167 research outputs found

    Adaptive fault-tolerant attitude tracking control for hypersonic vehicle with unknown inertial matrix and states constraints

    Get PDF
    This paper proposes an adaptive fault-tolerant control (FTC) method for hypersonic vehicle (HSV) with unexpected centroid shift, actuator fault, time-varying full state constraints, and input saturation. The occurrence of unexpected centroid shift has three main effects on the HSV system, which are system uncertainties, eccentric moments, and variation of input matrix. In order to ensure the time-varying state constraints, a novel attitude state constraint control strategy, to keep the safe flight of HSV, is technically proposed by a time-varying state constraint function (TVSCF). A unified controller is designed to handle the time-varying state constraints according to the proposed TVSCF. Then, the constrained HSV system can be transformed into a novel free-constrained system based on the TVSCF. For the variation of system input matrix, input saturation and actuator fault, a special Nussbaum-type function is designed to compensate for those time-varying nonlinear terms. Additionally, the auxiliary systems is designed to compensate the constraint of system control inputs. Then, it is proved that the proposed control scheme can guarantee the boundedness of all closed-loop signals based on the Lyapunov stability theory. At last, the simulation results are provided to demonstrate the effectiveness of the proposed fault-tolerant control scheme.</p

    Adaptive Backstepping Control for Air-Breathing Hypersonic Vehicles with Input Nonlinearities

    Get PDF
    This paper addresses the control problem of air-breathing hypersonic vehicles subject to input nonlinearities, aerodynamic uncertainties and flexible modes. An adaptive backstepping controller and a dynamic inverse controller are developed for the altitude subsystem and the velocity subsystem, respectively, where the former eliminates the problem of “explosion of terms” inherent in backstepping control. Moreover, a modified smooth inverse of the dead-zone is proposed to compensate for the dead-zone effects and reduce the computational burden. Based on this smooth inverse, an input nonlinear pre-compensator is designed to handle input saturation and dead-zone nonlinearities, which leads to a simpler control design for the altitude subsystem subject to these two input nonlinearities. It is proved that the proposed controllers can guarantee that all closed-loop signals are bounded and the tracking errors converge to an arbitrarily small residual set. Simulation results are carried out to demonstrate the effectiveness of the proposed control scheme

    Guidance Law and Neural Control for Hypersonic Missile to Track Targets

    Get PDF
    Hypersonic technology plays an important role in prompt global strike. Because the flight dynamics of a hypersonic vehicle is nonlinear, uncertain, and highly coupled, the controller design is challenging, especially to design its guidance and control law during the attack of a maneuvering target. In this paper, the sliding mode control (SMC) method is used to develop the guidance law from which the desired flight path angle is derived. With the desired information as control command, the adaptive neural control in discrete time is investigated ingeniously for the longitudinal dynamics of the hypersonic missile. The proposed guidance and control laws are validated by simulation of a hypersonic missile against a maneuvering target. It is demonstrated that the scheme has good robustness and high accuracy to attack a maneuvering target in the presence of external disturbance and missile model uncertainty

    Incremental twisting fault tolerant control for hypersonic vehicles with partial model knowledge

    Get PDF
    A passive fault tolerant control scheme is proposed for the full reentry trajectory tracking of a hypersonic vehicle in the presence of modelling uncertainties, external disturbances, and actuator faults. To achieve this goal, the attitude error dynamics with relative degree two is formulated first by ignoring the nonlinearities induced by the translational motions. Then, a multivariable twisting controller is developed as a benchmark to ensure the precise tracking task. Theoretical analysis with the Lyapunov method proves that the attitude tracking error and its first-order derivative can simultaneously converge to the origin exponentially. To depend less on the model knowledge and reduce the system uncertainties, an incremental twisting fault tolerant controller is derived based on the incremental nonlinear dynamic inversion control and the predesigned twisting controller. Notably, the proposed controller is user friendly in that only fixed gains and partial model knowledge are required

    Fault Diagnosis Techniques for Linear Sampled Data Systems and a Class of Nonlinear Systems

    Get PDF
    This thesis deals with the fault diagnosis design problem both for dynamical continuous time systems whose output signal are affected by fixed point quantization,\ud referred as sampled-data systems, and for two different applications whose dynamics are inherent high nonlinear: a remotely operated underwater vehicle and a scramjet-powered hypersonic vehicle.\ud Robustness is a crucial issue. In sampled-data systems, full decoupling of disturbance terms from faulty signals becomes more difficult after discretization.\ud In nonlinear processes, due to hard nonlinearity or the inefficiency of linearization, the “classical” linear fault detection and isolation and fault tolerant control methods may not be applied.\ud Some observer-based fault detection and fault tolerant control techniques are studied throughout the thesis, and the effectiveness of such methods are validated with simulations. The most challenging trade-off is to increase sensitivity to faults and robustness to other unknown inputs, like disturbances. Broadly speaking, fault detection filters are designed in order to generate analytical diagnosis functions, called residuals, which should be independent with respect to the system operating state and should be decoupled from disturbances. Decisions on the occurrence of a possible fault are therefore taken on the basis such residual signals

    Adaptive Multivariable Integral TSMC of a Hypersonic Gliding Vehicle with Actuator Faults and Model Uncertainties

    Get PDF
    This paper presents a fault-tolerant control (FTC) strategy for a hypersonic gliding vehicle (HGV) subject to actuator malfunctions and model uncertainties. The control-oriented model of the HGV is estabilished according to the HGV kinematic and aerodynamic models. A single-loop design for HGV FTC under actuator faults is subsequently developed, where newly developed multivariable integral terminal sliding mode control (TSMC) and adaptive techniques are integrated. The multivariable integral TSMC is capable of ensuring the finite-time stability of the closed-loop system in the presence of actuator malfunctions and model uncertainties, while the adaptive laws are employed to tune the control parameters in response to the HGV status. Simulation studies based on a six degree-of-freedom (DOF) nonlinear model of the HGV are illustrated to highlight the effectiveness of the developed FTC scheme

    Disturbance rejection flight control for small fixed-wing unmanned aerial vehicles

    Get PDF
    Disturbance rejection flight control for small fixed-wing unmanned aerial vehicle

    Terminal Sliding Mode Control with Unidirectional Auxiliary Surfaces for Hypersonic Vehicles Based on Adaptive Disturbance Observer

    Get PDF
    A novel flight control scheme is proposed using the terminal sliding mode technique, unidirectional auxiliary surfaces and the disturbance observer model. These proposed dynamic attitude control systems can improve control performance of hypersonic vehicles despite uncertainties and external disturbances. The terminal attractor is employed to improve the convergence rate associated with the critical damping characteristics problem noted in short-period motions of hypersonic vehicles. The proposed robust attitude control scheme uses a dynamic terminal sliding mode with unidirectional auxiliary surfaces. The nonlinear disturbance observer is designed to estimate system uncertainties and external disturbances. The output of the disturbance observer aids the robust adaptive control scheme and improves robust attitude control performance. Finally, simulation results are presented to illustrate the effectiveness of the proposed terminal sliding mode with unidirectional auxiliary surfaces

    Adaptive Active Anti-vibration Control for a Three-dimensional Helicopter Flexible Slung-load System with Input Saturations and Backlash

    Get PDF
    This study investigates active anti-vibration control for a three-dimensional helicopter flexible slung-load system (HFSLS) subject to input saturations and backlash. The first target of the study is to establish a model for a three-dimensional HFSLS. The second target is to develop an adaptive control law for a HFSLS by analyzing its ability to compensate for the effects of input saturations, input backlash, and external disturbances, while achieving the goal of vibration reduction. Simulation results of the numerical show that the proposed adaptive active control technology is effective in solving the oscillation suppression problem for the three-dimensional HFSLS with input saturations and backlash.</p
    • …
    corecore