10 research outputs found

    Integrated estimation structure for the tire friction forces in ground vehicles

    Get PDF
    © IEEE 2017 Hashemi, E., Pirani, M., Khajepour, A., Fidan, B., Kasaiezadeh, A., Chen, S.-K., & Litkouhi, B. (2016). Integrated estimation structure for the tire friction forces in ground vehicles (pp. 1657–1662). IEEE. https://doi.org/10.1109/AIM.2016.7577008This paper presents a novel corner-based force estimation method to monitor tire capacities required for the traction and stability control systems. This is entailed for more advanced vehicle stability systems in harsh maneuvers. A novel estimation structure is proposed in this paper for the longitudinal, lateral, and vertical tire forces robust to the road friction condition. A nonlinear and a Kalman observer is utilized for estimation of the longitudinal and lateral friction forces. The stability and performance of the time-varying estimators are explored and it is shown that the developed integrated structure is robust to model uncertainties and does not require knowledge of the road friction. The proposed method is experimentally tested in several maneuvers on different road surface conditions and the results illustrate the accuracy and robustness of the state estimators.Automotive Partnership Canada, Ontario Research Fund, General Motors Co

    OPTYRE—Real time estimation of rolling resistance for intelligent tyres

    Get PDF
    The study of the rolling tyre is a problem framed in the general context of nonlinear elasticity. The dynamics of the related phenomena is still an open topic, even though few examples and models of tyres can be found in the technical literature. The interest in the dissipation effects associated with the rolling motion is justified by their importance in fuel-saving and in the context of an eco-friendly design. However, a general lack of knowledge characterizes the phenomenon, since not even direct experience on the rolling tyre can reveal the insights of the correlated different dissipation effects, as the friction between the rubber and the road, the contact kinematics and dynamics, the tyre hysteretic behaviour and the grip. A new technology, based on fibre Bragg grating strain sensors and conceived within the OPTYRE project, is illustrated for the specific investigation of the tyre dissipation related phenomena. The remarkable power of this wireless optical system stands in the chance of directly accessing the behaviour of the inner tyre in terms of stresses when a real-condition-rolling is experimentally observed. The ad hoc developed tyre model has allowed the identification of the instant grip conditions, of the area of the contact patch and allows the estimation of the instant dissipated power, which is the focus of this paper

    Least Squares Based Adaptive Control and Extremum Seeking with Active Vehicle Safety System Applications

    Get PDF
    On-line parameter estimation is one of the two key components of a typical adaptive control scheme, beside the particular control law to be used. Gradient and recursive least squares (RLS) based parameter estimation algorithms are the most widely used ones among others. Adaptive control studies in the literature mostly utilize gradient based parameter estimators for convenience in nonlinear analysis and Lyapunov analysis based constructive design. However, simulations and real-time experiments reveal that, compared to gradient based parameter estimators, RLS based parameter estimators, with proper selection of design parameters, exhibit better transient performance from the aspects of speed of convergence and robustness to measurement noise. One reason for the control theory researchers' preference of gradient algorithms to RLS ones is that there does not exist a well-established stability and convergence analysis framework for adaptive control schemes involving RLS based parameter estimation. Having this fact as one of the motivators, this thesis is on systematic design, formal stability and convergence analysis, and comparative numerical analysis of RLS parameter estimation based adaptive control schemes and extension of the same framework to adaptive extremum seeking, viz. adaptive search for (local) extremum points of a certain field. Extremum seeking designs apply to (i) finding locations of physical signal sources, (ii) minimum or maximum points of (vector) cost or potential functions for optimization, (iii) calculating optimal control parameters within a feedback control design. In this thesis, firstly, gradient and RLS based on-line parameter estimation schemes are comparatively analysed and a literature review on RLS estimation based adaptive control is provided. The comparative analysis is supported with a set of simulation examples exhibiting transient performance characteristics of RLS based parameter estimators, noting absence of such a detailed comparison study in the literature. The existing literature on RLS based adaptive control mostly follows the indirect adaptive control approach as opposed to the direct one, because of the difficulty in integrating an RLS based adaptive law within the direct approaches starting with a certain Lyapunov-like cost function to be driven to (a neighborhood) of zero. A formal constructive analysis framework for integration of RLS based estimation to direct adaptive control is proposed following the typical steps for gradient adaptive law based direct model reference adaptive control, but constructing a new Lyapunov-like function for the analysis. After illustration of the improved performance with RLS adaptive law via some simple numerical examples, the proposed RLS parameter estimation based direct adaptive control scheme is successfully applied to vehicle antilock braking system control and adaptive cruise control. The performance of the proposed scheme is numerically analysed and verified via Matlab/Simulink and CarSim based simulation tests. Similar to the direct adaptive control works, the extremum seeking approaches proposed in the literature commonly use gradient/Newton based search algorithms. As an alternative to these search algorithms, this thesis studies RLS based on-line estimation in extremum seeking aiming to enhance the transient performance compared to the existing gradient based extremum seeking. The proposed RLS estimation based extremum seeking approach is applied to active vehicle safety system control problems, including antilock braking system control and traction control, supported by Matlab/Simulink and CarSim based simulation results demonstrating the effectiveness of the proposed approach

    Adaptive emergency braking control with underestimation of friction coefficient

    No full text

    Learning Behavior Models for Interpreting and Predicting Traffic Situations

    Get PDF
    In this thesis, we present Bayesian state estimation and machine learning methods for predicting traffic situations. The cognitive ability to assess situations and behaviors of traffic participants, and to anticipate possible developments is an essential requirement for several applications in the traffic domain, especially for self-driving cars. We present a method for learning behavior models from unlabeled traffic observations and develop improved learning methods for decision trees

    Optimal planning and control for hazard avoidance of front-wheel steered ground vehicles

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 124-128).Hazard avoidance is an important capability for safe operation of robotic vehicles at high speed. It is also an important consideration for passenger vehicle safety, as thousands are killed each year in passenger vehicle accidents caused by driver error. Even when hazard locations are known, high-speed hazard avoidance presents challenges in real-time motion planning and control of nonlinear and potentially unstable vehicle dynamics. This thesis presents methods for planning and control of optimal hazard avoidance maneuvers for a bicycle model with front-wheel steering and wheel slip. The planning problem is posed as an optimization problem in which constrained dynamic quantities, such as friction circle utilization, are minimized, while ensuring a minimum clearance from hazards. These optimal trajectories can be computed numerically, though real-time computation requires simple models and constraints. To simplify the computation of optimal avoidance trajectories, analytical solutions to the optimal planning problem are presented for a point mass subject to an acceleration magnitude constraint, which is analogous to a tire friction circle constraint. The optimal point mass solutions are extended to a nonlinear bicycle model by defining a flatness-based trajectory tracking controller using tire force control. This controller decouples the bicycle dynamics into a point mass at the front center of oscillation with an additional degree of freedom related to the vehicle yaw dynamics. Structure is identified in the yaw dynamics and is exploited to characterize stability limits. Simulation results verify the stability properties of the yaw dynamics. These results were applied to a semi-autonomous driver assistance system and demonstrated experimentally on a full-sized passenger vehicle. Efficient computation of point mass avoidance maneuvers was used as a cost-to-go for real-time numerical optimization of trajectories for a bicycle model. The experimental system switches control authority between the driver and an automatic avoidance controller so that the driver retains control authority in benign situations, and the automatic controller avoids hazards automatically in hazardous situations.by Steven C. Peters.Ph.D

    Transient tyre modelling for the simulation of drivetrain dynamic response under low-to-zero speed traction manoeuvres

    Get PDF
    The work presented in this thesis is dedicated to the study of transient tyre dynamics and how these influence the dynamic behaviour of the vehicle and its driveline, with the main focus being on low-to-zero speed manoeuvres such as pull-away events. The bulk of the work focuses on the amalgamation of the hitherto disparate fields of driveline modelling and detailed tyre modelling. Several tyre models are employed and their relative advantages and disadvantages analysed. The observed dynamic behaviour is correlated to the inherent structure of each tyre model in order for the most appropriate for driveline studies to be identified. The main simulation studies are split into two parts: the first comprises a study into isolated driveline dynamics; where the yaw, pitch and roll behaviours of the vehicle body are neglected. A relatively detailed driveline model with an open differential is used with tyre models of increasing complexity with the aim of determining when increased model detail fails to increase the accuracy of the results. The second part is concerned with the study of how the dynamics of the vehicle body and suspension affect tyre model performance and associated effects on the driveline behaviour. For this, the driveline and tyre models are incorporated into a full six degree-of-freedom vehicle model with full suspension effects. Frequency migration on low-μ surfaces is successfully explained via the decoupling of the vehicle and driveline inertias. Frequencies observed in FFT analyses of the simulation results correspond to those obtained through eigen-analysis of appropriately modified state-space models with varying degrees of coupling that reflect the vehicle travelling on uniform low- or split-μ surfaces. The main finding of the thesis is that this decoupling theory can also be applied to high-speed take-off manoeuvres, as it is the position along the tyre slip-force curve that dictates decoupling; i.e. if the curve has saturated. This leads to the effective traction stiffness being zero, which modifies the equations of motion and subsequently the system eigenvalues. A series of measurements are taken in order to verify the findings from the simulation work. Manoeuvres analogous to those simulated are carried out. It is found that only the simulation of split-μ conditions is necessary, as the results from the low-μ test show a similar pattern to those seen on the split-μ surface

    Sliding Mode Control

    Get PDF
    The main objective of this monograph is to present a broad range of well worked out, recent application studies as well as theoretical contributions in the field of sliding mode control system analysis and design. The contributions presented here include new theoretical developments as well as successful applications of variable structure controllers primarily in the field of power electronics, electric drives and motion steering systems. They enrich the current state of the art, and motivate and encourage new ideas and solutions in the sliding mode control area
    corecore