In addition, an algorithm is required to
have the capability of obtaining a set of solutions with good
performance in convergence and distribution when the problem
changes. As a result, it is meaningful and greatly needed to
develop efficient approaches to solving DI-MOPs.

Various studies have shown that the co-evolutionary mech-
anism is beneficial to increasing the efficiency of an optimiza-
tion process [18], [19]. A cooperative co-evolutionary algo-
rithm (CCEA) generally decomposes an optimization problem
with a large number of decision variables into a number
of sub-problems with a small number of decision variables,
with each being optimized by a sub-population. Each sub-
population seeks the optimal solutions for a sub-problem in
the corresponding search space. A complete solution, i.e., the
candidate to the original optimization problem, for a sub-
population is constructed by combining a best solution of the
current sub-population with the best solutions of other sub-
populations at each generation. Since CCEAs can significantly
reduce the search space of a sub-population which is utilized
to optimize a small number of decision variables, they are
efficient when solving traditional DMOPs. For example, Goh
and Tan presented a dynamic competitive-cooperative co-
evolutionary algorithm (dCOEA) to solve both static and
dynamic MOPs, where all the decision variables are adaptively
divided into a number of groups, and stochastic competitors
are employed to track changing optimal solutions [20]. Two
approaches to large-scale multi-objective optimization were
proposed in [21] and [22]. One is to solve an MOP with many
decision variables, called an evolutionary algorithm for large-
scale many-objective optimization (LMEA), which divides the
decision variables into distance- and diversity- related groups
using a clustering approach [21]. The other is an MOEA based
on decision variable analyses (MOEA/DVAs) for large-scale
MOPs [22], which groups the decision variables according
to the contribution of a decision variable to convergence
(i.e., the distance to the PF), diversity, or both. But a large
number of function evaluations are consumed before the
optimization, especially for an optimization problem with a

large number of decision variables. It is not suitable for
a dynamic problem, which requires an algorithm with the
capability in rapidly responding to environmental changes. The
proposed decomposition strategy, however, does not take the
influence of changing parameters on the decision variables into
consideration. Following the influence of the time scale on
the decision variables, we divided all the decision variables
into two groups [23], among which one contains decision
variables interrelated with the time scale, and the other does
not. When cooperatively optimizing the decision variables
of the two groups using two sub-populations, we employed
different prediction strategies to generate the initial population
for different sub-populations, with the purpose of rapidly
responding to the change of the optimization problem. The
above methods focus mainly on real value problems and do
not take interval objectives into account, hence incapable to
tackle DI-MOPs. Further analyses can be found in Subsections
III.C and III.D.

In addition, a non-dominated solution to an interval MOP
may not be non-dominated in the scenario of a DI-MOP due
to the changing ranges of interval parameters. Consequently,
issues are expected to address when solving a DI-MOP,
including accurately detecting the change of the optimization
problem, rapidly tracking the changing Pareto front (PF),
and timely providing candidates with good performance in
diversity and approximation.

In this study, we focus on DI-MOPs, and a framework of
dynamic interval multi-objective cooperative co-evolutionary
optimization based on the interval similarity is presented to
handle them. In the framework, a strategy for decomposing
decision variables is first proposed, through which all the
decision variables are divided into two groups according to the
interval similarity between each decision variable and interval
parameters. Following that, two sub-populations are utilized to
cooperatively optimize decision variables in the two groups.
Furthermore, two response strategies, i.e., a strategy based
on the change intensity and a random mutation strategy, are
employed to rapidly track the changing Pareto front of the
optimization problem.

More specifically, this paper has the following four-fold
contributions:
(1) Providing a cooperative co-evolutionary optimization

framework for tackling DI-MOPs;
(2) Presenting strategies for grouping decision variables of a

DI-MOP and detecting its change according to the interval
similarity;

(3) Defining the change intensity of an optimization problem
and proposing a response strategy based on it, and

(4) Experimentally investigating the performance of the pro-
posed algorithm based on a set of benchmark problems
and applying the proposed algorithm to a multi-period
portfolio selection problem.

The rest of this paper is structured as follows. Section
II provides a comprehensive review on the related work.
The proposed framework of dynamic interval multi-objective
cooperative co-evolutionary optimization based on the interval
similarity is detailed in Section III. The experimental setting
and results are reported and analyzed in Section IV. Finally,
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Section V concludes the whole paper and points out several
topics for future study.

II. THE RELATED WORK

A. DI-MOPs

Without loss of generality, a DI-MOP can be formulated as
follows.
minF (x, c(t)) = (f1(x, c1(t)), f2(x, c2(t)), · · · , fm(x, cm(t)))
s.t. x ∈ D ⊆ Rn

ci(t) = (ci1(t), ci2(t), · · · , cil(t))T, i = 1, 2, · · · ,m
cik(t) = [cik(t), cik(t)], k = 1, 2, · · · , l

(1)

where
x - an n-dimensional decision vector;
c(t) - an m-dimensional interval parameter vector;
F (x, c(t)) - an objective vector;
fi(x, ci(t)) - the i-th component of F (x, c(t));

ci(t)
- the i-th component of c(t) , which is a
vector with l components;

cik(t)
- the k-th component of ci(t) , which is
an interval;

cik(t) - the left endpoint of cik(t);
cik(t) - the right endpoint of cik(t).

Given the fact that ci(t) is an interval vector, fi(x, ci(t)) is
an objective with its value being within an interval, denoted
as fi(x, ci(t))

∆
= [fi(x, ci(t)), fi(x, ci(t))], i = 1, 2, · · · ,m.

ci(t) generally changes over the time scale. Specially, if
ci(t) remains unchanged over time for any i, Eq. (1) will
be degraded as a traditional interval MOP [24]. In addition,
if cik(t) = cik(t) is held for any i and k, Eq. (1) will be
degraded as a traditional DMOP [25]. From this viewpoint, the
optimization problem formulated with Eq. (1) is an extension
of previous optimization problems. As a result, studying
approaches suitable for Eq. (1) is of considerable significance.

B. Dominance relation and Crowding distance based on
intervals

For two solutions, x1, x2 ∈ D, of (1), their i-th objectives
are fi(x1, ci(t)) and fi(x2, ci(t)), i = 1, 2, · · · ,m, respec-
tively. Limbourg and Aponte [24] defined the following order
and dominance relations based on intervals.

Definition 1: Order relation. The order relation between
fi(x1, ci(t)) and fi(x2, ci(t)) is defined as follows.
fi(x1, ci(t))<INfi(x2, ci(t)) ⇔ fi(x1, ci(t)) ≤ fi(x2, ci(t))

∧ fi(x1, ci(t)) ≤ fi(x2, ci(t)) ∧ fi(x1, ci(t)) ̸= fi(x2, ci(t))
(2)

Otherwise, fi(x1, ci(t)) and fi(x2, ci(t)) are incomparable,
denoted as fi(x1, ci(t))||fi(x2, ci(t)).

The order relation, <IN , is antisymmetric, reflexive, and
transitive. As a result, it defines a partial order relation between
intervals.

Definition 2: Dominance relation based on intervals.
x1 is said to dominate x2 based on intervals, denoted as
x1≻IPx2, if and only if
∀i ∈ {1, 2, · · · ,m},
fi(x1, ci(t))<INfi(x2, ci(t)) ∨ fi(x1, ci(t))||fi(x2, ci(t)),
∃i ∈ {1, 2, · · · ,m}, fi(x1, ci(t))<INfi(x2, ci(t))

(3)

If neither x1 dominates x2, nor x1 is dominated by x2,
x1 and x2 are non-dominated based on intervals, denoted as
x1||x2.

To obtain a diverse Pareto front, Limbourg and Aponte
provided the definitions of the hyper-volume and crowding
distance based on intervals [24]. Following the dominance
relation and the crowding distance based on intervals, they
proposed the following strategy for sorting solutions to (1).
The dominance relation is first utilized to assign each solution
with a unique rank. Then, for solutions with the same rank,
the order relation is adopted to sort them according to their
crowding distances. Finally, a random strategy is employed
to sort solutions which cannot be distinguished by the above
approach.

C. Interval multi-objective evolutionary optimization

Various real-world applications can be formulated as in-
terval optimization problems, such as optimal dispatch of
a virtual power plant [26], aircraft wing and automobile
design [27], [28], and household load scheduling [29]. As
a result, seeking approaches suitable for addressing interval
optimization problems is of great significance in theory and
applications, and among which interval analysis is one of
representative tools [30].

In recent years, utilizing evolutionary algorithms (EAs) to
address interval MOPs has become a rapidly growing field,
and a plenty of achievements have been obtained. Roughly,
there are the following two ways to handle interval MOPs with
EAs. One is converting an interval MOP to a deterministic
single- or multi-objective optimization problem, followed by
solving the converted one using EAs. Along this line, Cheng
et al. first transformed an interval MOP into a mini-max
optimization problem [31]. Then, they adopted a hierarchical
algorithm composed of a genetic algorithm and a nonlinear
programming approach to tackle the converted problem. Jiang
et al. converted an interval MOP to a deterministic MOP based
on the middle point and the width of an interval [32], and
further converted it to a single-objective optimization without
constraints which is tackled by an EA. We converted an
interval MOP with hybrid indices to a deterministic MOP
using such information as the middle point and the width
of an interval [15], and employed NSGA-II [33] to address
the converted problem. Sahoo et al. first formulated an MOP
with interval parameters, followed by converting the model to
a single-objective optimization problem and solving it using
an improved EA [17]. In addition, Bhunia et al. first defined
the interval ordering relation between solutions to an interval
MOP. Then, they transformed the interval MOP into a deter-
ministic single-objective optimization problem and tackled the
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converted problem using a hybrid EA [16]. Recently, focusing
on an interval many-objective optimization problem, we first
transformed it into a deterministic bi-objective problem, where
new objectives are hyper-volume and imprecision. And then,
a set-based genetic algorithm was proposed to tackle it [11].

The other is tackling interval MOPs directly by EAs
based on the interval dominance relation. Keeping this line
in mind, Limbourg et al. defined an interval Pareto dom-
inance relation based on the interval order relation when
tackling an interval MOP [24]. In addition, they proposed
an imprecision-propagating multi-objective evolutionary algo-
rithm (IP-MOEA) to address the interval MOP. We proposed a
Pareto dominance relation based on the interval possibility and
interval crowding distance [34], [35]. Using them, we selected
the optimal solutions to an interval MOP. Sun et al. presented
an interval Pareto dominance relation based on the lower limit
of a possibility, and employed it to modify NSGA-II to cope
with interval MOPs [36]. Zhang et al. evaluated solutions using
a probability dominance relation [37]. Goh and Tan calculated
the probability with which a solution dominates another, and
compared solutions based on the probability [38]. Karshenas
et al. presented an α-degree Pareto dominance to discriminate
solutions to an interval MOP [39]. In addition, Dou et al.
presented the scheme of the interval hesitation dominance
to distinguish solutions [40]. However, different dominance
relations will derive different optimal solution sets for the
same interval programming problem even though the identical
algorithm is adopted. It is difficult to choose a favorable
solution set for users. Bearing this characteristic in mind,
Sun et al. integrated previous interval dominance rules in a
framework through investigating the correlations of interval
dominance rules, developing a strategy to reducing a rule set
and assembling the reduced rules. As a result, users can utilize
the proposed ensemble dominance to handle their interval
programming models. Moreover, they will free themselves
from choosing an appropriate approach to assess solutions
[41], [42].

D. Dynamic Multi-Objective Optimization Algorithms

For a DMOP, an ideal optimization algorithm is expected
to rapidly seek Pareto-optimal solutions before the prob-
lem changes, and a well-designed dynamic multi-objective
optimization algorithm generally has good performance in
convergence and diversity.

Various studies have focused on speeding up the conver-
gence and maintaining a good diversity of EAs from the
following two aspects. One is developing memory-based meth-
ods, which save relevant information of the current solutions,
and employ it in the subsequent stages. Along this line,
Goh et al. selected a number of non-dominated solutions
from an archive, and re-evaluated them to obtain information
for guiding the subsequent evolution [20]. In the immune
clonal algorithm (ICA) for a DMOP [43], Shang et al. saved
representative individuals as the initial population when the
optimization problem changes, so as to accelerate the con-
vergence. They also proposed an improved decomposition-
based memetic algorithm in [44], and employed an archive

to store the currently best solution in each decomposition
direction during the search. The helpful information offered
by the archive can assist in handling neighbor sub-problems
by cooperation. Azzouz et al. proposed an adaptive strategy
for managing hybrid populations with memory, local search
and random strategies, to effectively tackle DMOPs, which
guarantees a rapid convergence and good diversity [45]. Koo
et al. proposed a selective memory technique, which selects
a partial retrieval based on the diversity in the decision
space to maintain effective memories [46]. Recently, Chen
et al. focused on DMOPs with a time-variable number of
objectives in [47], and proposed a dynamic two-archive EA,
denoted as DTAEA, to address them. DTAEA simultaneously
maintains two co-evolutionary populations, i.e., CA and DA,
during the evolution, and CA and DA will be reconstructed
as the environment changes. By a restricted mating selection
mechanism, DTAEA takes full advantages of complementary
influences of CA and DA, with the purpose of striking the
balance between convergence and diversity. Additionally, they
utilized a truncation operator to retrieve the most diverse
subset of memories.

The other is designing prediction-based approaches, which
predict optimal solutions based on historical information when
the optimization problem changes. Zhou et al. proposed a
method of re-initializing a population based on prediction [48].
The method first predicts the new positions of individuals
based on information collected during previous searches, and
the current population is then partially or completely replaced
by the predicted individuals. This method has, however, dete-
riorative performance when the PS of an optimization problem
changes nonlinearly over time. To improve the prediction accu-
racy, a method of hybrid diversity maintenance was proposed
in [49], which firstly relocates a number of solutions close
to the new Pareto front by prediction based on the moving
direction of each center. Following that, it employs a gradual
search to generate a number of well-distributed solutions in the
decision space, so as to compensate for possible inaccuracies.
To maintain the diversity of a population, the rest solutions
are randomly generated. Moreover, Liu et al. proposed an
improved prediction model to overcome this drawback [50].
In the proposed model, two individuals are selected to guide
the newly predicted individuals, which is beneficial to pre-
venting them from moving toward wrong directions [48]. In
addition, Muruganantham et al. presented a dynamic MOEA
by utilizing a Kalman filter (KF) to predict the new PF [51],
which uses less information than the strategy proposed by
Zhou. Furthermore, Rong et al. proposed a multidirectional
prediction (MDP) strategy to enhance the performance of EAs
in addressing a DMOP. They construct multiple time series
models based on historical information to predict a number of
evolutionary directions. Once an environmental change occurs,
a part of the population is re-initialized by the prediction
model, and the rest will be randomly generated [52].

In addition to the aforementioned methods, Shang et al.
combined a co-evolutionary competitive and cooperative op-
eration in the immune clonal algorithm (ICA) for DMOPs to
have good performance of solutions in uniformity and diversity
[53], [54]. Qu et al. proposed an ensemble of multi-objective
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Algorithm 1: The pseudo code of the proposed framework
Input: the number of generations, g;
Output: the archive, A(t);

1 Dividing decision variables (Algorithm 2);
2 t←0, g←0 % t is the time scale;
3 Initialize sub-populations;
4 while the termination condition is not met do
5 Change detection (Algorithm 3);
6 if the change occurs then
7 t←t+1;
8 Response to the problem change;
9 end

10 Cooperatively co-evolve sub-populations;
11 Select non-dominated solutions and store them in the archive, A(t);
12 g←g+1;
13 end
14 return A(t)

differential evolution algorithms to cope with dynamic eco-
nomic emission dispatch (DEED) problems [55], [56], and
the experimental results demonstrated that the proposed algo-
rithm is capable in speeding up convergence and effective in
handling DEED problems.

III. DYNAMIC INTERVAL MULTI-OBJECTIVE COOPERATIVE
CO-EVOLUTIONARY OPTIMIZATION BASED ON INTERVAL

SIMILARITY

A. The general framework

DI-MOPs have the following twofold characteristics: one
is that each objective of a DI-MOP is an interval, and the
other is that interval parameters in the objectives change
over time. Aiming at these two characteristics, we propose
a framework of dynamic interval multi-objective cooperative
co-evolutionary optimization based on the interval similarity
to handle DI-MOPs.

In the proposed framework, all the decision variables of an
optimization problem are first decomposed according to the
strategy proposed in Subsection III.C. Next, sub-populations
cooperatively co-evolve with each sub-population evolving the
decision variables in one group, and a complete solution is
formed as described in Subsection III.F with its objective
being the fitness of an individual to be evaluated. Following
that, non-dominated solutions are selected, and saved in an
archive. In addition, a strategy based on the interval similar-
ity is employed to check whether the optimization problem
changes or not, as described in Subsection III.D. If yes,
the sub-populations will be re-initialized using the proposed
response and perturbation strategies, respectively, as described
in Subsection III.E. The above process will be repeated until
a termination condition is met. The complete non-dominated
solutions in the archive are finally output as the optimal
solutions to the DI-MOP. Algorithm 1 provides the pseudo
code of the framework.

To fulfill this task, we first define the interval similarity as
follows.

B. Interval similarity

In [57], the authors provide a definition of interval similarity
and its properties. The definition, however, is useless when an

interval degrades as a real value. Therefore, we extend the
definition and make it also suitable for real values.

Definition 3: Interval similarity. For two intervals a =
[a, a] and b = [b, b], their similarity, denoted as s(a, b), is
defined as follows.

s(a, b) =


la∩b

max{la,lb} , max{la, lb} ≠ 0;

1− |b−a|
max{|a|,|b|,χ(|a|+|b|)} ,

max{la, lb} = 0, a ̸= 0 or b ̸= 0;
1, max{la, lb} = 0, a = b = 0.

(4)
where a∩b represents the intersection of a and b, and la, lb, and
la∩b mean the widths of intervals a, b, and a∩ b, respectively.
max{la, lb} = 0 indicates that a and b are two real values, i.e.
a = a and b = b. χ is a characteristic function, with its value
being 1 when ab < 0, and 0 otherwise.

The value of s(a, b) reflects the difference between a and b,
which satisfies that 0 ≤ s(a, b) ≤ 1, and a larger value means
a smaller difference between these intervals.

In addition, we have the following observations.
(1) s(a, b)=1 if and only if a = b , which is called complete.
(2) s(a, a)=1, which is called reflexive.
(3) s(a, b) = s(b, a), which is called symmetric.
(4) If s(a, b) = 1 and s(b, c) = 1 are held, one has s(a, c) = 1,

which is called transitive.
Please refer to Subsection I.A in the supplementary material

for the proofs of these observations.

C. Dividing decision variables based on interval similarity

For a DI-MOP, a well-designed algorithm is generally ex-
pected to have good performance in convergence and diversity
before the problem changes. For a solution to a DI-MOP,
some of its components change over dynamic parameters, and
the others remain unchanged. If we divide all the decision
variables of a DI-MOP into two groups, and optimize decision
variables in each group individually, the efficiency of solving
the optimization problem will be improved to some degree. In
[58], a differential grouping strategy is employed to discover
the underlying interaction structure of the decision variables.
However, the strategy cannot be directly utilized to detect the
interaction between a decision variable and a parameter in a
DI-MOP, especially when the parameter is an interval, due
to its different characteristics with a real value. For example,
Y = [1, 2] is an interval, Y −Y = [−1, 1], not [0, 0]. Inspired
by the study in [58], we propose a variant of the above method
based on the interval similarity in this study, with the purpose
of efficiently tackling a DI-MOP.

Definition 4: separable function. A function, f(x, c), is
partially additively separable, if it has the following form:

f(x, c) =
J∑

j=1

fj(x
j , cj) (5)

where fj(x
j , cj) is a function associated with xj and cj ,

x1, · · · ,xJ and c1, · · · , cJ are mutually exclusive decision
vectors and parameter vectors.
Theorem 1 For an additively separable interval function,



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. **, NO. **, FEBRUARY 2019 6

f(x, c(t)), its difference, denoted as ∆f(x, c), will be as
follows when xk has a disturbance of δ.

∆f(x, c) = [∆f(x, c),∆f(x, c)],where

∆f(x, c) = f(· · · , xk + δ, · · · , c)− f(· · · , xk, · · · , c),
∆f(x, c) = f(· · · , xk + δ, · · · , c)− f(· · · , xk, · · · , c).

(6)

∀a, [cp, cp] ̸= [c′p, c
′
p], δ ∈ R, δ ̸= 0, if the interval

similiarity

s(∆f(x, c)
∣∣∣xk=a,cp=[cp,cp] , ∆f(x, c)

∣∣∣∣xk=a,cp=[c′p,c
′
p]
) < 1

is held, xk and cp(cp ∈ c) are said inseparable.
Please refer to Subsection I.B in the supplementary material

for the detailed proof.
The grouping theory in [23] is a particular case as the

parameter, c, is a real vector in the above theory.
In [23] and [58], only one point is utilized to group the

decision variables. However, the interval is characterized by
two points, the left and the right endpoints. For interval
optimization problems, if only one point is employed, infor-
mation provided by the other endpoint will be lost, which
results in inaccuracy. Taking a function, f(x, c(t)) = c(t)x,
as an example, assume that c(t)= [1, 1+t] and δ=0.5. On
this circumstance, ∆1=∆f(x, c(t))

∣∣
x=3, cp=[1,2] = [0.5, 1],

∆2=∆f(x, c(t))
∣∣
x=3, cp=[1,3] = [0.5, 1.5]. If only the left

endpoints are utilized to measure the difference between
∆1 and ∆2, we will conclude that there is no difference
according to the results of [23] and [58]. In fact, their right
endpoints have a large difference. Nonetheless, based on
the method proposed in this paper, their interval similarity
is s(∆1,∆2)=0.5, suggesting that ∆1 and ∆2 are clearly
different. As a consequence, the method proposed in this paper
can easily distinguish ∆1 and ∆2, and is more suitable for
handling interval optimization problems.

In this study, due to uncertainties and noises generally
existing in the objectives, we regard xk and cp inseparable if

s(∆f(x, c)
∣∣∣xk=a,cp=[cp,cp] , ∆f(x, c)

∣∣∣∣xk=a,cp=[c′p,c
′
p]
) < θ1

, where θ1 is a threshold set in advance in the range of (0,1).
According to the above theorem, we propose

the following approach of dividing all the decision
variables in (1). For xk and cp(t), we first
calculate ∆f(x, c(t))

∣∣∣xk=a,cp(t)=[cp(t),cp(t)] and

∆f(x, c(t))

∣∣∣∣xk=a,cp(t)=[c′p(t),c
′
p(t)]

according to (6).

Following that, we obtain the similarity between the
two intervals by (4), and if it is smaller than θ1, xk is
inseparable with cp(t). On this circumstance, we delete xk

from the set of decision variables, and put it into the first
group. The above process is repeated until all the interval
parameters are detected. In this way, we can obtain decision
variables in the first group. θ1 is set according to noises and
uncertainties existing in a problem, and the larger the noises
or uncertainties, the smaller the value of θ1 should be set.
For a problem, θ1 is generally set to 1. In fact, assigning its
appropriate value is difficult. Algorithm 2 provides the pseudo
code of the proposed method of dividing all the decision
variables.

Algorithm 2: Dividing decision variables
Input: the time scale, t; upper and lower bounds of decision variables,

upb and lowb; the number of objectives, decision variables and
interval parameters, m, n and P, respectively;

Output: the groups of decision variables, g1 and g2;
1 g1← ∅ % g1 saves decision variables inseparable with c(t);
2 g2← ∅ % g2 saves decision variables separable with c(t);
3 for i = 1 to m do
4 for p=1 to P do
5 for k =1 to n do
6 x(1 : n)← lowb(1 : n);
7 y(1 : n)← x(1 : n);
8 % x and y mean the values of decision vector, x;
9 y(k)← 0.5 · (lowb(k) + upb(k));

10 c(1 : P )← c(t)(1 : P );
11 ∆1← fi(x, c)− fi(y, c);
12 c’(1 : P )← c(1 : P );
13 c’(p)← 0.5 · c(p);
14 ∆2← fi(x, c’)− fi(y, c’);
15 Calculate the similarity between ∆1 and ∆2, spk;
16 if spk < θ1 then
17 g1← g1 ∪ {k};
18 end
19 end
20 end
21 end
22 g2← {1, 2, · · · , n}\g1;
23 return g1, g2

Using the proposed strategy, all the decision variables
can be divided into the following two groups: one is
x1= (x1

1, x
1
2, · · · , x1

r), which is inseparable with interval pa-
rameters, and the other is x2= (x2

1, x
2
2, · · · , x2

n−r), which is
separable with interval parameters.

D. Detecting problem change based on interval similarity

For a DI-MOP, if traditional approaches [25], [59], [60] are
employed to detect the problem change, a predefined value
associated with an objective interval, such as the left endpoint,
the right endpoint, and the midpoint, is selected. However, the
predefined value may not be changed as the problem varies.
Let us consider the following three functions: f1(x, t) =
[1, 1 + t]x, f2(x, t) = [−t, 1]x, f3(x, t) = [−t, t]x, (t > 1).
When the parameter, t, varies, the left endpoint of f1(x, t), the
right endpoint of f2(x, t), and the midpoint of f3(x, t) remain
unchanged for the same value of x. Under this circumstance,
traditional approaches have a difficulty in tackling a DI-MOP.

For a solution to a DI-MOP, at least one of its objective
intervals will generally vary when the optimization problem
changes, and the larger the change intensity of the optimization
problem, the smaller the similarity between objective inter-
vals of the previous and current optimization problems. In
this way, we can detect whether the optimization problem
change or not. To fulfill the task, we first form a detection
population at the end of each generation, which is composed
of a number of individuals chosen from the current optimal
solutions. Then, we calculate the similarity between objective
intervals of each individual in the detection population based
on the previous and current optimization problems, and obtain
the average interval similarity of these individuals. Finally,
we compare the average interval similarity with a threshold,
θ2(0 < θ2 < 1), set in advance. If it is smaller than θ2, the
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Algorithm 3: Environment detection
Input: the archive, A; the number of objectives, m;
Output: the results of environment detection, flag;

1 Choose u individuals from the current optimal solutions to form the
detection population, det pop = {p1, p2, · · · , pu};

2 i← 1;
3 while i <=m do
4 for j=1 to u do
5 aij(t) = fi(pj , ci(t)), aij(t+ 1) = fi(pj , ci(t+ 1));
6 % Calculate the objective intervals based on the previous and

the current optimization problems;
7 Calculate the similarity between aij(t) and aij(t+ 1), sij ;
8 end

9 s̄i ← 1
u

u∑
j=1

sij ;

10 if s̄i < θ2 then
11 flag← true;
12 Break;
13 else
14 flag← false;
15 i← i+ 1;
16 end
17 end
18 return flag;

TABLE I
COMPARISON RESULTS WHEN DIFFERENT STRATEGIES ARE EMPLOYED TO

DETECT THE ENVIRONMENTAL CHANGE

Function
Function value
when t = 1

Function value
when t = 1.5

Difference obtained
by the traditional method

Similarity obtained
by the proposed method

f1(2, t) [2, 4] [2, 5] 0 0.6667
f2(2, t) [2.2, 4] [2.3, 5] 0.1 0.6296
f3(2, t) 4 5 1 0.8
f3(5, t) 10 12.5 2.5 0.8

optimization problem is detected to have changed. θ2 is set by
a decision-maker according to his/her preference. The more
sensitive the decision-maker to the environmental change, the
larger the value of θ2 should be set. On this circumstance,
the decision-maker will frequently change his/her plan once
the environment changes, and has a high requirement to the
algorithm so as to rapidly seeking optimal solutions. The
pseudo code of the proposed method of detecting the problem
change is supplied in Algorithm 3.

To compare the traditional and the proposed detection
strategies, three functions, f1(x, t) = (1, 1 + t)x, f2(x, t) =
(1 + 0.1t, 1 + t)x, and f3(x, t) = (1 + t)x, are taken into
account. Among them, the first two are intervals, and the third
one is a real value. Assume that only the left endpoints are
employed in the traditional detection strategy. Table I lists the
comparison results when the two strategies are employed to
detect the environmental change. From this table, we can see:

(1) for interval functions, f1(x, t) and f2(x, t), rows 2 and
3 demonstrate that the traditional method is low-efficient, or
even useless to detect the environmental change, due to its
focus on only one point and neglect of the other one. However,
the proposed method detects the environment change on the
interval similarity, and hence successfully detect the changes
with high-efficiency.

(2) for real function, f3(x, t), both methods have a capa-
bility in detecting the environmental change. However, the
proposed method is less impacted by the decision variable,
suggesting its robustness. Therefore, the proposed method is
also suitable for real functions.

E. Responding to problem change

Once a change of the optimization problem is detected,
appropriate strategies should be employed to respond to the
change. Multi-population co-evolutionary optimization can
efficiently search for the feasible decision space in multiple
directions and interact with each other, which makes it suit-
able for addressing DMOPs. Compared with traditional sin-
gle population evolutionary optimization, the multi-population
counterpart generally has good performance in convergence
and diversity. If all the populations respond to the change
in the same way, the characteristics of different populations
will be ignored, which deteriorates the performance of multi-
population co-evolutionary optimization. A well-designed re-
sponding strategy is generally expected to have good perfor-
mance in convergence and diversity. On the one hand, aban-
doning historical optimal solutions and randomly initializing
a population is beneficial to the population diversity but may
be time-consuming for an algorithm to converge. On the other
hand, utilizing all the historical optimal solutions is helpful to
converge, but may mislead the evolutionary direction when the
change is severe. Furthermore, it generally results in the loss of
the population diversity and falls into local optima. Therefore,
seeking appropriate strategies for responding to the change is
of considerable necessity.

To fulfill this task, we present a strategy for responding to
changes of the optimization problem. In the proposed strategy,
we initialize sub-populations corresponding to different groups
using different methods. For decision variables in groups
x1 and x2, they are optimized by two populations P1 and
P2, respectively. For P1, it is composed of two parts: one
contains individuals which are randomly initialized in the
feasible decision space to promote the diversity of P1, and
the other contains those which are initialized by a prediction
strategy based on the change intensity to rapidly tracking the
optimal solutions to the changed optimization problem. In the
following, we will detail the prediction strategy.

1) Predicting the change direction of optimal solutions : To
fulfill this task, we re-evaluate solutions in A(t), the archive of
complete solutions at the time scale t, and store non-dominated
solutions in A0(t + 1). Then, the change direction can be
obtained as follows.

D(t+1) =
CA0(t+1) − CA(t)∥∥CA0(t+1) − CA(t)

∥∥
2

(7)

where CA0(t+1) and CA(t) are the centroids of A0(t+1) and
A(t) in the decision space, respectively.

2) Estimating the step size of the change of optimal so-
lutions: We define the change intensity of the optimization
problem as follows.

ds(t+1) =
1

m |A0(t+1)|

m∑
i=1

|A0(t+1)|∑
j=1

(1− sij) (8)

where |A0(t+1)| is the size of A0(t+1), sij refers to the
similarity between the i-th objective of the j-th individual for
the previous and current optimization problems, ds(t+1) is the
average dissimilarity of each objective of all the individuals.
ds(t+1) reflects the change intensity of the optimization
problem, and a larger value of ds(t+1) indicates a more
violent change.
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Using historical information of optimal solutions, the step
size of the change of optimal solutions is estimated as fol-
lows.

S(t+1) =
ds(t+1)

ds(t)

∥∥CA(t) − CA(t−1)

∥∥
2

(9)

where ds(t+1)

ds(t)
means the ratio of the change intensity from

time scale t to t+1, and a larger value of ds(t+1)

ds(t)
suggests

that the change intensity at the time scale t+1 is stronger than
that at time t. As a result, the step size of optimal solutions,
S(t+1), will be larger.

3) Generating new individuals: For any p(t) ∈ P 1(t), its
location for the changed optimization problem is predicted as
follows.

p(t+ 1) = p(t) + rS(t+1)D(t+1) + ε(t) (10)
where r refers to a random value obeying the uniform

distribution in [0,1]. ε(t) ∼ N
(
0, σ2(t)I

)
is a Gaussian noise

which is added to increase the probability of the re-initialized
population to cover the PS of the changed optimization
problem, I is an identity matrix, and σ(t) is the standard
deviation of the Gaussian distribution with its expression being
σ(t) = S(t+1)

2
√
n

.
P 1 is heavily affected by interval parameters when the op-

timization problem changes. According to this characteristic,
the proposed response method utilizes the interval similarity of
individuals fitness before and after the change to generate the
initial solutions. Due to taking full advantage of information
associated with the change, the generated initial solutions can
well reflect the change trend of optimal solutions, leading to
a rapid convergence.

With respect to P 2, interval parameters have no influences
on x2. As a result, a half of individuals in P 2 are randomly
initialized, and the rest are initialized with the Gaussian muta-
tion, shown in (11), when the optimization problem changes.

p(t+ 1) = p(t) + ε(t) (11)

F. Constructing a complete solution

When evaluating an individual of the current population,
forming a complete solution by selecting a representative
individual from the other population together with the current
individual is of necessity. To fulfill this task, the method in
[23] is adopted to construct and evaluate a complete solution.
For more details, please refer to [23].

G. Complexity of the proposed algorithm

In each generation, the main difference between the pro-
posed CC-IP-MOEA-IS, which is achieved by combining the
proposed cooperative co-evolutionary optimization and the
response strategies based on the interval similarity with IP-
MOEA, and IP-MOEA lies in grouping the decision variables,
detecting the environmental change, responding the change,
cooperatively co-evolving each sub-population, and forming
the archive. Assume that there are two sub-populations with
their size of N/2 to cooperative co-evolve when tackling an

optimization problem with m(≥ 2) objectives, n decision
variables, and p interval parameters. In additional, we assume
that there are k non-separable variables for each interval
parameter, and let n co be the number of representatives from
the other sub-populations during the evolution, and N be the
sizes of the archive. The computational complexity associated
with each of the above strategies is given as follows:
(1) grouping the decision variables is O(mp(n+ k)) [58],
(2) detecting the environmental change is O(mN) in the

worst case,
(3) responding to the change is O(mN),
(4) cooperatively co-evolving all the sub-populations is

O(m(n co)2N), and
(5) forming the archive is O((2N)m) [24], [61].

The number of representatives, n co, is generally a small
constant and irrelevant to the size of a sub-population. There-
fore, the overall complexity of the proposed algorithm is
O((2N)m), which is the same as that of the state-of-the-
art IP-MOEA [61]. From this viewpoint, CC-IP-MOEA-IS is
computationally efficient. However, if n co is set to a large
value, and relevant to the size of a sub-population, CC-IP-
MOEA-IS will have a high computational complexity when
m = 2.

IV. EXPERIMENTS

To evaluate the proposed algorithm, we conduct the follow-
ing three groups of experiments. The first group investigates
the influences of different response strategies by comparing
the response strategy proposed in Section III. E with strategies
A and B proposed in [25]. For the second group, its aim is
to demonstrate the influences of cooperative co-evolution on
an optimization algorithm. To fulfill this task, we compare
IP-MOEA [24] with and without this paradigm when solving
benchmark optimization instances. With the last group, we
attempt to conduct a comprehensive comparison between the
proposed algorithm and other five state-of-the-art ones. The
implementation environment is provided as follows: Intel(R)
Xeon(R) E5-2660 V3 CPU, 2.60GHz, 48GB RAM, Windows
10, MATLAB R2012a.

A. Benchmark optimization problems

To evaluate the proposed algorithm, eight new optimization
problems, ZDT3DI , FDA1DI , FDA2DI , FDA4DI , FDA5DI ,
and DSW1DI -DSW3DI , are constructed by modifying previ-
ous deterministic counterparts, ZDT3, FDA1, FDA2, FDA4,
FDA5 [62] , and DSW1-DSW3 [63]. These problems can be
scaled to any number of decision variables, and have concave,
disconnected, scalable, and changeable Pareto fronts/sets. The
first decision variable of each deterministic optimization prob-
lem is multiplied by an interval, c1 = [0.9, 1], and the
rest are multiplied by intervals associated with the time
scale, ci(t) = [0.45 |sin(0.5iπt)| , 0.5 + 0.45 |sin(0.5iπt)|]
or ci(t) = [0.45 |sin(0.5πt)| , 0.5 + 0.45 |sin(0.5πt)|]. In this
way, the deterministic optimization problems can be converted
into their interval counterparts. ci(t) changes over time, and
different decision variables have different interval coefficients,
which poses a difficulty to an algorithm when tackling these
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optimization problems. Therefore, these optimization prob-
lems are qualified to test the capacity of an algorithm in
tracking changing optimal solutions.

Please refer to Section II in the supplementary material for
the detailed descriptions of them.

B. Compared algorithms and parameter settings

1) Compared algorithms and strategies: Since each sub-
population in the proposed algorithm evolves using operators
in IP-MOEA, it is necessary to take IP-MOEA as a compared
algorithm. To investigate the efficiency of the response strategy
proposed in this study, we take two state-of-the-art strategies,
A and B, proposed by Deb et al. [25], into consideration
for a comparative study. The three corresponding dynamic
evolutionary optimization algorithms, CC-IP-MOEA-A, and
CC-IP-MOEA-B, are achieved by combining the proposed
cooperative co-evolutionary optimization, and the response
strategies, A and B, respectively, with IP-MOEA. In addition,
the other two algorithms, D-IP-MOEA-A and D-IP-MOEA-B,
are obtained by incorporating the response strategies, A and
B, respectively, with IP-MOEA. Finally, these two algorithms
are compared with CC-IP-MOEA-A and CC-IP-MOEA-B to
evaluate the performance of the proposed cooperative co-
evolutionary strategy.

2) Parameter settings: In the experiments, the simulated
binary crossover (SBX) and polynomial mutation are utilized
with their distribution indexes of 20 to generate new offspring
during the evolution. The crossover and mutation probabilities
are 0.9 and 1/n, respectively, where n is the number of
decision variables. For each benchmark optimization problem,
t = 1

nt

⌊
τ
τt

⌋
, where nt, τt and τ are the change severity and

frequency, as well as the maximal number of iterations, respec-
tively. For problems ZDT3DI , FDA1DI , FDA2DI , FDA4DI ,
and FDA5DI , nt = 10, τt = 50, τ = 2500, indicating that
there are fifty changes in total for each optimization problem.
Each function is evaluated 10,000 times after the optimization
problem changes. For problems DSW1DI -DSW3DI , nt =
2, τt = 100, τ = 2000, i.e. twenty changes are tackled for
each algorithm. Each function is evaluated 20,000 times after
the change occurs.

At each generation, cooperative co-evolutionary algorithms,
i.e., CC-IP-MOEA-A, CC-IP-MOEA-B, and CC-IP-MOEA-
IS, have more evaluations than IP-MOEA. Therefore, the pop-
ulation size is set to 50 for these cooperative co-evolutionary
algorithms and 200 for IP-MOEA, D-IP-MOEA-A, and D-
IP-MOEA-B, to balance their total budget in evaluation. The
archive size is set to 100, and the cooperative individual rate
is set to 2. Besides, the values of θ1 and θ2 are set according
to the tolerability of a decision-maker to the problem change
and the robustness of obtained optimal solutions. In this study,
they are both set to 0.9. For problems with their decision
variables being inseparable with interval parameters, such as
ZDT3DI , FDA1DI , and FDA2DI , the decision variables are
equally divided into two groups.

We run each algorithm 30 times for each optimization
problem independently, and calculate the mean and standard
deviation of the two performance indicators which will be

formulated with (12) and (13). Besides, Mann-Whitney U test
is adopted to show the difference of different algorithms in
terms of each performance metric at the significant level of
5%.

C. Performance indicators

When evaluating a solution set obtained by an algorithm in
convergence, diversity, and uncertainty, Limbourg and Aponte
et al. [24] introduced such indicators as hyper-volume (H) and
imprecision (I). To adapt the H and I indicators to DI-MOPs,
the average value of each indicator in a period of time scales
is calculated.

Definition 5: Average hyper-volume (AH). The value of
the AH metric assists in assessing the tracking ability of
a Pareto optimal set obtained by an algorithm before the
optimization problem changes, with its expression as follows.

AH = [AH, AH] =
1

|T |
∑
t∈T

H(X∗(t)) (12)

where T is a set of time scales with its cardinality being |T |,
X∗(t) means the obtained PS(t) at the time scale, t. The larger
the value of AH of the final Pareto front is, the closer the
final front is to the true one, and the better the distribution of
solutions along the front is. In the experiments, the reference
point is set to (1.2fmax

1 , 1.2fmax
2 ) for DSW3DI and (5, 5)

for the rest problems, where fmax
1 and fmax

2 are the maximal
objectives of f1 and f2, respectively.

Definition 6: Average imprecision (AI). For X∗(t), its
imprecision is calculated as follows.

I(X∗(t)) =
∑

x∈X∗(t)

m∑
i=1

(fi(x, ci(t))− fi(x, ci(t))).

The average imprecision of X∗(t) is then calculated as
follows.

AI =
1

|T |
∑
t∈T

I(X∗(t)). (13)

AI reflects the uncertainty of a Pareto optimal set in the
objective space, and the smaller the value of AI of a Pareto
optimal set, the more exact the true PF(t) corresponding to the
Pareto optimal set.

D. Experimental results and discussion

In this subsection, the proposed algorithm, CC-IP-MOEA-
IS, is compared with five algorithms, IP-MOEA, D-IP-MOEA-
A, D-IP-MOEA-B, CC-IP-MOEA-A, and CC-IP-MOEA-B.
Figs. 1 and 2 depict the boxplots of the H and I indicators
obtained by different algorithms when tackling the eight DI-
MOPs. Tables II and III list the experimental results, where
data are the average/standard deviation of AH, AI or time
consumption, the boldface ones are the best among these
algorithms, and those labeled by ‘*’ indicate that results
obtained by the proposed algorithm are significantly different
from those obtained by a comparative one.



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. **, NO. **, FEBRUARY 2019 10

� � � � � �
����

����

����

����

�	

�	��

�	��

�	��

�	��


���
��

� � � � � �

����

��

����

��


��������������������

�

����
��

(a)

� � � � � �

����

�����

����

�����

����

�����

���	

���	�

���


��
�
��

� � � � � �

�����

����

�����

����

�����������
���������

�

��
�
��

(b)

� � � � � �

����

�	

�	��

�


�
��

��

����

��

�
��
��

� � � � � �

�

�

	

��

��

��

��

���������������������

�


���
��

(c)

� � � � � �
�

�

�

�

��

��

��

��

	
��
��

� � � � � �
�

��

��

��

��

��

��

��

��

�
������
�����
������

�

	
��
��

(d)

Fig. 1. The boxplot of H over 30 times of six algorithms on eight benchmark optimization problems. (1: IP-MOEA, 2: D-IP-MOEA-A, 3: D-IP-MOEA-B,
4: CC-IP-MOEA-A, 5: CC-IP-MOEA-B, 6: CC-IP-MOEA-IS.)
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Fig. 2. The boxplot of I over 30 times of six algorithms on eight benchmark optimization problems. (1: IP-MOEA, 2: D-IP-MOEA-A, 3: D-IP-MOEA-B,
4: CC-IP-MOEA-A, 5: CC-IP-MOEA-B, 6: CC-IP-MOEA-IS.)

1) The performance of the proposed response strategy:
We first compare the two algorithms, D-IP-MOEA-A and D-
IP-MOEA-B, on the eight benchmark problems to show the
performance of incorporating response strategies A and B with
IP-MOEA. Fig. 1 demonstrates that D-IP-MOEA-A and D-
IP-MOEA-B are not better than IP-MOEA in terms of H .
Especially, the H values of the former are slightly smaller than
that of the latter on FDA4DI , DSW1DI , and DSW2DI , indi-
cating that there is no significant improvement in convergence
and diversity after incorporating response strategies A and B
into IP-MOEA. In addition, there is no significant difference
in terms of AI among the three algorithms, suggesting that
response strategies A and B have slightly influence on the
performance of an improved algorithm. We therefore conclude
the unsuitability of response strategies A and B for DI-MOPs.

Then, we compare the algorithms, CC-IP-MOEA-A and
CC-IP-MOEA-B with CC-IP-MOEA-IS, which have the same
cooperative co-evolution paradigm and different response
strategies, A, B, and interval similarity-based, to demonstrate
the performance of the three response strategies. For ZDT3DI ,
FDA1DI , and FDA4DI , CC-IP-MOEA-IS is significantly su-
perior to CC-IP-MOEA-A and CC-IP-MOEA-B in terms of
H . When tackling problems DSW1DI and DSW2DI , CC-IP-
MOEA-IS achieves larger values of H than CC-IP-MOEA-
A. Although CC-IP-MOEA-IS and CC-IP-MOEA-B have no
significant difference in terms of the medium of H , CC-
IP-MOEA-IS has the H values with a smaller fluctuation
than CC-IP-MOEA-B, which highlights its strong robustness.
Moreover, on DSW3DI , there is no significant difference in
terms of H among CC-IP-MOEA-IS, CC-IP-MOEA-A, and
CC-IP-MOEA-B. To sum up, the proposed response strategy
achieves a larger H value and a smaller fluctuation on the
other problems except FDA2DI . The AH value in Table II also
confirms the above observation, suggesting that the proposed

response strategy has a better capability to be combined
with the cooperative co-evolution paradigm to promote the
performance in convergence and diversity of an algorithm.

Additionally, CC-IP-MOEA-IS has not only smaller I values
and stronger robustness than CC-IP-MOEA-A and CC-IP-
MOEA-B in terms of I on ZDT3DI , FDA1DI , FDA2DI ,
FDA4DI , and FDA5DI , but also its imprecise is as small
as CC-IP-MOEA-A and CC-IP-MOEA-B on DSW1DI -
DSW3DI .

From the above experimental results and analysis, we can
conclude that the proposed response strategy has effectively
improved in convergence and diversity of an algorithm. In
addition, it significantly reduces the imprecise of the obtained
optimal solution set. Hence, the proposed response strategy is
more suitable for DI-MOPs.

2) The performance of the cooperative co-evolutionary
paradigm: We compare the following pairs of algorithms, D-
IP-MOEA-A and CC-IP-MOEA-A, D-IP-MOEA-B and CC-
IP-MOEA-B, with each pair having the same response strat-
egy, but different evolutionary paradigm. Fig. 1 demonstrates
that, CC-IP-MOEA-A and CC-IP-MOEA-B are worse than
their counterparts in terms of H on ZDT3DI and FDA4DI . In
addition, there is a slight difference among them on FDA5DI .
However, CC-IP-MOEA-A and CC-IP-MOEA-B have signifi-
cantly larger H values than their counterparts on the rest five
test instances, suggesting that the cooperative co-evolutionary
paradigm can achieve good performance in convergence and
diversity on most test cases.

We have the following observations from Fig. 2: CC-IP-
MOEA-A and CC-IP-MOEA-B have larger I values than their
counterparts on ZDT3DI , FDA4DI , and FDA5DI , but their I
values are generally smaller than their counterparts on the rest
five problems, indicating that the cooperative co-evolutionary
paradigm can also improve the imprecise of an algorithm.
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Fig. 3. The H and I values over 30 runs versus the time instances on eight benchmark optimization problems

E. Capability in tracking the time-variant Pareto fronts

The curves of H (i.e. the upper endpoint of H) and I over
30 runs versus the time instances on the eight benchmark
problems are depicted in Fig. 3. From this figure, we can
obtain:

(1) For ZDT3DI , FDA4DI , and FDA5DI , two CCEAs,
i.e. CC-IP-MOEA-A and CC-IP-MOEA-B, show no better
performance in both convergence and diversity than the three
non-CCEAs. Nevertheless, the proposed algorithm, CC-IP-
MOEA-IS, obtains the competitive H and I values along
with the change of an optimization problem, indicating its
excellence in tracking time-dependent Pareto fronts. Further-
more, the proposed algorithm has the H and I values with a
slighter fluctuation than the others, which highlights its strong
robustness.

(2) For FDA1DI and FDA2DI , three CCEAs are superior
to the others no matter how an optimization problem changes,
with good performance in robustness. In addition, CC-IP-
MOEA-IS, which incorporates with the proposed response
strategy, achieves the best performance in terms of H and
I all the time. These results reveal that CC-IP-MOEA-IS is
more suitable for handling dynamic interval problems.

(3) For DSW1DI , DSW2DI and DSW3DI , which have large
feasible regions, CC-IP-MOEA-IS achieves the competitive H
values, and is significant better than the non-CCEAs, except
the first two time instances. Moreover, there is no significant
difference in terms of the I values among the three CCEAs.

From the above results, we can conclude that the proposed
algorithm is capable of rapidly tracking time-variant Pareto
fronts as well as achieving a Pareto optimal set with good
performance in convergence, diversity, and imprecision.
F. Comparison analysis of algorithms

Tables II and III list the averages and standard deviations
of AH and AI obtained by different algorithms on the above

eight test instances. We have the following observations in
terms of AH from Table II.

TABLE II
PERFORMANCE COMPARISONS OF DIFFERENT ALGORITHMS IN TERMS OF

AH

Problem IP-MOEA D-IP-
MOEA-A

D-IP-
MOEA-B

CC-IP-
MOEA-A

CC-IP-
MOEA-B

CC-IP-
MOEA-IS

ZDT3DI 19.4401* 19.4608* 19.4406* 19.1255* 19.0730* 19.5584
0.0968 0.0871 0.1022 0.2706 0.3014 0.0935

FDA1DI 22.9704* 22.9702* 22.9629* 23.5519* 23.5085* 23.7838
0.3438 0.3686 0.347 0.2096 0.2366 0.1568

FDA2DI 24.7172* 24.7095* 24.7144* 24.8358 24.8406 24.8329
0.0727 0.0726 0.0753 0.0461 0.0458 0.0482

FDA4DI 23.4994 23.4956* 23.4961* 23.4545* 23.4582* 23.5064
0.0212 0.019 0.0194 0.042 0.0365 0.013

FDA5DI 19.2303 19.2834 19.2472 19.2267 19.2302 19.2845
1.0593 0.9789 1.029 1.0087 1.0053 0.999

DSW1DI 7.9119* 7.4199* 8.0830* 9.9035* 11.9776 12.6802
1.3337 1.1801 1.304 0.5761 4.1513 3.2384

DSW2DI 8.0367* 7.7305* 8.0613* 10.1284* 10.9399 13.1849
1.3064 1.0618 1.2896 0.633 4.627 3.0862

DSW3DI 21.6077* 21.3705* 22.0210* 24.3956 28.6406 29.6948
6.883 6.5181 7.042 3.3777 11.6022 10.3569

TABLE III
PERFORMANCE COMPARISONS OF DIFFERENT ALGORITHMS IN TERMS OF

AI

Problem IP-MOEA D-IP-
MOEA-A

D-IP-
MOEA-B

CC-IP-
MOEA-A

CC-IP-
MOEA-B

CC-IP-
MOEA-IS

ZDT3DI 0.2397 0.2397 0.2415 .2779* .2812* 0.2412
-0.0202 -0.0192 -0.0206 -0.0563 -0.0642 -0.0171

FDA1DI 0.1224* 0.1228* 0.1209* 0.1061 0.1107 0.1025
0.0156 0.0154 0.014 0.0239 0.0232 0.0089

FDA2DI 0.0375* 0.0370* 0.0373* 0.0349* 0.0341 0.0336
0.0027 0.0024 0.0023 0.0024 0.0023 0.0013

FDA4DI 0.1139 0.1140* 0.1139 0.1254* 0.1272* 0.1123
0.0058 0.0053 0.0052 0.0116 0.0144 0.0039

FDA5DI 0.1308 0.1334 0.1313 0.1568* 0.1581* 0.1359
0.0083 0.0113 0.011 0.0208 0.0227 0.0131

DSW1DI 1.9086* 1.9448* 1.9085* 1.1283 1.1184 1.1461
0.2777 0.3031 0.2973 0.1345 0.1169 0.115

DSW2DI 1.9313* 1.9834* 1.8851* 1.1439 1.1392 1.1602
0.2813 0.3501 0.273 0.1734 0.1604 0.1506

DSW3DI 2.0628* 2.0640* 2.0393* 1.2564 1.2458 1.2587
0.3462 0.3029 0.2723 0.1458 0.1419 0.1132

(1) With the help of the cooperative co-evolutionary
paradigm and the response strategy, CC-IP-MOEA-IS sig-
nificantly outperforms the other five in terms of AH on
ZDT3DI and FDA1DI . Taking ZDT3DI as an example, it is
Type I, and its true PF(t) is discontinuous. CC-IP-MOEA-
IS has the AH value of 19.5584, which is better than
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IP-MOEA (19.4401), D-IP-MOEA-A(19.4408), D-IP-MOEA-
B(19.4406), CC-IP-MOEA-A(19.1255), and CC-IP-MOEA-B
(19.0730), indicating that CC-IP-MOEA-IS has better perfor-
mance in convergence and distribution.

(2) For FDA2DI , it is Type II, and its PS(t) and PF(t) vary as
the optimization problem changes. As a result, it is difficult
to be tracked when the optimization problem changes. The
proposed algorithm, CC-IP-MOEA-IS, is clearly superior to
IP-MOEA, D-IP-MOEA-A, and D-IP-MOEA-B. Although the
AH value of CC-IP-MOEA-IS (24.8329) is slightly smaller
than those of CC-IP-MOEA-A (24.8358) and CC-IP-MOEA-
B (24.8406), there is no significant difference between CC-IP-
MOEA-IS and each of CC-IP-MOEA-A and CC-IP-MOEA-B.

(3) For FDA4DI , CC-IP-MOEA-IS performs the best in
terms of AH , and is significantly better than the other four
except IP-MOEA. For FDA5DI , its PS(t) and PF(t) change
over time, and its convexity varies, suggesting that it is difficult
for an algorithm to rapidly tracking the changing PF(t). On this
test case, although there is no significant difference in terms
of AH between the proposed algorithm and the rest, CC-IP-
MOEA-IS obtains the best AH value.

(4) For DSW1DI -DSW3DI , there is no significant differ-
ence between CC-IP-MOEA-IS and CC-IP-MOEA-B in terms
of AH . However, CC-IP-MOEA-IS is clearly superior to the
other four and achieves the largest value of AH among all
the comparative algorithms. Therefore, the proposed algorithm
has a strong capacity in tracking the optimal solutions to
DSW1DI -DSW3DI .

Furthermore, we have the following observations in terms
of AI from Table III.

(1) Although CC-IP-MOEA-IS does not achieve the min-
imal AI value on ZDT3DI and FDA5DI , there is no sig-
nificant difference between CC-IP-MOEA-IS and each of
IP-MOEA, D-IP-MOEA-A, and D-IP-MOEA-B. In addition,
CC-IP-MOEA-IS outperforms CC-IP-MOEA-A and CC-IP-
MOEA-B in terms of the AI indicator. Taking FDADI5 as
an example, although the AI value of the proposed algorithm,
0.1359, is slightly bigger than those of IP-MOEA (0.1308),
D-IP-MOEA-A (0.1334), and D-IP-MOEA-B (0.1313), there
is no significant difference. Furthermore, it is clearly smaller
than those of. CC-IP-MOEA-A (0.1568) and CC-IP-MOEA-B
(0.1581).

(2) For FDA2DI , CC-IP-MOEA-IS is clearly better than
the others but CC-IP-MOEA-B. Moreover, CC-IP-MOEA-IS
has also achieved the smallest AI value in the six compared
algorithm on FDA4DI .

(3) CC-IP-MOEA-A, CC-IP-MOEA-B, and CC-IP-MOEA-
IS have no significant difference in terms of AI on FDA1DI ,
DSW1DI -DSW3DI . They have smaller AI values than the
other three algorithms, suggesting that the algorithms incor-
porating with the cooperative co-evolutionary paradigm gain
the smallest imprecision.

Based on the above experimental results and analyses, we
have the following conclusions..

(1) Using an appropriate response strategy is beneficial to
improving the performance of EAs for DI-MOPs. For example,
D-IP-MOEA-A and D-IP-MOEA-B are not significantly better
than IP-MOEA in terms of AH and AI on most test cases.

However, CC-IP-MOEA-IS is superior to CC-IP-MOEA-A
and CC-IP-MOEA-B, indicating that the proposed response
strategy is more suitable for DI-MOPs than response strategies
A and B. The main reason is that the proposed response
strategy can rapidly respond to the change of an optimization
problem by accurately predicting the new location of the
evolutionary population.

(2) The cooperative co-evolutionary paradigm is not always
effective. Although CC-IP-MOEA-A and CC-IP-MOEA-B are
good at addressing FDA1DI , FDA2DI , DSW1DI -DSW3DI ,
they do not work on ZDT3DI and FDA5DI .

(3) Appropriately combining the strategies proposed in this
paper can improve the performance of an EA. CC-IP-MOEA-
IS, which is generated by incorporating the proposed response
strategy and CC into IP-MOEA, has the best performance
among all the six algorithms. The reason is that the proposed
response strategy has the capability in rapidly responding to
the change of an optimization, and cooperative co-evolutionary
paradigm is good at speeding up convergence. Therefore, the
algorithm proposed in this paper is competitive when solving
DI-MOPs.

In addition, experiments about time consumption for each
comparative algorithm and the effectiveness of the archive
set are conducted in Section III of Supplementary Material.
From the experimental results, we can conclude that each IP-
MOEA with cooperative co-evolution has significantly longer
time consumption than the others. Additionally, the proposed
algorithm obtains the largest H value when the archive size
is 100 and 150. For more details, please refer to Section III
of Supplementary Material.

V. APPLICATION IN A MULTI-PERIOD PORTFOLIO
SELECTION PROBLEM

In this section, we investigate a multi-period portfolio
selection problem in emerging markets [64], [65]. To provide
investors with more choices, we formulate the problem
with uncertainties as a bi-objective optimization model with
interval coefficients in the objectives. In the formulated
model, the expected return rate and risk loss rate at the tth
period are represented as follows:
R(x, r(t)) =

n∑
i=1

[rt,i, rt,i]xt,i −
n∑

i=1

at,i |xt,i − xt−1,i|+ rt,0xt,0,

Q(x, r(t), q(t)) =
n∑

i=1

(
[qt,i, qt,i] +

1
2(rt,i−rt,i)

(rt,i − rt,i)
2
)
xt,i.

Therefore, the interval bi-objective optimization model can
be formulated as

min (−R(x, r(t)), Q(x, r(t), q(t)))

s.t.
n∑

i=1

xi,t = 1, xi,t ≥ 0, t = 1, 2, ..., T.
(14)

where r(t), q(t), at,i are parameters, with their meaning and
setting being found in [64], [65]. In addition, r(t), q(t) are
intervals.

According to Theorem 1, xt,0 is one separable variable
and the others are inseparable with interval parameters, r(t)
and/or q(t), in model (14). The proposed algorithm, CC-IP-
MOEA-IS, and the comparative ones are employed to tackle
the optimization problem.
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Each algorithm runs 20 times independently. We save these
results and calculate their means. The reference point is set to
(0, 0.2) when computing hyper-volume. The values of the best
hyper-volume and time consumption are listed in Table IV. In
addition, we depict the best result obtained by CC-IP-MOEA-
IS, IP-MOEA, and CC-IP-MOEA-B, with t=2 and t=3 in Fig.
4, respectively, to intuitively demonstrate the advantages of
the proposed algorithm.

TABLE IV
PERFORMANCE OF DIFFERENT ALGORITHMS ON THE PORTFOLIO

SELECTION PROBLEM

Algorithm H Time consumption(s)
t=1 t=2 t=3 t=1 t=2 t=3

IP-MOEA 0.0037 0.0039* 0.0039* 0.3198 0.3205 0.3204
D-IP-MOEA-A 0.0037 0.0038* 0.0037* 0.3784 0.3737 0.3728
D-IP-MOEA-B 0.0037 0.0038* 0.0035* 0.4405 0.439 0.439

CC-IP-MOEA-A 0.0039 0.0040* 0.0040* 0.6419 0.6365 0.6377
CC-IP-MOEA-B 0.0039 0.0042* 0.0041* 0.6405 0.639 0.639
CC-IP-MOEA-IS 0.0038 0.0044 0.0045 0.6746 0.6723 0.668
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(b)
Fig. 4. PFs obtained by different algorithms on the portfolio selection problem

Table IV reports that although the proposed algorithm, CC-
IP-MOEA-IS, does not achieve the maximal H value at t=1,
there is no significant difference between CC-IP-MOEA-IS
and each comparative algorithm. Furthermore, CC-IP-MOEA-
IS reaches the best H values among all the algorithms at t=2
and t=3, despite its time consumption is the longest, indicating
that CC-IP-MOEA-IS has the best performance in convergence
and distribution. From Fig. 4, we can conclude that the
proposed algorithm can archive more and better solutions
than IP-MOEA and CC-IP-MOEA-B. Taking Fig. 4a as an
example, on the one hand, CC-IP-MOEA-IS offers investors a
larger return rate with the same risk loss rate than IP-MOEA.
On the other hand, CC-IP-MOEA-IS provides investors more
choices with different preferences.

VI. CONCLUSIONS

Focusing on DI-MOPs with time-varying interval param-
eters, we have proposed a cooperative co-evolutionary algo-
rithm, termed CC-IP-MOEA-IS, by incorporating the interval
similarity-based grouping strategy and response strategy into
IP-MOEA. In CC-IP-MOEA-IS, all the decision variables are
first divided into two groups, interrelated with/without interval
parameters, according to the interval similarity-based grouping
strategy. Then, two sub-populations are utilized to evolve those
groups, with the search space of each sub-population being
shrunk, and the capability in tracking the optimal solutions
being prompted. At the end of each generation, the interval
similarity of objectives is adopted to detect whether the opti-
mization problem changes or not. Once a change is detected,

the two groups are re-initialized according to the proposed
response strategy. To evaluate CC-IP-MOEA-IS, we have
employed it to address eight benchmark optimization cases
provided in Table II in comparison with five algorithms and
two response strategies. The experimental results demonstrate
that CC-IP-MOEA-IS, the interval similarity-based grouping
and the proposed response strategies are very competitive
among the comparative algorithms and strategies on most
optimization instances whose decision variables are separable
with interval parameters. In addition, the proposed algorithm
and strategies have better performance on optimization in-
stances whose decision variables are inseparable with interval
parameters, such as ZDT3DI , FDA1DI , and FDA2DI .

It is worth noting that we have evaluated the proposed
algorithm only on a few benchmark optimization instances,
and investigated its scalability by applying it to a practical
optimization problem. In addition, the two sub-populations
utilized to optimize the two groups have the same size, which
consumes many computing resources in searching for optimal
solutions of a group which is weakly impacted by the changing
interval parameters. For these problems, new efficient methods
are required to explore, which will be the focus of our future
work.
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