Conventional LIDAR systems require hundreds or thousands of photon detections
to form accurate depth and reflectivity images. Recent photon-efficient
computational imaging methods are remarkably effective with only 1.0 to 3.0
detected photons per pixel, but they are not demonstrated at
signal-to-background ratio (SBR) below 1.0 because their imaging accuracies
degrade significantly in the presence of high background noise. We introduce a
new approach to depth and reflectivity estimation that focuses on unmixing
contributions from signal and noise sources. At each pixel in an image,
short-duration range gates are adaptively determined and applied to remove
detections likely to be due to noise. For pixels with too few detections to
perform this censoring accurately, we borrow data from neighboring pixels to
improve depth estimates, where the neighborhood formation is also adaptive to
scene content. Algorithm performance is demonstrated on experimental data at
varying levels of noise. Results show improved performance of both reflectivity
and depth estimates over state-of-the-art methods, especially at low
signal-to-background ratios. In particular, accurate imaging is demonstrated
with SBR as low as 0.04. This validation of a photon-efficient, noise-tolerant
method demonstrates the viability of rapid, long-range, and low-power LIDAR
imaging