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Nomenclature

AR wing aspect ratio, 0.152

b wingspan, 0.28956 m

c mean aerodynamic chord of the wing, 0.18994 m

CD drag coefficient

CD0 drag coefficient due to parasitic drag, 0.0437

CL lift coefficient

CL0 lift coefficient at aero angle of attack, 0.28

CLα lift coefficient due to angle of attack, 3.45

CLδe
lift coefficient due to elevator deflection, -0.36

Cm pitching moment coefficient,

Cm0 pitching moment coefficient at zero condition , -0.02338

Cmα pitching moment coefficient due to angle of attack, -0.38

Cmδe
pitching moment coefficient due to elevator deflection, -0.5

Cprop mean chord of the propeller, 1.0

D drag, N

g gravitational acceleration, 9.8 m/s2

e Oswald efficiency factor, 0.9

} altitude, m

Iyy moment of inertia, 1.135 kg·m2

1 Lecturer, Department of Aeronautical and Automotive Engineering, Loughborough University
2 Professor, Department of Aeronautical and Automotive Engineering, Loughborough University.
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Kmotor motor constant, 80

L lift, N

m mass, 13.5 kg

M pitch moment, N/m

q pitch rate, rad/s

S reference area, 0.55 m2

Sprop, propeller swiping area, 0.2027 m2

T thrust, N

V velocity, m/s

wx, wh wind components, m/s

α angle of attack, rad

γ flight path angle, rad

δe elevator deflection, rad

δT throttle setting, %/100

ρ density of air, 1.2682 kg/m3

Subscript

a air-mass referenced quantity

x inertially referenced quantity along x-axis direction

h inertially referenced quantity along h-axis direction

I. Introduction

Recent years have seen the unprecedented development of various unmanned aerial vehicles

(UAVs) and their growing applications in both military and civilian domains. Among different

types of UAVs, small UAVs (usually under 20kg) are popular flying platforms which are portable to

deploy, low-cost to build but still able to carry essential payloads to carry out challenging missions

like surveillance in urban environments. However, because of their relatively slow airspeed, light
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weight and very often limited power, they are also susceptible to external disturbances, such as

wind gusts and local wake of buildings, which may deteriorate the flight performance or even cause

serious problems on stability and flight quality. This presents a challenge on flight control design for

this kind of aircraft, because not only the system nonlinearities and uncertainties need to be deal

with, but also the effects from unknown disturbances need to be considered.

Wind influences on flight dynamics of small fixed-wing UAVs have been investigated by many

previous studies. Wind characteristics and their implications on micro UAV have been recorded

and analyzed in [1]. Different solutions for UAV path-following in wind have been developed,

for example in [2–4], aiming to improve the tracking accuracy. In [5], the flight control design of a

UAV in stochastic winds is performed by using a smooth approximation of a sliding mode controller.

Optimal flight control for more general aircraft under severe weather conditions has been considered

in [6], where the formulated stochastic control has been solved by a polynomial chaos method.

This work aims to improve the flight performance of small fixed-wing UAVs in wind conditions

by designing an advanced flight controller based on the available aircraft model. In particular,

the control design focuses on the longitudinal dynamic model, because it is important for taking

off and landing of such a UAV in the presence of wind disturbances [6, 7]. General longitudinal

aircraft dynamics possess strong nonlinearities and uncertainties, which has necessitated the use

of nonlinear control methods. Robust nonlinear dynamic inversion (NDI) has been applied to

control the longitudinal dynamics of a hypersonic aircraft [8]. An adaptive sliding mode control

was developed later to tackle the same problem [9], which also considered the case that only a part

of the aircraft states is measurable. In recent years, robust adaptive control techniques have been

applied to the longitudinal channel of air-breathing hypersonic vehicles with flexible structures and

non-minimum phase behaviors [10, 11]. In terms of small UAVs, reference [12] has proposed a novel

adaptive backstepping method to tackle the system uncertainties as well as thrust saturation.

Comparing to preceding flight control designs, the problem considered in this work encounters

a different challenge, which is the significance of wind disturbance on the flight dynamics of small

UAVs. The varying wind disturbances can easily get close to the operational airspeed of a UAV,

hence instead of being treated as uncertainties, they should be explicitly considered. To this end, this
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note advocates the disturbance observer based control (DOBC) technique (see [13] for an overview)

to suppress the adverse impacts of wind. The philosophy of this method is first to quickly estimate

the wind components based on their influences on flight dynamics using a nonlinear disturbance

observer, and then to exploit this information in flight control design to compensate for the wind by

actively deploying control surfaces. Previous studies have shown the benefits of this control strategy

in flight control, for example on missiles [14, 15], hypersonic vehicles [16] and small unmanned

helicopters [17, 18].

To improve the gust alleviation of small fixed-wing UAVs, this note first investigates the aircraft

dynamics under wind disturbances, which will be used in the disturbance observer design. Next, a

novel nonlinear disturbance observer is developed for this particular UAV model with wind influ-

ences. Comparing to previous DOBC designs (e.g. [14–18]) where disturbances are lumped together

and assumed to be directly added on the state dynamics, a key feature of this work is that the vari-

ous disturbances acting on the aircraft are explicitly modeled and their couplings with system states

are appropriately handled in the disturbance observer design. This nontrivial design can guarantee

that the stability property of the observer is decoupled from the system states. On the other hand,

to establish the baseline control, a NDI method is adopted and the disturbance estimates are in-

corporated by designing a compensation control gain. The overall structure of the DOBC design is

rather explicit, where the compensation control effort based on disturbance estimates can be treated

as a “patch” to the baseline controller.

The remaining parts of this note are organized as follows. In Section II, the aircraft longitudinal

dynamics under wind disturbances are introduced. Next, Section III details the development of the

nonlinear disturbance observer, which is followed by disturbance rejection flight control in Section

IV. Simulation studies are given in Section V, whereas the conclusions are provided in Section VI.

II. UAV dynamic model subject to wind disturbance

This section introduces the longitudinal flight dynamics of a small fixed-wing UAV under wind

disturbances. The coordinates of the aircraft and axes of wind are given in Fig.1. Following [19, 20],
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the dynamic equations can be expressed as follows:

ẋ = Va cos γa + wx (1a)

}̇ = Va sin γa + wh (1b)

V̇a =
(T +∆T ) cosα− (D +∆D)

m
− g sin γa − cos γaẇx − sin γaẇh (1c)

γ̇a =
(T +∆T ) sinα+ (L+∆L)

mVa
− g cos γa

Va
+

sin γa
Va

ẇx − cos γa
Va

ẇh (1d)

α̇ = q − γ̇a (1e)

q̇ =
1

Iyy
(M +∆M) (1f)

where the external lift, drag, thrust and pitch moment are functions of aircraft parameters, states

and control inputs, which can be calculated as

L =
1

2
ρV 2

a SCL (2)

D =
1

2
ρV 2

a SCD (3)

T =
1

2
ρSpropCprop((KmotorδT )

2 − V 2
a ) (4)

M =
1

2
ρV 2

a ScCm (5)

The aerodynamic coefficients can be further expressed as

CL = CL0 + CLαα+ CLδe
δe (6)

CD = CDp +
(CL0 + CLαα)

2

πeAR
+ CDδe

δe (7)

Cm = Cm0 + Cmαα+ Cmδe
δe (8)

To account for any uncertainties or unmodeled factors in external forces, the uncertainty terms

∆L, ∆D, ∆T and ∆M for the lift, drag, thrust and pitch moment, respectively, are also incorporated

into the UAV model. To facilitate the control design, the engine dynamic model is assumed to take

a second-order form such that

δ̈T = k1δ̇T + k2δT + k3δt (9)

where δt is the actual throttle setting. For the sake of simplicity, this study chooses k1 = k2 = 0 and

k3 = 1. This dynamic extension also ensures that the relative degree is well-defined in the control

design [8].
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Fig. 1 Illustration of system coordinates, angles and aerodynamics forces

The wind influences on UAV dynamics can be observed from model (1). The wind velocities wx

and wh have direct influences on aircraft states x and }, respectively, whereas the wind accelerations

ẇx and ẇh can affect the dynamics of airspeed Va and flight path angle γa. Given the relatively

low airspeed of small UAVs, the wind velocities and accelerations may have significant impact on

the aircraft performance. It can also been seen from (1) that the steady winds only affect the first

two states, but wind gusts or wind shears with non-zero ẇx and ẇh influence the flight dynamics,

especially the airspeed Va, which is critical in determining aerodynamics forces and torques applied

on the aircraft.

The task of flight control design is to form a feedback loop to maintain the aircraft states

and/or to drive some of the outputs (e.g. airspeed and altitude) to specified values. In conventional

feedback control design, since the wind components and the force/moment disturbances are unknown

to the controller, the actual control performance will be degraded because of their adverse effects.

To improve flight performance for small UAVs in windy conditions, this study adopts a two-step

approach to take into account the disturbances in flight control design. Specifically, unknown

disturbances are first estimated based on their effects on the nominal UAV dynamics. Then, those

estimates are incorporated in control design to compensate the influences due to disturbances.

To facilitate the control design, the force and moment disturbances, which usually have different
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characteristics from wind acceleration terms, are lumped together such that

dD = (∆T cosα−∆D)/m (10)

dL = (∆T sinα+∆L)/m (11)

dM = ∆M/Iyy (12)

Therefore, the system dynamical equations (1) together with engine dynamics (9) can be expressed

compactly as

ẋ = f(x) + g(x)u+ s(x)d (13)

where the state is defined as x =

[
x } Va γa α q δT δ̇T

]T
, the control input is u =

[
δe δt

]T
and the disturbance vector is defined as d =

[
wx wh ẇx ẇh dD dL dM

]T
. The system output

chosen to be controlled is y = h(x) =

[
} Va

]T
.

III. Disturbance observer design

The objective of this section is to develop a disturbance observer to estimate the wind com-

ponents as well as the lumped force and moment disturbances that are applied to the nominal

longitudinal dynamics of a UAV. The generated estimates will be incorporated subsequently in

control design to compensate for their effects.

To design the disturbance observer, the properties of the disturbance terms are investigated

first. The dynamics of the disturbance terms can be captured by the following equation

ḋ =

02×2 I2 02×2

04×2 04×2 04×2

01×2 01×2 01×2


︸ ︷︷ ︸

A

d+w =

[
A1

A2

]
d+w (14)

where w =

[
0 0 ẅx ẅh ḋD ḋL ḋM

]T
. Given the nature of atmospheric wind, the assumption

that the derivatives of wind accelerations are bounded is adopted in this work, so that ∥ẅ(·)∥ < σw,

where σw is a positive constant. It can be further assumed that limt→∞ ẅ(·) ≈ 0, which means that

the wind acceleration will settle eventually. On the other hand, the force and moment disturbances

are commonly assumed to be slowly varying with respect to the observer dynamics [3, 16, 17], i.e.

ḋD ≈ 0, ḋL ≈ 0 and ḋM ≈ 0, since the observer dynamics can be tuned to be fast.
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The wind accelerations and the force disturbances may have different characteristics, however

they are coupled together and applied on the same channels as shown in (1c) and (1d), respectively.

Therefore, it is difficult to distinguish their effects and to estimate their respective values merely

based on their impacts on those states. A common solution in disturbance observer design is to

lump them together and consider their combined influences. However, this means to discard the

internal dynamics of the wind disturbance, which in turn will degrade the estimation performance

and require high gains in the observer [21]. To solve this problem, a novel disturbance observer

design is developed in this work by exploiting extra information that can be provided by the UAV

sensor suit. In this case, ground speed measurements provided by GPS are adopted in addition to

the state used in (1). Define ẋ = Vx and }̇ = Vh. The dynamics of these two states can be obtained

by incorporating (1a)-(1d), such that

V̇x =
T cosα−D

m
cos γa −

T sinα+ L

m
sin γa + dD cos γa − dL sin γa

V̇h =
T cosα−D

m
sin γa +

T sinα+ L

m
cos γa − g + dD sin γa + dL cos γa

(15)

Note that the disturbance dM acting on the pitch channel (1f) is decoupled from other channels.

Therefore, the disturbance observer for dM can be designed by following the standard process (see

e.g. [16]). For the sake of simplicity, the disturbance observer design in this note only focuses on

the coupled wind components and force disturbances.

The dynamic equations used in disturbance observe design, including (1a)-(1d) and (15) can be

expressed in a general compact form

˙̄x = f1(x̄) + g1(x̄)u+ s1(x̄)d1 (16)

where the augmented state is defined as x̄ =

[
x } Va γa Vx Vh

]T
, the disturbance vector is
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d1 =

[
wx wh ẇx ẇh dD dL

]T
and the disturbance input matrix s1(x̄) has the following structure

s1(x̄) =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 − cos γa − sin γa 1 0

0 0 sin γa/Va − cos γa/Va 0 1/Va

0 0 0 0 cos γa − sin γa

0 0 0 0 sin γa cos γa



(17)

The nonlinear disturbance observer adopted in this note follows the structure developed in [22],

which can be expressed as

ż = [A1 − l(x̄)s1(x̄)] z+A1p(x̄)− l(x̄) [s1(x̄)p(x̄) + f1(x̄) + g1(x̄)u]

d̂1 = z+ p(x̄)

(18)

where z is the internal state of the observer and d̂1 is the estimated disturbance vector. The

nonlinear function p(x̄) needs to be designed based on the system equations and then the observer

gain l(x̄) can be determined by

l(x̄) =
∂p(x̄)

∂x̄
(19)

Define the estimation error as e = d1 − d̂1. Incorporating (14) and (18) yields the following

error dynamics

ė = A1d1 +w1 − (ż+
∂p(x̄)

∂x̄
˙̄x)

= [A1 − l(x̄)s1(x̄)] e+w1

(20)

where w1 =

[
0 0 ẅx ẅh ḋD ḋL

]T
. Assuming the derivatives of the disturbances w1 are bounded,

it can be shown that the disturbance error dynamics (20) is input-to-state (ISS) stable if the observer

gain is chosen such that

ė = [A1 − l(x̄)s1(x̄)] e (21)

is asymptotically stable [13]. However, it is a challenging task to find the nonlinear function p(x̄)

and the observer gain l(x̄) that can satisfy this requirement as well as the relation (19). Many
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previous designs exploit the simple structure of disturbance input matrix s1(x̄) being a identity

matrix so that the observer gain can be chosen as a constant matrix and p(x̄) can be found by

integration (see e.g. [16, 17, 23]). Unfortunately, this method cannot be adopted in this application

given s1(x̄) defined in (17).

To tailor the general disturbance observer design for the UAV longitudinal model, a novel

observer gain structure is developed by designing the nonlinear function p(x̄) as

p(x̄) =



l1 · x

l2 · h

−l3 · Va cos γa + l3 · Vx

−l4 · Va sin γa + l4 · Vh

l5 · Va − Va cos γa + Vx

l6 · Vaγa − Va sin γa + Vh



(22)

where li > 0, i = 1, . . . , 6, are gain parameters to be tuned. Correspondingly, the observer gain

matrix can be calculated as

l(x̄) =



l1 0 0 0 0 0

0 l2 0 0 0 0

0 0 −l3 · cos γa l3 · Va sin γa l3 0

0 0 −l4 · sin γa −l4 · Va cos γa 0 l4

0 0 l5 − cos γa Va sin γa 1 0

0 0 l6 · γa − sin γa (l6 − cos γa)Va 0 1



(23)

Inserting (14), (17) and (23) into (21), error dynamics can be derived as follows

ė =



ė1

ė2

ė3

ė4

ė5

ė6



=



−l1 0 1 0 0 0

0 −l2 0 1 0 0

0 0 −l3 0 0 0

0 0 0 −l4 0 0

0 0 l5 · cos γa − 1 l5 · sin γa −l5 0

0 0 −l6 · (sin γa − γa cos γa) l6 · cos γa + l6 · γa sin γa − 1 −l6γa −l6


︸ ︷︷ ︸

E

e (24)
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It can be seen that although the function p(x̄) and observer gain matrix l(x̄) are in nonlinear forms,

the error dynamics (24) actually follows a linear form with relatively simple structure. Moreover, it

can be verified that the eigenvalues of the estimation error dynamics are constants, or more specif-

ically eig(E) = {−li}, i = 1, . . . , 6. Therefore, by choosing the gain parameters li, the convergence

rate of disturbance estimates can be intuitively adjusted regardless of state x̄. This is a very promis-

ing feature when tuning the disturbance observer in practice. However, this is not adequate to prove

the stability of the error dynamics since it is a linear-time-variant system. Proving the stability of

a linear-time-varying system is very challenging in general, but by exploiting the structure of (24),

the following theorem can be drawn.

Theorem 1. Assume that the flight path angle of the UAV is bounded, i.e. γa ≤ σγ , where σγ is a

positive constant, the estimation error dynamics (24), or equivalently (21), is globally asymptomati-

cally stable (GAS) at the equilibrium of zero if the observer gain matrix follows the structure defined

in (23).

Proof. Define ϵ1 = [ e5 e6 ]T and ϵ2 = [ e1 e2 e3 e4 ]T . The error dynamics (24) can be rewritten

as a cascaded system such that

S1 : ϵ̇1 = F1ϵ1 +G1ϵ2 (25)

S2 : ϵ̇2 = F2ϵ2 (26)

where

F1 =

 −l5 0

−l6γa −l6

 , G1 =

0 0 l5 · cos γa − 1 l5 · sin γa

0 0 −l6 · (sin γa − γa cos γa) l6 · (cos γa + γa sin γa)− 1

 (27)

and

F2 = diag{−l1,−l2,−l3,−l4} (28)

The sketch of the proof is first to show the upper system S1 is GAS when ϵ2 = 0 and input-state-

stable when considering ϵ2 as the input. Then, if the lower system S2 is also GAS, the conclusion

can be drawn by following the work of Isidori [24, Corollary 10.3.2].

Consider a Lyapunov function V (ϵ1) =
1
2ϵ

T
1 P1ϵ1, where P1 = diag{p1, p2} is a positive definite

matrix. Differentiating V (ϵ1) with respect to time along the trajectory of ϵ̇1 = F1ϵ1 and using
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Young’s inequality gives

V̇ = −p1l5e
2
5 − p2l6e

2
6 − p2l6γae5e6

≤ −p1l5e
2
5 − p2l6e6 + p2l6σγ∥e5∥∥e6∥2

≤ −(p1l5 −
1

2
p2l6σγκ)e

2
5 − (p2l6 −

1

2κ
p2l2σγ)e

2
6

(29)

where κ is a positive constant. By choosing κ > σγ/2 and weighting matrix P1 such that p1 >

1
2l5

q2l6σγκ, it can be verified that V̇ ≤ 0 and V̇ = 0 only when ∥ϵ1∥ = 0. Therefore, the system S1

is GAS when input ϵ2 is zero.

Next, given the flight path angle is bounded, i.e. ∥γa∥ ≤ σγ , it can be verified that ∥G1∥ ≤ σG1 ,

where σG1 is a positive constant. Therefore, the time-derivative of V (ϵ1) along the trajectory of

system S1 can be rewritten from (29) as

V̇ = ϵT1 (P1F1)ϵ1 + ϵT1 P1G1ϵ2

≤ −ϵT1 Qϵ1 + ∥ϵ1∥∥P1∥∥G1∥∥ϵ2∥

≤ −σQ∥ϵ1∥2 + σPσG1∥ϵ1∥∥ϵ2∥

(30)

where Q = diag{(q1l5 − 1
2q2l6σγκ), (q2l6 − 1

2κq2l2σγ)}, σQ = λmax(Q) and σP = λmax(P). For any

0 < µ < 1, the foregoing inequality can be written as

V̇ ≤ −σQ(1− µ)∥ϵ1∥2 − σQµ∥ϵ1∥2 + σPσG1∥ϵ1∥∥ϵ2∥ (31)

It follows V̇ ≤ −σQ(1 − µ)∥ϵ1∥2, ∀ ∥ϵ1∥ >
σPσG1

σQµ ∥ϵ2∥. Therefore, the system S1 is input-to-state

stable. At last, the globally asymptotic stability of the lower system S2 can be guaranteed if F2 is

Hurwitz. Therefore, it can be concluded that the cascaded system is GAS [24, Corollary 10.3.2].

Recalling the estimation error dynamics (20) where the derivatives of the disturbances are

bounded, Theorem 1 suggests that the proposed nonlinear function (22) and gain matrix (23) can

guarantee the ISS property of the estimation error dynamics. Moreover, given the assumption that

limt→∞ Ẅ ≈ 0, the disturbance estimate d̂1 can asymptotically converge to the disturbance d1 [16].

It can also be observed that the stability property of the error dynamic is decoupled from the system

state x̄ in the proposed disturbance observer design. This means that the disturbance observer and

baseline controller can be designed separately and integrated later in the DOBC scheme.
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IV. Flight control design for disturbance rejection

The objective of flight control is to enforce the UAV’s output y to track the desired airspeed and

altitude commands, denoted as r = [ r1 r2 ]T , in the presence of wind and other disturbances. To

this end, a NDI controller is first designed based on the nominal UAV model to provide a baseline

control. Then, the estimated disturbances are taken into account by designing the compensation

control effort to eliminate their adverse effects on UAV outputs.

Given the interested outputs and the UAV dynamics in the absence of disturbance terms, the

new system variables can be defined using Lie derivatives

z1 =

[
h1(x)− r1 Lfh1(x)− r

[1]
1 L2

fh1(x)− r
[2]
1

]T
(32)

and

z2 =

[
h2(x)− r2 Lfh2(x)− r

[1]
2 L2

fh2(x)− r
[2]
2 L3

fh2(x)− r
[3]
2

]T
, (33)

which represent the tracking errors of airspeed and altitude and their derivatives. The corresponding

dynamics can be expressed in the new coordinate by incorporating (1b)-(1f) and (9), such that

żi =



żi1

żi2

...

żiσi


=



zi2

zi3

...

Lσi

f hi(x)


+



0

0

...

LgL
σi−1
f hi(x)


u+



Lshi(x)

LsLfhi(x)

...

LsL
σi−1
f hi(x)


d (34)

where i ∈ {1, 2} and the input relative degree σi for two output channels can be calculated as σ1 = 3

and σ2 = 4, respectively. Collecting the dynamics equations of z13 and z24 givesż13
ż24

 =

L3
fh1(x)

L4
fh2(x)


︸ ︷︷ ︸

f(x)

+

LgL
2
fh1(x)

LgL
3
fh2(x)


︸ ︷︷ ︸

G(x)

u+

LsL
2
fh1(x)

LsL
3
fh2(x)

d (35)

Therefore, the transformed dynamics can be decoupled into an integrator form by defining the

feedback control law in the following form

u = [G(x)]
−1

[v − f(x)] (36)

where v is the pseudo control input. To guarantee the tracking stability and reject the disturbances,

this control input can be constructed by combining two parts, namely the baseline control and

13



compensation control inputs, such that

v =

v1
v2

 =

−k11, · · · −k13 0 · · · 0

0 · · · 0 −k21, · · · −k24


︸ ︷︷ ︸

K

z1
z2

+

λ1(x)

λ2(x)


︸ ︷︷ ︸

Λ(x)

d̂ (37)

where the control gain matrix K can be designed based on the nominal dynamics in the absence of

disturbances and the compensation control efforts Λ(x) used in this work follows the suggestion in

[25], such that

λ1(x) = −k11Lsh1(x)− k12LsLfh1(x)− LsL
2
fh1(x) (38)

and

λ2(x) = −k21Lsh2(x)− k22LsLfh2(x)− k23LsL
2
fh2(x)− LsL

3
fh2(x) (39)

By inserting the pseudo control (37) and the actual control (36) into the transformed system

dynamics (34), the closed-loop dynamics can be expressed in the following form

żi =



0 1 · · · 0

0 0
. . . 0

0 0 · · · 1

−ki1 −ki2 · · · −kiσi


︸ ︷︷ ︸

Γi

zi −



0

...

0

λi(x)


︸ ︷︷ ︸

Λi(x)

e+



Lshi(x)

LsLfhi(x)

...

λi(x) + LsL
σi−1
f hi(x)


︸ ︷︷ ︸

Ξi(x)

d (40)

where i = {1, 2}, representing the airspeed channel and height channel, respectively.

The property of the output from each subsystem can be established by verifying that the

following relation holds:

CiΓ
−1
i Ξi(x) = 0, ∀i ∈ {1, 2} (41)

where C1 = [ 1 0 0 ] and C2 = [ 1 0 0 0 ]. By collecting the first row in (40) and using the

relation in (41), the tracking errors for airspeed and height, i.e. z11 and z21 , can be further rewritten

as

zi1 = CiΓ
−1
i [żi −Λie−Ξid]

= CiΓ
−1
i [żi −Λie]

(42)
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It can be seen from (42) that the disturbance terms are decoupled from the output channels in an

asymptotic manner. This means that if the system state reaches to a bounded steady-state value,

i.e. żi = 0, and the disturbance estimation error e approaches zero, the tracking error zi1 = 0.

Moreover, given that the derivatives of the disturbance are bounded, the closed-loop system can be

proved to be locally input-to-state stable under mild conditions as exemplified in [16, 25].

The structure of the UAV dynamics under the composite controller (37) is illustrated in Fig.2.

One feature of the proposed control structure is that in the absence of disturbances, the composite

control law (37) reverts to the baseline control law so that the nominal control performance can be

recovered.

Fig. 2 Control system structure

V. Simulation study

To demonstrate the performance of the proposed disturbance rejection control, a number of

simulation studies are carried out based on a representative nonlinear model of a small UAV from

[26]. The parameters of this UAV are given in the Nomenclature. To include wind influences, a

discrete wind gust model following the Military Specification MIL-F-8785C [27] is adopted in the

simulation, which represents a discrete wind shear such as the fluctuations due to the wake of a

15



building. The mathematical representation of this model can be written as:

Vwind =


0, xv < 0

Vm

2

(
1− cos(πxv

dm
)
)

0 ≤ xv ≤ dm

Vm xv > dm

(43)

where Vwind is current gust value, Vm is the gust amplitude, dm is the gust length and xv is the

relative position of the UAV. This gust model can be applied to each axis individually, or to all

three axes at once. In the simulation, a sequence of multiple gusts with different starting time and

wind parameters are employed.

In realizing the proposed control scheme, the baseline controller can be designed based on

the transformed linear system using linear control techniques. In this work, the Linear Quadratic

Regulator (LQR) method is used to generate the following control gain matrix:

K =

10.00 42.4 39.8 0 0 0 0

0 0 0 15.8 78.0 113.3 56.8

 (44)

Given the baseline control gain, the disturbance compensation effort can be constructed by feeding

the disturbance information via (38) and (39). In disturbance observer design, the gain parameters

li, are chosen as l1 = l2 = 2, l3 = l4 = 5 and l5 = l6 = 5, which can guarantee a good convergence

rate of the disturbance estimates.

To show the effectiveness of the proposed control scheme in rejecting disturbances and improving

the robustness, two case studies are carried out. The performance of the composite controller is

compared with the baseline NDI controller and another NDI design with integral action, which is

a traditional way of resolving the steady-state error. The integral gain used in the simulation was

carefully tuned to achieve a good trade-off between the convergence rate and robustness.

A. Disturbance rejection performance

In the first case study, the UAV is controlled to track a landing profile with a constant airspeed at

25m/s and descending height from 100m to 0m. Therefore, the precise control of airspeed and height

under wind conditions is critical for UAV safety. In addition to constant disturbances dD = 0.2m/s2,

dL = −0.2m/s2 and dM = 0.5rad/s2, the external wind components applied on the UAV dynamics
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include the wind speed (wx, wh) and accelerations (ẇx, ẇh). The disturbance signals together with

their estimates from the proposed disturbance observer are illustrated in Fig.3-4. It can be seen

that although small gains are used in the observer design, the estimates can quickly converge to the

true values of disturbances.
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Fig. 3 Wind speed disturbances and their estimates
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Fig. 4 Wind acceleration disturbances and their estimates

The tracking performance of different control methods under the above disturbances are sum-

marized in Fig.5 and Fig.6 for height and airspeed commands, respectively. It can be easily observed

that the proposed DOBC method outperforms the other two control methods in terms of the track-

ing accuracy. The baseline NDI control is able to stabilize the nonlinear dynamics of the UAV, but

with larger steady-state errors in the presence of disturbances. The NDI control with integral action

can compensate the disturbances to some extent. However, it exhibits overshoot when the reference

signal or disturbances changes. These phenomena are not desirable, especially when tracking a
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landing profile. The proposed composite control, on the other hand, is able to exploit the estimated

disturbance information to form an active compensation control effort. Therefore, it demonstrates

a much improved disturbance rejection capability with a better tracking accuracy.
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Fig. 5 Height tracking performance
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Fig. 6 Airspeed tracking performance

B. Robustness improvement against parameter uncertainties

The second case study focuses on the robustness of the composite controller. Therefore, the

inertial and aerodynamics parameters are assumed to have some uncertainties in the simulation as

shown in Table 1. Moreover, the same wind disturbances are also applied. Note that the dynamic

uncertainties do not affect the kinematics (1b) directly, but will be coupled with wind acceleration

disturbances (ẇx, ẇh) in other channels.
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Table 1 Parameter uncertainties used in simulation

Parameters Uncertainty (%) Parameters Uncertainty (%)

m, Iyy, CLα , Cmα 25 CL0 , CLδe
10

S, b, c, Kmotor -10 Cm0 , Cmq , Cmδe
-20

The simulation scenario requires the UAV to reduce the airspeed from 35m/s to 25m/s while

maintaining a constant height at 100m. Since the airspeed spans a large range across the flight

envelope, the nonlinearity of the dynamics will be excited. The tracking results of this case study

are given in Fig.7 and 8, which manifest that the controller design based on the NDI technique

is able to deal with the nonlinear dynamics and provide stability. However, the baseline NDI

controller in this scenario demonstrates notable tracking errors especially on the height channel

due to the combination of the external disturbance and internal uncertainties. The NDI controller

with integral action gives a better tracking accuracy than the baseline controller. Nevertheless,

compared to DOBC it yields a more oscillatory outputs and its correction is much slower as it needs

the error signals to accumulate adequately to take actions. This becomes more obvious at 60s of the

simulation when the vertical wind speed starts to change from −2m/s to 2m/s. The corresponding

height output under the integral NDI control results in a large deviation from the reference signal,

whereas the output under DOBC quickly recovers to the reference signal because it exploits the

estimated disturbances in a feed-forward fashion.
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Fig. 7 Height tracking performance against uncertainties

19



time (s)
0 10 20 30 40 50 60 70 80 90 100

a
ir
sp
ee
d
(m

/
s)

22

24

26

28

30

32

34

36

38

Reference
DOBC
Baseline NDI
Integral NDI

Fig. 8 Airspeed tracking performance against uncertainties

In addition to the control performance, some applications may also be interested in wind es-

timation under dynamics uncertainties. To this end, estimate of wind accelerations are listed in

Fig.9. It can be observed from the results that the estimation performs with a good accuracy and

is not affected by dynamics uncertainties. This is because in the proposed observer design, their

influences are taken into account by the lumped disturbance dD and dL, thus they are separated

from wind acceleration terms. The corresponding estimates on dD and dL are shown in Fig.10.
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Estimate ˆ̇wx

time (s)
0 10 20 30 40 50 60 70 80 90 100w

in
d
a
cc
el
er
a
ti
on

(m
/s

2
)

-1

0

1

2

Disturbance ẇh
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Fig. 9 Wind acceleration disturbances and their estimates

VI. Conclusion

In this work, a novel disturbance observer based control scheme is developed for the longitu-

dinal flight dynamics of a small fixed-wing unmanned aerial vehicle in order to improve its flight
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Fig. 10 Estimation on lumped force disturbances

performance in the presence of wind disturbances. This control scheme uses nonliner dynamics

inversion to address the nonlinearities in the flight dynamics so that it can follow the reference

commands in airspeed and height. A novel nonlinear disturbance observer is designed based on the

nominal aircraft model to provide estimates of the wind influences and system uncertainties. These

estimates are then used to form the compensation control efforts. The developed scheme has been

tested in the simulation studies, with scenarios of landing profile tracking and straight flight under

wind disturbances and parameter uncertainties. The results have shown a significant improvement

in control accuracy and robustness comparing to the baseline controllers and the controller with in-

tegral actions. It should be noted that although the current disturbance observer solution is tailored

to the particular problem described in this note, this method may be of interest in many similar

flight control applications for different aircraft.
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