18,457 research outputs found

    An initial approach to distributed adaptive fault-handling in networked systems

    Get PDF
    We present a distributed adaptive fault-handling algorithm applied in networked systems. The probabilistic approach that we use makes the proposed method capable of adaptively detect and localize network faults by the use of simple end-to-end test transactions. Our method operates in a fully distributed manner, such that each network element detects faults using locally extracted information as input. This allows for a fast autonomous adaption to local network conditions in real-time, with significantly reduced need for manual configuration of algorithm parameters. Initial results from a small synthetically generated network indicate that satisfactory algorithm performance can be achieved, with respect to the number of detected and localized faults, detection time and false alarm rate

    Locally adaptive estimation methods with application to univariate time series

    Get PDF
    The paper offers a unified approach to the study of three locally adaptive estimation methods in the context of univariate time series from both theoretical and empirical points of view. A general procedure for the computation of critical values is given. The underlying model encompasses all distributions from the exponential family providing for great flexibility. The procedures are applied to simulated and real financial data distributed according to the Gaussian, volatility, Poisson, exponential and Bernoulli models. Numerical results exhibit a very reasonable performance of the methods.Comment: Submitted to the Electronic Journal of Statistics (http://www.i-journals.org/ejs/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    A Few Photons Among Many: Unmixing Signal and Noise for Photon-Efficient Active Imaging

    Full text link
    Conventional LIDAR systems require hundreds or thousands of photon detections to form accurate depth and reflectivity images. Recent photon-efficient computational imaging methods are remarkably effective with only 1.0 to 3.0 detected photons per pixel, but they are not demonstrated at signal-to-background ratio (SBR) below 1.0 because their imaging accuracies degrade significantly in the presence of high background noise. We introduce a new approach to depth and reflectivity estimation that focuses on unmixing contributions from signal and noise sources. At each pixel in an image, short-duration range gates are adaptively determined and applied to remove detections likely to be due to noise. For pixels with too few detections to perform this censoring accurately, we borrow data from neighboring pixels to improve depth estimates, where the neighborhood formation is also adaptive to scene content. Algorithm performance is demonstrated on experimental data at varying levels of noise. Results show improved performance of both reflectivity and depth estimates over state-of-the-art methods, especially at low signal-to-background ratios. In particular, accurate imaging is demonstrated with SBR as low as 0.04. This validation of a photon-efficient, noise-tolerant method demonstrates the viability of rapid, long-range, and low-power LIDAR imaging

    Maximal adaptive-decision speedups in quantum-state readout

    Full text link
    The average time TT required for high-fidelity readout of quantum states can be significantly reduced via a real-time adaptive decision rule. An adaptive decision rule stops the readout as soon as a desired level of confidence has been achieved, as opposed to setting a fixed readout time tft_f. The performance of the adaptive decision is characterized by the "adaptive-decision speedup," tf/Tt_f/T. In this work, we reformulate this readout problem in terms of the first-passage time of a particle undergoing stochastic motion. This formalism allows us to theoretically establish the maximum achievable adaptive-decision speedups for several physical two-state readout implementations. We show that for two common readout schemes (the Gaussian latching readout and a readout relying on state-dependent decay), the speedup is bounded by 44 and 22, respectively, in the limit of high single-shot readout fidelity. We experimentally study the achievable speedup in a real-world scenario by applying the adaptive decision rule to a readout of the nitrogen-vacancy-center (NV-center) charge state. We find a speedup of ≈2\approx 2 with our experimental parameters. In addition, we propose a simple readout scheme for which the speedup can, in principle, be increased without bound as the fidelity is increased. Our results should lead to immediate improvements in nanoscale magnetometry based on spin-to-charge conversion of the NV-center spin, and provide a theoretical framework for further optimization of the bandwidth of quantum measurements.Comment: 18 pages, 11 figures. This version is close to the published versio
    • …
    corecore