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ABSTRACT

Hazard avoidance is an important capability for safe operation of robotic vehicles at
high speed. It is also an important consideration for passenger vehicle safety, as
thousands are killed each year in passenger vehicle accidents caused by driver error.
Even when hazard locations are known, high-speed hazard avoidance presents challenges
in real-time motion planning and control of nonlinear and potentially unstable vehicle
dynamics.

This thesis presents methods for planning and control of optimal hazard avoidance
maneuvers for a bicycle model with front-wheel steering and wheel slip. The planning
problem is posed as an optimization problem in which constrained dynamic quantities,
such as friction circle utilization, are minimized, while ensuring a minimum clearance
from hazards. These optimal trajectories can be computed numerically, though real-time
computation requires simple models and constraints.

To simplify the computation of optimal avoidance trajectories, analytical solutions to
the optimal planning problem are presented for a point mass subject to an acceleration
magnitude constraint, which is analogous to a tire friction circle constraint. The optimal
point mass solutions are extended to a nonlinear bicycle model by defining a flatness-
based trajectory tracking controller using tire force control. This controller decouples the
bicycle dynamics into a point mass at the front center of oscillation with an additional
degree of freedom related to the vehicle yaw dynamics. Structure is identified in the yaw
dynamics and is exploited to characterize stability limits. Simulation results verify the
stability properties of the yaw dynamics.

These results were applied to a semi-autonomous driver assistance system and
demonstrated experimentally on a full-sized passenger vehicle. Efficient computation of
point mass avoidance maneuvers was used as a cost-to-go for real-time numerical
optimization of trajectories for a bicycle model. The experimental system switches
control authority between the driver and an automatic avoidance controller so that the
driver retains control authority in benign situations, and the automatic controller avoids
hazards automatically in hazardous situations.

Thesis Supervisor: Karl Iagnemma, Principal Research Scientist
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I
CHAPTER 1: INTRODUCTION

1.1 Importance of high-speed hazard avoidance
Autonomous navigation of robotic vehicles at high speeds has received substantial

research attention in recent years, as highlighted by the DARPA Grand Challenge and

Urban Challenge competitions [14, 15]. Applications of high speed robotic vehicles

include exploration, military reconnaissance, and material transport. In these scenarios,

increasing vehicle speed and maneuverability may increase the likelihood of avoiding

hostile situations and improve task efficiency. The danger of collisions with hazards is

increased at high speed, however, since collision severity increases with vehicle speed.

Hazard avoidance capability can be incorporated into robot vehicle navigation

systems through the integration of appropriate sensing, motion planning, and control

systems. Sensing of the environment is necessary to identify the position and motion

characteristics of hazards as well as properties of the driving surface. With this

information, a motion plan can be constructed that avoids hazards and is feasible for the

vehicle dynamics for the given surface conditions. The motion plan should be

implemented by a controller that has guarantees on its trajectory tracking capability to

ensure that the motion plan is followed safely.

Motion planning and control for high-speed hazard avoidance is challenging for

several reasons. The first challenge is caused by constraints on trajectory feasibility

arising from the vehicle dynamics and physical limits such as actuator or friction force

constraints. These constraints increase the difficulty of the motion planning task.

Another challenge is posed by the presence of presence of unstable equilibrium points in

the vehicle yaw dynamics depending on the vehicle speed, steering angle, and tire

properties [53]. Motion planning and control must be designed to avoid these regions of

instability in the dynamics. Finally, algorithm computation time must be short at high

speed to allow a timely response to changes in the environment.



The development of hazard avoidance systems for robotic vehicles has distinct

applications to passenger vehicles. While passenger vehicle safety has improved over the

past 40 years thanks to developments such as seat belts, air bags, optimized crush zones,

and stability control systems, more than 30,000 people are killed and millions injured in

motor vehicle accidents in the United States each year [24, 23, 51]. It has been found that

driver error is a significant factor in accident causation, as the primary cause of 60% of

motor vehicle accidents and a contributing factor in 95% of accidents [20]. Similar

planning and control methods used for hazard avoidance in robotic vehicles may be

incorporated into driver warning or driver assistance systems to mitigate the impact of

driver error.

The following sections contain a review of previous work in sensing, motion planning,

and vehicle control for high-speed hazard avoidance.

1.2 Brief review of sensing for hazard avoidance

A critical task for hazard avoidance systems is identification of the location and

motion of hazards in the environment. This task requires identifying the shape or

bounding box of a hazard as well as tracking its position and velocity given by X, Yi, X,

and Y', as shown in the left subfigure of Fig. 1.1. A sample of the state of the art in

perception and sensing at low speed (under 15 m/s) can arguably be seen in the robot cars

that competed in the DARPA Grand Challenges. These robots utilized cameras, RADAR,

and LIDAR to identify other cars and hazards in the environment [14, 15]. A photograph

of the MIT vehicle with its sensors is given in the right subfigure of Fig. 1.1. While there

were a limited number of minor collisions in the most recent competition, the successful

avoidance of collisions throughout the majority of the competition indicates that hazard

sensing systems have reached a mature state for vehicle applications [25].

Hazard sensing has been demonstrated at speeds above 15 m/s, notably in

commercially available adaptive cruise control systems. These systems utilize RADAR

to measure the relative distance and speed of other vehicles to control following distance

[2]. The RADAR sensors in these systems have longer range for high-speed use, though

they only look for a hazards directly in front of the vehicle.
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Fig. 1.1: An illustration of the quantities to be identified by hazard sensing systems is
given in the left subfigure, and a photograph of Talos, the MIT robot vehicle from the

DARPA Urban Challenge is shown in the right subfigure. Talos is equipped with
cameras, laser scanners, and RADAR sensors (image by Jason Dorfinan of MIT/CSAIL).

Another important task for hazard avoidance systems is the identification of surface

friction and traction properties. These surface properties impact the operating envelope

of the vehicle and the range of feasible avoidance maneuvers. These properties can be

estimated directly using on-board sensors using a variety of methods [30, 77]. Recent

research has indicated that these on-board measurements can be combined with

measurements of the appearance of the surface and used to estimate upcoming surface

properties [31, 11].

As described above, there has been significant research effort expended towards

sensing and perception for robotic vehicles, including identifying hazard locations and

surface conditions. This remains an active area of research, but it is not the focus of this

thesis. As such, it is assumed that a perfect sensing and perception system is available

that provides the following:

= Geometric description of drivable surface regions

- Shape/bounding box and location of hazards

e Surface friction coefficient on different surface patches

The duration of this thesis considers the problem of motion planning and control with

perfect sensing. The effect of imperfect sensing will be considered in future work.



1.3 Review of motion planning for hazard avoidance

With information about hazard location and surface conditions given by the sensing

system, a motion planner computes a feasible hazard-free trajectory through the

environment to a desired endpoint. In addition to the basic geometric planning problem

(known as the Piano Mover's Problem [58]), the motion planner faces challenges of

dynamic trajectory feasibility and computational complexity and, if desired, optimality.

Examples of optimality criteria include path length, travel time, clearance from obstacles,

and fuel consumption.

Two categories of planning methods are discussed in this section: model-agnostic

methods and model-specific methods. Model-agnostic planning methods are general

methods suitable for many types of vehicle models, while model-specific planning

methods are designed for a specific vehicle model. Though more narrow in scope,

model-specific methods may exploit knowledge of the vehicle model to simplify the

planning task.

1.3.1 Model-agnostic planning methods
The simplest form of model-agnostic planning is to solve the geometric Piano

Mover's Problem, assuming that all continuous paths are feasible. A common approach

to the geometric planning problem is to represent the free space in the environment with a

graph and use a graph search algorithm to compute a motion plan. The cellular

decomposition method partitions environmental free space into cells and creates a graph

based on cell connectivity [44]. The roadmap method chooses a series of points in the

environment and defines a graph based on lines or paths connecting these points [44].

For example, a visibility graph is a roadmap created from the comer nodes of obstacles

and can be used to find minimum distance piecewise linear paths using graph search

algorithms such as Dijkstra's algorithm or A* [44, 43]. Another type of roadmap is the

Voronoi decomposition, which generates path of maximum clearance from obstacles [69].

Probabilistic methods can also be used to generate roadmaps, such as randomly exploring

randomized trees (RRT), which generate piecewise-linear collision-free paths with

probabilistic completeness guarantees and reduced computational overhead [44]. Though

the RRT does not have any optimality guarantees, a recent variation known as RRT* was



developed that adds an asymptotic optimality guarantee without significantly changing

the computational requirements [37]. A disadvantage of geometric planning methods is

that the planned paths are not guaranteed to be dynamically feasible.

Another approach to model-agnostic motion planning is the use of potential field

methods, which have long been used by defining an artificial potential field with a

minimum value at the desired end position and searching for a path to the minimum using

methods such as gradient descent [38, 68]. Assigning large potential values to obstacles

or untraversable regions of the environment serves to repulse the motion plan from such

regions. The major challenge for this method is ensuring that no local minima of the

potential field prevent travel to the desired position. Navigation functions can be

constructed that have no local minima [60], though they are difficult to construct and

modify in real-time.

To ensure dynamic feasibility of planned trajectories, kinodynamic planning methods

discretize and search over the space of feasible inputs or feasible trajectories rather than

searching over the environmental free space. These methods use a simulated vehicle

model to determine whether the resulting trajectories successfully avoid hazards. For

example, the RRT method can utilize a randomization of input commands to a vehicle

model to generate dynamically feasible trajectories [45] or by randomly selecting from a

library of maneuver primitives with corresponding feedback control laws [27]. Another

approach uses a reachability analysis to identify the set of states for which dynamically

feasible avoidance trajectories do not exist, termed Inevitable Collision States [26]. The

analysis was combined with an RRT motion planner to identify feasible trajectories.

These methods can also benefit from the asymptotic optimality guarantee arising from the

RRT* method [37]. It should be noted that the computational complexity of these

methods scales with the complexity of the simulated vehicle model.

Motion planning via discretization and search over inputs to a vehicle model can also

be accomplished with numerical trajectory optimization. While there are numerous

approaches to numerical trajectory optimization [9], the most relevant methods are

computationally efficient enough to be used for real-time motion planning. Receding-

horizon optimal control, for example can generate dynamically feasible optimal

avoidance trajectories for linear or nonlinear vehicle models by repeatedly solving a



numerical optimization problem. Minimum-time collision-free trajectories were found

for an aerial vehicle with turning rate constraints and rectangular no-fly zones using

mixed-integer linear programming [59]. An approximate cost-to-go was also used to

account for uncertainty beyond a limited detection horizon. Another approach computes

minimum-distance collision-free paths for a "Dubins-like" car with nonlinear dynamics

with nonlinear programming [18]. The avoidance of circular obstacles was ensured with

nonlinear constraints. The computational burden was reduced through a branch-and-

bound optimization. Nonlinear programming can also be applied to motion planning by

combining cellular decomposition and graph search with a predictive controller [39].

The map of the environment is partitioned into a set of connected convex regions and

searched for a set of regions that connects the start and end points. A path is then

parameterized as a spline, optimized within the set of convex regions, and tracked with

receding horizon control. An advantage of planning with receding horizon optimization

is that it can compute optimal trajectories for a wide range of models. The challenge of

numerical trajectory optimization is the computational overhead, which depends on the

model complexity and duration of model prediction.

Many model-agnostic planning methods are capable of planning feasible avoidance

trajectories, with varying levels of optimality guarantees and computational requirements.

A common challenge of these methods is the computational demand, which scales with

the complexity of the model used for prediction.

1.3.2 Model-specific planning methods
Several motion planning methods have been proposed for specific vehicle models and

avoidance trajectories. Though narrower in scope than model-agnostic methods, the use

of model-specific information can be used to reduce the computational demands of the

planning task. A trajectory of particular interest is the lane change maneuver, which

involves a lateral displacement of distance D1 over a longitudinal distance D2 , as

illustrated in the left subfigure of Fig. 1.2. The specific models of interest include the

vehicle with tire friction circle constraints and vehicle point mass models.



Fig. 1.2: Lane change maneuver.

The tire friction circle constraint refers to the coupling of longitudinal and lateral tire

forces through a constraint on tire friction force magnitude, as illustrated in Fig. 1.3. This

constraint is recognized by the professional racing community as having a significant

effect during high-speed comering [49]. For a tire with longitudinal force Fx, lateral

force Fi,, normal force Fzi, and surface friction coefficient p the friction circle constraint

is given as

F +F puFz (1.1)

c.g. --FF XfI

xix

% F. i
"FF

Fig. 1.3: Top view of bicycle model with tire friction circle constraints in the left
subfigure and side view of tire in the right subfigure.

The optimal lane change planning problem for a vehicle with tire friction circle

constraints has been considered by several researchers. The problem is posed as

minimizing the longitudinal distance D2 required to change lanes a lateral distance Di to

avoid a hazard, as shown in Fig. 1.1, while satisfying friction circle constraints at each

wheel. Hattori, et al. used second order cone programming to determine the optimal

forces and moment on a rigid body for the lane change subject to the friction circle

constraint [32]. Steering and braking commands for a higher-order model were then



computed with a second optimization step to track the desired trajectory. An alternative

approach by Shiller, et al. used both numerical trajectory optimization on a high order

model and analytical optimal control result for a point mass model [65]. For the point

mass model, the friction circle constraint was approximated as a "friction square" and a

bang-bang control law was found.

Kanarachos considered a dual of the optimal lane change planning problem by fixing

the desired endpoint and minimizing the system inputs required to execute the lane

change maneuver [35]. Pontryagin's Minimum Principle was used to derive a bang-bang

control law for a nonlinear vehicle model with steering actuator dynamics. The approach

differs from the problem considered by Shiller and Hattori in that it minimizes steering

actuator commands rather than tire friction forces. Additionally, the approach does not

consider the effect of braking, which was shown to be significant by both Hattori and

Shiller.

Several planning methods for point mass vehicle models have been proposed. One

such technique is based on the "trajectory space," a compact representation of the limits

on speed and curvature imposed by stability limits and traversal of rough terrain [67].

Hazards are mapped from a cellular decomposition of the environment onto parts of the

trajectory space that are inadmissible. A computationally efficient algorithm for finding

a feasible trajectory was proposed, though without claims of optimality. Another method

uses a point mass approximation of the vehicle dynamics to determine whether avoidance

is still feasible [19]. The acceleration of simple stopping and turning maneuvers is

compared to an acceleration threshold to determine feasibility. The method is

computationally efficient, though ignores many vehicle dynamic effects.

Approximation of the vehicle dynamics as a point mass was used by Velenis and

Tsiotras to simplify optimization of the velocity profile of a trajectory along a pre-

specified path [74]. The point mass simplification allowed the friction circle constraint to

be mapped to a constraint on acceleration magnitude. The approach was also extended to

optimization of velocity profiles for a half-car bicycle model, though the mapping of

friction circle constraints to acceleration constraints is a function of vehicle state and thus

more complex.



Optimal control analyses have also been presented for a point mass with bounded

acceleration magnitude and controllable acceleration direction. Several example

problems are considered by Bryson and Ho in their optimal control textbook, such as

minimum-time orbit injection, interception, and rendezvous problems [13]. This analysis

has been applied to controlling the thrust of rockets and other types of launch vehicles

[13, 12], though not to ground vehicles.

Several model-specific planning methods have been proposed for planning optimal

lane change maneuvers for vehicles with friction circle constraints, though analytical

results are limited to reduced point mass or "friction square" models. Point mass models

with bounded acceleration magnitude have been considered as approximations of the

vehicle with friction circle constraints.

1.3.3 Motion planning summary
A motion planning method suitable for high-speed hazard avoidance of robotic

vehicles must consider high-speed vehicle dynamics, especially the friction circle

constraint, with low computational demands and ideally with optimality guarantees.

Several model-agnostic methods use a predictive model to ensure trajectory feasibility,

though the computational complexity scales with model complexity. There are several

model-specific planning techniques for vehicles with tire friction circle constraints,

though they rely on trajectory optimization or model simplifications. The development

of analytical solutions to the model-specific planning problem for a vehicle with tire

friction circle constraints could enhance the use of model-agnostic planning methods.

1.4 Review of control for hazard avoidance

Once a feasible motion plan for hazard avoidance has been generated, it should be

executed by a control system with trajectory tracking guarantees. An important factor in

high-performance control systems is accurate consideration of the vehicle dynamics.

Two critical dynamic effects for ground vehicles are the modeling of wheel slip and the

friction circle effect [49]. This section discusses previous approaches to considering

these dynamic effects for trajectory tracking control of ground vehicles.

As discussed in the previous section, model complexity impacts the computational

demands of motion planners that employ predictive models. This section also discusses



an approach to reducing model complexity based on differential flatness, which can

reduce the kinodynamic planning problem to a geometric planning problem, while

maintaining model fidelity.

1.4.1 Tire modeling for vehicle control
This section presents previous approaches to modeling tire slip and tire friction forces

for vehicle control. Tire slip can be quantified by the relative motion between the tire

contact patch and the ground [49]. Lateral slip is typically indicated by the slip angle a

shown in Fig. 1.4. Longitudinal slip is typically indicated by the non-dimensional value

given below as r, using the wheel rolling radius R, angular speed w, and longitudinal axle

speed V from Fig. 1.4.

K = co(1.2)
V

Fig. 1.4: Top view of tire with speed V and slip angle a in the left subfigure and side
view of tire with longitudinal axle speed Vx, angular velocity w, and rolling radius R in

the right subfigure.

One approach to modeling tire slip and tire friction forces is to assume that no slip

occurs. With this assumption, the tire friction forces can be regarded as non-holonomic

constraints that maintain rc = 0 and sin a = 0 at each tire. Numerous path tracking

controllers have been developed for mobile robots operating in a plane with this approach

[36, 76, 22]. In particular, the pure pursuit algorithm has been applied successfully in a

number of robotic vehicles, including Stanley, the winner of the 2005 DARPA Grand

Challenge built by Stanford University [52, 71]. This algorithm involves computing

circular arcs between the current vehicle position and a "look-ahead" point in front of the

vehicle on the desired path. With the assumption of no tire slip, the steering angle is



computed based on the curvature of the circular arc. There is a speed-dependent

minimum look-ahead distance required for stability of this controller.

Though the no-slip assumption may be convenient for deriving controllers

analytically, it is not appropriate for all situations since wheel slip does occur in practice

[49]. For example, if the magnitude of the constraint forces required by the non-

holonomic constraints exceed the available friction force at a tire, then the constraints

cannot be satisfied, and slip will occur. Additionally, slip can be observed in pneumatic

tires as a result of tire compliance when non-zero friction forces are applied, even when

the tire force magnitude is far less than the maximum available friction force [54, 63].

To account for tire compliance and friction force saturation, tire friction forces are

typically modeled as nonlinear functions of slip [49, 6, 54]. When at least one slip value

is small, the longitudinal force F; and lateral force Fx, can be modeled as uncoupled

functions of slip as Fx(rK) and Fyi(a). The typical shape of these uncoupled functions is

illustrated in Fig. 1.5 and involves a linear region at small slip, saturation due to the

friction limit, and possibly a drop-off as slip increases. At large slip values the tire

friction forces are coupled as Fx(,a) and Ffl(,a). The friction circle effect is embodied

in the coupling of these models. A widely used model for the coupled friction forces is

the Magic Tire formula given by Pacejka [6, 54].

0.5-

-0.5-- - - -

-- 0. 5 0 0.5
Slip

Fig. 1.5: Example relation between tire force and slip.

When tire slip is sufficiently small, the decoupled friction forces are approximately

linear. Numerous vehicle control algorithms have been proposed that utilize a linear tire

force model for path tracking [55, 3, 56, 41], lane-keeping [61], and stability control [17].



The linear model enables use of the many tools of linear control theory, though the

model's suitability is limited to situations with relatively small amounts of vehicle slip.

The linear lane-keeping controller in [61] and the linear path-tracking controller for

an autonomous race car in [41] utilize concepts of look-ahead distance similar to the pure

pursuit controller. These controllers have also been extended to consider a nonlinear

model of decoupled lateral tire forces Fyi(a) [70].

Nonlinear tire models with coupled slip can be incorporated into vehicle controllers

using numerical optimization methods. A coupled tire friction force model was used in a

controller for rollover prevention by posing a force allocation scheme as a convex

second-order cone program and solving it numerically [33]. The coupled tire model is

given as

F, (ac, F = f,,(a)V1- (Fm / pFz Y2 (1.3)

where fi(a) is a decoupled lateral force model, p is the surface friction coefficient, and

the term 1-(F, /p jz)2 represents the friction circle effect. This is a simplified form

of the coupled nonlinear tire model that can be used for control.

The coupled nonlinear tire model from [6] was used with nonlinear model predictive

control (MPC) to generate a path-tracking controller for an automobile operating near the

tire friction limits [21]. The controller was demonstrated experimentally with double

lane change maneuvers at speeds up to 21 m/s on icy roads. A linear affine model was

used to approximate the rear lateral tire forces in a linear MPC controller for maintaining

the vehicle in its operating envelope [7]. The front lateral tire force was treated as an

input to this vehicle control scheme as low-level tire force control was available from the

actuators on this vehicle.

A controller for stabilizing the vehicle speed, sideslip angle, and yaw rate to an

equilibrium drifting maneuver at high slip was given in [72]. The controller was

designed for the coupled nonlinear tire model from [6] and employed front-wheel

steering and rear wheel torque in a sliding surface control scheme. This controller

explicitly considers a nonlinear tire friction model, operates at high sideslip, and is

computationally efficient. Its main limitation is that it only stabilizes equilibrium drifting

maneuvers and cannot track arbitrary trajectories.



The effect of tire slip and tire friction is important when vehicles are operated near

the limits of friction. Tire friction forces are typically modeled as coupled nonlinear

functions of the lateral slip angle and longitudinal slip. For small slip, the friction forces

are approximately linear, and linear control theory can be applied for vehicle control. For

larger values of slip, a nonlinear tire model should be employed. Several types of

nonlinear models have been used with numerical optimization, though the complexity of

the tire models should be balanced with the computational demands of real-time

numerical optimization, particularly for low-power microcontrollers.

1.4.2 Differential flatness in ground vehicle control
Some recent research in trajectory tracking control has focused on systems with a

property known as differential flatness. A nonlinear system i = f(x, u) is differentially

flat if an output y can be found such that the states x and inputs u can be expressed in

terms of y and a finite number of its derivatives [22]. A benefit of flat systems is that the

differential constraints given by : = f(x,u) are mapped into smoothness constraints on

the outputs y. This simplifies the kinodynamic planning problem to a geometric planning

problem of finding a smooth trajectory.

An example of a flat system is the front-wheel steered bicycle driving in a plane

without wheel slip. This model is a flat system whose flat output is the position of the

rear wheel [22]. The flatness of the bicycle driving without slip has been applied in

vehicle tracking control applications [62], though its no-slip assumption restricts its

suitability for limit handling maneuvers involving significant amounts of slip.

Another example of a flat output is the position of the center of oscillation (or center

of percussion) of certain types of rigid body systems, including a vertical take-off and

landing aircraft [47, 50]. States related to the center of oscillation have also been

identified as flat outputs for a bicycle model with tire forces acting at the front and rear

wheels, as described below.

Though not identified as the center of oscillation, Ackermann noted that the lateral

acceleration of a point near the front wheels is decoupled from the rear lateral tire force

[1]. This decoupling was exploited to design a front-wheel steering controller for the

body-fixed acceleration of that point at the front of the vehicle. Since the vehicle yaw



dynamics were decoupled from the front steering, a control law for rear-wheel steering

was used to control the yaw dynamics. Recent work conducted concurrently with this

thesis has applied force control at the front wheels to control the path of the front center

of percussion [42].

It was later noted by Fuchshumer that both the point identified by Ackermann at the

front of the vehicle and a similar point at the rear of the vehicle are centers of oscillation.

The body-fixed velocity components at the rear center of oscillation were identified as

flat outputs and a corresponding flatness-based controller was defined [28]. The position

of the rear center of oscillation was chosen as the reference point in a trajectory tracking

controller by Setlur [64]. Other flat outputs have been considered under the assumption

of constant speed and linear tire force models [75, 5].

In summary, differential flatness is a system property that can simplify the motion

planning problem by mapping differential state constraints to smoothness constraints on

the trajectories of flat outputs. States related to the front and rear centers of oscillation

have been previously considered as flat outputs for the nonlinear bicycle model. For a

vehicle with front-wheel steering but no rear-wheel steering, the acceleration of the front

center of oscillation has the advantage of being coupled to controllable tire friction forces

at the front wheel and decoupled from the uncontrollable rear lateral friction force. The

position of the front center of oscillation thus represents a promising choice of flat output

for a flatness-based trajectory tracking controller.

1.4.3 Vehicle control summary
Two important factors in the development of trajectory tracking controllers for

ground vehicles are the modeling of wheel slip and tire friction forces and the presence of

differentially flat outputs in the system dynamics. Modeling tire friction forces as

coupled nonlinear functions of slip captures dynamic effects such as friction force

saturation and the friction circle effect. Several controllers based on numerical

optimization have incorporated nonlinear tire models, though model complexity increases

the computational demand of techniques based on numerical optimization. The presence

of differentially flat outputs in a system model can simplify the planning task by reducing

kinodynamic planning to a geometric planning problem. The position of the front center



of oscillation of the nonlinear bicycle is a promising flat output for a trajectory tracking

controller.

1.5 Contributions of this thesis

High-speed hazard avoidance systems require integration of sensing, motion planning,

and control subsystems. This thesis presents contributions in the areas of planning and

control for hazard avoidance, assuming that the location of hazards and properties of the

driving surface are known. An outline of the thesis and its contributions are presented

below.

Chapter Two poses the optimal hazard avoidance planning problem considered in this

thesis. The problem is based on minimization of constrained vehicle dynamic states,

such as friction circle utilization. A nonlinear bicycle model is presented, and the optimal

planning problem is solved numerically for this model to demonstrate properties of the

corresponding optimal trajectories.

Chapter Three presents analytical solutions to the optimal hazard avoidance planning

problem for a point mass with bounded acceleration magnitude. The constraint on

acceleration magnitude is analogous to the friction circle constraint, which is a

fundamental constraint on high-speed vehicle dynamics [49]. The method is based on

analytical optimal control and can be applied in a computationally efficient manner.

These results present a closer connection to high-speed vehicle dynamics than previous

analytical optimal control results for the point mass approximation of ground vehicles,

which utilized a "friction square" constraint [65].

Chapter Four presents a flatness-based trajectory tracking controller for a bicycle

model with nonlinear tire forces. The position of the front center of oscillation is used as

a flat output, and feedback control of the tire friction forces is used to control the

acceleration of the flat output. This decouples the bicycle dynamics into a point mass

with two degrees of freedom and an additional degree of freedom related to the yaw

dynamics. A Lyapunov stability analysis of the yaw dynamics is presented for steady

maneuvers. The friction circle constraint at the front wheels of the bicycle is shown to be

equivalent to an acceleration circle constraint. This insight allows the optimal avoidance

trajectories for the point mass to be applied to a nonlinear bicycle model. It should be



noted that recent research conducted concurrently with this work has considered a path

tracking controller for the front center of oscillation based on feedback control of tire

friction forces [42], though the connection to differential flatness and nonlinear stability

analysis presented in this work are novel.

In Chapter Five, the planning and control contributions are demonstrated in a hazard

avoidance system. The system plans optimal hazard avoidance trajectories that minimize

acceleration magnitude. When the acceleration required for avoidance exceeds a

threshold, active steering and braking are employed to automatically avoid the hazards.

The system is demonstrated experimentally to verify the performance and computational

efficiency of the algorithms.

In Chapter Six, conclusions are presented along with suggestions for future work.



2
CHAPTER 2: OPTIMAL AvOIDANCE PROBLEM

2.1 General form of optimal avoidance planning problem
A general form of the optimal motion planning problem is presented below. The

problem considers a vehicle with nonlinear dynamics subject to two types of nonlinear

constraints. One set of constraints arises from requiring a minimum clearance from

hazards, while the other constraints correspond to the nonlinear operating envelope on

vehicle states. The planning problem is posed as finding a trajectory that satisfies the

minimum clearance constraints while minimizing a function related to the operating

envelope that represents aggressiveness.

A vehicle with states x, inputs u, and nonlinear dynamics i = f(xu) is considered.

The vehicle is subject to input magnitude constraints and nonlinear operating envelope

constraints that may arise from friction force limits or rollover stability limits. These

constraints can be expressed generally as |gi(x,u)| 5 1, ie { 1... Ng}. The clearance

between the vehicle and the nearest hazard should be computed and is given by r(x). A

candidate trajectory with states x(t) and inputs u(t) for te[0,1 is a dynamically feasible

hazard avoidance trajectory if it satisfies the constraints listed above, as well as the

clearance constraint r(x(t)) > ro > 0 for te [0,71, where r, is the minimum required

clearance.

It may be noted that feasible hazard avoidance trajectories may not exist from all

initial vehicle states. For example, vehicles have a minimum stopping distance that

depends on the surface conditions and the vehicle speed. If the hazard is closer than the

minimum stopping distance, it cannot be avoided by stopping. This is related to the

concept of inevitable collision states [26].

Since the operating envelope constraints Ig,(x,u)| 5 1 limit the space of feasible

trajectories, an optimal planning problem is posed that minimizes these constrained



quantities |g(x,u)|, while maintaining at least a minimum hazard clearance r.. The

problem statement is given below:

u*= arg min max~g,(x(t),u)I (2.1)

i = f(x, u) (2.2)

r(x(t)) 2 ro (2.3)

This optimization minimizes the peak value of any constrained quantity at any time

during the trajectory. Since the constrained quantities |gi(x,u)| are minimized, the

constraints are omitted from the problem statement. An advantage of minimizing the

peak value of Ig,(x,u)| over all i and t is that the dynamic feasibility of the resulting

trajectory can be easily verified by testing whether the objective is less than 1. A

disadvantage of this definition of the objective is that it treats all envelope constraints

g,(x,u)| equally. Additionally, there may be multiple trajectories that have the same peak

value of the envelope constraints, which implies non-unique optimal trajectories.

To address these disadvantages, a variant of the trajectory optimization problem is

posed by subjecting a subset of the constrained quantities with indices ieA to the

minimization with the other quantities i OA remaining constrained. The quantities in A

can be chosen based on the relative danger of nearness to each envelope constraint. The

variant of the problem is posed as follows:

u*= arg min maxg, (x(t),ut)) (2.4)
u iEA,t

i = f(x,u) (2.5)

r(x(t)) ro (2.6)

Ig,(x(t), u(t))| 5 1, i 0 A (2.7)

The following sections present and discuss the optimal trajectories computed using

this method for a nonlinear bicycle made subject to friction circle constraints.

2.2 Nonlinear bicycle model
A nonlinear bicycle model is presented here and illustrated in Fig. 2.1 using the

notation from [47]. A fixed inertial frame is given by (i, jk). The vehicle is modeled

as a rigid body in the plane formed by vectors T, j. A body-fixed frame is given as



(,Jb,kb) with kb =k and the yaw angle qr. The vehicle center of gravity (c.g.) is

located at point c and has position F, velocity 9, and acceleration d, as shown below.

The state vector x is given as well.

, = Xi +jYj (2.8)

v =(2.9)

dc = X±I +Y j (2.10)

X =( Ye Y k Zes fn+ y' (2.11)

i F
if lb yf

C F

c *!

F Ibl

ki
Fig. 2. 1: Nonlinear bicycle model with front-wheel steering and tire friction forces.

The forces acting on the vehicle are lateral and longitudinal tire friction forces at the

front and rear wheels as shown below, where 6 is the front steering angle.

Fx4 = Fxf(Ih cos 9 + j sin 15) (2.12)

FPf = Fy(I sin 15+i cos t5 (2.13)

F, = F(2 .14

F, = F,, A (2.15)

The vehicle dynamics are written in the vehicle-fixed frame as:

mae = Fxf + Fyf + F, + F,, (2.16)

mae = (Fxf cos t5 - Fyf sin o5+ F,)I:' + (F sin t5+ Fyf cos t5+ Fj (2.17

IElIbx +g-lx, (2.18)



where m is the vehicle mass, Izz is the yaw moment of inertia, and the parameters If and 1r

specify the location of the tire-ground contact points relative to c.

The dynamics are expanded and projected into the fixed frame as shown below.

mke= Ff cos(y+5)-F fsin(V +5)+ F, cos V - F,,. sin Vg (2.19)

mY = Ff sin(V +1)+ F cos(y +3)+ F, sin V+ F, cos y (2.20)

Izz0 =lf (Ff sin 3+Ff cos 5)-i1,.F, (2.21)

Tire friction forces are modeled as the product of the normal force Fz, and a function

of the slip between the tire contact patch and the road surface [54]. The lateral tire slip

angles at the front and rear are given by af and %r and are computed as shown below.

af (x,5)= tanr jJ (2.22)

ar (x)= tanj-1 c ~Jr/ j (2.23)

An example tire with slip angle a and speed vi is illustrated in the left subfigure of

Fig. 2.2. The longitudinal slip ratio K, is also defined below, where r, is the tire radius

and w, is the wheel angular velocity about the axle, as shown in the right subfigure of Fig.

2.2.

r,(X, )1 r coi (2.24)
v, cos a,

The wheel spin dynamics are given below for each tire, where I is moment of inertia

of the wheel about the spinning axis, and ri is the control torque applied to the wheel, as

shown in the right subfigure of Fig. 2.2.

Ii6 = r, - rFx, (2.25)
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Fig. 2.2: Lateral and longitudinal tire friction forces and tire slip quantities.

Tire friction forces always oppose the direction of tire slip. This physical insight is

expressed in the following inequalities:

F.,(r,)r, <0 Vr, # 0 (2.26)

F<(a,)sin a, <0 Vsina, #0 (2.27)

Additionally, the friction forces are modeled such that the forces are zero when the

slip is zero as follows:

K, =0 :> Fx,(r, 0 (2.28)

sin a, =0 <> F,,(a1 )= 0 (2.29)

When the slip in one direction is small, the tire forces are approximated as functions

of a single slip value only, as in the equations below.

Fx,(r,Fz)=FzFfxr( ) V |aj|s 5 (2.30)

FI,(aI,Fz)=FzIfy (a) V IrKI<| (2.31)

An example of a relationship between force and slip was given in Fig. 1.5. This

example relationship is linear for small values of slip and saturates at a maximum friction

force value. The friction force may experience a drop-off after saturation as slip

increases.

When both the lateral and longitudinal slip values are large, the tire friction forces are

coupled functions of both slip values:

F4 (r, a , Fz)= Fz fx (ri, a1 ) (2.32)

F, 1(K ,a1 , Fz1)= Fzi fyi (ri , a,) (2.33)



This coupling is often referred to as the friction circle effect [49] and is based on the

fact that the total friction force magnitude is bounded, as shown in the equation below

and illustrated in the left subfigure of Fig. 2.3. The variable p refers to the saturated

friction coefficient between the tire and the surface.

F 2 p (2.34)

/ 
44

F 
F

% %

Fig. 2.3: Illustration of friction circle constraint.

To simplify the coupled tire model, it is assumed that the control torque r, is used to

control the longitudinal force Fx;i to track a desired force Fxi,des as shown below. The

force F.xi tracks the desired value closely when the spin acceleration coi is small. This

implies that the desired force must be lower than the saturation value of the longitudinal

force.

-r, = rjFx,,s,> Fxz (xi,,ai , Fz FxjIe ib (2.35)
r,

The input vector u is given below, which consists of the steering angle S and the

longitudinal forces Fxf and F,

U = [5 F,5 Fxr (2.36)

With the longitudinal forces Fx, treated as an input, the lateral force F,; is modeled as

the product of the normal force Fzi, a function of lateral slip angle q, and the friction

circle coupling term shown below.

F,(a,,FF )= F,- (2.37)

.t , zj zj f j ( i - i f/44' -44z.4



For this work, the function of lateral slipfy,(ai) is based on Pacejka's Magic Formula,

a semi-empirical tire model [54]. The formula is modified to include rotational symmetry

for large angles so that fy,(a) = fy,(fl) if sin(a) = sin(#). The angle t, is defined by

mapping the angle a to the interval [-z/2, z/2] as shown below. The functionfy,(a) is

given below as well, with parameters B, C, D, and E. The parameter B is the stiffness

parameter and is closely related to the slope of the curve at a, =0. The parameter C is the

shape factor and determines the shape of the peak of the curve. The parameter D is the

peak factor and scales the magnitude of the curve. The parameter E is the curvature

factor and influences the shape of the curve for large values of a.

Y,(a )=sin -1 sin a, (2.38)

fyj (aj) D, sin (C, tan~-'B, (1- E, )a-~,(a,) + E, tan -'(Bj aW,(aj)) (2.39)

Parameters for the front and rear lateral force on a low-friction road are taken from

[53] and are given in Table 2.1. The functionsfyj(a) andfyr(ar) are plotted in Fig. 2.4 for

a range of slip angles.

Table 2.1: Model Parameters
Description

Dist. From C.G. to front
Dist. from C.G. to rear

Mass
Yaw moment of inertia

Front tire parameter
Front tire parameter
Front tire parameter
Front tire parameter

Slip at peak Ff
Peak front friction
Rear tire parameter
Rear tire parameter
Rear tire parameter
Rear tire parameter

Slip at peak Fr
Peak rear friction

Value
1.2 m
1.3 m

1500 kg
3000 kg m2

11.275 rad 1

1.5600
-0.3365
-1.9990
5.46 deg

0.337
18.631 rad-'

1.5600
-0.2477
-1.7908
3.39 deg

0.248
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Fig. 2.4: Normalized lateral tire force functionsfy(a-) andfyr(ar) based on Pacejka model.
The functions are plotted for two ranges of the rear slip angle to show the linearity and

saturation at small slip angles and the symmetry at large slip angles.

Another important factor in tire friction force modeling is the variation of the normal

force Fi. When a vehicle is subject to heavy braking or acceleration, load can be shifted

between the normal forces at the front and rear. This effect is often referred to as load

transfer [49]. A vehicle with c.g. height h that is subject to a longitudinal acceleration a.

is illustrated in Fig. 2.5. Expressions for the normal forces Ff and Fzr are given below,

where g represents the acceleration due to gravity.

Fz =in 1+1 +1nx

f r 1f +r'___ h
F5 =mg '' -ma,

1.1+1,. XlJ+i,

Fzr =mg i +max
If + 1, 1f + I,

(O)
Fzr

cb

Mg

0

(2.40)

(2.41)

b

ir iFzf

Fig. 2.5: Load transfer for nonlinear bicycle model with raised c.g.

... ................... ................... ............. ....... .......................

.....................

... .......... ........... ..................... ..................... .....................

... ...................... ...... ............... ............ ....... ....................... ...
. .. . . .. . . . . . ..

....................... ....................... ............................ ............... ......... ...... ...................



If the maximum longitudinal acceleration is limited to ug, the effect of load transfer is

small when puh is small relative to 1f and r. This may occur when the vehicle c.g. is low

to the ground and/or the friction coefficient is low, such as a sports car on a slippery

surface. For the duration of this work, it is assumed that ph is small relative to xf and xr,

so that the normal forces are approximated as constant and computed as shown below.

F =mg ir (2.42)

Fzr =mg i (2.43)
l+1,

The inputs are subject to the constraints given below, where &max represents the

maximum steering angle, and Fxf.ma. and F,,., represent the maximum longitudinal

forces.

| J1 . (2.44)

F I Fxr (2.45)

|F (2.46)

The friction forces at the front and rear tires are also subject to friction circle

constraints given below, where p is the surface friction coefficient.

F7 + F5 pF (2.47)

Fr +F,. p~zr (2.48)

2.3 Example optimal avoidance trajectory for nonlinear bicycle
The hazard avoidance trajectory optimization problem defined in (2.4)-(2.7) is now

applied to the nonlinear bicycle model presented in the previous section. The

optimization problem is solved numerically to illustrate characteristics of the resulting

avoidance trajectories.

For this example, the inputs Fx and Fx represent braking forces generated by a

proportional braking system, with desired braking command ubrak, with parameter 0 < b <

1 as shown below.

F,5(u)=bubrae (2.49)



F,(u)= (l -b)ubk,, (2.50)

The problem is further simplified through a reduction in the number of constraints.

The nonlinear bicycle is subject to constraints on steering angle, longitudinal force, and

friction force magnitude. It is necessary to choose the constraints for which the vehicle

behavior should be optimized. Since the braking force actuators can typically generate a

force that is larger than the force allowed by friction circle constraints, then the friction

circle constraints are more restrictive and the braking force constraint may be ignored.

At low speed and low slip angles, the steering angle constraints limit path curvature. At

high slip angles, the steering angle constraints limit vehicle controllability, as the front

friction forces saturate at high slip angles. At high speeds and small slip angles, the

friction circle constraints limit maneuverability. In particular, the front friction circle

constraint is important because only the front wheel has steering control. Additionally,

previous studies have found the front friction constraint to be more critical to

understeering (or plow out) than the rear friction constraint [21]. As such, the front

friction circle constraint is chosen as the constraint to be minimized.

The problem can thus be expressed as follows:

u*= argminniax (2.51)
0 i eA,t pIFg

nk = (b cos(V/ + 5+ (I - b)cos Y)urae - Fy (x, u)sin(+ 5) -F, (x, u)sin V/ (2.52)

ik = (b sin(y + 3) + (1- b)sin V)ubrake + F (x,u)cos(yv + )+ Fyr (x,u)cos V (2.53)

IV =if bubrake sin 3+lfFf (x, u)cos 5 -l,.Fy (x,u) (2.54)

r(x(t)) > ro (2.55)

11 5. (2.56)

-u,.e, <ubrake , & 0 (2.57)

F + F', :! pFz (2.58)

This optimization problem was solved numerically using a shooting method with a

nonlinear optimization package NPSOL. NPSOL uses a sequential quadratic

programming algorithm to minimize a smooth nonlinear objective function subject to

linear and nonlinear constraints [29]. The solver has the capability to use gradients of the



cost and constraint functions to speed convergence. Symbolic derivatives are used in the

model prediction, cost function, and constraints of the MPC controller to improve

performance.

An optimal trajectory is computed for a vehicle traveling in a channel with an angled

rectangular hazard, as shown in Fig. 2.6. The initial speed of the vehicle is 10 m/s. The

trajectory is shown with circles superimposed over the path that indicate the required

clearance from hazards. A plot of the front friction circle utilization is given in Fig. 2.7.

It can be seen that the optimal trajectory maintains an approximately constant level of

friction utilization and brushes past the hazard and road edge with the minimum

acceptable clearance.

1 0 -..-.-.-

0 5 10 15 20 25 30
X (M)

Fig. 2.6: Optimal trajectory computed numerically



~0.05 - -- - -C)

0.05 .............

0 1 2 3 4
Time (s)

Fig. 2.7: Friction circle utilization for optimal trajectory

This example illustrates the types of avoidance trajectories that are found by this

optimal planning algorithm. By including clearance from hazards in the constraints

rather than in the objective to be minimized, this algorithm often computes near-miss

trajectories that pass hazards with the minimum required clearance. The numerical

optimization used in this example is not suitable for real-time application, requiring more

than 30 seconds on a modem laptop processor to compute 3 seconds of an optimal

trajectory. The following chapters will address more efficient methods for computing

these types of optimal avoidance trajectories that minimize front friction circle utilization

while ensuring a minimum clearance from hazards.

2.4 Conclusion
An optimal planning method for hazard avoidance trajectories has been presented.

The method minimizes constrained quantities in the dynamics while maintaining a

minimum clearance from hazards. The method has been demonstrated for a nonlinear

bicycle model with a numerical optimization package. The computational time for the

numerical optimization is slower than 1/10ah real time, which motivates the need for more

efficient methods.



3
CHAPTER 3: POINT MASS OPTIMAL AVOIDANCE

3.1 Introduction
An optimal hazard avoidance planning problem was outlined in the previous chapter.

The problem was solved for a nonlinear bicycle model with friction circle constraints

using numerical optimization. Since the nonlinear optimization is computationally

expensive, it is desired to find efficient methods for planning optimal avoidance

maneuvers. In this chapter, analytical solutions to the optimal avoidance planning

problem are presented for a point mass subject to acceleration circle constraints, similar

to the friction circle constraints acting on the nonlinear bicycle model. The optimal

maneuvers are compared to straight-line stopping and constant radius turn maneuvers.

3.2 Point mass with acceleration circle constraint
A simplified vehicle model is considered in this section, similar to the model

discussed by Bryson [13]. The vehicle is modeled as a point mass m with position given

by states [XY], as shown in Fig. 3.1. The input to the vehicle is an acceleration of

magnitude u1 applied in the direction specified by the angle u2. The point mass dynamics

are given as: [J = sin u2J.. inU2 (3.1)
cos U2

The acceleration magnitude luil is limited by the product of a surface friction

coefficient u and normal force N divided by the system mass m, as shown below. This

constraint is analogous to the tire friction circle constraints acting on the bicycle model.

juil 1 = a. (3.2)m
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Fig. 3.1: Point mass with acceleration circle constraint.

The model is posed in state-space form with state vector x= [X Y X and

input vector u=[ui u2 f as:

i= f(x,u)=[1 u, sin u2  u1 cosu 2 f (3.3)

The initial state and speed of the vehicle are given as xo and V as shown below.

x0 =[X 0  YO Z0  Yf (3.4)

VO= k 0+f2  (3.5)

3.3 Geometric avoidance maneuvers for a single hazard
When hazards are located close together, they may be considered "interacting

hazards", which means that avoidance maneuvers must consider them simultaneously

[57]. When hazards in the environment are spaced far apart, the hazards may be

considered "non-interacting" so that avoidance maneuvers can be designed for each

hazard independently. This chapter considers maneuvers for avoiding a single polygonal

hazard. These maneuvers can be chained together to avoid multiple hazards when the

hazards are non-interacting. Three non-optimal maneuvers with simple geometry are

defined and will be compared to the optimal maneuvers derived later.

The geometric maneuvers to be considered are straight-line stopping and two types of

constant radius turns as shown in Fig. 3.2. A straight-line stopping maneuver involves

stopping with constant deceleration over a distance D. A passing turn involves passing a

hazard face to the right or left, such as the turn with radius R,. A non-passing turn

involves turning to travel parallel to a hazard face, such as the turn with radius Rp. The

size of the vehicle is ignored here, though it will be considered later in Chapter 5.
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Fig. 3.2: Straight-line stopping and constant radius turn avoidance maneuvers.

The stopping distance and corresponding required acceleration a, are computed in

(3.7)-(3.8), where AY is the normal distance from the vehicle to a hazard edge and 9 is the

angle between the initial vehicle velocity vector and a vector normal to the hazard edge,

as shown in Fig. 3.3. The angle 0 is computed with the frame XY aligned with the hazard

edge to be avoided.

x= tan-I (3.6)

AY
D - (3.7)

cos9

2 2
V0 V2 cosoa. - (3.8)

2D AY 2

F

y AY D

IOX

Fig. 3.3: Geometry of straight-line stopping maneuver.



The geometry and required acceleration for non-passing constant radius turns are

computed below. The radius for a non-passing turn to the right is given by Rnp,rIght and

Rnp,left for a turn to the left. Again, AY is the normal distance from the vehicle to the

hazard edge and 6 is the angle between the vehicle velocity vector and a vector normal to

the hazard edge. The geometry for non-passing turns is illustrated in Fig. 3.4.

Rnp,rnght AY (3.9)
1-sin6

R -=e Ai (3.10)
1f +sin6

2 Y2
an = I =-*(lsin 0) (3.11)

AY
Rnp,eft

...... .---- Rnpright

Y R npept ... .. R p~i h

Fig. 3.4: Geometry of non-passing turns.

The geometry for passing constant radius turns is described below. Unlike non-

passing turns, a single equation can be used to describe passing turns to the right or left,

with radius given by Rp. Again, AY is the normal distance from the vehicle to the hazard

edge and 6 is the angle between the vehicle velocity vector and a vector normal to the

hazard edge. The distance along the hazard edge from the current vehicle position to the

comer to be passed is given by AK The angle p and distance AD are defined by the

angle and distance from the initial vehicle position to the corner to be passed as shown

below. The passing turn geometry is illustrated in Fig. 3.5.

V = tan -1 (3.12)
AY



AD= AK2 +AY 2 (.3

Fig. 3.5: Geometry of passing turn to the right.

The turn radius R, is computed with the aid of the triangles illustrated in the right side

of Fig. 3.5. Edge lengths AB and AC are both equal to the radius Rp, and edge length

BC is equal to AD. Since the angles Z BCE and ZDCE in Fig. 3.5 are equal, it can be

shown that triangle AABC is similar to triangle ACDB. This similarity implies the

following ratio, which is used to find an expression for the radius R,.

AiC BC
== == (3.14)
BC DB

R = AD2  (3.15)
SDB

The quantity DB can be computed as follows:

DB= 2(AX cos0- AY sin0) (3.16)

DB=2ADsin(P -6) (3.17)

A complete expression for the radius R, and acceleration a, is given below.

R D AYR = AD = A (3.18)
2sin(q-9) 2sin(V-9)cos(

a, =-*-2sin(q,-6)cosrP (3.19)
AY

(3.13)



It should be noted that the circular passing arc may cross the hazard edge in order to

intersect the comer node, as shown in Fig. 3.6. When this occurs, a passing turn in that

direction is not feasible. The feasibility can be checked by ensuring that the angle p

satisfies the condition given below. When passing turns are infeasible, a non-passing

turn or stopping maneuver may be considered instead.

-- +- 0 r -+- (3.20)
4 2 4 2

.. '' Rp

Rp

Fig. 3.6: Infeasible constant radius passing turn to the right.

3.4 Optimal avoidance maneuvers for a single hazard
In this section, analytical optimal control is used to derive the control laws and

trajectories for two types of optimal maneuvers for a point mass with an acceleration

circle constraint to avoid a single hazard.

An analog to the optimal avoidance problem for the bicycle from the previous chapter

can be posed for the point mass with an acceleration circle constraint and initial state x,

as shown below:

jui(t)u= arg mini axI (3.21)

=Ik Y u1 sinu 2 uIcosu 2 r (3.22)

r(x(t)) >0 (3.23)

In this form, the problem is difficult to solve analytically because the form of the

function ui(t) is unknown. An alternative optimization problem is posed that is more

tractable and is proved to be equivalent to the problem above for the two maneuvers



considered in this section. Rather than fixing the hazard locations and minimizing the

peak acceleration, an optimization problem is posed that fixes the peak acceleration and

minimizes the initial distance from the hazard required for avoidance. Note that this

optimization problem was considered by Shiller for a point mass with friction square

constraint [65].

3.4.1 Optimal non-passing maneuver
The first optimal avoidance maneuver to be considered is the optimal non-passing

maneuver. In a similar manner to the non-passing constant radius turn, the vehicle does

not pass the face of the hazard. Instead, it either stops or turns to travel parallel to the

hazard, as shown in Fig. 3.7. For this analysis, the inertial coordinate frame XY is aligned

so that the Y axis is perpendicular to the hazard face to be avoided.

[TIX

Fig. 3.7: Example non-passing turns.

If the acceleration magnitude of the non-passing turn were to be minimized, the

variables X(T), I(T), and T would be free, while the variables Y(T) and f(T) would be

fixed with f(T)=o. In the altemative form of the problem, the end state Y(T) is not fixed,

but rather is subject to minimization as follows:

u*=argminY(T) (3.24)
U

=[ k i u1 sin u2 u cosu 2f (3.25)

luil <am (3.26)

Y(T)=0 (3.27)

In this form, the cost function Jmatches the general integral form of the cost function

with h = Y(T) and g=O.

J= h(T, f(T))+ g(x,u, t)dt (3.28)



A Hamiltonian of the system can be written as follows, where pi represents the ith

costate [40]:

H = plX + P2Y + pAu1 sin u2 + p4u cosu 2  (3.29)

The costate dynamics are found by applying the following:

A =0 (3.30)
ax,

iF 0
d P2 0 (3.31)
dt P3 -P1

_P_ L_-P2_
The costate dynamics are solved below with unknown constants ci, c2, c3, and c4 and

the variable r =T-t representing the time remaining until the end of the maneuver.

P2 C2 (3.32)

[p4  c2z+c4J
The optimal control law u* can be found by applying Pontryagin's Minimum

Principle to the Hamiltonian given above.

u* = arg min H (3.33)
U

u*= arg minui (p3 sinu 2 +P4 cosu 2 ) (3.34)
U

A bang-bang control law is found for ui* by minimizing H with respect to u1.

,am ps sinu2 + p4 cosu2 <0

{-amax pAsiu 2 +p 4cosu 2 >0 (3.35)

For ui # 0, the partial derivative of H with respect to u2* is set to zero and yields a

control law for u2*. Note that this is often referred to as the "bilinear tangent law" [13,

12].

a -= 0  (3.36)
p u2

P3 cosU2 - psinu* = 0 (3.37)



tanu2 - CIr +C 3  (3.38)
p4  c2-r+c4

The following sign convention is proposed for the definition of sin u2 * and cos u2*,

and is used to simplify the control law for ui*.

sinu = 3 (3.39)
2 F 22

P3 + P4

cosu 2 = 24 (3.40)
pJ +p4

2 2

p3 sinu2 +p4 cosu2 = >0 (3.41)
2 +2

p +p4

u1 =-a. (3.42)

The following boundary conditions are applied for the free end conditions to

determine the values of unknown constants in the costate dynamics.

p1(T= =0=>c1=0 (3.43)
OX(T)

p2(T)= =1=>c2 =1 (3.44)
OY(T)

p O(T) h =0 = c3 =0 (3.45)

The free end time condition is applied as shown below to determine the value of the

final unknown constant.

H(T)+ -=0 (3.46)
aT

p4 (T)cosu 2 =0 -> p4 (T)= 0=>c4 =0 (3.47)

The constants are applied to simplify the optimal control laws for u2* as shown below.

cosu* =1 (3.48)

The control law for an optimal non-passing maneuver consists of the maximum

possible friction force (luil = am) applied in a constant direction. The direction of the

force is away from the hazard face in a perpendicular direction. With both inputs ui* and



U2 * constant, the optimal non-passing trajectory is found by integrating the system

dynamics as shown below.

i0) = k,0 (3.49)

X(t)= X0 +kot

Y(t)=Yo + Yt amt 2
2

(3.50)

(3.51)

(3.52)

Several optimal non-passing trajectories are illustrated

conditions.

in Fig. 3.8 for different initial

Fig. 3.8: Optimal non-passing turns. A: 0=-45 deg, B: 0=-5.7 deg, C: 0=0.

For these maneuvers, the direction of applied force is constant in the global frame,

though it can vary with respect to the vehicle bearing. In Cases A and B in Fig. 3.8, the

applied force contains components that are both parallel to and perpendicular to the

vehicle velocity vector. As the maneuver progresses, the perpendicular component

increases, while the parallel component decreases. Case C is a special case in which

there is no perpendicular component for the entire maneuver. The angles between the

force and velocity vector for the trajectories in Fig. 3.8 are shown in Fig. 3.9.
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Y (t) =Yi, - a.t
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Fig. 3.9: Orientation of applied force relative to velocity vector for optimal non-passing
trajectories from Fig. 3.8.

Given the end condition f(T) =0 and the dynamics above, the end time T is

computed as:

T_ = "(3.53)
aina

The distances AX = X(T)-X and AY = Y(T)-Yo are found using the end time T and

the dynamics as shown below. A proportional relationship between the ratio of these

distances and the initial velocity components is shown as well.

A = X(T)- X0 = * (3.54)
a.

f2

AY =Y(T)- Yo = (3.55)
2amax

AX X-=2-*- (3.56)
AY Yo

It can be seen that the product of the distance to the hazard AY and the maximum

acceleration a.x is a constant.

amAY = l2 (3.57)
2

This implies that minimizing the distance to the hazard with fixed maximum

acceleration is equivalent to minimizing the acceleration magnitude with constant hazard

location. Thus, the optimal avoidance problem solved in this section is equivalent to the



optimal avoidance problem posed at the beginning of Section 3.4. The minimum

required acceleration anp, for optimal non-passing is given below.

np Cos (3.58)
npotAY 2

For comparison, the accelerations of the stopping and non-passing constant radius

turns are repeated below. The accelerations are normalized by the speed and distance AY

and plotted in Fig. 3.10. The two possible values for the constant radius non-passing turn

correspond to turns to the left or right.

V 2
a, = - 2sin(9-6)cos9P (3.59)

AY

V 2 cos0
s to (3.60)

V 2

an,,.= (1 ±sino) (3.61)
AY

-Optimal
1 - - -Stopping

C o -CRT Left
0.8 --- CRT Right -- - - -

co

co 0 .6 - - -- - - - -- - - - - - - -

0

a)0.4 .......

< 0.2 ....../

-0 -60 -30 0 30 60 90
Theta (deg)

Fig. 3.10: Comparison of non-passing and stopping maneuvers.

It can be seen that the optimal non-passing maneuver requires less acceleration than

straight-line stopping, except when they are equal at 0=0. The optimal non-passing

maneuver also requires less acceleration than the non-passing constant radius turns,

except when 0=±90 deg where the optimal maneuver and one of the constant radius turns

both require zero acceleration. The optimal maneuver has its largest advantage over the



other maneuvers at O--±arctan(0.75)~±36.9 deg, when the other maneuvers require 25%

more acceleration.

3.4.2 Optimal passing maneuver
The optimal passing maneuver problem is posed in a manner similar to the optimal

non-passing maneuver, except that the vehicle passes the edge of the hazard to either the

left or right side, as in Fig. 3.11.

Y

Fig. 3.11: Example passing turns.

This problem is posed by minimizing the distance from the hazard Y(T) required to

reach a desired lateral offset X(T)-X+AX (see Fig. 3.5) with no constraints on the

velocity at the end time T.

u*= arg min Y(T) (3.62)
U

i=X Y ul sin u2 ui cos u2  (3.63)

luil <am (3.64)

X(T)= X, + AX (3.65)

This problem has the same Hamiltonian, costate dynamics, and control laws as the

non-passing maneuver, though with different boundary conditions. These shared

elements are repeated below for completeness.

H = piX + P2 + pu sin u2 + p4 u cosu 2  (3.66)

P2 C2  (3.67)
A31 CT + C3
p4  C2 ir+C 4 J

*-a (3.68)u1 MMa



tanu2 A CIr+C 3  (3.69)
P 4  C2 T+C 4

sinu* 3 (3.70)
2 2

l23 + P4
p 4+

Boundary conditions are again applied to determine the values of unknown constants

in the costate dynamics.

P2 (T) =1- c2 =1 (3.72)
eY(T)

Ph (T)= =0 -c 3 =0 (3.73)
akz(T)

P4(T) h = 0 => c4 =0 (3.74)
o1i(T)

The free end time condition is applied to determine the value of the final unknown

constant.

H(T)+ a=0 (3.75)
aT

cik(T)+ Y(T) =0 (3.76)

ci =-T) (3.77)
X(T)

The control law for u2* is then rewritten as:

tan = - -(T) (3.78)

This implies that the direction of the applied acceleration is constant in a global frame

and should be perpendicular to the vehicle's velocity vector at the end time T as shown in

Fig. 3.12. The optimal passing turn can thus be interpreted as an optimal non-passing

turn rotated by the input angle u2*, also shown in Fig. 3.12. This observation will be used

to simplify the computation of the angle u2*. Since the acceleration magnitude ui* and

direction u2* are constant over the duration of the maneuver, the state trajectories can be

found by integrating the dynamics as shown below.



I~)I sin u*a t (3.79)

Y(t)=Y0 -cosu*a t (3.80)

X(t) = X+kat -I sintu*amt 2  (3.81)
2 2

YWt=Yo+Y2t - 2 cosu*axt2 (3.82)2 2

AX U2

AY XT
AD yY Y

X X x

Fig. 3.12: Optimal passing turn interpreted as rotated non-passing tumn.

An additional coordinate frame xy is defined that is rotated by the angle u2*, as shown

in Fig. 3.12. The distances AXK=X(T)-Xo and AY = Y(T)-Yo, are expressed in frame xy as

xr and yr, and the initial velocity components Xo ,Yk are expressed in frame xy as -to,fjo.

[xr] =cosu* - sin u* A
= .][.X] (3.83)

Yr smnu2 cosu2 A

[io ] cosu2' - sin u2.2 =2 (3.84)
y i_ su2 cos u2 ,

The equations for the optimal non-passing maneuver can be applied to the optimal

passing maneuver for the variables in frame xy to compute the ratio between distances

and velocity components, the end time T, the distances AX and AY, and the acceleration

L-= 2 x0(3.85)
Yr y,



T =O (3.86)
ama

AX- 4 rX- sin u2* (3.87)
a. ka 2 )

AY- Y - fi cosu (3.88)
a ( 2 )

.2

a - 0 (3.89)
2 yT

Similar to the optimal non-passing maneuver, the product of the acceleration a. and

distance from hazard AY is a constant. Thus the optimization problem solved here is

equivalent to the optimal avoidance problem posed at the beginning of Section 3.4.

If the distance AY is treated as an unknown with am known, equations (3.84), (3.86),

and (3.87) can be used to solve for the input angle u2* implicitly. Alternatively, if the

distance AY is treated as known with a. unknown, the ratio of distances and initial

velocity components in frame xy can be used to solve explicitly for the optimal input

angle u2*, as outlined below.

First, the expressions for io, 3' xT, and YT are simplified by using the definitions of

the angles 0 and (p and the distance AD from (3.6), (3.12), and (3.13) as shown below.

L[X j=A.D sin (0 *

2 (3.90)
Yr cos 0-u2

=VF sin 6-u2  (3.91)
yPO cos 6 -u2 .

Then, the ratio between distances and velocity components in frame xy in (3.85) is re-

expressed in terms of the angles 6-u2 and (-u 2 . Several trigonometric identities are

applied to simplify the expression.

XT 2- tan u*)=2tan(-u*) (3.92)
YT 2YO = a 9

sin(p-u)cos(6-u2)=2sin(-u)cos(p -u*) (3.93)

sin(P-u +6 -u2)+ sin(p - 0)=2sin((o -u* +6 -u*)-2sin(p -6) (3.94)



sin((P - 0 + 2( - u*))= 3sin(p -0) (3.95)

The expression in (3.95) has multiple solutions for u2* as shown in (3.96) and (3.97).

Note that the solution in (3.96) is discontinuous at 9-0 = 0.

U* =0+ I((-0+sin-'(3sin(p -0))-rsgn(p -0)) (3.96)
2 2

U* =0+ I(( - - sin '(3sin(p -0))) (3.97)
2 2

The solutions for u2* in (3.96) and (3.97) are real only when the angle (0-0 satisfies

the constraint given below. Recall that the constant radius passing turn also has a

feasibility condition, described by equation (3.20). The two solutions are plotted asu2*-6

with respect to the angle p-0 in Fig. 3.13.

p -0 sin4 I ~19.47 deg (3.98)

80 ...... - --
--- B

60.-- -- +

'S 40 ......

20 - -

-40 -N -

< -20 -10.0.10... . .. ... . .. .. . .. .. .. . .. . . . .. ..4.. . .. .

-60 .....

-20 -10 0 10 20
Angle 0-e (deg)

Fig. 3.13: Candidate solutions for optimal input angle u2*-6 as a function of (-0. The
curve labeled "A" is given in (3.96) and the curve labeled "B" is given in (3.97).

The optimal input angle u2* is given by the solution of u2* in (3.96) or (3.97) that

corresponds to the smallest value of the acceleration am. An expression for a. in

terms of in terms of 9-0 and u2*-0 and normalized by the speed Vo and distance AD is

derived from equations (3.89)-(3.91). The acceleration for each solution of u2' is plotted

in Fig. 3.14 for the range of angles 9-0 that satisfy the constraint in (3.98). For reference,



the acceleration a, of a constant radius passing turn normalized by the speed V and

distance AD is given below and included in the plot.

p2 v 2 co2(u* -19
ar =--= o o 2 .* (3.99)

S2y 2AD cos((P-)+(u2 -

v2a, - " 21sin(o -6) (3.100)
AD

0.7

0.6.-

CU

E) 0.2........

0.1 .... B.

-20 -10 0 10 20
Angle <b- (deg)

Fig. 3.14: Passing acceleration for constant radius turn (CRT) and for each candidate
value of optimal angle u2*. The curve labeled "A" uses the solution for u2 *~ from (3.96)

and the curve labeled "B" uses the solution for u2 *~ from (3.97).

It can be seen in Fig. 3.14 that the "A" solution of u2* from (3.96) requires lower

acceleration than the "B" solution from (3.97). It can also be seen that the "A" solution of

the optimal passing maneuver requires less acceleration than the constant radius passing

turn. The advantage is most pronounced for values of the angle |p-6| near 20 deg, with

the constant radius turn requiring up to 15% more acceleration.

Three optimal passing trajectories are shown in the left subfigure of Fig. 3.15. It can

be seen that the applied acceleration is perpendicular to the velocity vector at the end

time T in each case. In a similar manner to the non-passing maneuver trajectories, the

direction of applied force is constant in the global frame but may vary with respect to the

vehicle bearing. The orientation of the applied force with respect to the vehicle bearing is

shown in the right subfigure of Fig. 3.15.
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Fig. 3.15: Optimal passing trajectories and angle between acceleration and'
vectors for three initial conditions.

Case A: p =-1 1.3 deg, 0 =-5.7 deg, u2*=73.0 deg, a,= 0.39
2AY

Case B: p =-14.0 deg, 9= 0.0 deg, u2*=59.6 deg, am,,= 0.94 0
2AY

Case C: p =-16.7 deg, 0=1.43 deg, u2*=47.9 deg, a.= 1.15
2AY

8 1

velocity

For large values of 0 and p, there is an additional feasibility constraint that is more

restrictive than the constraint given in (3.98). A passing maneuver is shown in Fig. 3.16

that satisfies that constraint given in (3.98) but is not a valid avoidance maneuver because

the trajectory crosses the hazard face.

Fig. 3.16: Infeasible passing maneuver ip =79.3 deg, 9=60 deg, u2*=20.9 deg.
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The infeasibility shown in Fig. 3.16 occurs when the quantity sin(9-0) has the same

sign as sin(u2*). A feasibility condition can be computed by setting u2*=O in (3.96) and

solving for the limiting angle Ofeas, as shown below.

Ofeas = -+sin 1 (3sin(g -0))-;rsgn(g - 0)) (3.101)

The feasibility constraint in (3.98) is complemented by the constraints given below.

The feasibility region corresponding to these constraints is illustrated in Fig. 3.18.

q,>0: -- <02P > : -- ! Ofeas (3.102)

9,<0: Ofeas .<0  ' (3.103)

It was shown in Fig. 3.14 that the optimal passing maneuver requires less acceleration

than the constant radius passing turn, provided that the optimal passing maneuver is

feasible. To compare the acceleration required for optimal passing and optimal non-

passing turns, the accelerations were normalized by the distance AY and velocity

component Ya and plotted in Fig. 3.17 for several values of the initial heading angle 0. It

can be seen that the passing maneuver requires less acceleration for small values of the

angle 9-0, though it depends on the heading angle 0. The angles at which the maneuvers

in Fig. 3.17 have equal acceleration are given in Table 3.1.

2

-Nonpass
0 15 --- =deg

1.5 - -- =30deg

% L-o=60degl
x

-2 -1:0102

<4*

4- 41

_to -100.02

Angle "- (deg)

Fig. 3.17: Acceleration of optimal non-passing and passing maneuver for several values
of the heading angle 0.



0 Minimum 9-0 Maximum 9-0

0 deg -16.7 deg 16.7 deg

30 deg -11.9 deg 19.4 deg

60 deg -6.15 deg 13.9 deg

Table 3.1: Angles for which optimal passing maneuvers in Fig. 3.17 have identical
acceleration as optimal non-passing maneuver.

The computations that generated Fig. 3.17 and Table 3.1 were repeated to compute

the set of angles 9-0 for which the optimal passing maneuver is equivalent to the optimal

non-passing maneuver for a range of values of the angle 0. This set of angles is plotted in

Fig. 3.18 along with the range of angles for which optimal passing is feasible.

20

15
100
1 0'-Feasible
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cosanFig.e.18: Rane faglbal- fore Thc he optimal -passing maneuver ws showible
(Fail)adrequires less acceleration than srih-netopgaomantru non-passing turns.l)

The optimal passing maneuver was shown to require less acceleration than a constant

radius passing turn.



It should be noted that the worst-case acceleration of the geometric maneuvers was

within 25% of the optimal maneuvers, and in several cases the accelerations were equal.

This implies that the geometric maneuvers may provide a useful suboptimal

approximation of the optimal maneuvers.

A condition was derived to compare the acceleration required by the optimal passing

maneuver and the optimal non-passing maneuver. This condition depends on the angles

0 and (9-0. It is important to note that the condition does not depend on vehicle speed or

the distance to the hazard. An interpretation of this condition is that for a given heading

angle 0, lines can be projected from extrema of a hazard using the heading 0 and the

corresponding angles 9-0 from Fig. 3.18, as shown in Fig. 3.19. These lines represent

the boundary between initial conditions for which the passing and non-passing

maneuvers require less acceleration. A triangle is formed, inside of which the non-

passing maneuver requires less acceleration, such as vehicle A. On either side of the

triangle, a passing maneuver to that side requires less acceleration, such as vehicles B and

C.

I I I

I / 1

B /
Fig. 3.19: Interpretation of conditions on angle p-0 for which optimal passing and

optimal non-passing require equal acceleration.

The single hazard avoidance maneuvers considered in this chapter were special cases

of the optimal control problem with boundary conditions that caused the optimal control

law for u2* to be constant. This allowed the maneuvers to be solved explicitly. The

optimal control analysis can be used to solve for other types of optimal maneuvers for the

point mass with bounded acceleration magnitude. For example, the optimal passing

maneuver can be converted into an optimal lane change by fixing the terminal lateral



velocity k(T) to zero. A minimum time maneuver can be solved as well, using the same

Hamiltonian, costate dynamics, and control law with different end conditions. Changing

boundary conditions changes the constants in the costate variables, which may cause the

control law for u2 (repeated below) to vary with time. Maneuvers with time varying

optimal control laws are an interesting subject for future work.

tan u2 =CIr + c3 (3.104)
C2 - + C4

3.5 Conclusions
In this chapter, optimal maneuvers for avoiding a single hazard were derived for a

point mass with bounded acceleration magnitude. The optimal maneuvers were

compared to geometric avoidance maneuvers and shown to require up to 25% less

acceleration. These single hazard avoidance maneuvers can be applied sequentially to

avoid multiple hazards when the hazards are far enough apart. A condition was derived

to identify the range of angles 0 and (p-6 for which the optimal passing maneuver

requires less acceleration than the optimal non-passing maneuver.

The acceleration constraint acting on the point mass is analogous to the tire friction

circle constraint, which is important in vehicle dynamics. In the next chapter, an analogy

is drawn between the dynamics of a nonlinear bicycle and a point mass, and a connection

is made between a friction circle constraint and an acceleration circle constraint.



4
CHAPTER 4: CONTROL OF NONLINEAR BICYCLE

This chapter presents a trajectory-tracking controller that allows the optimal

avoidance trajectories derived in Chapter 3 to be tracked by the nonlinear bicycle model

given in Chapter 2. In Section 4.1, a flatness-based trajectory tracking controller is

presented for the nonlinear bicycle model that maps the bicycle dynamics into a point

mass located at the front center of oscillation with an additional degree of freedom

corresponding to forced yaw dynamics. In Section 4.2, the structure and stability of the

yaw dynamics are assessed analytically and in simulation. Discussion of the results is

given in Section 4.3, followed by conclusions in Section 4.4.

4.1 Flatness of nonlinear bicycle model
As discussed in Chapter 1, there have been several approaches to applying flatness-

based control to bicycle dynamics. The position and velocity of the bicycle's rear center

of oscillation have been identified as flat outputs in previous work [28, 64, 75, 5]. The

body-fixed acceleration of the front center of oscillation has been controlled as well [1],

though the position of the front center of oscillation has not been considered as a flat

output to the author's knowledge. It will be shown that the position of the front center of

oscillation is an advantageous choice of flat output as it can be controlled to track

trajectories with finite acceleration, whereas the position of the rear center of oscillation

requires an additional degree of smoothness in reference trajectories [28, 64].

For reference, the centers of oscillation for the bicycle model from Chapter 2 with

mass m and yaw inertia Izz are illustrated in Fig. 4.1. The distance from the c.g. to the

front center of oscillation is defined as 'Co as shown below.

lCo = (4.1)
MXr



The front center of oscillation is marked as point p with vectors for position F,,

velocity V,, and acceleration d, given below. The fixed frame position components of

point p are given as X, and Y4.

F, = F +leCIs= XI + YP (4.2)

VP = V + (#)x(l I )=kPI +YPj (4.3)

lb =aP +f (4.4)
a =d, +cO-x (fIn + (x i x ,cIF:- coIs+

ib

'b
Ir P

C Izz -

e I

k
Fig. 4. 1: Nonlinear bicycle model with wheel centers marked as solid circles and centers

of oscillation as hollow circles. The front center of oscillation is marked as pointp.

The expressions for ee and , are simplified as shown below.

for =mVC +and# ti (4.5)

5, 2,- 2 (4.6)

For reference, the dynamics of point c from (2.17)-(2.18) are repeated below.

m = =(Fxf Cos 05 - F,5 sin 9+ F,)I" + (F4 si +F5 o +F,)] (47

I. ; = xfFx sin45+ xfF,5 cos 4 - x,F,, (4.8)

The dynamics of point c are used to compute the dynamics of point p in the body-

fixed frame. It can be seen that the rear lateral force F, is eliminated from the expression

for ma,,. and a term proportional to #f2 is added.



md =(F4 cos 3- Fyf sin 8+ F, -mlco I/2

+ 1+ (F4 sin8+ Ff cos5)jb (4.9)
l,

Since the tire forces Ff, F, and Fg are controllable with wheel torques rf and r, and

the front steering angle 6, the dynamics of point p are linearizable with the definition of

intermediate inputs uib, Ujb, and u3;

Uib =F 4 cos 3 - F. sin S + F, (4.10)

Ujb = Ff sin J+ Ffcos o (4.11)

u3= F (4.12)
LFzr

the projection of the fixed frame acceleration components X, and Y, into the body-

fixed frame;

m =(A, cos v + f, sin w)I +(- j, sin v +f cosy/)7b (4.13)

and dynamic feedback

Uib =M (l,"2 +ui(t)cos Y +u 2(t)sin y) (4.14)

Ujb - m' (-ui(t)sinV +u 2 ()cos V) (4.15)

where ui(t) and u2(t) are functions of time representing the desired fixed frame

acceleration. This feedback partitions the bicycle dynamics into a flat subsystem based

on the front center of oscillation and a subsystem based on the yaw dynamics as shown

below.

Z U, =uWQ) (4.16)

f, = u2(t) (4.17)

c, ut sinV+ u2(t)cosy-f- ar,,1-U2 (4.18)
g g

c1= F (4.19)
Mlco

where g is the gravitational acceleration constant.



The flat subsystem depends on inputs ui and u2, while the yaw dynamics depend on

inputs u1, u2, and u3. A control law for steering angle 3 and wheel torques rf and rr to

implement the feedback controller described above is detailed in Appendix X. Note that

actuator limits, particularly the limit on the maximum steering angle, limit the range of

states for which this control law can be applied. The effect of actuator limits will be

studied in simulation in the following sections.

It can be shown that the front friction circle constraint maps to a constraint on the

acceleration of the front center of oscillation. First, the front friction circle constraint is

expressed in terms of the inputs uib, ujb, and u3.

F~} +F)- -+ (ub -pF ~u3 2 +U pFf (4.20)

A control law for u3 that maps the front friction circle constraint exactly into a

constraint on acceleration magnitude is given below. This acceleration constraint

matches the constraint on point mass dynamics considered in the previous chapter. This

demonstrates the applicability of the point mass model considered in the previous chapter

to the nonlinear bicycle model.

u3 = - + U cos V/ + U2 ( sin V (4.21)
pU c1 If+ 1, g g

F +F} pF4 -+ u1(t)2 +u2 (t)2  pg (4.22)

It can be seen that the inputs to the flat subsystem can be recovered from the second

derivative of the vehicle position, while the flat systems based on the rear center of

oscillation require the third derivative of position to recover the inputs [28, 64]. This

implies that the flat subsystem described above can track trajectories with fewer

smoothness requirements than a system based on the rear center of oscillation. It should

be noted, however, that the behavior of the yaw dynamics must be considered when

controlling the front center of oscillation. The structure and stability of the yaw

dynamics are evaluated in the following section.

4.2 Analysis of Yaw Dynamics
In this section, the structure and stability of the bicycle model yaw dynamics are

evaluated when subject to the flatness-based controller described in the previous section.



Previous work by Ackermann provided a linear stability analysis of bicycle yaw

dynamics when subject to control of the body-fixed acceleration at the front center of

oscillation. This analysis indicated that the bicycle yaw dynamics are a stable second-

order system with damping inversely proportional to vehicle speed [1]. The applicability

of this linear analysis is limited, however, to the range of rear slip angles for which the

rear lateral tire force F,(a,u3) is approximately linear. The work presented here includes

a nonlinear stability analysis that is applicable to a wider range of conditions than the

previous work.

4.2.1 Structure of yaw dynamics
The flatness-based controller in the previous section controls two degrees of freedom

of the bicycle model, corresponding to the position of the front center of oscillation. The

yaw dynamics, given in (4.18), represent an additional degree of freedom of the system.

These dynamics depend on the rear lateral tire force F,(,u 3) and the inputs ui(t) and

u2(t).

Several state transformations are introduced below that reveal the structure of the yaw

dynamics and enable a nonlinear stability analysis. It is assumed that the flatness-based

controller tracks a desired reference trajectory with fixed frame position F,(t), velocity

, (t), and acceleration d,(t). The speed v,(t) and heading angle O,(t) of the reference

trajectory are computed from the components of Vy (t) as

v,(t) = 9,(t j = k,(t)2 +Y,(t)2  (4.23)

f1( ~ (t)
OP (t) =tan- k'W (4.24)

and illustrated in Fig. 4.2. The inverse relationship between fixed frame velocity

components and v,(t) and Op(t) is given as

, (t) )=v()cos 6(t) (4.25)

Y, (t) =v, (t sin , (t) (4.26)

and are differentiated to yield the following:

A, (t) = vO(t)cos , (t)- v, (t), (t)sin , (t) (4.27)



f, ) = , (t)sin o, (t)+ v, (t), (t)cos , (t) (4.28)

The slip angle 8p(V,t) at the front center of oscillation, shown in Fig. 4.2, is defined as

P(y,t)= O (t)- (4.29)

and the longitudinal and lateral path accelerations >, (t) and vP (t)# (t) are non-

dimensionalized as:

u()= (4.30)
9

u, (t)= -v,(tOP,(t (4.31)
9

With these definitions, the yaw dynamics from (4.18) are re-expressed in terms of the

slip angles p, and ar, the input u3, and time t as follows:

AP(, ,a,,, I- N, )= (t) - cl (u(t )sinflp,+ u,(ticosp - f,(a, $ -u32 (4.2

An expression for the rear slip angle ar was given in (2.23). For this system with the

differential flatness controller, an equivalent expression for a, in terms of yf, #', and t is

given as follows:

ar(Vf. -1't)= -n( v,(t)sin/,6(y,t)- L (433)
v, (t)cos,6, (Vf,t)

L = l, +l, (4.34)

where L is the distance from the rear tire to the front center of oscillation.

To simplify the expression for a,(V, #, t), the angle y is defined as the difference

between the body slip angle and rear tire slip angle as

y(V,,t)= p(v,t)- ar (V,,t) (4.35)

and illustrated in Fig. 4.2. Some identities for y are given below in terms of different

variables. Note that y is small when the scaled yaw rate L # is small relative to the

desired speed v,(t).

7p ,,t) =tan -1L cs8 (4.36)
v, (t) - L # s in ,



y(a,., # , )=sin-' L #r cos ar (4.37)
V, (t) )

v (t cos y(6,,V,t) =v, (V,,#,t)+ L # sin(,6p - y(p,,t) (4.38)

V, (Pp,V,t)cos Y(lp,#/,t)=v(t)- L #/ sinp (4.39)

where vr(f#p, V ,t) is the speed at the rear wheel and is computed as follows:

vr (p, Vir, t)= ](vP(t)sin p - L # + (v (t)cos j (4.40)

VP p

L ~ ib

Fig. 4.2: Nonlinear bicycle model with front center of oscillation and rear wheel marked.
The speed vP, heading angle O,, and slip angle p at the front center of oscillation are

shown. At the rear wheel, the speed vr and slip angle ar are shown, as well as the angle y.

Noting that the quantity (O (t) - P,) can be substituted for the yaw rate V1, the yaw

dynamics can be expressed as a second-order system in terms of (p,,,) as follows:

PAVP,, A,), -~ ,(t)-cj(u,(t)sinp,+ u, (ticosp)

+ C~f 2(4.41)
+cI ,.P -Y71,p, t,t 1-U 3

As a second order system of (6P,,6,), terms dependent on fp, are analogous to

potential forces, and terms dependent on P are analogous to damping forces. With the

yaw dynamics in this form, the damping term is nested within the nonlinear functions

fy,.(-) and y(-). A candidate Lyapunov function that is inspired by "energy" of the yaw

dynamics is given below.



v- =1 g2 p, (4.42)
2 If;+fg fW

Alternatively, the yaw dynamics can be expressed in terms of (aro,). The state

transformation from (Vf,#@) to (a,,,) is a valid diffeomorphism provided that the

following condition is met:

C9ar ra

8a V # a Ba 18 oar 'OPdet - '- , r/p 0  (4.43)
AOP, OAjJ, a va# a V a /
aw1 a V1)

With the following values for the partial derivatives:

Bar - v (t cos r(V, i, t (4.4)

(4.46)

the condition from (4.43) is restated as

vP (t)COS y(V/,@V,t) # 0 (4.47)
Vr (v, ,, t)

If v,,(t) # 0, the condition from (4.43) is equivalent to the following:

Cos y(Vt', @, )# 0 (4.48)

L -COSar(W,@,) < 1 (4.50)

VP 0

which can be conservatively approximated as

L i, I=>H ) (4.51)

. 0 (447

Thus the state transformation from , v to atp is a valid diffeomorphism

provided that the scaled yaw rate is not too large.



With this state transformation, the quantities y and vr are then expressed in terms of ar,

p and t as

_L,(t) - pJcos a,
7a,., P,t 0= sin-' V (4.52)

,6, (a,.), sit)= a,+ Y(ac,., O P ,,t) (4.53)

v, (a,i, ,t) = v, (t)cos r(ar,, ,,t)-- L($ (t) - /P )sin c, (4.54)

The yaw dynamics i are partitioned into autonomous and non-autonomous terms as

= f(ar,,u3 )+ f 2 (ar,,p, t) (4.55)

fi(tr,,U3 )= -Cify,.(a2.i1us (4.56)

f2(tr., N,,t) = c (u,(t )sin ,(at, , t) ju, (t )cos,8 ,(ar,P, t)) (4.57)

The time derivative f(Cr,Ip,u3,t) is likewise partitioned into autonomous and non-

autonomous terms as

7(ar,p,,u,t) f 3 (arU 3 )± f (4.58)
Vr ar, p,,t 0

f3 (ar,U3 )=Lf(a.r, 3)COsar (4.59)

f4 (ar,p,t) =Lf 2 (Cr,Np,t)cos ar +LOP -5p (t)),psinar (4.60)

- gu,(t)sin r(ar,, ,,t)

so that the dynamics of ar and , can be given as

ir (lr,/p, U3 t) = P, -f 3 (ar,U3 )+ f 4 (ar, p,) (4.61)
Vr (ar, Pp,,t

jp(ar,1,p,U3 ,)= -fi( ,,hU)f 2 (Cr, p,t)+ p(t) (4.62)

With this parameterization in terms of (a,.,/3,), the yaw dynamics are similar to a

Lidnard system in the Lidnard plane, described in (4.63) with states x and y [34, 16].

[y- E q(x) (4.63)[.pJ1 -P(X) _



Many nonlinear oscillators can be expressed as Lienard systems, including the Van

der Pol oscillator. There are also useful theorems and candidate Lyapunov functions that

can be applied to analyze the stability of Lidnard systems. An additional property of

Lidnard systems is that they can be expressed as second order systems of the variable x,
as shown below. In this form the system resembles a second-order mechanical system,

with q'(x) as the derivative of q(x) resembling a damping coefficient, and the function

p(x) resembling a potential force term.

Y+ q'(x) + p(x)= 0 (4.64)

A candidate Lyapunov function for the Lidnard system from (4.63) is given below [34,

16]. Recalling that the function p(x) resembles the potential force of the system, it can be

seen that the function given below resembles an energy function with terms for kinetic

and potential energy.

V=y +Ip(s)ds (4.65)
2 40

In this section, state transformations from (yr, ') to (#,,j,) and (ar,A,) were

introduced to show structure in the yaw dynamics. When expressed in terms of (P,, jIP,)

as in (4.41), the yaw dynamics resemble a second order system with nonlinear potential

force and damping terms. When expressed in terms of (crft) as in (4.61)-(4.62), the

yaw dynamics resemble a Lidnard system. This insight into the structure of the dynamics

inspires several candidate Lyapunov functions, which are used in a stability analysis in

the following sections.

4.2.2 Stability of unforced yaw dynamics
In this section, the stability of the yaw dynamics are assessed when tracking a

straight-line trajectory at constant speed with a constant u3 input (u, = ug= = 0) and

Iu31 < 1. The dynamics are simplified according to these forcing conditions, and the

location and stability of equilibrium points are found. System stability is evaluated using

contraction theory and several Lyapunov functions, and stability claims are verified with

simulation results.



With the forcing conditions given above, the yaw dynamics can be expressed in terms

of (p,,Ap) as

P P~PN P) =c2fyrVP -7Y0PN (4.66)

with constant c2 defined as

c2 =c, 1-u (4.67)

and the angle y and rear speed vr computed as:

-L , Cos P
YgP,, P,)= tan -1 s (4.68)

V, + LP sinp

v, OJp, pP)= (v, sinp,,+ LQ, Y +(v cosOp) (4.69)

Likewise, the functionsf 2 andf4 are simplified as

f 2 =0 (4.70)

f 4(a,,p,)=Lp31 sina, (4.71)

so that the dynamics are expressed in terms of (ar, P) as:

dr(tr,Pp)Pp +L c2f (a )cosa - Ppsinar (4.72)

Vr (a,, P,)

PCXr)= c2fyr( r ) (4.73)

with the angle y and rear speed vr computed as:

r(a,,pp)= sin-j L- Pcosr (4.74)

Vr(ar,pj6=V, cos y(a,,P,)+LP, sina, (4.75)

The locations of equilibrium points (p,,) and (a0,IPO) are computed in terms of

states (P,,'A,) using the following conditions:

p, =0 => A, =0 (4.76)

i6, ,, ) = 0 (4.77)

With p =0 and the constraint in (4.49), the equilibrium angle yo must also be 0.

With y,,=O and the conditions in (2.29) and (4.77), the termsfyr(fo) and sin p10 must be 0 as



well. Thus the equilibrium points are = (0, 0) or (±;r, 0) and (ao,/3O) = (0, 0) or

(±r, 0).

The stability of these equilibrium points is evaluated by computing the stability of the

linearized dynamics at each point. The linearized dynamics at an equilibrium point in

terms of states (P,, Iii,) are given as

P,, ,) c)f; (pC)((1 -7p(Po,0)X8, - po)-r (0 o,o)f,) (4.78)

where f' (x) is the derivative offy.(x) as

dx

and rg (p,, ,ftP) and rp (p, ,) are partial derivatives of the angle y given as

87r , p) L P, sinp -7*Pp, A
7,6 ar, ) =p (Pi , (4.80)

a*,,P) -Lcos(l, -yA&P
7P-,,= Vr - (4.81)

so that the linearized dynamics simplify to

,(P, P ,u3 )~ c2f3');;Cf ) (oLcos P" , + c2f' (Ao, - po) (4.82)
VP

and are stable when

f,(1 0)cos/p% <0 (4.83)

f (o) < 0 (4.84)

Recall the conditions in (2.27) and (2.29) that are consequences of the lateral force

always opposing the direction of lateral slip. According to (2.29), it can be seen that

f/pl)= 0 for both fl0 = 0 and fo = ±z. The value of f' (%o) at each equilibrium point is

computed with the following limit:

f' (6 o)=lim B, ) ) (4.85)
h->0 2h

For 0 < h < r, it can be seen that f (0) <0, sincefy,(h) <0 andf,(-h)> 0 according

to (2.27). In a similar manner, it can be shown that f' (± r)> 0. Thus it can be seen



that (,, Ii) = (0, 0) is the only stable equilibrium point since both equilibrium points

satisfy (4.83), but only (p,,k) = (0, 0) satisfies (4.84).

Now, several candidate Lyapunov functions are considered to evaluate system

stability. The first candidate Lyapunov function V1 (cc, ,,) is based on the analogy of

the yaw dynamics to a Lidnard system. An energy-like candidate Lyapunov function

inspired by this analogy is given as follows:

VI(Cr, j P)= 1 2 -c 2 J j fy a (s ds (4.86)

The function V1 (a,, ,) has extrema when the following conditions are satisfied:

-V= 0 -> ar, - -c2fy(. (4.87)
ear -ar yq.(ar)=O

=0 -> -- P (4.88)
p 0p

which correspond to the equilibrium points (ao,I%) = (0, 0) and (±zc, 0). These extrema

are minima when the following condition is satisfied:

8 2 
2)

a2v1  _ . >0 (4.89)
a, aP2 a.8rep,

which reduces to

-c 2f' (ar)> 0 (4.90)

which is equivalent to (4.84). Thus V1 (a,,) is locally positive definite at the stable

equilibrium point (a,, 3) = (0, 0).

The time derivative of V1 (atr,,p) is computed as follows:

Y (ar, p) = NN, -c 2 fyr(a,)dr (4.91)

Y(ar p= C2 fyr(ar)f(ar,f) (4.92)

Y1 (ar,,p)= a c2L (2fy,.(a,(2 COSa,.-)pf,(a,.)sina,. (4.93)



Recalling the condition in (2.27), it can be seen that i(a,, /3) 0 for cos cr > 0,

with Ji(ccr,) = 0 only when sin ar, = 0. This implies that V1 (a,) is a Lyapunov

function for the system. Asymptotic stability of the equilibrium point at the origin can be

shown using Vi (ar, P) as well with LaSalle's Theorem [66] which implies that

Ji(ar, AP)-> 0 as time approaches oo. Since i(ar,4)= 0 when sin ar = 0, the largest

invariant set for which i(ar, 5lP) = 0 satisfies the following

d.
(sin a, = 0 (4.94)

dt a, =sin1(o)

(dr cos (Zr la, =sia-' (o) = 0 (4.95)

which is equivalent to

p,8 = 0 (4.96)

which corresponds to the equilibrium points of the system. For cos ar > 0, the largest

invariant set for which Y(ar, p) = 0 is the stable equilibrium point at the origin.

Note also that the magnitude of i(ar,) is inversely proportional to the rear wheel

speed vr (ar,AP). This agrees with previous work stating that the damping of the

linearized bicycle yaw dynamics is inversely proportional to vehicle speed [1].

While the first Lyapunov function Vi (ar,/p) is sufficient to establish asymptotic

stability of the equilibrium point at the origin for a wide range of the state space, its

derivative is only negative semi-definite, with Y1(ar,4I) = 0 for sin ar = 0. An

additional Lyapunov function is introduced that can be used to generate a Lyapunov

function with a locally negative definite derivative.

The second candidate Lyapunov function V2 (13,, f,) is based on the analogy of the

yaw dynamics to a second order mechanical system. An energy-like candidate Lyapunov

function inspired by this analogy is given as follows:

f 2 (4.97)

The time derivative of V2 (P , ft) is computed as follows:



(4.98)

(4.99)
2 {p, p = N N2 -c2 (ffy6 7 ,- I ft N_, 1j

To illustrate the behavior of Y2 (p,, ft,), the angle #2 is introduced as

P2 = 6 - OV, NJ/ 2
and the derivative Y2 (p ,N,) is expressed in terms of (02, y) using (4.74) t

with y as

Y2(f 2,y)- c2vsm y )Cyr(f 2  y/2)-f, 2 +y /2))L cos(/ 2 -I2

and with the first-order central difference approximation of f' (#2) with

defined as

fy (62 +y/2)-f.(82 -y / 2)
(j62,V)= - Z: f (8l2

(4.100)

o replace 6,

(4.101)

step size y/2

(4.102)

the derivative 2 (0 2 , r) is re-expressed as follows:

. c2v,7sinyj,' (Jf2 ,7)
V2 02, 7) = c2psnv 2)(4-103)

L cos( 2 -y/2)

Since the term y sin y is non-negative for y e [-ic, 4c], it can be seen that 2 (92, r) 0

for f' (f 2 ) / cos , < 0 and that Y2( 2,y)= 0 for y = 0 or f'($2) = 0. It was shown

previously that the function f' (-) is negative at zero, though it may become positive if

the friction forces reach a peak value and exhibit a drop-off from the peak, such as the

tire models illustrated in Fig. 2.4. As an example, the range of states for which

Y2 (pr, IP) is negative semi-definite are computed numerically for the model parameters

given in Chapter 2 and illustrated in Fig. 4.3.
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Fig. 4.3. Contours of Lyapunov function V2 (VI,, ,) for model parameters in Chapter 2
with speed vp,= 5 m/s in the left subfigure and vp = 35 rn/s in the right subfigure. The

contour for Y2(6p, i4p) = 0 is a solid black line, and the area for which Y2(6p, p) > 0 is
darkened.

Although V (ar, tp) is sufficient to prove asymptotic stability of the equilibrium

point at the origin for a large portion of the state space, it is worth noting that the sum of

1(ar,p) and 2(p,f/p) is locally negative definite. Since both functions are locally

negative semi-definite with i (ar, 4) =0 near the origin only when %, = 0, the sum

J(ar, ,fp) + J2  ,p,) is locally negative definite if 2( 6i,t,) is locally negative

definite for ar =0. To prove this, the function V2 (,6p , 13,) is transformed into J 2(ar,7)

as

2 (a,, =-c2 vp smy (f ,(a,)- f,(a, + Y)) (4.104)L cos a,

and is evaluated at a,=0 as

i2a (0,Y) = c2V f f,(ysin7 (4.105)

which is negative definite for y # 0 (or /p, # 0) according to (2.27). Thus, the sum of

Lyapunov functions I(ar,ftp) and 2 (,ftP) is itself a Lyapunov function with a

locally negative definite derivative.

This stability analysis has indicated that the nonlinear dynamics are asymptotically

stable with respect to the equilibrium point at the origin of state space. This is



demonstrated by simulating the dynamics given in (4.61)-(4.62) with constant speed vP,

heading O,, and input u3. The results are presented in terms of states (ar ,,,) and

Lyapunov function V1 (a,., ft,). The first straight-line trajectory is simulated at speeds of

v,= 5 and 35 m/s with u3=0, an initial rear slip angle of ar = -20 deg, and an initial body

slip rate of f, = 0. Snapshots of the vehicle orientation are shown in Fig. 4.4. The

simulated time responses of r and p are shown in Fig. 4.5. A phase plane plot with

phase variables cr and and the value of Vi (ar, ,) are shown in Fig. 4.6.

0 5 10 15 20 25 30 35 40
X (M)

20 .- -V=35m/s

-20

0 50 100 150 200 250
X (M)

Fig. 4.4. Snapshots at 1 second intervals of vehicle orientation while tracking straight-

line trajectories at constant speed. The vehicle size is enlarged and not to scale in the

illustration of the 35 m/s trajectory to improve visibility.
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Fig. 4.5. Rear slip angle a. and slip rate , during straight-line trajectory at constant

speed with u3=0.
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Fig. 4.6. Phase plane plot of yaw dynamics and Lyapunov function V1 (ar, /37) during
straight-line trajectory at constant speed with us=0. In the phase plane plot, contours of

the Lyapunov function V1 (ar,fip) are included in the background.

For both speeds, the slip angle ar., slip rate pp , and Lyapunov function value

V1 (ar, '4,) converge to zero during the straight-line trajectory. The inverse relationship

between damping and speed is evident, as the rate of decrease in the Lyapunov function

value is slower for the 35 rn/s trajectory than the 5 rn/s trajectory. At 5 m/s, the

Lyapunov function reaches a value of 0.001 after l=1.85s, while the 35 m/s trajectory

does not reach this energy level until t=7.74s. The reduced damping at 35 n/s also

causes oscillation in the slip angle and yaw rate prior to convergence. It can be seen that

the rate of decrease of the Lyapunov function value is approximately linear at each speed.

The trajectories can be seen to cross the contours corresponding to decreases in the

Lyapunov function value.

A limit on the basin of attraction for the yaw dynamics is imposed by limits on the

actuators used to apply the control laws for ui(t) and u2 (t). The steering angle and front

longitudinal force Ftused to apply ui(t) and u2(t) for the simulations shown in Figs. 4.5-

4.6 are plotted in Fig. 4.7. The peak steering angle for each trajectory occurs near the

initial slip angle of 20 deg, while the peak value of Ff is approximately 0.03 Fg at 5 mn/s

and 0.1 Fg at 35 rn/s.
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Fig. 4.7. Steering angle and front traction/braking force Fxf inputs while tracking
straight-line trajectory at constant speed with us-0 when starting from an initial slip angle
of 20 deg.

The yaw dynamics are also simulated for this straight-line trajectory with the input

u3=0.7. Although this trajectory does not require large tire forces at the rear wheel, the

input u3 can still be applied if it is counteracted by an additional force at the front. For

example, a rear wheel drive force can be counteracted with front wheel braking. This may

correspond to the left-footed braking technique employed by rally racing drivers [73].

The nonzero value of u3 causes the value of c2 to be reduced, which effectively reduces

the magnitude of the term resembling potential energy c2 'o7 fyr (s)d) in the Lyapunov

function. Simulated phase plane trajectories and the values of V, (r, 6 ) are plotted in

Fig. 4.8.

By comparing Fig. 4.8 with Fig. 4.6, the effect of reduced potential energy magnitude

can be seen in the changed Lyapunov function contours and the reduced initial value of

the Lyapunov function from 0.20 to 0.15. The Lyapunov function contours appear

"flattened" in the phase space, such that the contour corresponding to 20 deg of rear slip

corresponds to a reduced slip rate. Another effect of a nonzero u3 is that the rate of

convergence is decreased, particularly for the 35 m/s trajectory, for which the

convergence time of the Lyapunov function value to 0.001 increased from t=7.74s to

t=1 0.6s.
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Fig. 4.8. Phase plane plot of yaw dynamics and Lyapunov function value V1 (CrI,)
during straight-line trajectory at constant speed with u3=0.7. In the phase plane plot,

contours of the Lyapunov function are included in the background.

4.2.3 Stability of yaw dynamics during tuming
In this section, the stability of the yaw dynamics is evaluated during constant radius

turn maneuvers at constant speed with a constant u3 input (u, = = 3 =0) and 1u31 < 1.

The dynamics are simplified according to these forcing conditions, and the location and

stability of equilibrium points are found. Several Lyapunov functions are considered to

evaluate system stability, and stability claims are verified with simulation results.

With the forcing conditions given above, the yaw dynamics can be expressed in terms

of (p,, ,) as

p(, ,,N, C2 (-U03 COS p+ f,(p -y A, p) (4.106)

with constant c2 defined previously in (4.67) and u03 defined as

U03= U (4.107)

and the angle y and rear speed vr computed as:

(,,P,)= tani ( ? ' cosp (4.108)
rv, +LcP -)sinep

vr,p)= Vv, sinp + Lp - 6,)y + (v, cos 8p (4.109)

recalling that O, is related to the input uo as



VP = -ug (4.110)
VP

Likewise, the functionsf 2 andf 4 are simplified as

f2 (a, , )= c2Uo3 cos(ar + y (c,/IP (4.111)

f 4 (ar, p,t)= Lf 2 (ar, Ip)cosCr+ L(o, -5,(t))P sinar (4.112)

so that the dynamics are expressed in terms of (aerI ,) as:

dr (, Pp )p + Lc2 cos ar (-u 0 cos(ar + y(cr, PP,))+ f,(ar
Vr (a,

P (4.113)

P ,(arNP)=c2(-u03cos(r +(ar,,y p )) + fr(cr)) (4.114)

with the angle y and rear speed Vr computed as:

y(ar, P)= sin LoI p 'cosa (4.115)

vr(ar, p)= v, cos (arp,)+L(p -P)sin ar (4.116)

The locations of equilibrium points (#, ft) and (a,, ,P) are computed in terms of

states (p,, /3,) using the following conditions:

p =0=4 =0 (4.117)

P, f,.)= 0 (4.118)

With p, = 0, the equilibrium angle pf is found as the implicit solution of

u03 cosp, = f, (f -y( fi,o)) (4.119)

or equivalently, the equilibrium angle ar, can be found as the implicit solution of

U 3 cos(ao +Y(ao)) = f, (a,) (4.120)

Without additional knowledge of the function fy(-), it is difficult to compute the

equilibrium values of fl0 and % explicitly. The values of a that satisfy (4.120) are

computed numerically in terms of the input u03 for the model parameters given in Chapter

2 and are plotted in Fig. 4.9 for two speeds. For small values of the input ue3 (less than



roughly 0.18), there exists a single equilibrium slip angle a0, which has a magnitude less

than 2 deg. For larger values of u03 (between roughly 0.18 and 0.25), there exist multiple

values of the equilibrium slip angle ar, ranging in magnitude from 1.5 deg to 59 deg. For

very large values of u03 (greater than roughly 0.25), there exists a single equilibrium slip

angle c, with magnitude greater than 50 deg.

The curve corresponding to uo3 =f,.(a 0 ) is plotted in Fig. 4.9 as well. Since the

output magnitude of the cosine function is bounded at 1, this curve corresponds to a

limiting curve for relationships between u03 and %x. based on (4.120). In particular, the

valuefy,.(a0) represents the minimum value of uos required to reach equilibrium at a given

slip angle (4, which can be seen in Fig. 4.9.

0

o.-20
-V=05 m/s

- -V=35 m/s .
E -fy(a}

.2 yr

- -4 0 -.. -.. -..-..--

a.

-60
0 0.05 0.1 0.15 0.2 0.25

Input u. 3

Fig. 4.9. Plots of equilibrium rear slip zo. for a given value of uo3 computed numerically
from (4.120) for vp,= 5 m/s and vp,= 35 m/s. The curve corresponding to uO3 =fy(ae) is

plotted as well for reference.

The stability of these equilibrium points is evaluated by computing the stability of the

linearized dynamics at each point. The linearized dynamics at an equilibrium point in

terms of states (6,, j,) are given as

p( p P C (l -VO ) Y6V o,0 p7 f , ft (4.121)
+c 2u93 sin,6 p ,8P - p,421

where f' (x) is the derivative of fy,(x) as defined in (4.79) and p (p,,,) and

r (0p,, ,) are partial derivatives of the angle y given as follows:



70(P, .) -ar(fl,A,) _ L(~ -&Jsin OP -yV(,fp, (.12)
aI~p -V (/PP,3PP)(412

O,,P)= -a p14 L cos - P- Aa'PVr-(P 8 (4.123)

For P% = 0 and a, =,g - y(fl ,o), the linearized dynamics simplify to

+.L sin a 8 (4.124)

+c2 U93 sinp + f' (a,1+ " (, 0 0,-p y)VJ

and are stable when the following conditions are met:

f'(co)cos ao <0 (4.125)

L OP sin ao
u03 sin , +f' (ao I+ ' <0 (4.126)

The first stability condition in (4.125) requires that the curvefyr(ar) has negative slope

at the equilibrium point when cos xt > 0 and that the curve has positive slope at the

equilibrium point when cos a < 0. For the tire model parameters given in Chapter Two

and illustrated in Fig. 2.4, the functionfy,(r) has negative slope near the origin between

the extreme values at ar = *apeak. Likewise, the functionfy,(ar) has positive slope near ar

= ±z between the peaks at n areak and 1-Capeak. Thus the stability condition in (4.125)

implies that the stable equilibrium values of a must lie between the peaks of the tire

force curvefyr(a,) near a = 0 and a, = ±z. This is illustrated for the portion of the tire

force curve near a, = 0 in Fig. 4.10. Thus all the equilibrium points in Fig. 4.9 for which

|I> Icpeak are unstable.



E

02

-0. 10 -5 0 5 10
Slip angle (deg)

Fig. 4.10. Plot offy(cx0) with area between peaks of curve indicated.

Considering the case of forward travel with |a,|o < 7c/2, the stability condition in

(4.125) implies that stable equilibrium points must satisfy kaI <I|peak|. To guarantee that

an equilibrium point exists on this interval, the input ups should be constrained to not

exceed the peak value of the functionfyr(a,.) as follows:

ju93 < f,,,.(ea ) (4.127)

With this assumption, the effect of the second stability condition in (4.126) is

assessed. While the first stability condition depends solely on the properties of the rear

tire modelf,(ar) and direction of travel cos a0 , the second stability condition depends on

the input u9 s as well. A series of identities and algebraic manipulations are used to

transform the second stability condition as shown below. Using the identity in (4.54), the

stability condition in (4.126) is rewritten as

u03 sinfpl v.p0 0 +f'r .(at)<0 (4.128)
vcos y(fi0,0)

and simplified using the stability condition in (4.120) as

sin__ p, vr (1,0) +f a)0(4.129)

cosfl0  v~, cosry(/0 ,0)

and then simplified further using the following identity:

VP cos3 = =v,. cosa,. (4.130)

yr +' (a)< 0(4.131)
cosa 0 cos7(pt0 ,0)



A trigonometric identity is used to simplify the term sin , / (cos a0 cos y) as

f, (a,Xtana, + tan r,)+ f' (a, )<0 (4.132)

and the expression for tan y is substituted from (4.36) as

f,(a,) tan a, + ,,. " f. + (a0)<0 (4.133)
VP - L G sm ,

and the quantity k, is converted to uo3 as

Lg ps_1U2 cos p,f, (a) tan a, + "U3 /V F osfU3 + f' (a)<0 (4.134)
VP v L u 1-u sin/,J

with the expression simplified using the stability condition in (4.120) as follows:

(cr, f (a )
f ) tan a. + f' (a0 )<0 (4.135)

-2  u 3 sin, p
Lg U1-u

The terms in (4.135) are rearranged as

1 -f' (a)-f,.(a)tana(
2 < f2(4.136)

v, 1 . f0 i,6, (aO)
Lg 21-u

and inverted as follows:

v 1 .f (a)
-uI sm p f-f > r(a) (4.137)

Lg 2 u|-f' (a,,)- fyr (a,, )tan ao

Using the constraint on u03 from (4.127), this inequality can be conservatively

approximated by the following:

2 1 f2(a )

- > If, (fa( + " a (4.138)
Lg 2-u~f (a. ) f,(aO ) tan a,

In this form, the second stability condition in (4.126) has been reformulated and

conservatively approximated as a constraint on the minimum speed required for an

equilibrium point at a given equilibrium slip angle a. It can be seen that the speed is



nondimensionalized as a Froude number Fr = v, / VFii- [48] and scaled by the effect of

input u3. The minimum nondimensional speed for the model parameters from Chapter 2

is plotted in Fig. 4.11 for the interval I cI <I c,,ak|.

25

E

S0

Equilibrium rear slip a (deg)

Fig. 4.11. Nondimensional speed Fr / (1-u3 2 )^(1/4) that is sufficient to ensure stability of
equilibrium rear slip angle a0 for the tire parameters given in Chapter 2.

Two candidate Lyapunov functions that are similar to the Lyapunov functions in the

previous section are considered to evaluate system stability. Although neither function is

a Lyapunov function independently, it is conjectured that certain linear combinations of

these functions are Lyapunov functions.

The candidate Lyapunov functions in this section are defined with respect to a stable

equilibrium point (a,,?0) with d =ac,-ac, representing the deviation from the

equilibrium rear slip angle. The first candidate Lyapunov function V1 (&, /3,) is based on

the analogy of the yaw dynamics to a Lidnard system. An energy-like candidate

Lyapunov function inspired by this analogy is given as

V1 (, ,)=!f2 yr ~e(4s y
2 (4.139)
+ c2u03 (sin p,,(5,A,,)- sin(p,(d, p4,)- c))

where pJ,(5, /3,) and other functions of (&', i,) are adapted from the functions

previously given in terms of (,,j)
The function V1 (d, Ii,) has critical points when the partial derivatives aV1/85t and

aV1/8p1, are zero. These partial derivatives are computed as

81



-, 0,p +~o~o ,2 ,-o~,2 ,-) (4.140)av (4.140)
app p pp

= /3, +c2u93(cos p,(cc, 16,)-cos((c, p,)-c) a (4.141)

and it can be seen that these partial derivatives are both zero at the equilibrium point

(&, A,) = (0,0). The function V (&, P,) is locally positive definite if the following

conditions are met at the equilibrium point:

a2V
> 0 (4.142)

a2 2,

2 >0 (4.143)

It can be shown that the partial derivative a2v7i/ p has a value of 1 at the

equilibrium point (d, ,) = (0,0). Thus the three conditions for V1 (d, Ii,) to be locally

positive definite given above are equivalent to the condition given below. This condition

should be verified numerically for each operating point.

2~ 22

a2  ( a2v

>1 > 0 (4.145)

The time derivative of V1(, (iha) is computed as

Yqulibi, pin= p ( , p(,0)-cThyr ta e + three codtosf, ,(,))tob oal

+pc2utiv, cos,(fn,)- (,p -v(e, , p )cos ,(fh co p e ) (4.146)

and simplified as

= L c(4.148)

whereA 1 ( , i ,) and A2 (, I,) are given as follows:



A , P,) ( , - P, P, tan(a, + i) (4.149)

.A2(6, A,= c2u93(cos p(2,Pp)-Cos P(Y, P, (4.150)

By completing the square, the time derivative Vi (&,5 ,) is expressed as follows:

P P V PP (OP i ' P) +A( '1 p) + 4(5, p)Y(4.151)

+ L cos (aO a)(A( i, p)- A2 (4.151)

It can be seen that the time derivative of V1 (5, ,) can be expressed as a sum of

squares with both positive and negative terms. It is neither guaranteed that fi(dj,) is

negative semi-definite nor that V1 (d, 3,) is a Lyapunov function.

Though not locally negative semi-definite with respect to (a,/,), the function

v1 (d, 3,) is locally negative definite with respect to & along the axis P, =0 if the

following conditions are satisfied:

aV (0,0)= 0 (4.152)

a2V- (0,0)<0 (4.153)

The first condition on aV1 / 85 can be easily verified by differentiating (4.148) and

evaluating at (&,,) = (0,0), since 4,(0,0) = A1(0,0) = A 2(0,0) = 0. The second

condition can be evaluated by first computing the quantity a2Aj1 /8a2 at (&, P,) = (0,0)

by twice differentiating (4.148) and simplifying to the following:

a2g L cos(ao) BN ~ aA A2 i (0 ,0 )=- 2 vr( 0 ) =3-,(0,0)+2 1 (0,0) (0,0)+ 2 (0,0) (4.154)adi2  Vr (0,0) aa (oio)+2-4.

The partial derivative .p, /8 is given as

(0,0)=u,3 sinp, Vr (0,0) +f (a(4.155)
ad vPcos7(0,0) 4



and recalling (4.128), it can be seen that for stable equilibrium points

(0,0)< 0 (4.156)

The other partial derivatives are given as

(0,0)= 0 (4.157)
Ba

1(0,0)= -1 c2u9 sin p, (4.158)
Bal 2

so that for cos a, / vr(0,0) > 0, the condition that 82 f /8 2 < 0 is equivalent to the

following:

-p (0,0 'aIP(0, 0) + 2 -(0,0) < 0 (4.159)____ i( a/i

or since MP, / aa < 0,

(0,0)+2 (0,0)<0 (4.160)
BaD

When &A2 /5 :5 0, it can be seen that this condition is satisfied since 8p / < 0.

When A2 / a > 0 (or equivalently uo3 sin # <0), the condition is reduced to

f' () + u0sin, vr (0,0) -1 <0  (4.161)
f v, cos y(0,0)

or equivalently using (4.38) as

f' (t)<u g o sin t* (4.162)
, Cos y(0,o)

and for cos o > 0, this condition must be satisfied since f' (a) is negative according to

(4.125) and the right-hand term is positive since uO3 sin pl, < 0 and O, sin a0 < 0 (as a

consequence of (2.27)). Thus it is verified that i(a, ,) is locally negative definite with

respect to & along the axis fp =0.

Though V1 (&it,) is not a Lyapunov function, conditions were established for which

it is locally positive definite, and its derivative was shown to be locally negative definite



with respect to i along the axis p, = 0. A second candidate Lyapunov function

V2(#,j,) is based on the analogy of the yaw dynamics to a second order mechanical

system, where # = p,, - fl, represents the deviation of the front slip angle from the

equilibrium value. An energy-like function inspired by this analogy is given as follows:

V 2 ( , ,)= c2 ao+ fy(s)ds+ c2u9 3 (sin(p, + )-sin p)

The function V2 (V,3,) has extrema when the partial derivatives aV2a8 and

9V2/8,OA are zero. These partial derivatives are computed as

-V-= c2 (u3 cos(p0 + r)- f,.(a, +

av2 =:,
-r.2= p P

8jp

(4.164)

(4.165)

and it can be verified that these partial derivatives are zero at the equilibrium point

(A ,,) = (0,0).

The function V2 (,3,) is locally positive definite if

satisfied at the equilibrium point (/,l,) = (0,0):

2 >

2 >08n2

the following conditions are

(4.166)

(4.167)

/ j 2
>0 (4.168)

a2v2 a2v2

-p2 *2

Since 82V2 /8/3 = 1 and &2 2 /8i3Of3,, = 0, these conditions are equivalent to the

first condition in (4.166). An equivalent expression for this condition is given as

V - 2 (u93 sin(V)+ f' (aj))> 0

and this condition can be conservatively approximated using (4.127) as

(4.169)

(4.163)



f ,,(a) < -If,(aea (4.170)

which is more conservative than the conditions for stability of an equilibrium point given

in (4.128) and illustrated in Fig. 4.11. This condition may limit the range of Xr, for which

V2 (, i,) is locally positive definite.

The time derivative of V2 (p.,) is computed as

2 0, P )= Np ,p , Nj - Arc2 f, (a0 + )+ PPc2u, 3 cos(p + (4.171)

and can be simplified to the following:

Y2 0, Ap = N pC2 (y (a(, j )- fy,(ao + -)) (4.172)

In a similar manner to the previous section, the function Y2 (0,Ap) is given in terms

of (#3,) where

70 = y(0,O) (4.173)

(,J)= y(#, ,)-r y(4.174)

ApJ= ao + (//p) (4.175)

by first expressing 6, in terms of (#3,Y) as

v,(sinyo -sin r)+$ 1- Cos a" (4.176)
Lcosar ( 3 , Y) cos ar (63,Y))

and with the first-order central difference approximation of f' (#3) with step size /2

defined as

f, (#J3+±Y/2)-f (#3 -Y/2)

the time derivative Y2(fi3, 7) is expressed as

Y2 (3, )i -Pp0 3 ,7 2f 03, T)Y (4.178)

Y2663,Y) = C2f' 03, )r v,(sin -sinr ) + cos a 1
L cos ar(# 3,7) "(cos ar ( 3,y)4

With the following trigonometric identity,



sin y-sin y =2sin Y1cos(r70 (4.180)

the time derivative Y2 (/3, 7) is expressed as follows:

Y 2 03,T) - 4c2v (p 0, 7) sn Cos y, +Lcosa,(,) 2' 2) 2) (4.181)

+c2, cos a ) (3)

Note that Y sin J >0 for Y E [-2, 27r]. Then for cos , > 0 and cos(y0 +/2) >

0, it can be seen that the first term of 2 (fl3, Y) is negative whenever the term 0, (p, )
is negative, in a similar manner to the function 2 (/32, Y) from the previous section.

There are no guarantees on the sign of the second term of Y2( f 2 , Y), however, so that

J2(#l2,y) is not guaranteed to be negative semi-definite. Thus V2 ( p,,) is not

guaranteed to be a Lyapunov function.

Although 2(162 , Y) is not negative semi-definite, it is locally negative definite with

respect to 3, along the axis & =0 when parameterized in terms of (i, j,) as

2 c, f)= ,,c2(/.(ao +a)- (a + +y(5,p ,)-74) (4.182)

and the following conditions are met:

2 (0,0) = 0 (4.183)
a13,

- (0,0)< 0 (4.184)

The first condition on XV2 / 9/, can be easily verified by differentiating (4.182) and

evaluating at (a, 3,) = (0,0), since y(0,0)= y0. The second condition can be evaluated

by first computing the quantity 82V2 /8/j at (a, f,) = (0,0) by twice differentiating

(4.182) and simplifying to the following:



(0,0) = -c2f' (ao)- (00 415
8p8,

With the partial derivative By / a, given as

(0,) L cos a (4.186)
l89, VP Cos 7o

the partial derivative 82V2 / OPP2 is simplified to

a J2 (0,0)= c2L cosa" f (ao ) (4.187)
, ,VP Cos y o

and can be seen to be negative when the equilibrium point at (5, i,)= (0,0) is stable

according to (4.125).

Although the derivatives of the functions V1(i, ,) and V2 (, ,) are not negative

semi-definite, it was shown that A(, i,) is locally negative definite along the axis

3, =0 and that 2 (t,3,) is locally negative definite along the axis & = 0. This

suggests that a linear combination of V1 (ii,/,,) and V2 (i,3,,) may have a locally

negative definite derivative and satisfy the requirements of a Lyapunov function. The

function V3 (i,3,) is defined as a linear combination of V1(,A,) and V2(,f,) with

coefficient k e [0, 1] as follows:

V3 ) - 1 ( Z2 ", , (4.188)

V3 (", f, )=I + c2uO3 sin p,(&,,)- Ac2uo3 sin,80

2~
- (1- )c2 0 afr(s)ds (4.189)

-C2" 'I f,(sids

The function V3 (,3,) must satisfy the following conditions to be locally positive

definite:



(0,0)= (0,0)=0

a2d1(0,0)> 0

a2 (
-- (0,0) > 0
8,P

a3 (0,0)
aL 2

a92V 2
aa,~ (oo)J > 0

The condition in (4.190) is satisfied since both V1 (&, ,ft) andV 2 (&, in,) were shown

to satisfy similar conditions. Expressions for the second partial derivatives of V3 (&, ,)
are given below and should be evaluated numerically for each operating point to verify

that the conditions given above are satisfied.

i V2 (0,0)= -C2u03 sin p8, (1
a72

+

(4.194)
c2f' (ao 1-A+A 1+ a 2

2V

a P
2

AC2 a (uo3 sinBp, +f' (a))y aI3)
(4.195)

a2
3 (0,0)=-c 2 'r(0,0 1+ A(u 9 3 sinp,ada3'p afp, 8a )

-k a2 (0,0 1+ a f ()

The time derivative of V3 (d, /3,) can be computed using (4.148) and

with the following:

3(a, fP=(I1- A)Y1 ,(a, ft,) + A2 (F t

(4.196)

(4.182) along

(4.197)

The time derivative of V3 (&,I,) is locally negative definite if it satisfies the

following conditions:

(4.190)

(4.191)

(4.192)

(4.193)

- (1-A



I (0,0)=
8a

(0,0)= 0
p,

a '3 (0,0) < 0
8&

2

a (0,0) < 0
aPj2

' 2

3a2p (0,0)) > 0

(4.198)

(4.199)

(4.200)

(4.201)

The first condition is satisfied since V (2,/,) and J 2(a,,) satisfy a similar

condition. The other conditions can be evaluated using (4.154)-(4.155), (4.157)-(4.158),

(4.187), and the following expressions for the partial derivatives:

(0,0)= -2 L cos(a . (0,0)+
a p2 Vr (0,0) 1kp 2 (0,0) ii (0,0)+

P ap
2 2 (0,o) 0
ap

(4.202)

a2 J (0,0) Lcos(a0 ) r a (00
aaap, Vr (0,0) g,

L cosex(aj ___ Y ___N

-c(,) 0(00)+2 2 (00) (0,0)+ 2 "2 (0,0)
v,.(0,0) Ip a p ' 98

(0,0) = -c 2u9 3 sin, L cos ao
8p, vcos y,

,A (0,0)= , ! tan aoap, 2

1O2(0,0)= 0

ap,

2 (0,0)= 0

a2p JLO sina
a~ia 2 (0,0)= c2f' (a) o

828p, vcos r0

(4.203)

(4.204)

(4.205)

(4.206)

(4.207)

(4.208)

90

a2p 2
W (0,0) aPP (0,0) -

+ 2 el(0,0) p(0,0) + 2 A2(0, 0)
a3 Fr )fp 8p



These conditions can be evaluated numerically at each operating point to determine

the range of A for which V3 (ii,,) is a Lyapunov function. Additionally, the basin of

attraction can be estimated by numerically computing the regions of the state space for

which P3 (&,/,) is negative. Several examples are provided below using the tire

parameters given in Chapter 2, along with simulation results to verify the stability claims.

The first example is a moderate acceleration turn u03 = 0.1 at a low speed of vp = 5

m/s with u3 = 0. It can be seen in Fig. 4.9 that this acceleration is low enough that only

one equilibrium point exists for rear slip angles ar, e [-r/2, ir/2]. At this speed, the

equilibrium values of the slip angles are a = -0.80 deg, y, = 6.39 deg, andp 0 = 5.59 deg.

This speed corresponds to a non-dimensional speed of Fr = 0.94, which can be seen in

Fig. 4.11 to be sufficient to guarantee stability of the equilibrium point. Additionally, it

can be shown numerically that the function V3 (a, A,) is a Lyapunov function for A e [AO,

1-A0] with A, = 104. For a value of A = 0.01, the contours of V3 (,j',) and a numerical

estimate of the range of states for which 3(",,jo) 0 are illustrated in Fig. 4.12.

It can be seen that the nonzero value of u03 causes asymmetry in the contours of the

Lyapunov function V3 (/5, A,). It can also be seen that there is a region near &= -90 deg

for which f3(&, 3,) > 0. Since no other regions were found in this area of the state space

for which Vf3(, /,) > 0, this is highly suggestive, though not a rigorous proof, that

V3 (", 3,) < 0 for a large range of the state space for this operating condition, which

would imply asymptotic stability of the equilibrium point. As with the controller for

straight line driving, the basin of attraction illustrated in Fig. 4.12 is unlikely to be

achieved in practice, since actuator constraints limit the range of states for which the tire

force controller can be implemented.
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Fig. 4.12. Contours of Lyapunov function V3 (, ,) are illustrated for uo3 =0.1, vp 5
m/s, and u3 =0. One region of the state space was found near i = -90 deg for which

Y3,(a,,p) >0, and this region is darkened.

At a higher speed of v, = 35 m/s with u03 = 0.1 and u3 = 0, the stability analysis is

very similar. At this higher speed, the equilibrium slip angles are az = -0.81 deg, yo =

0.13 deg, and flo = -0.68 deg. Again, the acceleration and speed Fr = 6.63 are sufficient

for a single stable equilibrium point to exist for rear slip angles %r E [-r/2, 7/2]. It can

also be shown numerically that the function V3 (,,) is a Lyapunov function for A e [An,

1-A] with Ao = 104 . With A = 0.01, the contours of V3(a,p) and range of states for

which Y3(iA,)s 0 are similar to the case with vp = 5 m/s illustrated in Fig. 4.12.

These stability properties are demonstrated by simulating the dynamics given in

(4.61)-(4.62) with these operating conditions. The initial conditions are given as d(o) =
-20 deg and P(o) = 0. The simulated time responses of a and p are shown in Fig.

4.14. A phase plane plot with phase variables & and P, and the Lyapunov function

value V3(&,P,) are shown in Fig. 4.15.

For both speeds, the slip angle a, slip rate A, , and Lyapunov function value

V3 (&, j) converge to zero. Again, the inverse relationship between damping and speed

is evident in the rate of decrease of the Lyapunov function value and the oscillations at



higher speed. Whereas the straight-line trajectories exhibited a roughly linear decrease in

the Lyapunov function value, the steady turning trajectories exhibit periods of slow

decrease when & is large followed by periods of rapid decrease when & approaches the

equilibrium value of 0.

It can also be seen that the phase plane trajectories closely follow the contours of the

Lyapunov function at high speed. This indicates that the Lyapunov function may be used

to predict the behavior of future trajectories, including the peak value of slip.

-2- V=05 m/s

20 " ..........

, 1 5 ---.- -.---.---.-.-.-
E

50..........

1 0 -M - - - - ---M- -

0 10 20 30
X(m)

40 1--V-35 WnSJ
40- - ~ ~- -

0 50 100 150 200 250
X (in)

Fig. 4.13. Snapshots at 1 second intervals of vehicle orientation while tracking steady
turning trajectories at constant speed with u = 0.1 and u3=0. The vehicle size is

enlarged and not to scale in the illustration of the 35 m/s trajectory to improve visibility.
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Fig. 4.14 Rear slip angle error & and slip rate p, during steady turning trajectory at

constant speed with uos = 0. 1 and u3  0.
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V=05 rn/s 0 ...... ............ ...
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-20 -15 -10 -5 0 5 -0.00 2 4 8
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Fig. 4.15. Phase plane plot of yaw dynamics and Lyapunov function value V3(
during steady turning trajectory at constant speed with uo3 = 0.1 and u3 = 0. In the phase
plane plot, contours of the Lyapunov function V3 (i, f,) for v,=5 n/s are included in the

background.

Since there are no other equilibrium points for ax, e (-7r/2, 7r/2), the primary limit on

the basin of attraction for the yaw dynamics is imposed by limits on the actuators used to

apply the control laws for ui and u2. The steering angle c and front longitudinal force F4

used to apply ui and u2 for the simulations shown in Figs. 4.14-4.15 are plotted in Fig.

4.16. At 35 m/s, the peak steering angle occurs near the initial slip angle of 20 deg and

has an equilibrium steering angle of about 0.5 deg. At 5 m/s, the peak steering angle is

near 14 deg, with an equilibrium value of 6.5 deg. The peak value of Ff is less than 0.06

Ff at each speed.
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Fig. 4.16. Steering angle and front traction/braking force Fginputs while tracking
steady turning trajectory at constant speed with u93 = 0.1 and u3=0 and an initial slip

angle of 5 = -20 deg.

For a higher acceleration turn with u03 = 0.2, multiple equilibrium points can exist for

rear slip angles r e [-z/2, 7r/2]. At a speed of v, = 5 m/s with u3 = 0, equilibrium rear

slip angles exist at o = -1.76 deg, -9.40 deg, and -43.3 deg. The equilibrium point at %,

= -1.76 deg is stable and has corresponding equilibrium slip angles of yo = 12.9 deg and

/4 = 11.1 deg. It can be shown numerically that the function V3 (ii, ,) is a Lyapunov

function for A e [A,, 1-2A] with ,, = 10-3. For a value of 2 = 0.01, the contours of

V3(aA,) and a numerical estimate of the range of states for which Y(d,A,) s0 are

illustrated in Fig. 4.17.

It can be seen that the unstable equilibrium point near -7.5 deg causes a saddle point

in the Lyapunov function V3( aJ). It can also be seen that there are two regions for

which 3 (a, 3,) > 0. An estimate of the basin of attraction for this operating point is the

contour of V3 (i,3,) that intersects the saddle point and contains the stable equilibrium

since no regions for which Y 3(,Aj,) > 0 were found in this contour. Again, this is

suggestive of the basin of attraction for which the equilibrium point is asymptotically

stable, though not a rigorous proof.
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Fig. 4.17. Contours of Lyapunov function V3(a,fi) are illustrated for uo3 =0.2, v,= 5

m/s, and u3 = 0. Two regions of the state space were found for which 3(a, ,) >0, and
these regions are darkened.

At a higher speed of v, = 35 m/s with u03 = 0.2 and u3 = 0, the stability analysis is

similar. At this higher speed, the equilibrium slip angles exist at a = -1.81 deg, -9.74

deg, and -34.3 deg. The equilibrium at a = -1.81 deg is stable and has corresponding

equilibrium slip angles of yo = 0.26 deg, and fl = -1.55 deg. It can be shown numerically

that the function V3(5,f,) is a Lyapunov function for A e [AO, 1-Ao] with Ao = 10-4 . With

A = 0.01, the contours of V3 (5,A,) and range of states for which 3(a,P) 0 are

illustrated in Fig. 4.18.

At this speed, one region was identified for which 3(&,/3,) > 0. An estimate of the

basin of attraction for this operating point is the largest contour of the Lyapunov function

V3(iif,) inside which Y,(a, p,) 5 0. Again, this is suggestive of the basin of attraction

for which the equilibrium point is asymptotically stable, though not a rigorous proof
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Fig. 4.18. Contours of Lyapunov function V3 (5,f) are illustrated for u03 =0.2, v, =35

m/s, and U3 = 0. One region of the state space was found for which 3(a,,4,)> 0, and

this region is darkened.

These stability properties are demonstrated by simulating the dynamics given in

(4.61)-(4.62) with these operating conditions. The initial conditions are given as &(0) =

-7 deg and -9 deg and 3,(o) = 0. A phase plane plot with phase variables & and p,
and the Lyapunov function value V3 (&f,) are shown in Fig. 4.19. It can be seen that

the trajectories starting from & = -7 deg converge to the stable equilibrium point, while

the trajectories starting from a = -9 deg diverge.
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Fig. 4.19. Phase plane plot of yaw dynamics and Lyapunov function value during steady
turning trajectory at constant speed with u=0.2 and u3=0. In the phase plane plot,

contours of the Lyapunov function for v,=5 m/s are included in the background.
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4.2.4 Stability of yaw dynamics during time-varying maneuvers
The stability results of the previous sections may be extended to consider time-

varying maneuvers, though a stability proof is not considered here. Instead, simulation

results are presented here for a maneuver corresponding to the optimal non-passing turn

described in Chapter 3. The combined steering and deceleration trajectory is simulated

that consists of a constant value of the global acceleration k, applied for a fixed period,

followed by a drop of the acceleration to zero. The path and accelerations are shown in

Figs. 4.20-4.21.
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Fig. 4.20. Path taken during optimal non-passing combined braking
maneuver.
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Fig. 4.21. Acceleration of reference path during optimal

and braking maneuver.
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The response of the yaw dynamics are evaluated for an initial speed of 20 m/s and

initial yaw angles that deviate 5 deg, 0 deg, and -5 deg from the initial heading of the path.

This trajectory is simulated from multiple initial conditions to demonstrate the

convergence properties during the time varying maneuver. The response of the yaw

dynamics is given in Figs. 4.22. It can be seen that the behavior of the yaw dynamics

converge to a single response for these initial conditions. The discontinuity in the desired

acceleration caused a jump in the system energy, though the system maintained

convergence.

5 - -- -. .- .- -.-. .- -. ---..-. .- --..--.

CD

0 2 4 6 8 10 12

- 5deg
-D 10 - -.-.-. *.-.- ---.-.... -. O d eg

-- 5deg

10
0 2 4 6 8 10 12

Time (s)

Fig. 4.22. Slip angle and yaw rate response during optimal non-passing combined braking
and turning maneuver.

This reference trajectory was also simulated with a high-fidelity vehicle model using

the MSC.ADAMS software package, which is a multi-body simulation package

commonly used for simulating vehicle dynamics in the automotive industry [10]. The

control law for ui, u2, and u3 was implemented using a controller with front steering rate

and wheel torques inputs and acceleration feedback. The tire model has a friction

coefficient of 0.5. The path, acceleration, and yaw dynamic responses are shown in Fig.

4.23-4.25. It can be seen that the vehicle tracks the desired accelerations with stable yaw

dynamics.



Fig. 4.23. Path taken during optimal non-passing combined braking and turmng
maneuver with high-fidelity model.
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Fig. 4.24. Measured (meas) and desired (des) accelerations during optimal non-passing
combined turning and braking maneuver with high-fidelity model.

100



10 --. - - -Yaw rate
-. - Steer

5...-........-..-... Rear slip
0

0J 1 2 3 4 5
Tirne (s)

Fig. 4.25. Yaw rate, steer angle, and slip angle response during optimal non-passing
combined braking and tumning maneuver with high-fidelity model.

4.2.5 Summary
In this section, structure was identified in the yaw dynamics corresponding to a

Lid'nard system. Stability conditions were established for the tracking straight-line and

steady turning trajectories based on a Lyapunov stability analysis. Limits on the basin of

attraction for these trajectories are imposed by limits on the actuators applying the control

laws for ui and U2, as well as the presence of unstable equilibrium points near the origin.

These stability conditions were verified with simulation results. Additionally, the yaw

response to a time-varying trajectory based on the optimal non-passing turn from Chapter

3 was simulated, though a general stability proof was not given for time-varying

maneuvers.

4.3 Discussion
The flatness-based controller presented in Section 4.1 maps the bicycle model into a

point mass located at the front center of oscillation with an additional degree of freedom

corresponding to the yaw dynamics. Additionally, there is a control law for U3 that maps

the front friction circle constraint into an acceleration circle constraint. This analogy was

demonstrated by tracking an optimal non-passing maneuver for the point mass with the

bicycle.

Controlling the front center of oscillation provides an advantage over previous work,

which used the rear center of oscillation as a flat output and required additional
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smoothness of the reference trajectory [28, 64]. This work also provides an improvement

over the decoupling controller proposed by Ackermann in that it provides a global

trajectory tracking controller rather than controlling the lateral acceleration in a body-

fixed frame. Additionally, this work includes a nonlinear analysis of the stability of the

yaw dynamics, while Ackerman provided only a linear stability analysis [1].

The flatness-based controller requires an intermediate controller that uses front-wheel

steering and traction/braking torques at the front and rear wheels to control the tire forces.

Such a controller was implemented using backstepping and acceleration feedback, as

described in Appendix X.

Structure in the yaw dynamics was identified that resembles a second order

mechanical system when parameterized in terms of the slip angle p and slip rate p, and

a Lidnard system when parameterized in terms of the rear slip angle a. and slip rate p.
Candidate Lyapunov functions inspired by this structure in the dynamics were evaluated

for straight-line driving and constant radius turns. For straight-line driving, the Lyapunov

function based on the Lidnard analogy in (4.86) can prove convergence of the yaw

dynamics to the stable equilibrium point at the origin of the state space for cos . > 0.

For constant radius turns, a Lyapunov function may be found to guarantee stability when

the inputs v,0, and u3 are constant and small enough that a stable equilibrium point

exists near the origin. The function V3 (,j,) given in (4.189) can be shown to be a

Lyapunov function provided that the conditions given in (4.191)-(4.193) and (4.199)-

(4.201) are satisfied for the given value of l. An approximation of the basin of attraction

of the stable equilibrium point can be computed numerically based on the range of states

for which the time derivative 3(51,,) is negative semi-definite. Further study is

needed to characterize the behavior of the yaw dynamics while tracking time-varying

trajectories.

When the values of v,, v, ,, and u3 are large enough, an unstable equilibrium point

may be created near the origin, or the stable equilibrium point may even be destroyed.

The unstable equilibrium points may correspond to high-slip aggressive maneuvers

performed by expert drivers, such as drifting or trail-braking [18].
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It was noted that the Lyapunov function used to assess the stability of the yaw

dynamics resembles an energy function. This suggests that it may be possible to design

an energy shaping controller that could change the location and stability properties of

equilibrium points. This will be considered in future work.

4.4 Conclusion
The analysis presented in this chapter allows the trajectory planning problem for a

nonlinear bicycle model to be reduced to that of planning for a point mass with an

additional degree of freedom. The yaw dynamics were shown to have conditional

stability, depending on the magnitude of applied accelerations and rear longitudinal force

u3 . An analysis of the yaw dynamics has also provided insight into the behavior of

vehicle dynamics at high slip angles and identified structure in the dynamics that may be

exploited for future work in controlling the vehicle during aggressive high-slip

maneuvers.
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CHAPTER 5: VEHICLE CONTROL FOR SAFETY
APPLICATION

5.1 Introduction
In this chapter, the contributions of the previous chapters are applied to a driver

assistance system for vehicle safety. The system allows drivers full control authority in

benign situations, but intervenes when danger is significant. Such a system is termed a

semi-autonomous hazard avoidance system. A block diagram of the proposed system is

shown in Fig. 5.1.

Map of Look-ahead Terrain
hazards, terrain sensing interactions

surfaces

Vehicle state
measurements

Fig. 5.1: Semi-autonomous hazard avoidance system design.

Here it is assumed that a perception system generates a map of drivable terrain

surfaces and hazards around the vehicle. The map is used to plan optimal avoidance

trajectories for the bicycle model, as described in Chapter Two. Depending on the

nearness to infeasibility of the optimal trajectory, control authority is switched between

the driver and a controller for tracking the avoidance trajectory. The control authority

switching is designed such that the driver is given full control authority when avoidance

can be achieved without approaching the limits of handling, while the hazard avoidance

controller is engaged when a limit handling maneuver is required.
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The computational demands are high for solving optimal trajectories for the bicycle

model numerically. To reduce the computational demands, the results of Chapters Three

and Four are used to apply point mass avoidance maneuvers to the bicycle model at the

front center of oscillation, which allows the system to be implemented in real-time. This

chapter provides details of the subsystems involved as well as simulation and

experimental results that demonstrate the performance of the system.

5.2 Semi-autonomous system description
The semi-autonomous hazard avoidance system consists of subsystems for sensing,

planning optimal avoidance trajectories, control authority switching, and vehicle control.

Details of these subsystems are provided in the following sections.

5.2.1 Sensing and hazard geometry assumptions and definition
It is assumed that a map of the environment with hazard locations is available. N

hazards in the environment are represented by polygons Pi, P 2, .., PN. Each hazard

polygon P, consists of ni nodes pij, j e l-ni. For this work, all hazards are assumed to be

fixed, though moving hazards could be considered if the displacement and orientation of

each hazard as a function of time was known or could be estimated.

An example map is given in Fig. 5.2, with road edges represented by P1 and P2 and a

single hazard represented by P 3. The vehicle geometry is approximated as a circle of

radius r that is centered at point c. It is assumed that point c lies on the centerline of the

vehicle a distance xe from the vehicle c.g., as shown on the right subfigure of Fig. 5.2.

The parameters xe and r should be chosen so that the front corners of the vehicle are

within the circle. For forward travel, a single circle may suffice for approximating the

vehicle shape if the vehicle is not slipping excessively.
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Fig. 5.2: Example hazard avoidance scenario. Road edge hazards are given as polygons,
P1 , P2, and an additional hazard in the road P 3 . The vehicle is approximated by a circle

of radius r at point c.

If the minimum distance from point c to the nearest hazard polygon is given by h(x),

hazard avoidance can be assured by maintaining a clearance of at least r between point c

and the nearest hazard polygon.

5.2.2 Optimal trajectory planning and control
The motion planning subsystem computes optimal avoidance trajectories that

minimize nearness to the front friction circle constraint of the bicycle model, as described

in Chapter Two. The optimal trajectories are computed numerically in a receding-

horizon fashion using model predictive control (MPC). An advantage of MPC is that its

computation yields both the optimal motion plan and corresponding control inputs,

though the computation is typically demanding. To mitigate computational demands, the

results of Chapters Three and Four are applied, as shown below.

The optimal planning problem to be solved is based on equations (26)-(32) in Chapter

Two. These equations are discretized and solved over ofp time-steps with a discrete time

step of t,. At time ti, the state and input are given by x, and u. The model i = f(x, u) is

predicted forward over the p time-steps using Euler integration as shown below.

x+ 1= x +tsf(x,,u,) (5.1)
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A practical challenge for implementing MPC is the computational burden associated

with long prediction horizons. The length of the prediction horizon is important, since

the effect of hazards beyond the prediction horizon is not considered. If the prediction

horizon is shorter than the sensor horizon, some sensory information is not used in the

cost or control calculations. An approximation of vehicle behavior from the end of the

prediction horizon to the maximum sensor range can be used to exploit this information.

When used in an optimal control framework, this approximation is commonly known as

the "cost-to-go" [59].

Recalling that the optimization problem attempts to minimize the front friction circle

utilization, and that the front friction circle constraint can be mapped to a constraint on

the magnitude of the acceleration of the front center of oscillation, it can be seen that the

acceleration of an avoidance trajectory can be used as a "cost-to-go." This is done by

extending the final predicted state x, an additional q steps with zero input to account for

actuator lag. This corresponds to a zero-order hold on the current steering and braking

states. Point mass avoidance trajectories are then computed based on the position and

velocity of the front center of percussion, as computed from Xp+q. As shown in Chapter

Four, the front center of percussion has position [X,Y] and velocity [X,,Y,] in a global

frame, repeated below.

= + (5.2)
Y, Y mx, sin V

[r M=[l I~ iL f
.kp =Jcosyf -smy I . . (5.3)
Y, smy V/ Cosy _/ v,+ yZ

The cost-to-go is based on an extension of the geometric avoidance maneuvers from

Chapter Three to consider a circular vehicle as illustrated in Fig. 5.3. The details of

computing the acceleration of these maneuvers for a circular vehicle is given in Appendix

A. The optimal point mass maneuvers presented in Section 3.4 were not considered in

the cost-to-go for this system for reasons of chronology: these experiments were

conducted prior to complete derivation of the optimal point mass maneuvers. Though

suboptimal, the acceleration of the geometric maneuvers was shown to be within 25% of
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the optimal acceleration for a point vehicle and represents a useful approximation of the

optimal acceleration.

WB

(T> CB C0
Fig. 5.3: Geometric avoidance maneuvers for circular vehicle. A: Constant radius

passing turn. B: Stopping maneuver. C: Constant radius non-passing turn.

The cost-to-go accelerations from Appendix A are given as ai for the straight-line

stopping maneuver, a2 for the non-passing turn, and a3 for the passing turn. Note that the

turn accelerations are computed based on whichever turn direction requires less

acceleration. No preference is given towards turning left or right other than the required

acceleration. The cost function from equation (26) is extended to include the minimum

of the cost-to-go accelerations, as shown below. Again no preference is given to a given

avoidance maneuver other than the required acceleration.

F2 + F2
u*= arg min max max ,min a,a2,a3} (5.4)

U iEA,t LFf

5.2.3 MPC Implementation details
MPC computation was implemented using the nonlinear optimization package

NPSOL. NPSOL uses a sequential quadratic programming algorithm to minimize a

smooth nonlinear objective function subject to linear and nonlinear constraints [29]. The

solver has the capability to use gradients of the cost and constraint functions to speed

convergence. Symbolic derivatives are used in the model prediction, cost function, and

constraints of the MPC controller to improve performance.

The prediction horizon length is widely acknowledged to be a critical parameter in

the design of model predictive controllers. A long prediction horizon may improve

controller stability and performance, though it also increases the computational demand

of the controller. Additionally, a challenge of algorithms based on numerical
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optimization is avoiding local minima in non-convex problems. The algorithm will

converge to a solution that depends on the initial guess of the optimal control vector U*.

It has been observed anecdotally in this work that it is more challenging to determine

initial guesses that converge to the global minimum for MPC controllers with longer

prediction horizons (and hence more control variables) than for controllers with shorter

prediction horizons.

An example of this phenomenon is illustrated in Fig. 11. An MPC controller with

cost-to-go and a prediction horizon of 1.5 s discretized into 30 timesteps is solved with

three different initial guesses of the optimal control vector. These initial guesses result in

a stopping maneuver with cost 0.399 and two symmetric passing maneuvers with an

initial cost of 0.305.

0 5 10 15 20
X (in)

Fig. 5.4: Multiple solutions to MPC control law representing separate local minima.

It has already been noted that the performance of an MPC controller with a long

prediction horizon can be approximated by MPC controller with a short prediction

horizon and an appropriate cost-to-go, though with the benefit of a reduced

computational demand. An additional advantage is the reduced size of the optimization

vector, which mitigates the challenge associated with local minima and sensitivity to

initial guess of the optimization vector. For these reasons, the MPC controller parameters

used in these results are based on a single prediction timestep with the cost-to-go

approximating a longer prediction horizon.
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5.2.4 Cost-based control authority switching
The final aspect of the proposed semi-autonomous hazard avoidance system is control

intervention based on the predicted cost J*. After the nonlinear MPC controller has

computed the predicted cost and input sequence u*(t), a controller intervention level is

determined based on the predicted cost. When the cost is low, the controller intervention

is kept low to maximize driver autonomy. As the cost increases above a certain threshold,

the system will begin to apply the optimal inputs from u*.

The intervention system reads the driver's current input udiver, the MPC input ums,

and the predicted cost J*. An intervention gain K e [0,1] is computed based on the

predicted cost, and is used to determine the applied inputs to the system according to the

following equation:

u = Ku,,,,, +(1 - K jumpc (5.5)

The intervention gain K may be computed according to a variety of intervention laws,

such as a linear function with or without deadband [4]. A switching intervention law

with hysteresis is illustrated in Fig. 5.5 and given by the following equation:

1 0 K(t_i)=0,J*(t,)> 
(Do

K(t,)= I 0, (5.6)
1 K(t,_j)=1,J*(tj) !Ogf
0 K(tj_j)=1,J*(tj)<a@Og

K

off Pon

Cost J
Fig. 5.5: Switching intervention law with hysteresis.

The use of hysteresis in the intervention function prevents small oscillations in the

cost function from rapidly switching the intervention gain K. In practice, this causes the

system to wait until cost has reduced below a specific level to return control authority to

the driver.
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5.3 Simulation and Experimental Results
This section presents results of the semi-autonomous hazard avoidance system in

simulation and experiments. A description of the experimental setup is provided,

followed by results for a stopping maneuver, non-passing turn, and passing turn.

5.3.1 Experimental setup
Experimental testing was performed using a 2001 Jaguar S-Type passenger vehicle

operated by several human drivers. Driver and actuator steering inputs were coupled via

an Active Front Steer (AFS) system [21]. An inertial and GPS navigation system was

used to measure vehicle position, sideslip, yaw angle, and yaw rate. Cones were placed

in the driving environment to represent hazards, and their location was encoded in the

controller as GPS coordinates. A 1 GHz dSPACETm processor ran controller code and

interfaced with steering and braking actuators. With the short prediction horizon and

computationally-efficient cost-to-go computation, the controller calculations remained

within a 50 ms sampling time. Bicycle model parameters for the test vehicle are given in

Table 5.1.

Table 5.1: Model Parameters for simulations and experiments.
Symbol Description Value

m Mass 2220 kg
I= Yaw inertia 3344 kg m2

Xf Front axle from c.g. 1.432 m
Xr Rear axle from c.g. 1.472 m
xe Clearance point 0.10 m
r Clearance radius 0.90 m

om. Steering angle limit 10 deg
Ubrakem Braking force limit 19600 N

bf Brake bias 0.507
Cf Front tire comering stiffness 68 kN/rad
Cf Rear tire cornering stiffness 87 Kn/rad

Since magic tire model parameters were unavailable for the experimental vehicle tires

and the experiments were conducted on a high-friction surface, the nonlinear tire model

from Chapter Two was replaced by a linear tire model. The model is described by the

equations below with parameters Cf and Cr referred to as the tire cornering stiffnesses and

given in Table 5.1. This tire model is suitable for small levels of tire slip and requires

only one parameter, reducing the burden of model matching.
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Ff = -Cf af (5.7)

F,, =-Ca, (5.8)

It should be noted that the slip angle is undefined at zero speed. As such, all

simulations are aborted when the vehicle speed drops below a threshold of 0.5 m/s.

These and some additional parameters for the bicycle model used in this chapter are

given in Table 2.1.

The test setup for both the simulations and experiments involved defining a hazard

edge in the environment and approaching the edge from a variety of initial conditions.

The cost-to-go was computed based on the type of avoidance trajectory that required the

minimum level of cost. The preference for different trajectories depends on the hazard

location and orientation relative to the vehicle.

A passing maneuver was tested by approaching a hazard face perpendicular to the

direction of travel and near the edge, as in Part A of Fig. 5.3. A stopping maneuver was

tested by approaching a hazard face perpendicular to the direction of travel and far from

the edges, as in Part B of Fig. 5.3. A non-passing turn was tested by approaching a

hazard face with a large skew angle and far from the edges, as in Part C of Fig. 5.3.

5.3.2 Stopping maneuver
A stopping maneuver was demonstrated by approaching a wide hazard perpendicular

to the vehicle direction of travel. Two separate tests were conducted to verify the

functionality of the hazard avoidance system. In the first test, a human driver initiated

braking to avoid the hazard before the cost exceeded the threshold D,,.. This test

demonstrates the driver's freedom to operate the vehicle in low-cost situations. In the

second test, the human driver approached the hazard without braking so that the vehicle

automatically engaged the brakes once the cost exceeds the threshold 0,,,.

Results from the stopping test without controller intervention are given in Fig. 5.6-5.7.

The driver stopped the vehicle before the predicted cost threshold was exceeded.
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Fig. 5.6: Vehicle path during stopping maneuver initiated by driver without controller
intervention. The critical hazard edge is wide and perpendicular to the vehicle direction
of travel. The vehicle path is illustrated by the circles plotted at fixed sampling times.
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Fig. 5.7: Predicted cost during stopping maneuver initiated by driver without controller
intervention. The cost did not exceed the threshold, so the controller did not intervene.

Results of a stopping maneuver with controller intervention are presented below

based on simulated and experimental data. Neither the simulated driver nor the human

driver in the experiment engaged the brakes and both maintained a constant steering

angle. The initial vehicle speed was approximately 8 m/s in both simulation and

experiment and the cost threshold was 0,, = 0.3. The path, cost, speed, and acceleration

from simulation and experiment are presented in Figs. 5.7-5.10. Note that the cost

threshold was exceeded at approximately 0.68 s. This is indicated as a solid vertical line

labeled "Engage" in Figs. 5.8-5.10.
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Fig. 5.8: Paths during stopping maneuver at 8 m/s with Gon = 0.3. The critical hazard
edge is wide and perpendicular to the vehicle direction of travel. The vehicle path is

illustrated by the circles. The simulated path is plotted on the right as solid lines, while
the experimental path is plotted on the left as dashed lines.
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Fig. 5.9: Predicted cost during stopping maneuver at 8 m/s with D0, = 0.3.

Fig. 5.10: Vehicle speed during stopping maneuver at 8 m/s with D0, = 0.3.
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Fig. 5.11: Vehicle braking acceleration during stopping maneuver at 8 m/s with GOL = 0.3.
The simulated acceleration is denoted by "Sim" and the commanded and measured

accelerations from the experiment are denoted "Exp cmd" and "Exp meas" respectively.

The simulated vehicle slowed before the hazard edge until the minimum simulation

speed of 0.5 m/s was reached. The initial cost was approximately 0.2 and reached the

threshold value of 4%,, = 0.3 at approximately 0.68 s. After reaching the predicted cost

threshold, the simulated vehicle applied braking quickly and held the predicted cost

roughly constant for the duration of the maneuver.

The initial cost and acceleration command for the experimental vehicle matched the

simulation data, though a significant lag was observed between the braking command and

the measurement of deceleration. This led to an increase in both cost and the braking

command magnitude. The vehicle reached the face of the virtual obstacle with a speed of

about 1 m/s before stopping 0.2 m past the cones. The controller performance during this

test is discussed further in Section 5.4.

5.3.3 Passing turn
A passing turn was demonstrated by approaching a hazard comer perpendicular to the

hazard face. Similar to the stopping maneuver, tests without controller intervention and

with controller intervention are presented.

Results from the passing maneuver without controller intervention are presented in

Figs. 5.11-5.12. The initial speed was 12 m/s with threshold 0,,, = 0.6. The driver

initiated a passing maneuver and successfully avoided the obstacle. The cost increased as

the driver made the initial tumn to the left, then dropped during the transition to between

tumns, and then increased during the turn to the right.
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Fig. 5.12: Vehicle path during passing maneuver initiated by driver without controller
intervention. The vehicle is near a corner of the hazard and travels perpendicular to the

hazard face. The vehicle path is illustrated by the circles.
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Fig. 5.13: Predicted cost during passing maneuver initiated by driver without intended
controller intervention.

Results from the passing maneuver with controller intervention are presented below.

Neither the simulated driver nor the human driver engaged the brakes and both

maintained a constant steering angle. The vehicle speed began at approximately 13 n/s

and the cost threshold was <Do, = 0.3. The path, cost, speed, and acceleration are

presented in Figs. 5.13-5.16. The time when the cost threshold was crossed is indicated

by a solid vertical line labeled "Engage" in Figs. 5.14-5.16.
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Fig. 5.14: Paths during passing maneuver at 13 m/s with 4D, = 0.3. The vehicle is near a
corner of the hazard and travels perpendicular to the hazard face. The vehicle path is

illustrated by the circles.
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Fig. 5.15: Predicted cost during passing turn at
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during passing turn at 13 m/s with Irn = 0.3.
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Fig. 5.17: Vehicle acceleration during passing turn at 13 rn/s with Don = 0.3. The

longitudinal and lateral directions are denoted by x andy respectively.

The initial cost of 0.15 increased to the threshold of Jon = 0.3 at approximately 0.59 s.

After reaching the threshold, both the simulated and experimental vehicles applied a

combination of braking and steering inputs to avoid the hazard. There is a close match

between the simulated and experimental vehicle paths shown in Fig. 5.13. The simulated

cost reached a peak of 0.33 and remained roughly constant during the maneuver. The

experimental cost reached a peak of 0.50. The differences between the simulated and

experimental cost are likely to be caused by model parameter mismatch.

5.3.4 Non-passing turn
A non-passing maneuver was demonstrated with a single experimental result with

controller intervention. This maneuver was tested by defining a very long hazard edge

nearly parallel to the vehicle's direction of travel. This scenario corresponds to a lane-

keeping task or prevention of road departure. The path and cost of the maneuver are

given in Figs. 5.17-5.18. The initial speed of the vehicle was 21 mn/s with a threshold of

GD01 = 0.3. It can be seen that the vehicle successfully avoided the wide hazard.

118

n



-30 -20 -10 0 10 20 30
x (m)

Fig. 5.18: Experimental demonstration of non-passing turn with 1-step prediction and
cost-to-go. The critical hazard edge is long and nearly parallel to the vehicle direction of

travel. The vehicle path is illustrated by the circles.
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Fig. 5.19: Predicted cost during non-passing turn maneuver initiated by controller

intervention.

5.4 Discussion
The semi-autonomous hazard avoidance system was demonstrated experimentally for

stopping, passing turn, and non-passing turn maneuvers with and without driver

intervention. The use of the short prediction horizon with cost-to-go enabled the

nonlinear MPC computation to be completed within 50 ms and the controller to run in

real-time. During these tests, there were no instances of computation overrunning the

allotted computation time.

The semi-autonomous nature of the system was demonstrated successfully in low-

cost situations when the driver took action to avoid the hazard and the system did not
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intervene. The intervention behavior of the semi-autonomous system can accommodate

varying levels of driver skill by adjusting the threat threshold parameter <Don.

The semi-autonomous nature of the system was also demonstrated successfully in

high-cost situations for passing and non-passing turns when the system engaged the

steering and braking actuators to successfully avoid the hazard. The vehicle did not stop

completely before the hazard face during the stopping test, however. Comparing the

simulation results to the experimental results, a significant lag was observed between the

commanded and actual braking deceleration. This is likely caused by unmodeled lag in

the braking actuator dynamics. It is well known that model mismatch can cause

problems for nonlinear model predictive control. Future work with model predictive

control for hazard avoidance via braking should consider the effect of braking actuator

dynamics on system performance.

5.5 Conclusion
A hazard avoidance controller based on a minimum-acceleration model predictive

controller was presented and demonstrated in simulations and experiments. An

approximation of cost based on computationally efficient analytical calculations of

canonical avoidance maneuvers was used as a cost-to-go to reduce computational

demand. The system was found to successfully avoid hazards with passing and non-

passing turns, though unmodeled lag in braking actuator dynamics caused performance

problems in stopping maneuvers. Future work will attempt to address issues of model

mismatch.
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6
CHAPTER 6: CONCLUSIONS

6.1 Summary
Hazard avoidance is an important capability for safe operation of robotic vehicles

traveling at high speed. There are also applications to driver assistance systems for

improving passenger vehicle safety. This thesis presented results related to planning and

control of optimal hazard avoidance maneuvers for a bicycle model with wheel slip,

given sufficient knowledge of the environment.

The planning problem for optimal hazard avoidance was posed so that dynamic

quantities subject to inequality constraints are minimized, while ensuring a minimum

clearance from hazards. The constrained quantities to be minimized are chosen based on

their impact on feasibility of avoidance, such as the front friction circle constraint for the

nonlinear bicycle model. An example optimal avoidance trajectory was computed

numerically to illustrate the properties of the optimal avoidance maneuvers generated by

this algorithm. The maneuvers tend to avoid the hazard with the minimum required

clearance such that the minimized quantities are approximately constant. It was noted

that it is computationally demanding to compute these trajectories numerically in real-

time.

In an attempt to simplify the computation of optimal avoidance trajectories, analytical

solutions to the optimal planning problem were presented for a point mass subject to a

constraint on acceleration magnitude. The acceleration magnitude constraint is

analogous to a tire friction circle constraint. Pontryagin's minimum principle was applied

to two sets of boundary conditions for the point mass, corresponding to optimal passing

and non-passing turns. The acceleration of these optimal maneuvers was compared to the

acceleration of geometric avoidance maneuvers, namely, straight-line stopping and

constant radius passing and non-passing turns. The optimal maneuvers were found to

require up to 25% less acceleration than the geometric maneuvers. Conditions were also
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found on the position and orientation of hazards relative to the vehicle to show when the

optimal passing turn requires less acceleration than the optimal non-passing turn.

The results of the point mass were extended to the nonlinear bicycle with wheel slip

by defining a flatness-based trajectory tracking controller using tire force control. This

controller decouples the bicycle dynamics into a point mass at the front center of

percussion with an additional degree of freedom for yaw dynamics. Structure was

identified in the yaw dynamics resembling that of a nonlinear oscillator. This structure

was exploited to identify limits on the acceleration of reference trajectories and limits on

the longitudinal force applied at the rear wheels for which the yaw dynamics are stable.

The controller was simulated to verify the stability properties of the yaw dynamics while

tracking reference maneuvers. Noting that the front friction circle constraint can be

mapped to a constraint on acceleration magnitude of the front center of oscillation, these

results allow the point mass avoidance maneuvers to be applied to the nonlinear bicycle

with wheel slip.

These results were applied to a semi-autonomous driver assistance system and

demonstrated experimentally. Efficient computation of point mass avoidance maneuvers

was used as a cost-to-go to reduce the computational requirements of real-time numerical

optimization of avoidance trajectories using model predictive control. The experimental

system switched control authority between the driver and an automatic avoidance

controller based on the cost of the optimal trajectory. The driver retained control

authority in low-cost situations, and the automatic controller was engaged to avoid

hazards automatically in high-cost situations.

6.2 Future work
There are opportunities for future work related to optimal planning of maneuvers for

the point mass with bounded acceleration magnitude. The avoidance scenarios

considered in this work involved single stationary hazards. Avoidance maneuvers can be

found for multi-hazard scenarios by chaining a sequence of single hazard avoidance

maneuvers, provided that the hazards are far enough apart. Optimal maneuvers may also

be found for scenarios with closely spaced hazards by applying the optimal control

analysis to different sets of boundary conditions. These optimal maneuvers can also be

incorporated into other planning methods such as RRT* [37].
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There are also opportunities for future work related to the flatness-based trajectory

tracking controller for the bicycle model with wheel slip. The effect of load transfer has

been identified by racing professionals as having an impact on vehicle dynamics on

surfaces with high friction coefficients. It would be useful to study the effect of load

transfer on the trajectory tracking controller and the stability of the yaw dynamics.

Additionally, the stability analysis of the yaw dynamics at high slip angles can be used to

study the properties of aggressive maneuvers used by professional rally racers, such as

trail braking and pendulum turns. The connection with the point mass model may allow

efficient planning of these types of aggressive maneuvers.
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A
APPENDIX A: COST-TO-GO FOR NONLINEAR MPC

This Appendix contains details of the cost-to-go computation for the nonlinear MPC

controller used for planning and control in the semi-autonomous vehicle safety system

described in Chapter Five. The acceleration of several avoidance trajectories are

computed for a point mass located at the front center of percussion of the bicycle model.

The cost-to-go is based on the avoidance trajectory with the minimum acceleration. The

point mass maneuvers considered are straight-line stopping and constant radius passing

and non-passing turns. These maneuvers were considered in Chapter Three, for a point

vehicle, and are extended here to a circular vehicle model of radius r.

A.1 Straight-line stopping
A straight-line stopping maneuver consists of acceleration applied opposite to the

vehicle velocity vector, causing the vehicle to stop before reaching the hazard P, as

illustrated in Fig. A. 1. The critical edge of P is specified by nodes ni and n2 , tangent unit

vector ei, and normal unit vector e2. For this maneuver, the vehicle is approximated as

the bounding square surrounding the circle of radius r centered at point [Xpm,Ypm]. The

square is aligned with the velocity unit vector e4 with front comer points vi and v2.
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Fig. A. 1: Straight-line stopping maneuver. The critical edge of hazard P is specified by
nodes ni, n2, and the vehicle is approximated by a square oriented with the vehicle

velocity vector.

Possible points of collision bi-b4 are computed by projecting nodes vi, v2 along the

velocity vector onto the hazard edge line and nodes ni, n2 along the velocity vector onto

the vehicle edge line. The lines passing through nodes ni, n2 and vi, v2 are given below,

where the components of unit vectors e2 and e4 are (e2,e 2,) and (e42,e4,) and the

coordinates of nodes n1 and vi are (nax, n1,) and (vi, vi,).

e2x (x -nIX) + e2,y -ni, )= 0 (209)

e4x (x -vIX) + e4,y -v1,)= 0 (210)

The projection lines for computing points bi-b4 are computed as follows, where (xiy)

are coordinates of the point to be projected:

e4,(x -x)-e 4x(y - y, )=0 (211)

The coordinates of a point b, given by (bix,bjy) are computed by solving linear

equations. For example, the coordinates of point b1 are computed by solving the

following:

e2x e2y 1 _ e2xn1x + e2yn1y 1
-4y ~ e4x 1bly _ _- e4xvly + e4yv x
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Distances Di-D4 represent the projected distances of points bi-b4 and are computed as

follows:

Di =e 4 -(b1 -vi) (213)

D2 =e 4 -(n, -b 2) (214)

D3 =e 4 (b3 -v 2 ) (215)

D 4 =e 4 -(n2 -b 4 ) (216)

A projected point b, lies outside of its projected line segment, e.g. points b, and b4 in

Fig. 5, if the following conditions are met:

min{e(b,-nI)<0, el*(n 2 -b,)<O}<O i e {1,3} (217)

min{e-(b 1 -vl)<0, e3 -(v2 -b,)<0}<0 i e{2,4} (218)

For each projected point bi that lies outside of its projected line segment, the

corresponding distance Di is set to infinity. The acceleration required by this stopping

maneuver is computed as ai below, where D is taken to be the smallest of distances DI-

D4. Note that if the vehicle will avoid the obstacle when traveling straight, the stopping

distance will be infinity and its stopping acceleration will be zero.

al = XM + m (219)
2D

A.2 Constant radius non-passing turn
A non-passing turn is defined as a constant radius turn in which the vehicle turns to

travel parallel to an edge of a hazard P, as illustrated in Fig. A.2. In contrast, a passing

turn is defined as a constant radius turn in which the vehicle turns to pass the critical edge

of hazard P to the left or the right, as described in the subsequent section and illustrated

in Fig. A.3. For example, non-passing turns can be used in a lane-keeping task or

prevention of road departure.

The critical edge of P is specified by nodes ni and n2, tangent unit vector ei, and

normal unit vector e2. The vehicle is approximated as a circle of radius r centered at

point [Xp,Yp.] with velocity unit vector e4. The center is projected along unit vector e3

to the circumference of the circle to form points vi and v2.
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Fig. A.2: Constant radius non-passing turn to the left. The critical edge of hazard P is
specified by nodes ni, n2, and the vehicle is approximated as a circle of radius r.

A circle corresponding to a non-passing left turn with radius R.,,,g is defined by the

following properties:

1. circle passes through point v2

2. tangent of circle is parallel to e4 at point v2

3. circle is tangent to line connecting ni and n2

4. center of circle is to left of vehicle

The radius Rn,kfi is computed as shown below based on intermediate values Onp,ef and

Xnp,eft.

cos ,,,= -e e4  (220)

XnPleft =(ni -v 2 )-e 2  (221)

Rne = Xnp,left (222)
1- cOSOnp,left

A similar circle is found corresponding to a non-passing right turn based on point vi

with radius Rnp,,gh and intermediate values Onpnght and Xnrgh,.

cosn,,rjght =ei -e4  (223)

Xnp,righ, - (n2 - vi)-e 2 (224)

132



Rnpright - Xnp,,,ght (225)
1 - Cos 6np,right

The larger of the two radii is termed R,,, and the corresponding turning acceleration

a2 is computed as shown below.

a2 pm pfm (226)
Rnp -r

A.3 Constant radius passing turn
A constant radius passing turn consists of acceleration perpendicular to the point mass

velocity vector, causing the vehicle to turn and pass one of the nodes of hazard P as

illustrated in Fig. A.3. The critical edge of P is specified by nodes ni and n2, tangent unit

vector ei, and normal unit vector e2. For this maneuver, the vehicle is approximated as a

circle of radius r centered at point [Xm,Ym] with velocity unit vector e4. The center is

projected along unit vector e3 to the circumference of the circle to form points vi and v2.

ni
yP C

4X n2

e , B

r 2 D E

6,, ,[X,YmI3

Fig. A.3: Constant radius passing turn to the left. The critical edge of hazard P is
specified by nodes ni, n2, and the vehicle is approximated as a circle of radius r. A set of

similar triangles are illustrated in the right side of the figure.

A circle corresponding to a left passing turn with radius Rpy,ft is defined by the

following properties:

1. circle passes through point v2

2. tangent of circle is parallel to e4 at point v2
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3. circle passes through node ni

The turn radius Rp,,efe is computed with the aid of the triangles illustrated in the right

subfigure of Fig. A.3. Points B and C correspond to points V2 and ni, respectively. Edge

lengths AB and AC are both equal to the radius R,,kep. Since angles zECB and zECD

are equal, it can be seen that triangle ACDB is isosceles. It can further be seen that

triangles AABC and ACDB are similar. This similarity implies the following ratio:

AC CB-- = (227)
BC DB

Since edge length AC is equal to the unknown radius Rp,,flt, this ratio can be used to

find an expression for the radius. Intermediate values X,,e and Yp,,,ft are defined as

follows:

Xkfl =CE=(n 1 -v 2 )-e 4  (228)

Yp,le V BE=(v2 -nl)-e 3  (229)

Using the following relations, an equation for the radius is found:

DB = 2BE =2Ypleft (230)

- -2 2
CB = B + CE= X2 , +Y,, (231)

- 2 x2 y
CB A Xleft + Ykft(2)Rpef = =B 2';, +,2 (232)
DB 2Y lef

The angle O,,1,p can be found using the following relations:

ZBCE = tan f (233)
Xpkft

p,lef = ZCAB = 2ZBCE (234)

A similar circle with radius R,right is found corresponding to a right turn based on

points vi and n2 using intermediate values X,,rig, and Yp,ght.

Xprigt =(n 2 - vi)e 4  (235)

Yp,right =(n 2 - v)-e3  (236)

x2  +y 2

Rp,right - pright p'right (237)
2 Yp,right
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y
p,,ght = 2tan1 P'right (238)xp,right

The larger of the two radii is termed Rp, and the corresponding turning acceleration a3

is computed as shown below.

Xk2 +f'2
a3 = pm m (239)

R, -r

It should be noted that when starting far from the corner node of a hazard, the circular

passing arc may cross the hazard edge in order to intersect the corner node, as shown in

Fig. 9. When this occurs, a passing turn in that direction is not feasible. A condition for

the feasibility of a passing turn is that the passing turn angle Op,if, G,nght is less than the

corresponding non-passing turn angle Op,,efp, Op,,right. When passing turns are infeasible,

an alternative maneuver, such as non-passing turn or stopping maneuver, must be chosen

instead.

n1 ni

OP ef 2n2 Onlf 2n2

Onp Ve

Fig. A.4: Infeasible constant radius passing turn to the left. The vehicle is too far from
the comer nodes to pass without a collision. An alternative maneuver must be attempted

instead.
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