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Zusammenfassung

In der vorliegenden Arbeit wird die Vorhersage von Verkehrssituationen

unter Verwendung von Bayes’schen Schätzmethoden und maschinellen Lern-

verfahren untersucht. Die Fähigkeit, Situationen und das Verhalten von

Verkehrsteilnehmern richtig einzuschätzen und mögliche Situationsverläufe

zu antizipieren, stellt eine essentielle Voraussetzung für eine Vielzahl von An-

wendungen in der Verkehrsdomäne dar. Entscheidend ist diese Fähigkeit

für die automatische Handlungsplanung, Regelung und Risikoeinschätzung

und damit grundlegend für selbstfahrende Fahrzeuge und fortschrittliche

Fahrerassistenzsysteme.

Die Herausforderungen dabei sind vielfältig. Die Verhaltensweisen von

Verkehrsteilnehmern sind stark gekoppelt und sehr situationsabhängig. Die

Ursachen, die zu bestimmten Verhaltensweisen führen, sind dabei nur unzu-

reichend bekannt und schwierig modellierbar. Hinzu kommt, dass die Umwelt

nur partiell und fehlerbehaftet wahrnehmbar ist. Wichtige Aspekte, wie die

Gedanken von Verkehrsteilnehmern und damit ihre Ziele und Pläne, lassen sich

nicht direkt messen. Ebenso sind die Aktionen von Verkehrsteilnehmern nur

unsicher vorhersagbar.

Zur Lösung dieser Herausforderungen wird in dieser Arbeit ein Ansatz

präsentiert, der die Entwicklung von Verkehrssituationen als stochastischen

Prozess formuliert. Dabei werden die Entscheidungsprozesse von Verkehrsteil-

nehmern nachgebildet, um ihre wechselseitige Beeinflussung zu modellieren.

Dadurch werden genaue langfristige Vorhersagen möglich. Den Kern bilden

Verhaltensmodelle, welche die Zusammenhänge zwischen Situationen und

Zielen, Plänen und Aktionen von Verkehrsteilnehmern beschreiben. Da

diese Zusammenhänge nur schwierig manuell modellierbar sind, wird ein

datengetriebener Ansatz verfolgt. Hierzu wird in dieser Arbeit ein Lernver-

fahren vorgestellt, das es unter Verwendung von domänenspezifischem Wis-

sen ermöglicht, die Verhaltensmodelle aus Verkehrsbeobachtungen zu lernen.
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Zur Steigerung der Generalisierungsfähigkeit dieses Lernansatzes werden neu-

artige, allgemeine Lernverfahren für Entscheidungsbäume präsentiert.

Der präsentierte Ansatz zeichnet sich dadurch aus, dass durch die Kon-

zeption des Schätzprozesses, zusammen mit der datengetriebenen Model-

lierung, Vorhersagen in unterschiedlichsten Verkehrsszenarien ohne spezielle

Anpassungen ermöglicht werden. Der gesamte Ansatz wird in einer Vielzahl

von Verkehrsszenarien, wie beispielsweise an Kreuzungen und Kreisverkehren,

mit mehreren Verkehrsteilnehmern evaluiert.
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Abstract

In this thesis, we study Bayesian state estimation and machine learning meth-

ods for predicting traffic situations. The cognitive ability to assess situations

and behaviors of traffic participants, and to anticipate possible developments

is an essential requirement for several applications in the traffic domain, espe-

cially for self-driving cars and advanced driver assistance systems.

There are several aspects that make the prediction of traffic situations dif-

ficult. The causes of specific behaviors of traffic participants are only insuffi-

ciently known and difficult to model. The behaviors are highly coupled and

strongly depend on the situational context. This is aggravated by the fact that

the environment is only partially observable. Important features such as the

thoughts of traffic participants including their goals and plans are not directly

measurable and can only be estimated. Due to the partial observability and the

stochastic nature of the environment the actions of traffic participants and their

outcomes can only be predicted with uncertainty.

In this work, we present an approach that models the development of traf-

fic situations as a stochastic process. Thereby, decision making of traffic par-

ticipants is simulated to model their mutual influences. This way, we achieve

accurate predictions over longer time periods. The core of this approach are

behavior models which describe relations between situations, goals, plans, and

actions of traffic participants. Since these relations are difficult to model man-

ually, we use a data-driven approach. We present a method for learning behav-

ior models from unlabeled traffic observations. As a contribution to machine

learning in general, we develop novel learning methods for decision trees with

improved generalization and efficiency properties.

The presented approach distinguishes itself through accurate predictions in a

large variety of situation without special adaptations. We demonstrate this abil-

ity for a multitude of traffic scenarios including intersections and roundabouts

with several traffic participants.
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1 Introduction

Fully autonomous cars are on the verge of coming into existence and becom-

ing a part of our daily lives. The dream of vehicles transporting us safely and

without the constant need of our attention is old and appears in many fictional

stories. With the possibility of providing a cheap and efficient solution to per-

sonal transportation, they have the power to transform our society.

Since the first pioneering work of (Dickmanns and Zapp, 1988) in the 1980s,

significant advances have been made on all technology frontiers relevant to au-

tonomous driving. The research in the field of autonomous driving and ad-

vanced driver assistance systems (ADAS) has already led to assistance systems

with series maturity, e.g., lane departure warning, traffic sign recognition and

automatic parking systems. The first prototypes of autonomous cars are being

developed and tested by research organizations and major companies. How-

ever, some fundamental open question have yet to be resolved until robotic

cars will populate our roads and supersede human drivers in terms of safe and

foresightful driving. The research areas concerned range from perception and

situation understanding to decision making and control.

An autonomous car faces the challenge to continuously act in a highly dy-

namic environment, which can only be perceived partially. Observations are

not only noisy and affected by sensor range limitations and occlusions, some

relevant aspects cannot be measured at all such as the intentions of other road

users. Besides the capabilities to perceive its environment and conduct actions,

the system must be able to fuse new information with its present knowledge in

an ongoing process and derive decisions on that basis. An important prereq-

uisite to anticipating situation developments is the capability to assess other

drivers and their intentions. These cannot be directly measured and have to be

inferred from observations. Since the behavior of traffic participants is highly

coupled, realistic predictions can only be made with an understanding of how

traffic participants influence each other. Human drivers acquire the ability to
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1 Introduction

interpret traffic situations and to predict the likely developments through a pro-

longed learning process. Through their experiences, they develop a deeper un-

derstanding of the coherences that underlie the behavior of traffic participants.

The goal of this thesis is to contribute to the understanding and the solution of

the state estimation and prediction problem encountered by autonomous sys-

tems navigating in traffic. By modeling a learning process, we enable a system

to learn from observed motion patterns of traffic participants and putting them

into relation. The system acquires the ability to predict situation developments

in new and similar traffic constellations by generalizing from the observed traf-

fic.

We present a hierarchical Bayesian model that resembles the decision making

of traffic participants and their interactions in order to make accurate predic-

tions about future situation developments. By taking their perspectives, it is

possible to draw conclusions about their goals, plans and actions and reason

about their mutual interactions. We take a probabilistic approach to handle the

uncertainties inherent in this domain in a mathematically sound way and to be

able to provide uncertainty estimates for the predictions.

The main challenge of this approach lies in the conception of the complex

predictive policy models representing the decision making of the traffic par-

ticipants. We solve this problem with machine learning methods that identify

the behavior patterns in traffic observations in order to derive the models. We

show that this data-driven approach has several advantages over approaches

that mainly rely on manual modeling, mostly in terms of scalability and gener-

alization.

In the course of this work, we derive generalizations and extensions to the de-

cision tree learning methodology as a contribution to the general field of ma-

chine learning. The learning methods show an improved performance com-

pared to state-of-the-art decision tree induction methods. Their incremental

nature makes them applicable for big data problems and online settings even

outside the robotics domain.
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1.1 Problem Statement

1.1 Problem Statement

Given a series of incoming noisy measurements of traffic participants’ states,

one is interested in estimating the current state of the environment and espe-

cially in anticipating future developments. The measured data consists of ob-

servable properties, such as position, orientation and velocity of traffic partic-

ipants. Properties that are not directly observable, such as goals and plans of

traffic participants, have to be inferred from their behavior and situational con-

text over time.

To ensure realistic predictions, the required models are supposed to be

learned from traffic observations and background knowledge without requir-

ing manual labeling. The inherent uncertainties have to be considered in the

whole process.

This poses an interesting and challenging problem due to a highly dynamic

and only partially observable environment and the complex and mostly un-

known system dynamics. Additional difficulties are induced by the manifold

of situations that can arise, which makes generalization an important factor. In

particular, the proposed method tries to answer the following questions:

• What is the current state of a traffic situation and how will it probably look

like in a few seconds?

• What are the goals and plans of the traffic participants?

• How do traffic participants react in specific situations and how do they

influence each other?

• How can models be learned from traffic observations, which allow an-

swering of the aforementioned questions?

• How can background knowledge be used to leverage generalization?

We try to answer these questions based on measurements from traffic situa-

tions that can be acquired with state-of-the-art sensors, e.g., stereo cameras or

lidar sensors. It is also assumed to have map information of sufficient accuracy.

3



1 Introduction

1.2 Thesis Statement

The thesis statement is:

“The probabilities of possible future developments of traffic situations can be esti-

mated based on learned models that resemble the decision making of traffic par-

ticipants and consider their interactions.”

We support the statement by presenting a novel learning based approach to

prediction making in traffic environments and by evaluating its performance in

comparison to other approaches in a variety of traffic scenarios.

1.3 Concept Overview

Throughout this thesis, we develop a Bayesian model that interprets the evo-

lution of traffic situations as a stochastic process. Embedded in application

systems, such as a motion planner or a risk assessment assistant, the model

can provide predictions together with probability estimates as well as estimates

of the current situation. Through observations of the environment, the infer-

ence process is fed with an ongoing stream of measurements. It fuses the in-

coming information with the systems prior knowledge to yield posterior dis-

tributions over the possible situations together with updated anticipations. In

the course of the updating procedure, some hypotheses are ruled out and oth-

ers become more likely depending on the supplied evidence. The presented

approach makes no assumptions about where the measurements of the envi-

ronment originate from. This renders it possible to use it in a self-driving car

with on-board sensors as well as in a traffic surveillance system using station-

ary cameras. It is also possible to utilize a mix of sensing systems using on-board

sensors in combination with communication to receive information about the

environment from other vehicles and infrastructure.

Figure 1.1 shows an overview of the concept with an increasing level of detail.

On the highest level one sees the cyclic interaction between the real world and

possible application systems, which make use of the Bayesian model. Based on

measurements of the environment and background knowledge like map data,
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1.3 Concept Overview

the model provides state estimations and predictions. The model itself is rep-

resented by a dynamic Bayesian network and is sketched on the lowest level.

The Bayesian model builds upon the assumption that the observable behav-

ior of traffic participants is the result of a rational thinking process, i.e., the ac-

tions they choose in a specific situation are determined by long-term goals they

are trying to reach. The idea is that if we knew the goals of other traffic partici-

pants, we would be able make accurate predictions on how the whole situation

will probably develop. Since the goals are not directly measurable, they have

to be estimated from what can be observed. By taking the perspective of other

traffic participants, we can reason about their intentions. The probable causes

of their actions can be concluded by matching their observed behavior to the

behavior one would expect when being in their position.

The Bayesian model enables this kind of reasoning by resembling the depen-

dencies between the goals of traffic participants, the routes they plan to reach

these goals and the situation-specific actions they choose. The models that pre-

dict their decisions on the different levels of abstraction are called policy models.

We explicitly model the situation-dependency of the decision making processes

with the purpose of doing justice to the mutual influence traffic participants

have on the decisions of others through their behavior.

We develop a learning procedure that can capture the sophisticated patterns

in behavior, which is additionally complicated by the fact that the dependencies

of interest cannot be observed directly. A key role in our approach is the combi-

nation of machine learning methods with domain-specific knowledge and sta-

tistical modeling in order to derive predictive models that can generalize to a

wide variety of situations and the potential to scale to the full complexity of traf-

fic.
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1.4 Contributions

1.4 Contributions

With this work, we contribute to robotics and machine learning research by de-

veloping a solution to the problem of state estimation and prediction in the con-

text of traffic prediction together with novel machine learning methods. By tak-

ing a data-driven approach, we advance the understanding of machine learning

methods in real-world settings.

We propose a novel hierarchical Bayesian model that resembles the decision

making of traffic participants on multiple levels of abstraction. Compared to

previous approaches, goals, plans and actions of traffic participants are simul-

taneously estimated in a unified probabilistic framework under consideration

of context-dependent mutual influences. In contrast to existing approaches,

map knowledge is used as a source of information for the prediction and learn-

ing process and not to constrain the representation by restricting traffic partic-

ipants to be representable only on lanes.

In contrast to the state-of-the-art, the policy models of the Bayesian approach

are derived by a combination of machine learning methods and domain-

specific knowledge to capture the complex non-linear relationships between

situations and decisions and to maximize generalization. We present efficient

learning algorithms based on Monte Carlo expectation maximization to learn

under partial observability. Input-dependent noise is considered in the learn-

ing procedures to satisfy the heteroscedasticity present in the data. Compared

to the state-of-the-art, the models are learned in a non-parametric way with no

need for manual labeling. This makes the approach scalable and the incorpo-

ration of new experiences easy.

As a general contribution to the field of machine learning, we derive a new

class of decision trees called generalized decision trees, which generalize com-

mon tree models such as classic decision trees, hierarchical mixtures of experts

and fuzzy decision trees. We present a gradient-based learning algorithm for

this new class together with a new learning algorithm for classic decision trees

based on continuation methods. These new learning methods achieve better

generalization in evaluation than state-of-the-art decision tree induction meth-

ods.
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1 Introduction

The main contributions can be summarized as follows:

1. A novel hierarchical Bayesian model for estimating and predicting traffic

situations under consideration of context-dependent mutual influences

(Chapter 3).

2. Scalable learning algorithms for non-parametric learning of het-

eroscedastic policy models under partial observability (Chapter 4).

3. Improved learning methods for decision trees and generalized decision

trees (Chapter 5).

1.5 Applications

We highlight four central areas of applications where anticipation of traffic sit-

uations and learning methods are of fundamental importance.

Autonomous driving The ultimate goal of autonomous driving is the complete

replacement of the human driver by a machine that can perfectly navigate in

every possible traffic situation. The potential benefits are compelling: less ac-

cidents (Petridou and Moustaki, 2000; McKenna, 2010), improved energy effi-

ciency and comfort, and a much better exploitation of existing infrastructure

(Fagnant and Kockelman, 2013) to name just a few. By removing the need for

a human driver, people can use the travel time for their own purposes, e.g., for

enjoyment, sleeping or working. Additionally, it will make personal transporta-

tion accessible to people which are not allowed or unable to drive a car, such

as kids, the elderly or disabled people. While researchers and companies have

made substantial progress in the field of autonomous driving over the last years

and already demonstrated basic autonomous driving capabilities in some sce-

narios (FZI Research Center for Information Technology at Karlsruhe Institute

of Technology, 2013; AutoNOMOS Labs, 2011; Nothdurft et al., 2011; Guizzo,

2013; Viz-Lab, 2013), a self driving car that drives as versatile and foresightful

as a human and can cope with all the unexpected situations is still an open

challenge (Knight, 2013; Shepardson, 2013). What seems to be certain is that

once self-driving cars become reality and affordable, they will deeply transform
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1.6 Document Outline

our society and bring up new forms of transportation (Fagnant and Kockelman,

2013).

Advanced driver assistance systems While fully autonomously driving cars

might be available in the future at some point, there are a lot of intermediate

steps at which a car system can make a drive more pleasant, less stressful and

safer by providing assistance in certain situations. While assistance systems like

adaptive cruise control (Winner et al., 2009), lane departure warning (Batavia,

1999) and emergency braking assistants (Yi et al., 2002) are already available to

the consumer today, the next generation of advanced driver assistance systems

will heavily rely on functionalities that enable the assistant system to interpret

situations and make accurate predictions.

Traffic surveillance systems Another field of application that can benefit from

the findings in this work is traffic surveillance (Hu et al., 2004). With perception

data from cameras mounted at intersections or highways, a surveillance sys-

tem can automatically detect abnormal behavior of drivers, traffic violations or

warn traffic participants via Car2X (Festag et al., 2008), if predictions indicate

a critical situation about to emerge. It is also possible to reconstruct the most

likely course of events after a traffic accident and to ascertain the causes that

led to it.

Data mining The decision tree learning algorithms developed in this thesis are

general regression methods and are not limited to the traffic domain. Their abil-

ity to handle large data sets and to learn from data streams incrementally makes

them applicable in the area of data mining (Ikonomovska, 2012; Gama et al.,

2003).

1.6 Document Outline

This thesis is structured as follows: Chapter 2 gives an overview of related

work and discusses the pros and cons of the different approaches. Conclu-

sions are drawn that motivate the presented approach. In Chapter 3, the de-

veloped Bayesian model and all its components are described in detail together

9



1 Introduction

with probabilistic inference techniques to make predictions. Subsequently, we

present learning methods in Chapter 4, to derive the predictive models used

to resemble the decision making of traffic participants from observations. In

Chapter 5, we describe several improved learning methods for decision trees

that were developed in the course of this thesis. Finally, Chapter 6 describes and

assesses the experiments that have been carried out to evaluate the presented

approach. We close with a summary and conclusion of the thesis in Chapter 7,

where we also analyze the limitations and suggest directions for future research.
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2 Related Work

In the last decade, the field of research of state estimation and prediction of traf-

fic situations is receiving more and more attention from the research commu-

nity due to the increasing interest in autonomous driving and advanced driver

assistance systems. This has led to a number of novel approaches and devel-

opments. The main categories in which the approaches differ are their repre-

sentation of traffic situations, the information sources they consider, the type of

reasoning that is used and the methods for deriving models. In this chapter, we

discuss the related work and draw conclusions for the requirements of a system

that is able to realistically predict the developments of traffic situations.

2.1 Multi-Target Tracking

Methods for estimating the state of multiple dynamic objects from noisy mea-

surements are subsumed by the area of multi-target tracking. The area has a

long history in research and numerous methods have been proposed (Black-

man and Popoli, 1999; Bar-Shalom, 2000). Classical approaches track the states

of objects independently by instantiating a single object tracker, e.g., a Kalman

filter, for each known object.

The main difficulty of multi-target tracking is the data association problem.

It is concerned with the association of measurements and the individual ob-

jects. It is complicated by the fact that the number of measurements does not

necessarily match the number of known objects. Techniques for handling these

cases are summarized as track management. They include the decision whether

a measurement is identified to stem from a new object or one that is already

known. Track management methods also have to decide whether multiple mea-

surements are assumed to be caused by a single object or when measurements

are treated as outliers. Existing solutions for performing data association can

be found in (Daum, 1996; Gauvrit et al., 1997; Cox, 1993; Chen et al., 2013).
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The main limitation of an approach that independently tracks objects such as

the classic approaches in multi-target tracking is that the complex interactions

that are predominant in traffic situations cannot be considered. Since the reac-

tions of road users on the actions of other road users determine the evolution of

situations, it is crucial for an accurate prediction to take the mutual influences

into account.

2.2 Dynamic Occupancy Grids

Traffic situations can be represented on different levels of abstraction. A re-

search field that uses low-level representations for tracking and predicting the

state of the environment are dynamic occupancy grids. Rather than describing

traffic situations on an object level, occupancy grids use a grid representation

which distinguishes only between cells that are occupied or not (Elfes, 1989).

The cell states are estimated as independent random variables for complexity

reasons. Static occupancy grids have been successfully uses in the area of si-

multaneous localization and mapping (SLAM) (Thrun et al., 2002) but are not

able to cope with dynamic environments such as traffic.

Several extension have been proposed to enable dealing with moving ob-

jects and changing environments. A probabilistic formulation which also es-

timates the velocity of occupied cells called Bayesian occupancy filter (BOF) is

presented in (Tay et al., 2008) and (Coue et al., 2006). In (Mekhnacha et al., 2008),

the BOF framework is extended to establish a connection to the object level by

clustering similar moving cells. The work in (Gindele et al., 2009) present sev-

eral improvements to the BOF framework called BOFUM by using a physically

more accurate transition model that also considers uncertainty in the velocity

and incorporates map knowledge. In (Brechtel et al., 2010), an efficient approx-

imate inference method for filtering in the BOFUM framework was presented.

The work of (Brechtel et al., 2009) presents an interacting multiple-model ex-

tension to the BOFUM framework.

Extensions to incorporate information from various types of sensors such as

stereo cameras and lidar sensors are presented by (Vatavu et al., 2011; Moras

et al., 2011; Adarve et al., 2012)
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The authors of (Kucner et al., 2013) present an extension to the BOF frame-

work by learning position-specific cell transition models from observations. It

is shown that this can improve the tracking accuracy. However, no ways are pre-

sented that allow generalizing the learned models to other road configurations.

Bayesian Occupancy Grids for dynamic environments are versatile tools for

estimating the state of the environment in terms of free and occupied space.

Their prediction accuracy is limited by the fact that they miss the notion of co-

herent objects and also by the independency assumption of cells. Thus, it is dif-

ficult to incorporate higher-level information such as traffic rules or object spe-

cific motion models. Some work addresses this issues by investigating hybrid

approaches that combine the occupancy grid representation with an object-

oriented representation (Laugier et al., 2011; Mekhnacha et al., 2008).

2.3 Vehicle Tracking

For tracking the motion of a single vehicle, numerous approaches have been

proposed. Simple models predict the motion solely based on the kinematic and

dynamic properties of a vehicle (Mitschke and Wallentowitz, 1972). A popular

example is the single track model (Campion and Chung, 2008). Such models are

sufficient for most tracking applications but are not eligible for accurate long-

term predictions. This is because they do not consider context information and

are solely based on the motion histories of a moving vehicle. Even in the simple

scenario where a car follows a curvy road, the future trajectories cannot be an-

ticipated correctly since nothing in the current motion state indicates the pos-

sible turn ahead.

More advanced approaches incorporate information about the road infra-

structure into the motion models. This information either stems from digital

map data or from a perception system that directly estimates the lanes from

sensor data.

(Alin et al., 2012) present a Bayesian filter approach for tracking single vehi-

cles. They utilize map data to extract probable attractor points a driver is head-

ing for. Possible driving trajectories are derived by connecting the vehicle pose

with these attractor points through spline functions. Experiments show that

improved tracking performance is reached over a Bayesian filter with a kine-
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matic model. In an extended version of the approach, a hidden Markov model

(HMM) is added to estimate behaviors such as turning left or right over time

(Alin et al., 2013).

Map data is also employed in the work of (Petrich et al., 2013) to improve

the tracking quality of individual vehicles. They present a multi-hypothesis ex-

tended Kalman filter to track the dynamic state of a vehicle. By matching vehi-

cle positions to lanes and using the center line of lanes as virtual evidence, the

predictions derived with a bicycle model are corrected to follow the course of

the lanes. Map data can significantly improve the prediction accuracy for single

cars since drivers mainly drive along roads. However, if the map data constrains

the representable motion patterns too much, it can cause inconsistencies. For

example, if drivers deviate from driving along roads or if the map data is not

accurate.

Another direction to improve the prediction of future driving trajectories is

to consider only realistic trajectories instead of all possible trajectories. The au-

thors (Hermes et al., 2009) present such an approach. They extract a set of driv-

ing trajectories from recorded driving data. For predicting future trajectories,

the current trajectory of a car is matched against the trajectory set according to

a similarity measure.

Another approach for deriving realistic driving trajectories is presented in

(Yao et al., 2012). In this work, lane change maneuvers driven by humans are

recorded and clustered into sets.

Data-driven approaches to trajectory prediction can significantly improve

the accuracy of predicting human driving behavior. Nevertheless, the discussed

approaches determine the predicted trajectories solely on the driving of a single

vehicle and therefore do not consider context information.

2.4 Goal, Plan, and Behavior Recognition

The target of goal, plan and behavior recognition is to estimate the goals, plans

and behaviors of an acting individual (agent) from a series of observations (Suk-

thankar et al., 2014). These are often combined in a hierarchical manner due to

their strong interrelationships. Knowing one these aspects provides informa-

tion about the others. Methods for solving these tasks were also investigated
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in other application domains such as human activity recognition and person

tracking (Oliver et al., 2002; Choi and Savarese, 2012; Pellegrini et al., 2009).

2.4.1 Goal Recognition

Goal recognition in the traffic domain is concerned with estimating the goal(s)

of a traffic participant. A goal is often defined in terms of a target location that

a traffic participant is intending to reach.

The authors (Dagli et al., 2003; Dagli and Reichardt, 2002) present a hierarchi-

cal approach for behavior prediction based on the motivations of drivers. They

conclude that in order to predict a drivers behavior, it is necessary to infer his

situation-specific motivations and goals. A symbolic planner is used to gener-

ate possible plans for each traffic participant. These plans are are matched to

the observed motion patterns. The approach is tested in a simulated highway

scenario with the aim of improving adaptive cruise control (ACC) functional-

ity. Due to complexity reasons, only interactions between nearest neighbors

are considered in this approach. This limits the possible scenarios that can be

assessed correctly.

For some common classes of situations such as driving at intersections or

highway driving, specific solutions have been proposed that are tailored for the

application domain. Predicting the behavior of road users at intersections is of

special importance for ADAS since they exhibit a high risk for accidents due to

the strong interactions between traffic participants.

In (Zhang and Rössler, 2009), an approach is presented which estimates the

behavior of individual traffic participants at intersections and combines these

predictions for risk assessment. The approach is structured hierarchically. In

the first stage, the probabilities of possible paths through the intersection are

derived from the lane topology of the intersection. In the second stage, the vehi-

cle dynamics are estimated with Bayesian filtering using the path information.

Possible conflicts between traffic participants are identified on the topological

level. The final risk assessment is concluded by analyzing the potential conflicts

via fuzzy rules.

The topological information of an intersection is also utilized in the work of

(Lefèvre et al., 2011) in order to predict the lane on which a driver intends to
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exit the intersection. From the topological information a Bayesian network is

derived that models the different pathways through the intersection. The esti-

mates are updated by incorporating new measurements of the position and the

turn signal state of a traffic participant. The concrete vehicle dynamics and the

influence of other traffic participants are not considered in this approach.

The authors (von Eichhorn et al., 2013) take a different approach to predict

the most likely maneuver of a single driver at an intersection. They model the

drivers decision between the possible exits of an intersection as an optimal con-

trol problem with an unknown terminal state. By solving the constrained opti-

mization problem numerically and comparing the expected costs of the possi-

ble choices, the most likely maneuver hypothesis is derived.

The discussed work in this paragraph focused on goal estimation. Reasoning

about the goals of drivers can improve the anticipation of situation develop-

ments over longer periods of time. Some of the discussed approaches are con-

ceptually constrained to intersection situations which limits their application

in other traffic situations.

2.4.2 Plan Recognition

The goal of plan recognition is to estimate the plans of an acting individual from

observations. While early work in this field only identified plans that are con-

sistent with the observations (Kautz and Allen, 1986), newer approaches also

estimate the probabilities of plans (Charniak and Goldman, 1993; Bauer, 1994)

and update the estimates when new measurements become available (Pyna-

dath and Wellman, 1995; Huber et al., 1994; Goldman et al., 1999). General hi-

erarchical methods for solving plan recognition problems are abstract hidden

Markov models (AHMMs) (Bui et al., 2002), hierarchical abstract machines (Parr

and Russell, 1998) and probabilistic state-dependent grammars (Pynadath and

Wellman, 2000). In the context of traffic scenarios, plans are often considered as

possible routes to target locations. Knowing the possible plans and their prob-

abilities provides valuable information about the possible realizations through

behavior primitives or future trajectories.

In (Pynadath and Wellman, 1995), a general Bayesian framework for plan

recognition is presented. The investigated application is traffic monitoring in
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highway scenarios. Context information is considered in the estimation pro-

cess. However, the approach is not intended for online estimation.

In (Liebner et al., 2013), a method for estimating the distribution over possible

routes of a driver for ADAS applications is presented. The set of possible routes

is extracted from a digital map. The posterior probabilities of the individual

routes are derived with a naive Bayes classifier. It combines attributes such as

the velocity profile, the indicator signal state and the gaze direction of the driver.

The authors (Patterson et al., 2003) present a high-level approach for tracking

the motion of a traveller in an urban environment. The model for predicting

the most likely routes as well as the transportation mode is learned from GPS

data using expectation maximization (EM). The tracking is realized with particle

filters. The approach is not directly transferable to predict vehicle dynamics due

to the high abstraction level of the representation.

Plan recognition can improve the anticipation of situation developments

significantly. However, it is difficult to consider all the possible interactions

between traffic participants in the plan estimation process due to the arising

complexity.

2.4.3 Behavior Recognition

Behavior recognition is concerned with estimating behavior primitives from

noisy observations. A behavior primitive can be, for instance, a lane change ma-

neuver, an emergency braking or a lane following. Main directions are discrim-

inative and generative approaches. Discriminative approaches aim to classify

the most likely behavior while generative approaches model distributions over

the set of possible behaviors (Doshi and Trivedi, 2011). The approaches differ

in the type of classifier or graphical model they apply and the categorization of

behavior primitives.

In (Aoude et al., 2011), two behavior recognition methods for application in

intersection scenarios are presented and compared. One is based on a support

vector machine (SVM) with Bayesian filtering and the other is based on hidden

Markov models (HMMs).
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The authors of (Morris et al., 2011) present an approach for detecting lane

change maneuvers of a driver. They use a relevance vector machine to detect if

a driver intends to initiate a lane change maneuver.

A multilayer perceptron-based approach to behavior recognition and pre-

diction is presented in (Ortiz et al., 2011a). The training examples are derived

from recorded vehicle data and are automatically labeled according to heuris-

tics. The approach is evaluated in signaled intersection scenarios with the goal

of predicting the driving and stopping behavior of a driver.

A generative approach to behavior recognition in highway scenarios is pre-

sented in (Kasper et al., 2011). Traffic situations are modeled with object-

oriented Bayesian networks. The classification of lane change maneuvers is

based on vehicle-lane and vehicle-vehicle relations.

Another generative approach based on conditional random fields for estimat-

ing driving behaviors at intersections is presented by (Tran and Firl, 2012).

A method for detecting lane change maneuvers in highway scenarios is in-

vestigated in (Tsogas et al., 2008). Dempster-Shafer theory is used to identify

the maneuver type of a driving vehicle based on a relational description of the

environment.

A hybrid approach that combines the output of a SVM with Bayesian filter-

ing is presented in (Kumar et al., 2013). Based on ego-vehicle data and a lane

tracker, the probabilities for lane change maneuvers are estimated.

Other methods have been applied to the task of behavior recognition such as

probabilistic finite-state machines and fuzzy logic (Hulnhagen et al., 2010) and

extreme learning machines (Demcenko et al., 2008).

Behavior recognition can be a useful component for predicting future situ-

ation developments. However, most discussed approaches do not make the

connection between behavior primitives and distributions over the possible re-

sulting driving trajectories. Grounding the symbolic level of behaviors on the

continuous level of vehicle dynamics is important for predicting the quantita-

tive properties of vehicles such as their position or heading. This is essential,

for example, for the task of motion planning.
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2.4.4 Situation Recognition

Situation recognition is concerned with identifying the type of situation a traffic

participant is facing. Situation classes take the constellations of multiple traffic

participants into account. Knowing the type of a situation allows making pre-

dictions of the traffic participants’ behaviors. The abstraction level of the distin-

guished situations in the recognition process and their meaning depends on the

type of application and varies in the literature. For instance, an ADAS may dis-

tinguish between critical and uncritical situations in a highway scenario. From

a critical situation, it can predict that a driver will most likely brake or initiate

an evasive maneuver in order to prevent an accident.

In (Meyer-Delius et al., 2008), a relational HMM is used to recognize differ-

ent classes of traffic situations based on a semantic representation. The esti-

mations of a Bayesian filter for tracking the vehicle dynamics serve as input to

update the distribution of situation hypothesis on the semantic level. Exper-

iments of simulated overtaking maneuvers are conducted where the situation

classes passing, aborted passing and follow are recognized. Extensions to this

approach are developed in (Meyer-Delius et al., 2009).

A generative approach for predicting vehicle motion that considers contex-

tual information is presented in (Agamennoni et al., 2012). Based on feature

functions that evaluate situational aspects, the types of situations are classified.

Depending on the type of situation, the parameters of the motion models are

conditioned. They present inference techniques for the probabilistic approach

together with parameter estimation techniques for optimizing the recognition

of context classes. The approach is evaluated for the task of tracking mining

vehicles.

To recognize the class of situation a road user is facing, (Bonnin et al., 2012)

propose using a decision tree. The hierarchy of situations and their discrimi-

nation functions are manually constructed. Each situation class is associated

with a specific classifier that is used to predict the behavior of a traffic partici-

pant. Results of experiments at the entry of a highway are presented where the

situation classes Entrance Enter and Entrance Giveway are distinguished.

The authors of (Ortiz et al., 2011b) present a prediction system on the level

of behavior primitives. The situation types are classified with a manually con-
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structed rule set. For each type of situation, a multilayer perceptron is trained

on the basis of a feature-based situation representation in order to predict the

next behavior primitive.

In the work of (Käfer et al., 2010), intersection situations are classified. A

polynomial classifier is used to identify the types of situations with two cars.

Depending on the situation class and the motion history of the cars, possible

driving trajectories are predicted based on a set of recorded trajectories.

An approach for situation threat assessment is presented by (Eidehall and Pe-

tersson, 2008). They use a probabilistic driver model and lane-based tracking to

predict probable future driving trajectories with Monte Carlo sampling. Threat

measures are calculated on the set of probable future situations in order to iden-

tify critical situations.

A special case of situation recognition is investigated in (Batz et al., 2009).

They classify situations types for groups of cooperative vehicles that communi-

cate with an application to threat assessment.

Recognizing specific types of situations can improve the prediction process.

The main challenge involved is defining a consistent set of situations and

drawing the connections to probable resulting behaviors of traffic participants.

While the results look promising for specific scenarios like intersections, it is dif-

ficult to find an exhaustive set of situations that covers all possibilities of traffic

situations.

2.5 Urban Challenge

In 2007, the Defense Advanced Research Projects Agency (DARPA) initiated a

competition named Urban Challenge to demonstrate and benchmark the state-

of-the-art in autonomous driving (Buehler et al., 2009). In contrast to its prede-

cessors, the Grand Challenge 2004 and 2005 (Buehler et al., 2007), the focus was

on driving in an urban scenario rather than driving in unstructured environ-

ments like deserts. The competing self-driving cars had to drive a 96 km course

fully autonomously. The main goals for the participating systems were to com-

ply with traffic rules and to complete the course as fast as possible without in-

cidents.
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Most of the finalist teams used a state machine approach for interpreting situ-

ations and deriving behavior decisions (Urmson et al., 2008; Montemerlo et al.,

2008; Bohren et al., 2008; Bacha et al., 2008; Miller et al., 2008; Kammel et al.,

2008). An exception to this approach was presented by (Rauskolb et al., 2008),

which used a voting based approach called DAMN for deriving driving decisions

(Rosenblatt, 1997).

The Urban Challenge showed that fully autonomous driving is possible in

simplified scenarios. The complexity of the encountered situations was low

compared to inner city traffic situations with lots of interacting road users and

other moving objects. Another aspect that simplified the driving task was the

availability of accurate digital maps of the courses. Due to the manageable com-

plexity of situations, manually modeled state machines proved as a successful

method in the Urban Challenge. However, scaling these approaches to the com-

plexity of real traffic is not trivial and may require different methods.

2.6 Requirements

Concluding from the analysis of the state-of-the-art, we derive the following

requirements for a method that is able to predict the development of traffic sit-

uations with high accuracy from a series of noisy measurements:

1. Consideration of uncertainty

2. Consideration of mutual influences

3. Consideration of multiple abstraction levels

4. Integration of information

5. Application of data-driven models

Consideration of uncertainty Since the environment is only partially observ-

able through noisy measurements, the current state cannot be determined with

full certainty. Additionally, the development of a situation is uncertain. As a

consequence, the uncertainties have to be considered in all aspects of the state

estimation and prediction process.
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Consideration of mutual influences A crucial aspect for understanding and an-

ticipating driving behavior is the consideration of mutual influences between

road users. Traffic participants continuously interact in traffic, which effects

the behavior of each traffic participant. In congestions, for example, driving is

mainly determined by the actions of the surrounding cars. Other examples are

lane change maneuvers, merging or driving through intersections.

Consideration of multiple abstraction levels In order to predict a traffic situa-

tion accurately, it is beneficial to combine a continuous representation of ba-

sic properties such as positions of road users with a more abstract, symbolic

representation, for instance, the right-of-way relationship between traffic par-

ticipants or their intended driving routes. Purely symbolic representations of

traffic situations suffer from discretization errors while purely continuous rep-

resentations are not well suited to express symbolic relationships.

Integration of information To interpret situations right, it is important to

take all relevant information into account. Combining different information

sources, such as map data, road user measurements, measurements of the road

infrastructure and traffic regulations allows drawing the right conclusions. For

example, to determine who has right of way, it is necessary to know the road

network configuration, the state of traffic participants and the applying traffic

rules.

Not only is it important to take multiple information sources into considera-

tion but also to integrate the information over time, i.e., to fuse new measure-

ments with the existing knowledge about the environment in an ongoing pro-

cess. Since the environment is only partially observable, the integration can re-

duce the uncertainty about the state of the environment and, therefore, allows

making more accurate predictions.

Application of data-driven models In consequence of the complexity of traffic

situations and the manifold of possibilities, it is beneficial to derive prediction

models from data rather than from expert knowledge alone. Deriving models

from traffic observations enables realistic and consistent models. Since the dy-

namics of traffic are only partly understood, manually formulated models are
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limited in their scope and accuracy. In addition, data-driven models have the

advantage of potentially scaling to new situations and handling general changes

in behavior patterns.

2.7 Conclusion

In this chapter, the related work in the state-of-the-art of state estimation and

prediction in the context of traffic scenarios was discussed. Related work in the

subdomains of behavior recognition, situation recognition and plan recogni-

tion was analyzed. We discussed the pros and cons as well as the limitations

of the approaches and derived a set of requirements that enable the prediction

of traffic situations from noisy measurements. While some of the proposed re-

quirements are met by state-of-art approaches, none of the discussed work sat-

isfies them all. The majority of approaches does not model the interactions be-

tween traffic participants. Only few works investigate the learning of prediction

models that are able to generalize well. In this thesis, we develop an approach

that meets all the identified requirements.
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Situations

We present a hierarchical Bayesian model that resembles the decision mak-

ing of traffic participants in order to anticipate future developments of traf-

fic situations.

3.1 Approach

This thesis tackles the problem of estimating the current state and predicting

future developments of traffic situations based on histories of noisy measure-

ments. We approach this problem by modeling the evolution of traffic situa-

tions as a stochastic process. The fully probabilistic treatment enables dealing

with the noise in the measurements and, more importantly, reasoning about

latent aspects that are not directly observable. Aspects of interest are for ex-

ample, the internal states of drivers, which involve their goals and plans. The

stochastic process is represented by a dynamic Bayesian network (DBN) (Mur-

phy, 2012; Koller and Friedman, 2009), which represents the different aspects of

a situation as random variables. These are connected through conditional dis-

tributions that comprise the models of the DBN. A temporal slice of the network

represents the state of the environment at a specific time, i.e., a situation.

The key part of the DBN are the models. They define the semantics of the DBN

and determine the relationships between the random variables. We use a com-

bination of automatically learned and manually formulated models. By com-

bining prior domain-specific knowledge with knowledge learned from data, we

obtain a system that is able to generalize to a wide variety of situations. The

basic idea behind the Bayesian model is the recursive formulation of the rea-

soning and decision making process of the traffic participants. By taking the
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perspective of each traffic participant, it is possible to reason about what an av-

erage driver would do in their position. With a fully defined Bayesian model

of the stochastic process, distributions over current, future and past states of

the environment given the evidence can be obtained by means of probabilistic

inference methods.

In the following sections of this chapter, we develop a Bayesian model for

the stochastic process and derive a suitable Monte-Carlo inference method for

probabilistic reasoning. We first present a general model for plan recognition

for multiple agents and with multiple layers of abstraction (Section 3.2). This

model brings out the general idea behind the approach and is applicable in

other domains as well. We then develop a specialization of this model for the

traffic domain in Section 3.3. It addresses the domain specific properties and

is tailored to support the policy model learning presented in Chapter 4. In Sec-

tion 3.4, we derive probabilistic inference formulas for this model based on like-

lihood weighting to solve state estimation and prediction tasks. Based on the

developed Bayesian predictive model, we outline in Section 3.5, how it can be

embedded in Markov decision processes to solve stochastic decision making

problems, e.g., for autonomous driving.

3.2 Hierarchical Policy Recognition Model for Multi-Agent
Environments

In traffic constellations, there are a number of traffic participants involved, also

called agents, which are assumed to act in order to achieve some goals, for ex-

ample, to reach a specific location in a safe and comfortable way. Each agent

is confronted with a sequential decision making problem, forcing him to con-

tinuously take actions until he reaches a terminal state, e.g., his final destina-

tion. Since we assume agents to act rationally, each agent chooses the action

that he thinks is best to reach his goals w.r.t. to the current situation. Each ac-

tion influences the state of the environment and thereby, the overall situation

development. Even though each traffic participant makes choices on his own,

their actions are highly coupled over time since any change of the environmen-

tal state can influence the decision making of the other agents. Examples for

this interrelation range from cars that decelerate to keep a safety distance to
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slower driving cars, yielding at intersections to more subtle actions like extend-

ing a gap to provide a car enough space to merge in safely. In order to make

accurate predictions of situation developments, interactions are considered in

our model.

To model the decision making of road users, we adopt the concept of policies

from Markov decision process (MDP) (Bellman, 1957; Puterman, 2009). A pol-

icy describes a mapping from states of the world to actions. In the field of rein-

forcement learning (Sutton et al., 1999), where MDPs are often used to describe

the sequential decision making, policies are often modelled not as determinis-

tic functions but as conditional distributions which define, how likely it is for an

agent to execute a specific action for every possible state. We adopt this form of

stochastic policies.

To be more precisely, we use a hierarchy of stochastic policies to describe the

decision making of road users. If policies are allowed to be actions themselves

(i.e. a policy can invoke other more refined policies), it is possible to build pol-

icy hierarchies. These hierarchies define the decision making of an agent on

different abstraction levels comparable to plan hierarchies in classical planning

(Sacerdoti, 1974) where high-level plans can execute sub-plans to handle spe-

cific parts. Policies of this kind are called abstract policies, a term coined by (Bui

et al., 2002) in their work on AHMMs. The hierarchical ordering of policies can

yield compact representations and policy hierarchies are in most cases easier

to learn than a complex flat policy (Osentoski et al., 2004).

As a general model for policy recognition and prediction in multi-agent envi-

ronments with a continuous state space, we propose the DBN depicted in Fig-

ure 3.1. The model consists of the states of the agents X , their policies Π to-

gether with termination nodes T , context nodes C and observations Z . Each

random variable stands for a vector of nodes with one instantiation for each

agent. Temporal dependencies are depicted as dashed arcs (directed edges)

and direct dependencies within a time step are shown as solid arcs. The DBN

is structured in n abstraction layers. On the lowest level, the state and ac-

tion space is continuous, whereas on the higher levels, the spaces are discrete.

Higher order policies control the selection of lower order policies. On the low-

est level, the policies are primitive actions, which are executed for one time step.

The higher the abstraction level the longer the policies are potentially executed.

27



3 State Estimation and Prediction of Traffic Situations

Z

le
ve

l o
f a

bs
tra

ct
io

n

Π1

Π2

Πn

Π3

T 2

T 3

Tn

C3

C1

C2

Cn

X1

X2

X3

Xn
...

  

...
  

...
  

...
  

...
  

Termination

Observation

State

Policy

Action

State

State

State

Policy

Termination

Termination

Policy

Context

Context

Context

Context

Figure 3.1: Hierarchical policy recognition and prediction model for multiple agents
with n layers of abstraction. Solid arcs represent direct dependencies and
dashed arcs represent temporal dependencies. Higher order policies con-
trol the policy selection on the levels below. The decision making of the in-
dividual agents is coupled through the context nodes.
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The termination nodes have the function to detect if the policies of the corre-

sponding level and the levels below have reached a terminal state. In this case,

a policy transition is triggered. To give an illustrative example from the robotics

domain, the hierarchization of the model for describing a robot arm executing

manipulation tasks could look like follows: On the lowest level, the actions are

the motor controls for the joints. On the second level, the policies form basic

primitives like pick and place operations and on the highest level, the policies

are higher order behaviors like the assembly steps for building a machine.

As shown in the structure of the DBN, it is assumed that only the low-level

states X 1 of the agents are observable through measurements Z and even that

only partially. Especially the executed policies are not directly observable. How-

ever they can be inferred over time through their indirect coupling with the

agent states by reasoning from state changes to underlying causes.

The context nodes play an important role in this model. They serve two pur-

poses. First, they describe the overall situation from the perspective of each

traffic participant and second, they evaluate features from the configuration of

agent states. Since the context nodes also depend on the policies of the other

agents, their behavior is taken into account in the interpretation of the situa-

tional context and therefore, they directly influence the decision making of each

agent. Figure 3.2 shows parts of the detailed structure of the model for multiple

agents and the dependencies between context, state and policy nodes. Without

the context nodes each agent would be treated independently and interactions

could not be considered. We already made the point that this is a crucial re-

quirement for making accurate predictions.

This model can be seen as a generalization of AHMMs that extend their use to

multi-agent scenarios and domains with continuous state and actions spaces.

In the next section, it is shown how this general model can be further developed

for the traffic domain.
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Figure 3.2: Detailed structure of the lowest level of the general DBN model with nodes
instantiated for m agents. The policy choices of an agent depends on his
context that subsumes the situation he is facing in a feature representation.
The connections to the higher levels are omitted to prevent clutter.

3.3 Bayesian Model

To model the decision making of traffic participants in traffic situations, we use

a policy hierarchy with three layers: Goals, plans and actions. The highest and

most abstract layer considers the intermediate goals of a driver in form of target

locations, like a junction of an intersection or a highway exit. The second layer

is concerned with the routes a driver pursues to reach his goals. Depending on

the situation, some routes are more likely than others. The primitive actions

that a driver can conduct, namely steering and accelerating, form the lowest

level. Depending on the overall situation, the drivers conduct actions that lead

to driving trajectories that follow their planned routes in order to reach their

goals. Figure 3.3 illustrates the relationships between goals and routes.

In the following subsections, we develop the Bayesian model for describing

traffic episodes as a stochastic process and give details to all aspects. We first

define the state spaces of the random variables governing the Bayesian model

(3.3.1) and then explain the structure of the DBN (3.3.2) and finally define the

models (3.3.3). The resulting Bayesian model can be used in multiple ways by

solving the corresponding inference task:
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Goal area 2

Goal
area 1

starting 
position

possible 
routes

Figure 3.3: Illustration of the many possible routes a driver can take to reach one of
the goal areas in an intersection scenario. The Bayesian model we are pre-
senting reasons about the goals of drivers and the probabilities of choos-
ing routes to reach their goals. (Aerial image provided by (City of Karlsruhe,
2010)).

State estimation Based on a history of measurements, the distribution over the

current state of a situation can be inferred.

Policy recognition As a by-product of state estimation, distributions over the

goals and plans of traffic participants can be derived.

Predictions Starting from a given situation, possible future developments can

be inferred together with their probability of actually happening.

Reconstruction Distributions over past traffic states or only the most likely state

sequence given a history of noisy measurements can be obtained with

smoothing methods.

3.3.1 State Space

The joint state space of the Bayesian model consists of random variables de-

scribing the different aspects of a situation. The joint state space comprises
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a mixed space combining states of continuous, discrete and categorial nature.

The Bayesian model consists of the listed variables:

X traffic participants’ states

Z measurements

C situational context

ΠA,ΠR ,ΠG action, route and goal policies

T R , T G policy termination states

M road network

All these aspects are taken into account to improve the prediction accuracy.

In contrast to approaches that neglect the road network structure or predict

the behavior of road users independently, interpreting situations and reason-

ing about the intentions of others can significantly reduce the uncertainty of

predictions. Figure 3.4 schematically illustrates the resulting prediction uncer-

tainty when different sources of information are used in the reasoning process.

In the first case (a), the motion of a car is predicted based only on its current

velocity and orientation. Since all possible motions have to be considered, the

uncertainty in the prediction is very high. Taking into account the lanes and the

prior knowledge that cars mostly drive on lanes improves the prediction accu-

racy substantially (b). However, the risk of an accident is not assessed correctly

if the road users are predicted independently (c). If the context is additionally

considered in the reasoning process together with knowledge about traffic regu-

lations and how these regulations affect the decisions of drivers, the predictions

become more realistic (d).

The random variables of the Bayesian model are defined in the following sub-

sections. For clarity, we describe the semantics of the random variables for a

single traffic participant indexed by the variable i at the time step t without loss

of generality. The resulting dynamic Bayesian network for a situation comprises

an instantiation of these random variables for all n traffic participants which are

coupled through the models (3.7). For example, the context of a traffic partic-

ipant takes the states of all others into consideration. This is one aspect that
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(a) prediction without map. (b) prediction with map.

(c) prediction without context. (d) prediction with context.

Figure 3.4: Schematic illustration prediction capabilities when considering different as-
pects of the environment. If the structure of the road network is not consid-
ered, the prediction has to account for all possible movements, which leads
to a high degree of uncertainty (a). Taking the road network into account
improves the prediction accuracy (b,c). Only when context is taken into ac-
count, it can be predicted that the left car will most likely stop due to right-
of-way regulations (d).

differentiates this approach from classical multi-target tracking, where objects

are tracked individually.

Conventions To prevent clutter in the notion of the random variables, we

omit the index i that refers to the i’th traffic participant and the time index

t whenever there are no ambiguities. Consequently, where not stated other-

wise, X stands for X (t )i . To refer to random variables from the previous time

step t − 1 we use the notion X −. We also use the short form X1:n to de-

note the vector
�

X1, X2, . . . , Xn

�

and X1:n\i for the vector X1:n without X i , i.e.,

X1:n\i =
�

X1, X2, . . . , X i−1, X i+1, . . . , Xn

�

.
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Traffic participants’ states X

A state x of a single traffic participant is described by his position
�

x1, x2

�

, head-

ingψ (orientation) and velocity v in a global world frame (see Figure 3.5). The

state also comprises the width w and length l of the bounding box, enclosing

the shape of the traffic participant. The position of a traffic participant coin-

cides with the center of his rear axle in compliance with the motion model we

use (3.3.3). The state is defined as

x =
�

x1, x2,ψ, v, w , l
�

T ∈R6 .

w
l

(x1, x2)

x1

x2

O

v

px1, x2q ψ

Figure 3.5: Representation of a traffic participants’ state.

Measurements Z

We assume that all basic states of a traffic participant can be measured directly

with noise, such that Z and X have the same domain, yielding

z =
�

x1, x2,ψ, v, w , l
�

T ∈R6 .

We abstract in this work from specific sensors and their preprocessing of the

raw sensor data to keep the model more general. The specific characteristics
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of a sensor are incorporated in the measurement model that also specifies the

noise of the sensor.

Road map M

The road map is given as graph as described in the Appendix A.1. The road map

is assumed to be known and accurate. It therefore must not be part of the state

space and can be used implicitly in the models. The graph consists of vertices

and edges representing geospatial points and ways. Since we focus on traffic

participants driving on roads in this work, we only consider edges representing

lane segments in the following. The geometry of a lane is approximated by lane

segments with rectangular shapes. While other representations exist that better

account for the curved nature of roads, this approximation offers some bene-

fits like fast lookups when matching traffic participants to lanes. The set of all

lane segments is denoted asL . Relations between lane segments describe the

nature of their relationship, e.g., if lanes are adjacent or crossing. These rela-

tionships are queried via helper functions and become useful in the definitions

of the models.

Action Policies ΠA

The actions represent the traffic participants’ influence over their own motion

by controlling their yaw rate ω and acceleration a . Other actions of minor in-

fluence on the development of a situation, like activating the headlights or the

windshield wipers are not considered in this work. The action policies are de-

fined as

πa =
�

a ,ω
�

T ∈R2 .

Route Policies ΠR

The route policies form the intermediate level of abstraction and connect the

strategical goal policies layer with the tactical action layer. A route policy is rep-

resented by a route that leads towards a goal area that a driver wants to reach.

A route is a sequence of lane segments that comprise a valid path in the route

network graph. This means that the lane segments along the path are directly

connected and that there exist drivable transitions between them. Figure 3.3
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shows an example, illustrating the possible paths and goals in an intersection

scenario.

Routes abstract from the specific dynamics and give rise to many different

realizations by the action layer, i.e., they make no proposition about the trajec-

tory of a car along the route. The concrete trajectories are chosen by the action

policy model depending on the actual situation. Routes thereby contain no in-

formation on how fast a driver will drive along the route or if he will drive in

the center of the lane or more at the boundary. What they provide is a frame in

which a driver is going to act together with the transitions like lane changes nec-

essary to reach the end of the route. Based on the routes, it is possible to derive

which traffic participants are possibly going to interact but not when. Therefore,

additional information from the action layer has to be considered. By abstract-

ing from the dynamic realization, routes are not as volatile as trajectories and

provide more dependable information for longer prediction horizons.

The set of all routesR is derived by enumerating all possible ways from each

lane segment to each lane segment of each goal region. Depending on the

branching factor of the road network graph, the set can become quite large. We

reduce the set to a manageable size by using a finite planning horizon and con-

sidering only routes up to a length of h lane segments. This also guarantees that

the set is finite. Formally, the set of routes is given by

R = {〈l1, l2, . . . , lh 〉 | (∀k ∈ {1, . . . , h} : lk ∈L ) ∧

(∀k ∈ {1, . . . , h −1} : transition(lk , lk+1) ∧ lk 6= lk+1)} . (3.1)

The function transition(lk , lk+1) queries the route network graph to determine if

there exists a valid transition between lane segment l1 and l2, i.e., it tests if the

lane segments are geometrically connected, so that it is possible to drive directly

from l1 to l2. The route policies are defined through the set of routes πR ∈R .

Goal Policies ΠG

The goal policies form the highest level of abstraction. The set of goals G de-

scribes regions that are potential targets of drivers. The regions are derived from

the road network graph by clustering larger groups of adjacent lanes. The clus-
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Figure 3.6: Partitioning of a road network graph into goal regions.

tering forms a partitioning of the set of lanes, i.e., it dividesL into sets that are

mutually exclusive and collectively cover all elements ofL . We use a criterion

that clusters lanes which head into the same direction and start a new region

as soon as lanes split up or merge. For example, the junctions of an intersec-

tion form goal regions to enable the estimation of the most likely exit junction a

driver is heading to. Figure 3.6 shows a route network graph and the partitioning

into goal regions. The connectivity between goal regions is directly derived by

examining the connectivity between the associated lane segments in the road

network graph. The goal policies are defined through the set of goals πG ∈G .

Policy Termination States T G , T R

The termination states are binary random variables, indicating if a policy has ei-

ther reached a terminal state or is continued. For example, in the case of route

policies, the termination state is set to true, if the traffic participant deviates

from the planned route. In that case, a new new route has to be chosen in ac-

cordance to the goal policy. State t G indicates the termination status of the goal

policy and t R that of the route policy:

t G , t R ∈ {true, false} .
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Context C

The context describes the situation from the perspective of a traffic participant

through relations. The representation of the context is heterogeneous and com-

bines features of continuous, discrete and categorial nature. It provides a high-

level level representation of the situation as the basis to resemble the decision

making of each traffic participant and support the learning of the policy mod-

els. The relations are extracted by feature functions from low-level information

and background knowledge. For example: Based on the position of each traffic

participant together with the road network configuration and the traffic rules,

one can derive the right-of-way relations between traffic participants at an in-

tersection. Knowing the right of way relationships provides strong cues on how

the traffic participants are going to act. Section 3.3.3 explains the feature func-

tions and dependencies in detail.

The context is further factorized into several random variables, describing

features of a traffic participant as well as relations between traffic participants

and their planned routes. The context C =
�

C L , C R , C X
�

comprises the follow-

ing elements:

• C L : The current lane

• C R : The features of the planned route

• C X : The relations between traffic participants and their planned routes

The elements are described in the following paragraphs and in Section 3.3.3,

which defines the corresponding models for the calculation of the context fea-

tures.

Current lane C L The current lane or more precisely, the current lane segment,

is the one lane segment that the vehicle is currently on, i.e. c L ∈L . Since a car

can be physically on several lanes at the same time, e.g., in intersections, the

lane segment a car is currently on means in this context, the lane segment that

servers as the main spatial guidance for the driver.

Route features C R The route features describe the properties of the planned

route of a traffic participant. These properties are described through relations
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R N between the lane segments of the route as well as relations R L between the

traffic participant and the lane segments of the route.

The relations between lane segments describe how consecutive lane seg-

ments of the route are connected in the route network graph, e.g., if a lane di-

rectly proceeds another or is an adjacent lane, making it necessary to change

lanes. The intended driving direction is also considered, which makes it pos-

sible to distinguish a normal lane change from an overtaking maneuver, where

the car has to drive on an oncoming lane in the opposite direction.

The other features describe relations between the traffic participant and the

lane segments of the planned route together with features of the individual

route segments. Features of a lane segment comprise the width and the length,

the type of lane boundaries, the type of lane and everything else that is specific

for this segment. Regulations like speed limits or the state of traffic lights are

directly mapped to the lane segments to which they apply and appear as lane

features. The route feature vector is given by

c R =
�

r N
1:h−1, r L

1:h

�

.

Relations between traffic participants C X The most important aspects to rea-

son about the interactions between traffic participants are the relationships be-

tween traffic participants. The vector c X comprises the relations between traffic

participant i and all other traffic participants. It is defined as

c X =
�

r X
i ,1:n\i

�

with ri , j being a feature vector of relations between the i ’s and j ’s traffic partic-

ipant.

The set of relations between traffic participants ranges from basic relations,

such as their relative distance, their difference in speed and their relative orien-

tation, to complex ones like right-of-way relations and relations that take into

account the planned routes of traffic participants. An important relation of this

type is the interaction between routes, which is described in more detail in Sec-

tion 3.3.3. It tells how routes interrelate, e.g., if they overlap, merge or doesn’t in-

tersect at all. Taking intended routes into account can significantly improve the
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expressiveness of relations. For example, a common time-to-collision (TTC) es-

timate (Hayward, 1972) becomes more accurate when relaxing the assumption

of a constant heading and considering the intended driving corridor instead.

Another important class of relations are traffic rule relations. Based on the

current positions, the planned routes and the overall road network graph, traffic

rules can be evaluated and relations like right-of-way can be inferred.

The list of relations named so far comprising the context of traffic participant

is by far not exhaustive. And while we give more examples and details on rela-

tions in Section 3.3.3, many more are thinkable and have been proposed in the

literature. See for example (Bonnin et al., 2012) and (Demčenko et al., 2009).

The important aspect to keep in mind is that the context features provide the

basis for explaining the behavior decisions of traffic participants. Any useful

information included in the context can foster the learning process of the pol-

icy models and thereby improve generalization.

3.3.2 Dynamic Bayesian Network Structure

With the state spaces of the random variables defined, we can now define the

state space of a situation by joining them together. The joint distribution over

all states comprising a situation s is given by

P (S ) = P (X , C ,ΠG ,ΠR ,ΠA, T G , T R ) . (3.2)

The random variables are all vectors of random variables, joining together the

instances of the individual traffic participants. The development of a situa-

tion over a period of T time steps can be described as a sequence of situations

s (t ). The joint distribution is P (S (1:T )). We assume that the process is first order

Markovian, i.e., P (S (t )|S (1:t−1)) = P (S (t )|S (t−1)) (Murphy, 2002). The joint distribu-

tion then factorizes to

P (S (1:T )) = P (S1)
T
∏

t=2

P (S (t )|S (t−1)) . (3.3)
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If we consider the situations together with the measurements z1:T and assume

that the measurements are conditionally independent knowing the true state of

a situation, the overall joint distribution factors as follows

P (S (1:T ), Z (1:T )) = P (S (1))P (Z (1)|S (1))
T
∏

t=2

P (S (t )|S (t−1))P (Z (t )|S (t )) . (3.4)

The conditional joint distribution P (S (t )|S (t−1)) can be further decomposed

under assumptions of conditional independence and factors as follows

P (S |S−) =

P (X , C L , C R , C X , T G ,ΠG , T R ,ΠR ,ΠA |X −,ΠG−,ΠR−,ΠA−) =

P (C L |X ,ΠR−)
︸ ︷︷ ︸

lane matching model

P (C R |X ,ΠR )
︸ ︷︷ ︸

route context model

P (C X |X , C R ,ΠR ,ΠA−)
︸ ︷︷ ︸

relations model

P (ΠG |X , C L , T G ,ΠG−)
︸ ︷︷ ︸

goal policy model

P (T G |C L , T R ,ΠG−)
︸ ︷︷ ︸

goal termination model

P (ΠR |X , C L , C X−,ΠG ,ΠR−, T R )
︸ ︷︷ ︸

route policy model

P (T R |C L ,ΠR−)
︸ ︷︷ ︸

route termination model

P (ΠA |X , C R , C X ,ΠR ,ΠA−)
︸ ︷︷ ︸

action policy model

P (X |X −,ΠA−)
︸ ︷︷ ︸

motion model

. (3.5)

The factors of the conditional joint distribution form the models of the overall

Bayesian model.

Figure 3.7 shows the resulting structure of the dynamic Bayesian network rep-

resenting the development of traffic situations as a stochastic process. The net-

work is organized hierarchically in the order of the considered abstraction lev-

els. On the highest level, the goals are allocated. They represent the target ar-

eas, which traffic participants are trying to reach. On the intermediate level,

corresponding routes represent feasible ways to the goals but do not consider

the concrete dynamics of the objects. These are considered on the lowest level

through the actions of the traffic participants. All decisions of the traffic partic-

ipants, resembled on the different levels of abstraction, are influenced by their

situational context. Only basic features of traffic participants can be measured,

like their position or orientation. The higher level decision making states are
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Figure 3.7: DBN representation of the policy execution and recognition model for mul-
tiple interacting traffic participants. The decision making is modelled on
three abstraction levels. On the highest level, the goalsΠG of the traffic par-
ticipant influence their route choices ΠR on the intermediate level, which
in turn determine their situation-specific action choices ΠA on the lowest
level. All decisions are grounded on the context information (C L , C R , C X ).
From all the nodes in the DBN, only the basic road user states X are observ-
able through the measurements Z . All other aspects have to be inferred over
time.
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not directly observable and can only be indirectly deduced by integrating infor-

mation over time.

The models are even further factorized as shown in the Figure, since most

models only depend on the aspects of a single traffic participant. The

coupling of traffic participants mainly happens through the context model

P (C X |X , C R ,ΠR ,ΠA−) that takes all traffic participants into account. After de-

scribing all the models in the following sections in detail, we will show how to

perform inference in the DBN in Section 3.4.

3.3.3 Models

This section addresses the models of the DBN (Figure 3.7). The models have the

form of conditional distributions and relate the random variables of the DBN to

each other. Besides the definitions, we provide insights and the reasons that led

to the specific modeling choices.

Context Models

The context models establish the relationships between all relevant aspects of a

situation and makes them explicit in form of relations. These relations describe

the situation from the perspective of each traffic participant. The features used

to describe a situation are derived using all the given information from the last

and current estimate together with background knowledge such as map data,

traffic rules and geometrical and physical principles.

The reason for making these relationships explicit are twofold. First of all, for

some applications, these relations are directly of interest. A lane change assis-

tant for instance requires the information whether other cars are blocking the

target lane and also their relative velocities to decide if a lane change is safe.

The main reason nonetheless is to provide background knowledge to the

learning process, which we present in the next chapter (4), and thereby enabling

and improving generalization. This works in multiple ways. Since the context

directly feeds into the action policy model, the context features form the basis of

decision making. By providing non-linear, information rich features, the learn-

ing problem itself is simplified, since the relationship between situations and

chosen actions can be captured more easily by the learning algorithm. For ex-
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ample, a resulting stopping maneuver can be expressed much easier by a policy

model for a multitude of traffic constellations if features such as right-of-way re-

lations are directly available. While such non-linear dependencies could also, in

principle, be learned, making the context models obsolete, a lot more data and

the right inductive bias would be necessary to achieve the same generalization

accuracy (Domingos, 2012).

The information extraction and interpretation in form of context features is

especially useful for making map knowledge accessible to the learning algo-

rithm. If the whole map would be presented in raw encoding, it could not be

expected that useful dependencies are learned that generalize to other maps

with current state-of-the-art methods. But since background knowledge about

geometrical concepts is available, we can supply geometrical features derived

from the map data to the learner, facilitating it to find concepts that generalize

to other maps and road configurations.

As stated in definition of the state spaces (Section 3.3.1), the context C is sub-

divided into three types of random variables, namely the current lane C L , the

features of the current route C R and the relations between the traffic partici-

pants C X . The corresponding models are defined in the following three sec-

tions.

Lane Matching Model P (C L |X ,ΠR−)

The lane matching model defines a conditional distribution over all lane seg-

ments of the route network. It quantifies the probability of a traffic participant

being on a specific lane segment.

This association step is necessary to establish the connection between the

traffic participants represented in a global word frame and the map data. A traf-

fic participant can be on several lane segments at the same time but only one

serves as the main spatial guidance at a time. Only the lanes with geometries

that intersect with the shape of the car can have a probability greater than zero

and are called matching candidates. Figure 3.8 shows an example of the lane

matching in an intersection. The shape of the red car intersects with multiple

lanes depicted in green. These lanes are the possible matching candidates, all

other lanes have zero probability. Depending on the driving area, the number of
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Figure 3.8: Illustration of the lane matching. Lane segments that serve as matching can-
didates marked in green. The probabilities are assigned depending on the
planned route and the position and orientation relative to the lane segments
frames. Lane segments that do not intersect with the car shape have a prob-
ability of zero.

candidates can vary widely. In intersections with many overlapping lanes, there

are far more candidates than for example on a highway, where the mapping is

unambiguous most of the time. In case that a traffic participant leaves the de-

fined area of the route network, e.g., if exiting a lane to drive into a garage, the

search radius is expanded and the lanes next to the current location are consid-

ered.

The conditional distribution is defined as follows

p (C L = l |x ,πR ) =



















pm if intersect(x , l )∧ l ∈LπR

σ(l |x ) if intersect(x , l )∧>l j ∈L : (intersect(x , l j )∧ l j ∈LπR )

0 otherwise .

(3.6)

The helper function intersect(x , l ) evaluates to true iff the shape of the lane seg-

ment l intersects with the shape of a traffic participant determined by x . The

setLπR denotes all lane segments that are part of the planned route πR .

Three cases are distinguished in the definition of the distribution. The first

one is the most relevant and ensures consistency of the matched lane with the

planned route of a traffic participant: i.e., if some of the matching candidates

coincide with segments of the planned route, then only these have a probability
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greater than zero and are equally probable, which is expressed by the constant

pm . If a traffic participant has departed from his planned route, then the prob-

ability of a matching candidate relies on the relationship between the traffic

participant and the lane segment expressed by σ(l |x ). Depending on the rela-

tive orientation and the distance of a traffic participant to borders of the lane,

segments are more or less likely. Intuitively, lanes with the intended driving di-

rection matching the heading of a traffic participant are more likely than lanes

that are perpendicularly oriented.

In order to calculate the probabilities in an efficient manner, we use a k-d tree

(Bentley, 1975) to retrieve the matching candidates without having to search the

whole road network graph.

Route Features Model P (C R |X ,ΠR )

The route features are described by deterministic functions. The conditional

density can therefore be expressed as a multivariate Dirac distribution

p (c R |x ,πR ) =δ(c R ,
�

r N
1:h−1(π

R ), r L
1:h (x ,πR )

�

) . (3.7)

Two sorts of route features are calculated: the neighboring relations r N between

consecutive lane segments along the route and the relations between the traffic

participant and the segments of the route r L . The feature functions depend on

the route and the state of a traffic participant.

The following relations are evaluated:

transition type indicates how the two lane segments are connected. It can take

one of the following values {proceeding_lane, preceding_lane, left_lane,

right_lane, left_opposite_lane, right_opposite_lane}.

delta angle rates the difference in orientation and approximates the road cur-

vature.

The other type of relations r L
l (x ,πR ) provides properties of the lane segments

and relations between the traffic participants and the lane segments. For ev-

ery segment l of the route, the following relations are evaluated based on the

current state x :
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length, width quantify the dimensions of the lane segment.

markings indicate the type of lane markings for the left and right border of the

lane. Values are {none, solid_white, broken_white, double_white}.

speed limits The limits are retrieved from the traffic signs or are known in ad-

vance and mapped to the corresponding lanes. See (Nienhüser, 2014) for

techniques of identifying and mapping traffic signs from on-board sen-

sors.

lane type provides information about the type of the lane. Possible values are

{normal, priority_lane, intersection_lane, construction_lane}.

traffic lights state indicates the state of the corresponding traffic light, in

case that the lane leads to a signaled intersection. Possible values are

{green, yellow, red, yellow_red, blinking, off , none}.

road network properties aggregates properties of connected lanes and areas

based on the road network graph, e.g., if the lane segment has a left or

right neighboring lane or if it intersects with other lanes or pedestrian

crossings.

relative vehicle pose The vehicle pose is transformed into the local coordinate

system of the lane segment, which has its origin at the beginning of the

lane segment and the x1-axis aligned with the intended driving direction

as depicted in Figure 3.9b.

distance to segment measures the distance of the vehicle to the entry point of

the segment.

time to enter Estimate of the time needed until a traffic participant enters the

lane segment based on his current velocity. If he is already on that lane

segment the value is zero.

The list of relations and their possible values is not complete, but give an un-

derstanding of what the context information consists of. However, most situ-

ations can be handled with the listed relations. It is easy to expand the set of

relations to cover more special cases, e.g., if a speed limit only applies to a spe-

cific vehicle class or weather condition.
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α

d

(a) Relations between traffic par-
ticipants.

px̃1, x̃2q
ψ̃x2

x1

(b) Relations between traffic participants and
lane segments.

Figure 3.9: Visualization of some of the context relations evaluated by the context
model. This representation of a situation from the perspective of each traf-
fic participant serves as input for the action policy model to derive the likely
actions each traffic participant is going to conduct.

Traffic Participants Relations Models P (C X |X , C R ,ΠR ,ΠA−)

Analogously to the route features model, the traffic participants relations model

is defined as a multivariate Dirac distribution. It additionally depends on the

states and policies of the other traffic participants.

p (c X |x1:n , c R
1:n ,πR−

1:n ,πA−
1:n ) =δ

�

c X ,
�

r X
i ,1:n\i (x1:n , c R

1:n ,πR−
1:n ,πA−

1:n )
��

. (3.8)

The relations feature function r X
i , j calculates the relations between the two traf-

fic participants i and j from the perspective of participant i . The planned

routes of the traffic participants play an important role for the derivation of

the relations, since they allow detecting and interpreting interactions between

them. The following relations are determined by the function r X
i , j :

relative vehicle pose projects the global pose of traffic participant j into the lo-

cal coordinate frame of traffic participants i . The x1-axis of the local co-

ordinate frame is aligned with the heading of the traffic participant. This

non-linear transformation provides a view of the surroundings relative to

traffic participant i , which is invariant to global translations and rotations.

distance calculates the euclidean distance between the two traffic participants.

interaction type describes the interrelation of routes and can take values from

the set {nointeraction, overlap, merge, diverge, cross, confront}. The
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types of interactions are depicted in Figure 3.10. The classification of the

interaction type is realized using the road network graph and the geom-

etry of the lanes. The type of interaction carries valuable information for

the decision making, e.g., if the routes of two traffic participants do not

interact (3.10a), it is likely that they do not influence their next maneuver

at all. On the other hand, if two routes overlap (3.10b), the actions of the

preceding car strongly influences the behavior of the car behind.

time to interaction Estimate of when the traffic participants are going interact

based on their current velocities and their routes.

right of way indicates if traffic participant i has right of way over the other vehi-

cle. The right of way is determined according to the traffic regulations, the

current positions, the planned routes of the traffic participants, the route

network and the type of intersection they are approaching. The relation

can evaluate to true, false or not_applicable.

All these features become important when it comes to learning because they

extract and interpret implicit information and also make use of present invari-

ants, such as the rotations and translations of whole situations.

Goal Policy Model P (ΠG |X , C L , T G ,ΠG−)

The goal policy model describes the transition probabilities between goals.

Transitions between goals are necessary since the estimated goals of traffic par-

ticipants have the semantics of intermediate goals rather than final destina-

tions. Since intermediate goals have a more direct influence on the tactical de-

cisions than final goals, they are of more interest for the task of predicting the

development of a traffic situation.

From the perspective of a moving car, other traffic participants can often be

seen only for a limited period of time, especially in inner cities. These periods

are often too short and the observed behaviors not indicative enough to infer

the final destinations with enough certainty. For example, seeing a car turning

at an intersection does not tell much about whether it is going to the next mall

or is heading for Berlin.
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(a) No interaction. (b) Overlapping routes.

(c) Merging routes.
(d) Diverging routes.

(e) Crossing routes. (f) Confronting routes.

Figure 3.10: Schemata of the different types of interaction relationships between the
routes of traffic participants.

The transition between goal policies depends on the state of a road user x , his

current lane c L and his goal πG−. The goal policy model is defined as follows

p (πG |x , c L , t G ,πG−) =

¨

σG
+ (π

G |x , c L ,πG−) if t G = true,

σG
− (π

G |πG−) otherwise .
(3.9)

As long as the current goal is not reached but still reachable, which is indicated

by the goal termination flag t G being false, the current goal policy is pursued,

yielding the definition ofσG
− as

σG
− (π

G |πG−) =

¨

1 if πG =πG−

0 otherwise .
(3.10)
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Otherwise, a new goal policy is chosen according to the distribution

σG
+ (π

G |x , c L ,πG−). This sparse distribution assigns probabilities greater than

zero only to goal regions that are directly reachable from the current position of

a traffic participant, i.e., the goal regions considered are adjacent to the current

region and there exists at least one route from the current location to the target

goal region. The preferences between reachable goal regions are set according

to the properties of the goal regions. For instance, following a main street is

more likely than taking an exit into a side alley. Section 4.3.1 explains how these

preferences are learned.

Route Policy Model P (ΠR |X , C L , C X −,ΠG ,ΠR−, T R−)

From the viewpoint of abstraction, the route policy model is located below the

goal policy model and expresses the probabilities of route choices when a traf-

fic participant tries to reach a specific goal. The distribution over all possible

routes depends on the current goalπG of a traffic participant and his situational

context. The model is defined as

p (πR |x1:n , c L , c X−,πG ,πR−, t R ) = p (πR |s R , t R ) (3.11)

=

¨

σR
+ (π

R |s R ) if t R = true

σR
− (π

R |πR−) otherwise
(3.12)

with s R summarizing the situation dependencies as

s R = (x1:n , c L , c X−,πG ,πR−) . (3.13)

Two cases are distinguished similarly to the goal policy model. In the easier

case, the previously planned route πR− remains valid, indicated by t G being

false. In that case, the traffic participant continues the same route, which is

expressed by the conditional distribution

σR
− (π

R |πR−) =

¨

1 if πR =πR−

0 otherwise .
(3.14)

In the other case, the current route policy has reached a terminal state, which

happens if the traffic participant deviates from his planned route, progresses
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along the planned route or by a fundamental change in situation, enforcing the

traffic participant to replan his route. The transition to a new route is modeled

by the distributionσR
+ , defining the probabilities for a driver of choosing a spe-

cific route. The distribution is sparse since only routes that begin at the current

lane segment and reach the current goal have probabilities greater than zero.

To defineσR
+ , we start from the premise that when a driver selects a route, he

chooses among the alternatives according to some utility measure q (). Unfortu-

nately, the route a traffic participant selects in a specific situation cannot be de-

rived unambiguously. Only a distribution over possible routes can be derived.

This stems from the facts that drivers not always select the optimal route and

more importantly, that the model has to account for different types of drivers

whose preferences may differ and are unknown. We make the further assump-

tion that the higher the utility of a route, the higher its probability of being cho-

sen. This connection is expressed by p (πR )∝ φ(q (πR )) with φ : R→ R+0 being

some strictly increasing function describing the transformation of route utilities

into unnormalized probability measures. These assumptions are conform with

the assumptions made in the expected utility hypothesis (Russell et al., 1995).

We define the utility of a route on the basis of its constituents, i.e. properties

of transitions between lane segments and properties of the lane segments itself.

The utility of a transition is measured with the reward function r (). Summing

up the rewards of all route elements yields the expected utility

qs (π
R , s R ) =

|πR |−1
∑

l=1

r (seg(πR , l ), seg(πR , l +1), s R ) . (3.15)

The function seg(πR , l ) returns the l ’th lane segment of route πR .

By making the probability of routes dependent on its properties in a factored

way, we promote the learning of partial relationships that can be transferred to

other routes that share some similarities and thereby improve the generaliza-

tion of the route policy model.

The utility of transitions between lane segments take into account the type

of transition as well as the properties of the next lane segment. This reflects

preferences like staying on a lane over lane changes by making a transition to a

successive lane segment more likely than one to an adjacent lane. Additionally,
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properties of the target lane segment, such as its length or its type, also influence

the transition probability. These preferences can change depending on the cur-

rent situation. For example, most drivers avoid overtaking maneuvers because

of the increased risk of an accident when driving on an opposite lane. So the

a priori probability for a route including an overtaking maneuver is quite low

but if a driver is confronted with a far slower driving vehicle ahead, the proba-

bility of overtaking the obstacle becomes much higher. This situation-specific

dependency is learned from data as shown in Section 4.3.2 because it is difficult

to model.

In the common case that a traffic participant has progressed along the route,

only routes that extend the old route are considered to cause continuity. The

set of all routes whose first lane segments coincide with the remaining lane seg-

ments of the old route and which can also reach the goal is defined as

RπG ,c L ,πR− =
�

πR |πR ∈RπG ,c L ∧ c L ∈LπR−∧

∀|π
R−|

l=idx(πR−,c L ) : seg(πR−, l ) = seg(πR , l − idx(πR−, c L ) +1)
©

(3.16)

withLπR being the set of all lane segments of routeπR and with idx(πR , c L ) indi-

cating the index of the lane segment c L in route πR andRπG ,c L being the subset

of all routesR that begin at c L and can reach the goal area πG .

The distribution σR
+ captures the situation-specific selection of a new route,

either because of progression along the route or because of deviating from it. It

is defined as

σR
+ (π

R |s R ) =











ηc exp(q (πR , s R )) if πR ∈RπG ,c L ,πR− ∧ c L ∈LπR−

ηr exp(q (πR , s R )) if πR ∈RπG ,c L ∧ c L /∈LπR−

0 otherwise

(3.17)

with normalization constants ηc ,ηr and using a Gibbs measure for φ(x ) to

transform the expected route utilities into probabilities. In practice, the calcula-

tion of route utilities is further complicated through the finite planning horizon.

We refer to Appendix A.2 for details.

53



3 State Estimation and Prediction of Traffic Situations

Action Policy Model P (ΠA |X , C R , C X ,ΠR ,ΠA−)

The action policy model is the core of the probabilistic formulation of the

stochastic process. It aims to resemble the decision making of traffic partici-

pants on the most fine-grained level. The model takes into account all informa-

tion of the situational context to predict the next action of a traffic participant.

The model is defined as

p (πA |x1:n , c R , c X ,πR ,πA−) . (3.18)

The states of all traffic participants as well as their interrelations, including

right-of-way or potential conflicts, all add to the prediction of the action. In

case of a car, the actions are continuous controls, such as acceleration and steer-

ing, that generate the intended driving trajectory. While each traffic participant

reacts on the current state of the environment individually, actions of all road

users are coupled over time. Their actions affect the state of the environment

and consequently, the future decisions of the other participants.

Since manually defining a consistent action policy model is difficult, error-

prone and does not scale to the complexity of real world traffic, we propose to

learn the model from traffic observations. We explain the learning in detail in

Section 4.3.3.

Motion Model P (X |X −,ΠA−)

The motion model describes the density over possible motions of a traffic par-

ticipant when applying action πA− in state x−. Deterministic motion models

for cars have been subject of research in control theory for a long time. There

exists a large variety of models that differ in their level of detail and the effects

they consider. Since good motion models already exist, there is no need to learn

a model from data. We use the well known single track model, also known as one

track model or bicycle model (Campion and Chung, 2008). The model describes

the motion of a four wheeled car with fixed back wheels and steerable front

wheels according to the non-holonomic motion constraints stemming from the

kinematics of the car. Non-linear friction like slipping wheels is neglected.
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Figure 3.11: Simplified one-track model with instantaneous center of rotation (ICR).

As depicted in Figure 3.11, the four wheels are virtually replaced with two

wheels placed at the center of each axis. At any point in time the car can be

seen as moving on the arc of an circle around the so called instantaneous cen-

ter of rotation. In the formulation of the model, we omit the steering angle since

it is of no particular interest and assume that the yaw rate can be directly con-

trolled. This is possible without loss of generality since the steering angle δ can

be calculated from the yaw rate ω and vice versa if the wheelbase l is known:

ω= v tanδ
l . The motion of the car over time is described by the differential equa-

tions










ẋ1

ẋ2

ψ̇

v̇











=











v cosψ

v sinψ

ω

a











(3.19)

with initial conditions x−. The predicted state of a traffic participant is evalu-

ated by integrating over the time interval ∆t . The controls are fixed between
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two time steps. In practice, it suffices to use a simple Euler integration (Hairer

et al., 1993) to approximately calculate the change in state. We assume no sig-

nificant noise in the motion, so the motion model can be expressed as a Dirac

density.

There are some physical constraints that are not expressed by the differen-

tial equations that need to be considered, e.g., that the front wheel cannot be

oriented arbitrarily. These constraints effectively limit the range of yaw ratesω

and accelerations a that can be applied. These additional physical constraints

are addressed in detail in Appendix A.3.

Policy Termination Models P (T G |C L ,ΠG−, T R ), P (T R |C L ,ΠR−)

The policy termination models are used to detect whether the route or goal pol-

icy has reached a terminal state. In that case, a transition in the corresponding

policy model is triggered.

The current goal policy is finished as soon as the traffic participant reaches his

intended goal area or ends up on a lane segment from which he cannot reach

the goal any more. To account for the semi-Markov property of the policy layers,

i.e., policies can be active over several time steps, the termination flag becomes

true iff the goal policy as well as the instantiated route policy at the lower-level

has reached a terminal state. Formally, the goal policy termination model is

defined as

p (t G = true | c L ,πG−, t R ) =
¨

1 if (c L ∈LπG− ∨Rc L ,πG− = ;)∧ t R = true

0 otherwise
(3.20)

with LπG− being the set of all lane segments that are part of the goal area πG−,

and Rc L ,πG− being the set of all routes that begin at lane segment c L and can

reach the goal area πG−.

The route policy termination model is very similar to the goal policy termi-

nation model. Two cases can happen which set the termination state to true.

In the first case, the traffic participant progresses along the route, so that the

current lane segment c L is no longer the first segment of the route. In the other
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case, the traffic participant has deviated from the planned route. This leads to

the following definition of the route policy termination model

p (t R = true | c L ,πR−) =

¨

1 if c L 6= seg(πR−, 1)

0 otherwise .
(3.21)

Measurement Model P (Z |X )

The measurement model relates the hidden states of the traffic participants

with the measurements of the observable quantities. It quantifies the likeli-

hood of receiving measurement z given the hidden state x . Both the hidden

states and the measurements are continuous, which resolves in a conditional

density. The measurement model has to account for the specific sensor prop-

erties, such as its noise characteristics. We are abstracting from a specific sensor

type in this work and assume that the measurements are preprocessed and di-

rect mappings of the true states with additive white noise eZ ∼ N (0,ΣZ ), i.e.

normally distributed noise with zero mean.

X

Z evidence

 hidden state

(a) Forward model.

X

Z

Z 1

evidence

 virtual evidence

 hidden state

(b) Modified model.

Figure 3.12: The measurement model is modified (b) to handle the periodicity of the
angular orientation instead of a regular forward model (a).

Due to the periodicity of the angular orientation, the measurement model

cannot be correctly modeled as a linear Gaussian forward model p (z |x ) (Kurz

et al., 2013). To formulate the relationship between states and measurements,

we use a modeling technique which introduces an additional random variable

together with a virtual evidence. This technique is commonly used to formu-

late (soft) constraints and correlations in Bayesian networks (Pearl, 1988). The

additional helper random variable Z ′ represents the difference between X and
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Z and is connected as depicted in Figure 3.12. The corresponding model is de-

fined as

p (z ′|x , z )∼N (d (x , z ),ΣZ ) (3.22)

with

d (x , z ) =





















xx1
− zx1

xx2
− zx2

dangle(xψ, zψ)

xv − zv

xw − zw

xl − zl





















.

(3.23)

The function dangle(ψx ,ψz ) yields the minimal difference angle between ψx

andψz in the interval [−π,π). The evidence generated by an observation then

consists of the measured evidence on Z and a zero valued evidence on Z ′,

weighting the difference between the hidden state x and the measured state

z .

For the measurement model, it is assumed that the traffic participants and

their corresponding measurements can be uniquely identified. This can be

achieved in the preprocessing stage of the perception with data association

methods. See (Blackman and Popoli, 1999) and (Cox, 1993) for further reading.

With the Bayesian model now fully defined, we turn to probabilistic inference

in the next section to show how the model can used for reasoning.

3.4 Inference in the Bayesian Model

Having a probabilistic model of the development of traffic situations allows rea-

soning about the distributions over current, past and future states based on the

acquired measurements. The properties of interest may vary between different

applications but there are two cases of special importance, namely filtering and

predicting.
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Filtering is concerned with estimating the current belief state, i.e., the distri-

bution over the traffic situations, given all measurements z (1:t ) up to the current

point in time. The posterior distribution is derived from (3.4) using Bayes’ rule

b (t ) =p (s (t )|z (1:t ))

=
p (z (t )|s (t ), z (1:t−1))p (s (t )|z (1:t−1))

p (z (t )|z (1:t−1))

=η(t )p (z (t )|S (t ))
∫

p (s (t )|s (t−1))p (s (t−1)|z (1:t−1))
︸ ︷︷ ︸

recursive term b (t−1)

d s (t−1) . (3.24)

This yields the recursive Bayesian filter formula for estimating the current be-

lief by marginalizing over the prior belief states and incorporating the current

observation. The normalization constant η(t ) = p (z (t )|z (1:t−1))−1 ensures that the

resulting belief is a proper probability distribution. The current belief b (t ) sub-

sumes all knowledge available about the current situation, i.e., all previous mea-

surements and prior knowledge in terms of predictive models.

The full belief update step consists of two sub steps: Predict and correct.

The prediction step computes the one-step-ahead prediction p (s (t )|z (1:t−1)). The

correct step incorporates the current measurement and yields p (s (t )|z (1:t )). Due

to the Markov property of the process, the prior belief (and all previous mea-

surements) can be neglected once the current belief is updated. This yields an

update procedure with constant time and space complexity (Murphy, 2012).

Predicition In addition to knowing the current state of a situation, one is of-

ten interested in predicting the future states. Given the current belief, one is

interested in the distribution over situations h steps in the future

p (s (t+h )|z (1:t )) =

∫ h
∏

i=1

p (s (t+i )|s (t+i−1))p (s (t )|z (1:t ))d s (t :t+h−1) . (3.25)

The procedure is very similar to filtering with the difference that correction

steps are neglected after time step t and only predictions steps are applied from

this time step on.

The practical issues that arise when trying to carry out the filtering and pre-

diction tasks are: How can the integration be solved and how can distributions
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be represented. The problem is that the integral cannot be solved analytically

in the general case (Koller and Friedman, 2009), i.e., for arbitrary distributions

and non-linear transition and measurement models.

Sequential Monte Carlo inference Since the presented Bayesian model uses a

mixed state space and non-linear models, exact inference is not possible. We

propose applying approximate inference from the class of sequential Monte

Carlo (SMC) methods also known as particle filters (Doucet et al., 2001). To be

more specific, we apply likelihood weighting (LW) (Koller and Friedman, 2009;

Fung and Chang, 1989), which is an instance of importance sampling (MacKay,

2003).

0.00

0.05

0.10

0 5 10 15 20 25
x

p(
x)

proposal density q(x)

target density p(x)

Figure 3.13: Example of importance sampling: Samples are drawn from a Gaussian pro-
posal density q (x ) and weighted according to the ratio of the target density
p (x ) and the proposal. The weighting accommodates for the fact that sam-
ples from areas where p (x )< q (x ) holds are over represented and the other
way around in the sample set drawn from q (x ).

Importance sampling can be applied when samples from a target distribution

p (x ) are needed but sampling directly from this distribution is not an option be-

cause it is not possible or computationally too demanding. So instead of using

p (x ) directly, one draws samples from a simpler but related distribution called

the proposal distribution q (x ). The samples are then weighted with w ∝ p (x )
q (x )

according to the relation between the target and the proposal distribution to

accommodate for the fact that the samples were drawn from a surrogate dis-

tribution and thereby ensuring the correct expectation of the estimator. The
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result is a set of weighted samplesM = {〈x (i ), w (i )〉}mi=1, which are often called

particles, that approximates the target distribution through a Dirac mixture

p (x )≈
|M |
∑

i=1

w (i )δ(x , x (i )) (3.26)

with
∑|M |

i=1 w (i ) = 1. Figure 3.13 shows an example of importance sampling with

a Gaussian proposal density.

An importance sampling scheme is completely defined by a target distribu-

tion and a suitable proposal distribution where ∀x : p (x ) > 0 =⇒ q (x ) > 0.

Both the target and the proposal distribution must be evaluable at any chosen

point x , at least within a multiplicative constant. Likelihood weighting defines

the proposal distribution as a mutilated version of the target Bayesian network

distribution without the evidence nodes. Applying this to the task of filtering,

yields the following recursive update procedure: Every belief b (t ) is approxi-

mated through a set of weighted particlesM (t ) = {〈s (t )(i ), w (t )(i )〉}mi=1. In the LW

prediction step, the predicted belief samples

{ŝ (t )(i )}mi=1∼p (s (t )|z (1:t−1)) =

∫

p (s (t )|s (t−1))
︸ ︷︷ ︸

transition model

p (s (t−1)|z (1:t−1))
︸ ︷︷ ︸

prior belief b (t−1)

d s (t−1) (3.27)

are drawn according to the prior belief and the transition model. By first sam-

pling from the prior belief distribution before applying forward sampling ac-

cording to the transition model, one effectively performs resampling, which

prevents degeneration of the particle weights (Thrun et al., 2005). Techniques

like low variance sampling (Thrun et al., 2005) can be applied at this point to

improve the variance of the sample set in some cases. The resampling causes

the weights of the predicted samples to be uniformly distributed ŵ (t )(i ) ≡ 1
m .

In the LW correct step, the predicted samples are weighted according to the

importance weighting scheme using the measurement model and the current

observation. Since the proposal distribution p (s (t )|z (1:t−1)) only differs from the
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target distribution p (s (t )|z (1:t )) by the measurement, the weighting simplifies to

(using 3.24 and 3.27)

w (t )(i )∝
p (ŝ (t )(i )|z (1:t ))

p (ŝ (t )(i )|z (1:t−1))
∝ p (z |ŝ (t )(i )) . (3.28)

The resulting belief distribution is then M (t ) = {〈s (t )(i ), w (t )(i )〉}mi=1 with

s (t )(i ) ≡ ŝ (t )(i ) and
∑m

i=1 w (t )(i ) = 1.

The use of the one-step prediction p (s (t )|z (1:t−1)) as the proposal distribution

for p (s (t )|z (1:t )) has several implications. The proposal will generate samples

from the prior belief according to the transition model, reflecting the systems

belief about the current situation’s state. If the received measurement does not

match the expectation, the particle weights get very small according to 3.28, i.e.,

samples from the true distribution are not well represented by the particle set.

In order to get a reasonable estimate, one may need to draw a lot of samples,

which consequently leads to an increased computational effort. For more in-

formation on this topic, we refer to (Koller and Friedman, 2009). For a general

discussion on the performance of importance sampling schemes in Bayesian

networks see (Yuan and Druzdzel, 2006).

Another factor that influences the amount of particles needed to approximate

the target distributions is the uncertainty present in the process. An important

finding of (MacKay, 2003) is that the variance of a Monte Carlo expectation es-

timate of a function φ(x ) under a distribution p (x ) only depends on the vari-

ance ofφ and not on the dimensionality of the space sampled. This implicates

that the less uncertainty is present in a process, the less particles are needed

to represent the belief distributions. This coherence is exploited in (Fox, 2001)

to dynamically adapt the sample set size in particle filters. There are two ways

to reduce the uncertainty in a process. One is reducing the noise in the mea-

surement model by using better sensors and the other is making better predic-

tions. In this work, we aim for making better predictions by using data-driven

methods. Every improvement in prediction accuracy reduces the variance of

the resulting belief estimates and thereby the number of required particles.

Important features of SMC methods are, that they can cope with non-linear

models, represent multi-modal belief distributions, can handle mixed state

spaces and can satisfy real-time constraints. These features make them well

62



3.5 Planning using Predictive Models

suited for inference tasks in the Bayesian model presented in this work and the

intended domains of application. In practice, SMC methods have been applied

quite successfully to a whole range of real world problems, e.g., in the field of

robotics (Thrun, 2001). Other methods make stronger assumptions about the

underlying process, e.g., an extended Kalman filter (Thrun, 2001) can use non-

linear models through linearization but is only able to represent uni-modal be-

liefs and also does not work with mixed state spaces. The ability to represent

multi-modal distributions becomes especially important when making long

term predictions of traffic situations. If for example, the lane splits up into sev-

eral ways in an intersection, multiple modes are needed. Another source for

multiple modes are the decisions of other traffic participants. Depending on

their choices, a situation can develop in different directions. Other options of

inference methods can be found in (Guo and Hsu, 2002; Koller and Friedman,

2009; Murphy, 2002).

3.5 Planning using Predictive Models

In the context of autonomous driving or ADAS, planning is needed on various

levels of abstraction. These can be coarsely divided into route planning, be-

havior decision making, motion planning and control. On the lowest level, the

subject of control is to realize intended driving trajectories by providing suit-

able inputs to the car system. On the next level, motion planning aims to find

the best trajectory to a target location under temporal, spatial and physical con-

straints. Figure 3.14 shows an example where motion planning is used to find

a suitable trajectory for merging into moving traffic. On a more abstract level,

behavior decision making is used to find the best maneuver in a specific sit-

uation according to an objective function. The planning horizon on this level

is longer compared to the level of motion planning, making it possible to take

long term effects of decisions into account but at the cost of considering less

detail. Applied to the situation depicted in Figure 3.14, the decision could be

between choosing to merge in front of the approaching car or to slow down and

wait for the next gap to merge. On the highest abstraction level, route planning

is concerned with finding the optimal route to a target location.
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3 State Estimation and Prediction of Traffic Situations

Figure 3.14: Motion planning for a merging maneuver that considers the reaction of
other traffic participants on the behavior of the ego vehicle (red).

In all cases, the consequences of decisions have to be anticipated and eval-

uated in order to derive the optimal decisions via planning. The presented

Bayesian model can be used to obtain the necessary predictions of how sit-

uations will develop. This is especially useful in the context of motion plan-

ning and behavior decision making. The advantage of this approach is that the

model makes accurate predictions by considering how traffic participants af-

fect each others decisions. Control can benefit from the Bayesian model when

using model predictive control techniques (Camacho and Alba, 2013) but con-

trol frequency requirements may prohibit its application. Since route planning

takes a macroscopic view on traffic and the planning problem, it cannot directly

profit from the Bayesian model.

Sequential decision making in stochastic domains can be modelled with a

Markov decision process (MDP). MDPs model time discrete stochastic pro-

cesses that can be influenced via actions in each time step. State transitions

are described with a transition model in form of a conditional distribution. A

reward function defines the objectives of an agent in terms of scalar rewards

and punishments, which the agents receives when conducting specific actions

in certain states. Solving an MDP means finding a policy that maximizes the re-

ceived reward over time. In the context of autonomous driving and ADAS, the

reward function can be defined to balance safety, efficiency, comfort, compli-

ance and progress. In MDPs, the process state is assumed to be fully observable
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Figure 3.15: Embedding of the Bayesian model into a partially observable Markov deci-
sion process. By modeling one traffic participant Xe to be directly control-
lable through actions Ae and using the presented Bayesian model for the
other traffic participant, the transitions between situations can be calcu-
lated. In case that S and Xe are fully observable, one obtains an embedding
for a Markov decision process.

at any point in time, a property which is not met in the traffic domain. MDPs

can be extended to partially observable Markov decision processs (POMDPs)

to become applicable in such domains. In POMDPs, a measurement model

describes the relationship between states and observations. Since the process

state cannot be determined with full certainty, the policy is defined on the be-

lief space instead of the state space like in MDPs. The belief is a distribution

over the state space, describing the agents subjective belief about the state of

the world (3.4).

To model the decision making of an autonomous car with a (PO)MDP the

Bayesian model presented in this chapter can be used to describe and anticipate

the reactions of the environment on the actions of the autonomous car. The ego

vehicle is directly controlled through actions Ae and represented by state Xe .

The other traffic participants as well as their state transitions are covered by the

presented Bayesian model. Figure 3.15 depicts the embedding in the decision

process. A situation in this setting consists of the states of the ego vehicle xe

together with the states of the other traffic participants summarized by s (3.2).
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In the following, we outline the necessary extensions and modifications to the

Bayesian model to complete the (PO)MDP model.

Ego vehicle transition model P (X e |A−e , X −e , S −) A transition model has to be

defined for the set of actions the ego vehicle can conduct, describing the possi-

ble state transitions as consequences of the conducted action as a conditional

distribution. Dependencies on the overall situation have to be considered.

Situation transition model P (S |S −, X −e ) The stochastic transitions of the other

traffic participants are described by the Bayesian model (3.7). Since the ego

vehicle is part of their context, its state is considered in their decision making as

they react to it. Taking this mutual influence into account is of great importance

for deriving the right conclusions in the traffic domain, particularly in difficult

situations, like merging into moving traffic.

Reward function R (S −, X −e , A−e , S , X e ) The reward function quantifies the ob-

jectives of the ego vehicle. It is a scalar function that simultaneously combines

several criteria by summing them up. The function depends on the previous

environment state, the conducted action and the resulting situation. The ob-

jectives of an autonomous car can be encoded by assigning positive rewards for

reaching a target destination and negative rewards for crashing. Secondary ob-

jectives like compliance with traffic regulations, driving comfortably and eco-

nomically can also be incorporated by assigning corresponding rewards, e.g.,

for fuel consumption. The magnitudes of the rewards quantify their importance

and hence determine, for example, the risk aversion of the autonomous car.

Measurement model P (Z |S , X e ) The measurement model accounts for the

sensors’ inaccuracies. In addition to the model described in Section 3.3.3, the

measurement model needs to be extended to account for more complex sensor

limitations such as occlusions in order to obtain policies with information gain

strategies. For sensors like lidar sensors and cameras, occlusion can be modeled

by checking lines of sights between traffic participants. Similar measurement

models also exist in the field of localization and mapping (Hähnel et al., 2003;
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Hoffman et al., 2005; Hester and Stone, 2008). With such measurement mod-

els, policies can be derived where the ego vehicle actively considers its lack of

information in its action choices. For instance, it may not not overtake another

vehicle because it cannot see behind it. In ambiguous situations it performs in-

formation gain to reduce risks, e.g., such as slowly approaching an intersection

that is occluded by obstacles.

MDP evaluation and discussion In a collaborative work (Brechtel et al., 2011),

we embedded a simpler version of the Bayesian model into an MDP and showed

how optimal decisions for an autonomous car can be automatically derived.

Solving the MDP is made feasible by transferring the continuous models to an

adaptively growing discrete space and applying a combination of online and of-

fline planning. Figure 3.16 shows an example of the behavior resulting from the

planned policy in a highway scenario. The policy showed an excellent perfor-

mance in the evaluated simulations but heavily relies on the MDP assumption

that the environment state is fully observable. This assumption cannot be sat-

isfied in real world traffic situations. A key insight of the experimental results is

that realistic prediction models are mandatory for obtaining useful policies.

In reality, measurements are limited by the range of sensors, sensor noise and

occlusions caused by other objects, e.g., other vehicles or buildings. We there-

fore expect future decision making systems in the automotive field to take into

account the partial observability. First works in this direction are from (Brechtel

et al., 2013; Ulbrich and Maurer, 2013; Bai et al., 2013; Forbes et al., 1995).

Advances in solution and approximation techniques allow solving POMDPs

with discrete spaces and a manageable amount of states in reasonable time

(Shani et al., 2013; Kurniawati et al., 2008; Spaan and Vlassis, 2005). Among

the reported problems that have been solved are some with several hundreds of

states (Poupart et al., 2011). However, most real word problems can be more ac-

curately described with continuous state and observation spaces which makes

the solution finding more complex (Porta et al., 2006). Solution techniques for

continuous POMDPs are a field of active research. With current state-of-the-art

methods only low-dimensional continuous POMDPs can be solved in reason-

able time (van den Berg et al., 2012; Zhou et al., 2010; Bai et al., 2011; Porta et al.,
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2006). We expect future advances in this field to be able to fully exploit the bene-

fits arising from sophisticated prediction models with continuous state spaces.

As a step in this direction, we presented a new value iteration approach for

solving POMDPs with continuous state spaces in the collaborative work with

(Brechtel et al., 2013). It allows solving POMDPs that use Bayesian models like

the one presented directly without the need of prior discretization. The method

employs machine learning methods to automatically find a symbolic embed-

ding of the continuous state space. The detection and exploitation of the hidden

problem structure reduces the computational complexity and makes it possible

to tackle higher dimensional problems like navigating at intersections. More

details on the approach as well as its application to autonomous driving can be

found in the paper and (Brechtel et al., 2014).

Figure 3.16: Simulation of an overtaking scenario. The policy of the ego vehicle (grey)
is derived from solving a corresponding MDP. The planned trajectory is in-
dicated by the red line. (Brechtel et al., 2011).

3.6 Summary and Conclusion

In this chapter, we presented a Bayesian model that describes the evolution of

traffic situations as a stochastic process. Derived from a novel general hierarchi-

cal model for policy recognition and prediction making in multi-agent environ-
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ments, we developed a model for traffic scenarios that addresses and exploits

the specific characteristics of the domain. The key idea was to resemble the de-

cision making of traffic participants and explicitly consider their interactions.

The presented model goes beyond the state-of-the-art in several ways. It de-

scribes the evolution of complete traffic situations in a unified statistical model

and thereby combines several levels of abstraction. This allows fine grained

predictions on the continuous dynamics level as well as long term predictions

on the level of routes and goals. In contrast to approaches that only consider

a specific abstraction level, the hierarchical approach can yield more accurate

predictions since the flow of information between the different layers improves

the predictions at each level of detail. By combining domain specific knowledge

with learned models for dependencies that are not well understood and difficult

to model manually, a prediction accuracy and generalization to new situations

of yet unseen quality can be achieved.

One of the most promising areas of application for such a model is deci-

sion making. We outlined how the Bayesian model can be incorporated in a

(PO)MDP to anticipate the consequences of decisions and derive optimal poli-

cies for autonomous traffic participants.
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We present parametric and non-parametric models for representing the pol-

icy models of the Bayesian model together with corresponding estimation

techniques for learning these conditional distributions from observations.

4.1 Approach

The key components of the Bayesian model presented in the last chapter are the

policy models. They resemble the decision making process of the traffic partic-

ipants and model the dependencies between situations and resulting actions.

Due to the manifold of different traffic situations that can occur, the deriva-

tion of these models are the most challenging part in the statistical modeling

of the dynamic process. We pursue the approach to learn these models from

data and support the learning process by providing the information necessary

to find the dependencies between specific situational aspects and their impli-

cations on the decision making.

While in principle the models can be defined manually, there are several rea-

sons that militate against this approach. There are that many variations of traf-

fic situations that it is difficult for a human expert to formulate a model that

covers all of them. The second problem is that the dependencies are partly un-

known and often only available in an implicit form. This makes the modeling

difficult and error prone. The encoding of traffic rules is a good start but only

helps up to a certain degree since in reality, they are not always strictly followed

and there is room for interpretation. For example, in some situations a traf-

fic participant may cross a solid white line in order to prevent a severe accident.

One of the main difficulties for humans is the quantification of conditional den-

sities. An approach to solve this difficulty can be found in the collaborative work

(Gindele et al., 2010) where behaviors of traffic participants are predicted based
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on manually defined models in the domain of highway scenarios. All the named

reasons limit the scalability, accuracy and generality of approaches with solely

manually specified models.

Using a data driven approach to derive the models, on the other hand, does

not suffer from these limitations. The idea is to derive the models of interest

with machine learning methods by observing the behavior of traffic partici-

pants in all kinds of situations and identify the characteristic patterns. Since

the goal of learning in this context is finding models that best explain the data,

it is ensured that the resulting models are consistent with reality under the prior

assumptions. Hence, in contrast to manually specified models, learned mod-

els are based on what the system actually observes and not on what an expert

thinks how traffic participants behave.

Statistical learning theory teaches that using more data can improve the qual-

ity of the results (Vapnik, 2000). With enough data, even subtle nuances of

the relationship of interest can theoretically be learned. Since manual labeling

of data is costly, it practically limits the amount of data available for learning.

Thus, we introduce an algorithm that does not require manual labeling. Unla-

beled data can be obtained at low cost in the traffic domain by observing and

recording traffic, e.g., from sensor-equipped cars or using traffic surveillance

systems. The machine learning algorithms we employ belongs to the class of

inductive learning methods, allowing to generalize from the training examples

and making suitable predictions in similar situations that have never been en-

countered before. By adding new observations to the data, the models can be

easily extended to cover whole new situations.

In this chapter, we derive a learning algorithm for learning the policy mod-

els of the presented Bayesian model. Since the data needed to learn the mod-

els is not directly observable, we use an expectation maximization scheme to

solve the maximum likelihood estimation for the incomplete data problem. We

first give an overview over the expectation maximization framework (4.2.1) and

suitable specializations (4.2.2) before we derive the concrete algorithm to solve

the task at hand (4.3). We provide parametric and non-parametric models and

learning algorithms to solve the conditional density estimation problems that

occur as substeps of the overall learning algorithm (sections 4.3.1 to 4.3.3). The

model learning tasks range from estimating discrete dependencies as in the
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case of the goal policy model to discovering complex and highly non-linear de-

pendencies as in the case of the action policy model.

4.2 Model Learning with Generalized Expectation Maximization

The goal of learning the policy models is to find the set of models that best pre-

dict the evolution of traffic situations. One factor that makes the learning of the

policy models challenging is that one cannot observe what other traffic partic-

ipants are thinking. The current goals, planned routes and executed actions of

other road users are not observable. Only the basic states of traffic participants

such as their positions, velocities and orientations can be measured with noise.

So the dependencies between situations and the resulting decisions of traffic

participants which are represented by the policy models cannot be learned di-

rectly since the true values are unknown. Figure 4.1 illustrates the problem of

learning the policy models from incomplete data for the Bayesian model. The

policy models are identified through their parameters θ = (θG ,θR ,θA) with θG

being the parameters of the goal policy model, θR the parameters of the route

policy model and θA the parameters of the action policy model.

4.2.1 Expectation Maximization Framework

A general class of optimization techniques that can deal with incomplete data

problems is known under the name expectation maximization (EM) (Dempster

et al., 1977; Meng and Van Dyk, 1997; McLachlan and Krishnan, 2007). EM can

provide maximum likelihood (ML) and maximum a posteriori (MAP) estimates

for generative models in cases where not all aspects of the model are observable.

EM exploits the fact that if all values were fully observable, ML/MAP estimates

would be simpler to compute. Starting from an initial parameter guess, the EM

algorithm finds a (locally) optimal ML/MAP estimate by iterating between an

expectation step (E-step) and a maximization step (M-step). The E-step cal-

culates expectations (distributions) over the hidden variables based on the cur-

rent model parameters to obtain an estimate of the complete data. With the full

data available, the model parameters are maximized (optimized) in the M-step.

These steps are repeated until convergence is reached.

73



4 Policy Model Learning from Observations
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Figure 4.1: Visualization of the incomplete data learning problem. Only the Z nodes
representing the measurements are observable. The state of all other ran-
dom variables comprising a situation can only be inferred with uncertainty.
The learning problem is to find the model parameters of the policy models
θG , θR and θA that best explain the data.
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Let X be the set of hidden variables and Z be the set of observable variables.

P (Z , X |θ ) denotes the joint distribution over the complete data dependent on

the model parameters θ . The observations are given as a setD = {zi }Ni=1 of inde-

pendent observations. The goal of ML estimation in this setting is to maximize

the log likelihood of the observed data

l (θ ) =E
zi

log p (zi |θ ) =
N
∑

i=1

log

∫

x

p (zi , x |θ )d x . (4.1)

Since l (θ ) is hard to optimize directly, due to the log of the integral, EM opti-

mizes the expected complete data log likelihood instead

Q (θ |θ (t−1)) =E
zi

E
p (xi |zi ,θ (t−1))

�

log p (zi , xi |θ )
�

=
N
∑

i=1

∫

xi

p (xi |zi ,θ (t−1)) log p (zi , xi |θ )d xi . (4.2)

This function is often called the auxiliary function (Murphy, 2012). As a result

of Jensen’s inequality, Dempster et al. showed that improving Q (θ |θ (t−1)) also

improves the true likelihood l (θ ) or leaves it unchanged (Dempster et al., 1977).

The EM algorithm therefore iterates between two steps. The E-step calculates

the distributions over the hidden variables X dependent on the observed values

zi and the parameter estimate θ (t−1) from the last iteration t −1:

E-step: calculate p (xi |zi ,θ (t−1)) . (4.3)

The M-step then uses the estimated distributions over the hidden variables to

maximize the expected complete data log likelihood and obtain an improved

parameter estimate for the next iteration:

M-step: θ (t ) = argmax
θ

Q (θ |θ (t−1)) . (4.4)

For most models, the sequence of parameter estimates θ (t ) converges to a

local optimum (or saddle point) of the l (θ ) under regularity conditions (Little

and Rubin, 2002; Wu, 1983; Dempster et al., 1977). In some cases even the global

optimum is guaranteed to be found (Wu, 1983). These convergence properties
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even hold if θ (t ) is only improved in each M-step instead of maximized (Neal

and Hinton, 1998), e.g., by a gradient ascent step. These variants are referred

to as generalized expectation maximization (GEM) algorithms. The fact that it

suffices to improve θ in the M-step will become important in Section 4.3, when

we exploit it to show that the models can learned separately.

(Neal and Hinton, 1998) showed that EM can be interpreted as maximizing

a joint function of the parameters and of the distribution over the unobserved

variables, where the E- and M-step partially optimize the joint function. This

view justifies incremental, sparse, and other variants of the EM algorithm.

The EM algorithm can also serve to find a MAP estimate by adding a prior

p (θ ) over the parameter space. In this case, the M-step (4.4) is replaced by

θ (t ) = argmax
θ

�

Q (θ |θ (t−1)) + log p (θ )
�

. (4.5)

4.2.2 Monte Carlo Expectation Maximization

The analytical calculation of the E-step poses a problem for most models since

a closed-form solution of the involved integral

p (xi |zi ,θ (t−1)) =
p (xi , zi |θ (t−1))

∫

p (x j , zi |θ (t−1))d x j

(4.6)

rarely exists. There are exceptions to this, e.g., for some cases where the

complete data distribution is a member of the exponential family (Booth and

Hobert, 1999). Unfortunately, the presented model in this work does not fall

under this class, which is why we propose to use an approximate inference tech-

nique based on Monte Carlo simulation in correspondence to the Monte Carlo

inference presented in Section 3.4.

Research in the area of learning the parameters of Bayesian networks and

Markov random fields (aka Markov networks) has led to a number of approx-

imations that share the common idea of approximating the integrals that arise

in the EM framework by Monte Carlo estimates. One of these developments

is the Monte Carlo expectation maximization (MCEM) (Wei and Tanner, 1990),

which uses samples from the distributions p (xi |zi ,θ (t−1)) to approximate the in-
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tegrals in the E- and M-step. The distribution over the hidden variables derived

in the E-step is expressed by a Dirac mixture of M drawn samples x j

p (xi |zi ,θ (t−1))≈
1

M

M
∑

j=1

δ(xi , x j ) . (4.7)

Plugging 4.7 into (4.2) yields the approximated version of the auxiliary function

QM C (θ |θ (t−1)) =
1

M

N
∑

i=1

M
∑

j=1

log p (zi , x j |θ ) (4.8)

with the integral being replaced by a finite sum. QM C is then maximized in the

adapted M-step

θ (t ) = argmax
θ

QM C (θ |θ (t−1)) . (4.9)

While this approximation eliminated of the integral, one problem still remains:

How to obtain samples from p (xi |zi ,θ (t−1))? Several solutions have been pro-

posed, including the popular suggesting to use Markov chain Monte Carlo

(MCMC) algorithms like Gibbs sampling or Metropolis Hastings (Robert and

Casella, 2004; Ibrahim et al., 2004). Using MCMC algorithms leads to the well

known issues of slow state space explorations if the dimensions of the state

space are correlated (MacKay, 2003). Additionally, their use in the scope of the

EM framework is computationally expensive since in every iteration the Markov

chain has to converge again before it yields samples from the distribution of

interest. Also the error induced by Monte Carlo estimates is hard to quantify

for MCMC methods, as pointed out by (Levine and Casella, 2001). Other ap-

proaches employ rejection sampling, which becomes inefficient in high dimen-

sional spaces (Booth and Hobert, 1999). These properties render the named ap-

proaches unsuitable for performing the E-step in the considered case, instead,

we employ another class of MCEM algorithms that utilizes importance sam-

pling.

Importance sampling MCEM In the importance sampling variant (IS-MCEM)

of MCEM as presented by (Booth and Hobert, 1999), the samples in the E-step

are not directly drawn from the target distribution but instead from a proposal
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distribution q (xi |zi ,θ (t−1)) (see Section 3.4 for details on importance sampling).

The Monte Carlo estimate is then given by

p (xi |zi ,θ (t−1))≈
M
∑

j=1

wi , j δ(xi , x j ) (4.10)

with importance weights

wi , j ∝
p (xi |zi ,θ (t−1))
q (xi |zi ,θ (t−1))

(4.11)

and normalized to 1. Accordingly, the importance sampling approximation of

the auxiliary function (4.2) is

QI S (θ |θ (t−1)) =
N
∑

i=1

M
∑

j=1

wi , j log p (zi , x j |θ ) . (4.12)

Analogously, the M-step maximizes the approximated auxiliary function QI S

with respect to the parameters, which yields

θ (t ) = argmax
θ

QI S (θ |θ (t−1)) . (4.13)

Gradient-based M-step The M-step for the route policy model as well as the

goal policy model is realized through a gradient-based optimization. A par-

tial maximization, which is already sufficient for the EM to converge under

regularity conditions, can be obtained with gradient ascent methods (see Ap-

pendix A.4). To define a gradient-based optimization, the gradient of the ob-

jective of interest has to be derived. In this case, the objective function is

QI S (θ |θ (t−1))with the following partial derivatives

∂QI S (θ |θ (t−1))
∂ θ

=
N
∑

i=1

M
∑

j=1

wi , j

∂ log p (zi , x j |θ )
∂ θ

(4.14)

=
N
∑

i=1

M
∑

j=1

wi , j

∂ p (zi ,x j |θ )
∂ θ

p (zi , x j |θ ) .
(4.15)
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As can be seen, the key element for gradient-based optimization of the expected

complete data log likelihood are the derivatives of the joint density with respect

to the parameters. We derive these derivatives for the used parametric models

in later sections (4.3.1, 4.3.2).

Incremental EM variants In practice, stochastic approximations of the EM can

be used to achieve faster convergence rates. Popular examples are stochastic

EM (SEM) (Celeux and Diebolt, 1985; Gilks et al., 1996) and stochastic approxi-

mate EM (SAEM) (Delyon et al., 1999). They calculate the E-step only partially

and reuse the estimated statistics of previous iterations to reduce the computa-

tional costs of the initial iterations. It is proven that these approximations also

converge to local maxima under mild regularity conditions.

4.3 Learning the Models

In the general presentation of the EM framework, the Bayesian network was

considered static so far and all the model parameters were summarized by a pa-

rameter vector θ . In order to learn the models of the Bayesian model presented

in the last chapter (3) with EM, two additional aspects have to be considered.

The first thing to consider is that the Bayesian model is a dynamic Bayesian

network, which is recursively defined over time (see Section 3.3.2). To apply EM

to a dynamic Bayesian network, one can “unroll” it by instantiating a time slice

for each step of an episode. This results in a Bayesian network where the E-step

can be regularly executed. In practice, the inference of the E-step is calculated

recursively with smoothing techniques to minimize the memory demand, since

episodes can become quite long. We refer to (Doucet et al., 2001; Doucet and

Johansen, 2009) for more details on smoothing techniques. In order to learn ef-

fectively and get reliable estimates for the model parameters, we make a station-

ary model assumption, meaning that the models do not change over time. As a

consequence, the model instances of all time steps and all episodes share their

parameters. We further assume that all traffic participants of the same type, e.g.,

cars, can be described by the same model, so we don’t have to learn an individ-

ual model for each traffic participant and can generalize the observed behavior

patterns. Sharing model parameters over all time steps, episodes and traffic
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participants allows pooling the statistics of each E-step and results in more reli-

able model parameter estimates in the M-step. Figure 4.2 visualizes the concept

of parameter sharing for a transition function in a multi-agent Bayesian filter.

The second thing to consider is that there are several different models in

the Bayesian model (as described in Section 3.3.3). The parameter vector

θ therefore subsumes multiple parameter vectors, one for each model θ =

(θm1
,θm2

, . . . ,θmn
). Since each model has its own set of parameters and the gen-

eralized EM allows partial optimization in the M-step (Neal and Hinton, 1998),

it follows that the models can be individually optimized and different learning

methods can be combined.

X1

Z1

X2

Xn

Z2

Zn

P pX1|X1, X1 : XnzX1, θq

P pX2|X2, X1 : XnzX2, θq

P pXn|Xn, X1 : XnzXn, θq

X1

Z1

X2

Xn

Z2

Zn

P pX1|X1, X1 : XnzX1, θq

P pX2|X2, X1 : XnzX2, θq

P pXn|Xn, X1 : XnzXn, θq

... ...

time step t ´ 1 time step t

Figure 4.2: Learning a transition model in a multi-agent environment is more effective
if all instances of the model share their parameters θ and if the models are
time invariant. The transition statistics calculated in the E-step can then be
pooled which results in more reliable model parameter estimates.

IS-MCEM model learning procedure The sufficient statistics that are needed

for the optimization in the M-step are calculated in the E-step of the IS-MCEM

procedure. The E-step estimates the posterior distribution over all hidden

states of the dynamic Bayesian network with importance sampling based on

the current estimates of the model parameters. The used importance sampling

technique is likelihood weighting (see Section 3.4). The posterior distributions

of interest are inferred in form of sets of weighted samples. These samples are

used to optimize the models in the M-step of the IS-MCEM as described in the

following sections. The M-step is carried out in a supervised manner since the
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E-step has produced estimates for all non-observable states. After updating the

model estimates, a new EM iteration starts using the improved models. This

procedure is repeated until convergence.

4.3.1 Learning the Goal Policy Model

The goal policy describes the conditional probability that a traffic participant is

heading for a specific goal region as his next intermediate goal (Section 3.3.3).

The part of the goal policy model (3.9) that has free parameters and is therefore

target of the learning process isσG
+ . It defines the conditional distribution over

the next goals for the cases that the traffic participant has reached his current

goal or that he deviated from the intended course making his current goal no

longer reachable. At this point, we reduceσG
+ to

σG
+ (π

G |x , c L ,πG−) =σG
+ (π

G |c L ) , (4.16)

meaning that the next goal only depends on the current lane of the traffic partic-

ipant and not on the other traffic participants. This is a mild assumption since

the strategical decisions mainly depend on the final goal of a traffic participant.

This assumption simplifies the model and improves the speed of convergence

in the learning process.

We defineσG
+ to take the form of a sparse Gibbs distribution

σG
+ (π

G = g |c L = l ) =
¨

exp(θg ,l )/
�

∑

g i∈Gl
exp(θg i ,l )

�

if reachable(g , l )

0 otherwise
(4.17)

with Gl =
�

g |g ∈G ∧ reachable(g , l )
	

being the set of goals that are directly

reachable from lane l . The parameters of the model are θG =
�

θl1
, . . . ,θl|L |

�

T

with θlk
∈R|Glk

| . Larger parameter values result in higher probabilities for goals

to be predicted.

The parameters are optimized with gradient-based learning (see Ap-

pendix A.4) in the M-step. Therefore, we derive the partial derivatives of σG
+
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with respect to the parameters in order to optimize the expected complete data

log likelihood (see (4.15))

∂ σG
+ (g t |lt )

∂ θl ,g
=































exp(θg ,l )
∑

g i∈Gl \g exp(θg i ,l )

(
∑

g i∈Gl
exp(θg i ,l ))2

if g t ∈Glt
∧ g t = g ∧ lt = l

exp(θg t ,l +θg ,l )

(
∑

g i∈Gl
exp(θg i ,l ))2

if g t ∈Glt
∧ g t 6= g ∧ lt = l

0 otherwise .

(4.18)

The parameters are initialized with some constant, which results in a uniform

distribution over all reachable goal regions and expresses an non-informative

prior. In the course of learning, the transition probabilities are adapted to meet

the observed goal transition frequencies.

4.3.2 Learning the Route Policy Model

The route policy model (3.3.3) describes the distribution over the possible

routes a driver can take to reach a given goal based on the current situation.

To learn a route model that is able to generalize to different route networks,

it is not enough to just count the frequencies at which individual plans have

been executed by traffic participants. What needs to be learned is the relation-

ship between the properties of the available routes, the current situation and

the preferences of drivers. To enable the learning of this relationship the route

policy model is defined based on two reward functions that measure the utility

of different aspects of the routes for an average driver.

Recapitulating the definition of the route policy model, the probabilities of

the routes are calculated via a Gibbs distribution (3.17) from the expected utility

measure qs (πR , s R ) (3.15). The expected utility measure depends on a reward

function that assesses the constituents of the routes. Learning the route policy

model thus concentrates on learning the reward function.
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We apply gradient-based learning to obtain the maximum likelihood esti-

mates of the route policy model parameters, which consist of the parameters

of the reward function θR .

Deriving the route policy model (3.12) with respect to the parameters yields

∂ p (πR |s R , t R )
∂ θR

=

¨

∂ σR
+ (π

R |s R )
∂ θR

if t R = true

0 otherwise .
(4.19)

The partial derivatives of σR
+ with respect to the parameters for the case t R =

true result in

∂ σR
+ (π

R |s R )

∂ θR
=











































∂

∂ θR

 

exp(q (πR , s R ))
∑

πR
j ∈RπG ,c L ,πR−

exp(q (πR
j , s R ))

!

if πR ∈RπG ,c L ,πR−

∧ c L ∈LπR−

∂

∂ θR

 

exp(q (πR , s R ))
∑

πR
j ∈RπG ,c L

exp(q (πR
j , s R ))

!

if πR ∈RπG ,c L

∧ c L /∈LπR−

0 otherwise .

(4.20)

The partial derivatives for the first two cases of 4.20 only differ in the set of routes

over which to normalize. We can therefore derive the partial derivatives of the

expression together using a general set of routesRg , which results in

∂

∂ θR

 

exp(q (πR , s R ))
∑

πR
j ∈Rg

exp(q (πR
j , s R ))

!

=
exp(q (πR , s R ))

�

∑

πR
j ∈Rg

exp(q (πR
j , s R ))

�2





∂ q (πR , s R )
∂ θR

∑

πR
j ∈Rg \πR

exp(q (πR
j , s R ))−

∑

πR
j ∈Rg \πR

∂ q (πR
j , s R )

∂ θR
exp(q (πR

j , s R ))





(4.21)
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with the partial derivatives of the expected utility being

∂ qs (πR , s R )
∂ θs

=
|πR |−1
∑

l=1

∂ r

∂ θs

�

seg(πR , l ), seg(πR , l +1), s R
�

. (4.22)

As a parametric model for the reward functions, we use artificial neural net-

works (ANNs) (Rojas, 1996). ANNs can be trained with gradient-based methods

(LeCun et al., 1998; Martens, 2010) for supervised learning tasks. In the case

of the reward function, the ANN cannot be trained directly, since the true re-

ward values are unknown. However, it can be indirectly trained as part of the

route policy model. For optimizing the route policy model with gradient-based

methods the partial derivatives of the reward function (4.22) with respect to

the network parameters are needed. The partial derivatives of interest can be

derived by recursively applying the chain rule and efficiently calculated using

back-propagation. For details regarding ANN functions and their partial deriva-

tives, we refer to Appendix A.5.

With the parametric model and its partial derivatives defined, the route policy

model can be optimized with gradient-based methods. Since the input of the

model comprises features of the route and the situation and not only a route

index, general relationships for route selection preferences of drivers can be

learned and applied to new network configurations and situations. This way,

it can be learned for example that drivers in most situations prefer routes with

no lane changes or overtaking maneuvers.

4.3.3 Learning the Action Policy Model

The action policy model resembles the decision making of a traffic participant

on the level of continuous controls, i.e., in terms of acceleration and turning. It

is the key model and also the most complex one of the regarded models. The

action policy model ties together all the information required to formulate the

relationship between a situation and the distribution over actions that a traffic

participant can conduct. Based on the state of all other traffic participants, the

individual perspective of a traffic participant on the situation and his goal and

plan, the model defines how probable it is that this driver conducts a specific

action. We argued in Section 4.1 that it is difficult to model this relationship
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manually and that it is beneficial for several reasons to use a data-driven ap-

proach to obtain the model. In this section, it is shown how to learn the action

policy model from traffic observations.

In the presented Bayesian model, the transition model is divided into several

sub models, mainly the action policy model and the motion model. While it

also would have been possible to learn a transition model directly, this modeling

choice was made to promote learning through the following aspects: The use

of existing domain knowledge in form of motion models simplifies the learn-

ing task. Not only has this relationship not to be learned but more importantly,

it makes the exploitation of invariance directly accessible to learning, e.g., like

rotational and translational invariance. Since the behavior of a traffic partic-

ipant is the same under affine transformations of the global world frame, the

dependencies learned in one situation can be generalized more easily to simi-

lar situations. All these aspects can be seen as an improvement of the inductive

bias of the learner and therefore help to enhance generalization. As a result, less

samples are needed to reach the same accuracy compared to a transition model

learned directly.

We model the action policy model through a conditional multivariate normal

density

p (πA |x , x1:n\i , c ,πR ,πA−) = p (πA |s A) ∼ N (µs ,Σs ) (4.23)

with s A summarizing the situational dependencies s A = (x , x1:n\i , c ,πR ,πA−).

Even though the density itself is unimodal, the joint distribution together with

the plans and goals is multimodal and covers the different possible ways in

which a traffic a participant can behave.

Note that not only the mean µs of p (πA |s A) depends on the situation but also

the covariance Σs of the normal density, which represents the uncertainty in

choice of action in a given situation. It is crucial for this learning task to consider

this input-dependent noise, since the uncertainty can vary heavily depending

on the situation. In cases where a lot of variability in the possible set of rational

actions exists, the uncertainty mass spreads over a larger area than in situations

where traffic participants behave uniformly. Modeling this heteroscedasticity of

the data is even more important in time series prediction tasks since inaccura-
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cies multiply over time. Figure 4.3 shows a comparison between the predictions

of a homoscedastic model and a heteroscedastic model learned from data of

an intersection scenario. In this example the yaw rate ω is predicted depend-

ing on the current velocity v . To emphasize the point, it can be seen that the

homoscedastic model largely overestimates the variance of the yaw rate for ve-

locities v < 4.5 m
s and underestimates it elsewhere. The heteroscedastic model

on the other hand provides significantly more accurate estimates of the input-

dependent variance.

−0.5

0.0

0.5

0 2 4 6
v

ω

95% Confidence Heteroscedastic Model

95% Confidence Homoscedastic Model

Mean Model Prediction

Figure 4.3: Example of input-dependent noise present in the data of an intersection
scenario. The homoscedastic model largely overestimates the variance of
the yaw rate for velocities v < 4.5 m

s and underestimates it elsewhere. The
heteroscedastic model on the other side is able to provide significantly more
accurate estimates of the input-dependent variance.

Taking the input-dependency into account, the conditional multivariate nor-

mal density representing the action policy model has the following form

p (πA |s A) = (2π)−
d
2 det(Σs )

− 1
2 exp

�

−
1

2
(πA −µs )

TΣ−1
s (π

A −µs )
�

(4.24)
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with d = 2 being the dimensionality of the action policy space. The input-

dependent mean µs and covariance Σs are represented by the two non-linear

functions:

µs =m (s A) :R|s
A | 7→R|π

A | (mean function) (4.25)

Σs = k (s A) :R|s
A | 7→R|π

A |×|πA | (covariance function) (4.26)

The parameters of the action policy model θA therefore consist of the parame-

ters of the mean and the covariance function: θA = (θµ,θΣ). In the next section,

it is described how these two non-linear functions and, with it, the action policy

model can be learned with non-parametric learning techniques.

Learning The data basis for learning the action policy model are the samples

retrieved in the E-step of the EM procedure (4.2.2). The samples have the form

DA = {〈πA
i , s A

i , wi 〉}Ni=1 and relate situations s A
i withs actions πA

i . A vector s A

mainly consists of the context relations and forms the input features for the

learning procedure. The objective of the M-step is the optimization of the ex-

pected complete data log likelihood (4.8), which for the action policy model re-

duces to the optimization of the log likelihood of the data DA under the action

policy model (4.24)

lA =
|DA |
∑

i=1

log p (πA
i |s

A
i )

= −
|DA |d

2
log(2π)−

1

2

|DA |
∑

i=1

log(det(Σsi
))−

1

2

|DA |
∑

i=1

(πA
i −µsi

)TΣ−1
si
(πA

i −µsi
) . (4.27)

The parameters θ̂A = argmaxθA
(lA) that maximize lA cannot be calculated ana-

lytically. We propose finding θ̂A with an iterative procedure that estimates the

parameters of the mean and covariance function in an alternating fashion. It

follows the intuition that if we knew the parameters of the covariance function,

it would be easier to optimize the mean function and vice versa. And in fact, as

shown in the following section, if the covariances are known, the optimal pa-

rameters of the mean can be analytically estimated under some conditions.
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The algorithm carries out the following steps:

1. Estimate the initial parameters θ̂µ = argmax
θµ

(lA) with all covariances

Σsi
= I set to the identity matrix.

2. Estimate θ̂Σ = argmax
θΣ

(lA) using the previously estimated mean function

to calculate the residuals.

3. Estimate θ̂µ = argmax
θµ

(lA)using the previously estimated covariance func-

tion.

4. Iterate from step 2 until convergence.

The algorithm optimizes the model parameters θA by partially improving the

estimate with respect to its constituents θµ and θΣ. This is possible due to the

fact that the mean and covariance functions share no parameters. Since lA is

increased in each step or at least remains unchanged, it follows that the algo-

rithm eventually converges to a local optimum under the condition that lA is

bounded upwards.

Depending on the type of model chosen for the mean and covariance func-

tion, the optimization steps can be further simplified. Analysing the optimiza-

tion of the mean function yields

argmax
θµ

lA = argmin
θµ

(lµ) with (4.28)

lµ =
|DA |
∑

i=1

(πA
i −µsi

)TΣ−1
si
(πA

i −µsi
) , (4.29)

meaning that the maximum likelihood estimate of the mean function is equiv-

alent to the minimum of the well known sum of squared errors objective. If the

mean function m (x ) has a form that is linear in the parameters (e.g. polyno-

mials), the minimization problem can be analytically solved. In this case, the

mean function can be written as m (s A) =φ(s A)θµ with φ(s A) being some func-
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tion of s A. The optimal solution is derived by setting the derivative to zero and

solving for the parameters. The derivative is

∂ lµ
∂ θµ

=−2
|DA |
∑

i=1

(πA
i −m (s A

i ))
TΣ−1

si

∂m (s A
i )

∂ θµ
(4.30)

with
∂m (s A

i )
∂ θµ

=φ(s A). Setting the expression to zero ultimately yields the optimal

mean function parameters

θ̂µ =

� |DA |
∑

i=1

φ(s A
i )

TΣ−1
si
φ(s A

i )

�−1� |DA |
∑

i=1

φ(s A
i )

TΣ−1
si
πA

i

�

. (4.31)

This corresponds to the solution of a multivariate weighted least squares prob-

lem with partially correlated observations. The weighting in this interpretation

is inverse to the covariance of the noise Wi =Σ−1
si

for the given input s A
i , i.e., the

greater the noise, the less the influence of the observation on the estimate. The

difference to (feasible) generalized least squares is that the variance-covariance

is derived from the (non-linear) covariance function k (x ) instead of being di-

rectly estimated from the residuals (Björck, 1996). Even though the closed form

solution only exists in the linear case, we can make use of it for subproblems

arising in the chosen learning procedure described later in this section, where

locally linear models are estimated.

For the optimization of the covariance function, the objective (4.27) can be

transformed to

argmax
θΣ

lA = argmin
θΣ

� |DA |
∑

i=1

�

log(det(Σsi
))+ (πA

i −µsi
)TΣ−1

si
(πA

i −µsi
)
�

�

. (4.32)

In case that Σsi
is constant for all s A, the maximum likelihood estimate can be

solved in closed form and is just the covariance of the residuals

θ̂Σsi
=

1

|DA |

|DA |
∑

i=1

(πA
i −µsi

)(πA
i −µsi

)T . (4.33)

Choosing a constant covariance function allows only homoscedastic models

and is therefore not able to model input-dependent noise. However, in cases
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where the covariance function is piecewise constant, the closed form estimator

can be applied to obtain maximum likelihood estimates for the partitions.

We use a generalized form of random forests (Breiman, 2001) for learning

both the mean and the covariance function. Random forest are ensembles of

decision trees and constitute a finite mixture function. We chose random forests

for the learning task since they unite several beneficial properties. Random for-

est as well as decision trees can express non-linear functions with arbitrary pre-

cision and can handle mixed domains that involve nominal, categorial and con-

tinuous variables. The construction process for the individual decision trees is

simple and fast, and has only a small number of hyperparameters. In case of

ensembles, the learning process can be easily parallelized. What makes them

especially well suited for the application in our case is that function evaluation

and sampling is very efficient (Breiman, 1984). This aspect is of great impor-

tance since the inference calculates Monte-Carlo estimates of the posterior dis-

tributions (3.4), and therefore, the computational demand for sampling is the

determining factor for the possible length of prediction horizon and estimation

accuracy that is reachable under real-time conditions.

Random forests and bagged decision trees show very good generalization

properties in supervised learning tasks and belong to the best state-of-the-

art general purpose learning algorithms (Caruana and Niculescu-Mizil, 2006),

(Caruana et al., 2008). In comparison to a single decision tree, ensembles of

trees significantly better generalize as shown by number of empirical studies

(Breiman, 2001). Another important property of decision tree induction and,

in turn, of learning ensembles of decision trees is that the learning is non-

parametric. This means that the complexity of the model is determined by the

data and as a consequence the risk of over- and underfitting is reduced. What

makes decision trees especially interesting for our application, is that they can

be constructed sequentially (Ikonomovska, 2012). This enables the potential

optimization of the models online when new data becomes available, and could

enable livelong learning for such a prediction system.
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An abstract algorithm for recursive decision tree induction in a non-

parametric way is the following:

1. Find the best split and basis functions parameters according to the objec-

tive function E and the dataD: (θ̂s , θ̂b 1, θ̂b 2) = argminθs ,θb 1θb 2
E (D|θs ,θb 1,θb 2)

2. If the objective value of the split is not better than the objective value

of the current nodes’ basis function without the split (E (D|θ̂s , θ̂b 1, θ̂b 2) ≥
E (D|θb 0)) then terminate the current recursion

3. Else branch the node and set the split function to θ̂s and the two new basis

functions to θ̂b 1 and θ̂b 2. Partition the data accordingly and recurse with

step 1 for both branches if no stopping condition is met.

Most greedy decision tree learning algorithms in the literature fall under the

described algorithm. What differentiates them from each other is the choice

of objective function, the search strategy to obtain the best split in step 1, the

choice of basis and split functions and the stopping criteria.

We use this algorithm for learning both the mean and the covariance func-

tion but with different objective functions and different basis functions. For the

mean function we use linear basis functions together with the previously de-

scribed objective Lθµ (4.29). This allows estimating the optimal basis functions

analytically for any given split via the derived estimator θ̂µ (4.31). For the covari-

ance function we use constant basis functions and the objective LθΣ (4.32). With

this choice of basis functions, the optimal parameters can also be estimated

analytically with θ̂Σ (4.33). In both cases, we use oblique split functions which

partition the space according to hyperplanes represented by a linear function

(Murthy et al., 1994). The search strategy is to generate a set of candidate splits

derived from the data, partition the data according to the candidate splits, esti-

mate the optimal basis functions for the splits and choose the best split among

the candidates according to the objective function. In the next chapter, it is

shown how decision trees can be further optimized to reach better generaliza-

tions in high dimensional learning problems.
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Feedback loop1 To learn a meaningful action policy model, another aspect

needs to be considered. While the route policies of traffic participants have the

semantics that the driver chooses actions that follow a route, the action policy

model as presented so far is not constrained to comply with these semantics.

Even though the planned route is provided as input to the action policy model,

it is up to model to ensure that actions are derived that respect the semantics

of the route policy model, i.e. those actions are most likely that lead to trajec-

tories that follow the route. In order to supply this information to the learning

algorithm and thereby enabling it to learn the relationship between routes and

actions, we introduce an additional feedback loop into the Bayesian model.

The feedback loop is realized through an additional binary random variable

C R that indicates if an action at time step t yields a traffic participant state at

t + 1 that follows the route planned at t . Together with a virtual evidence of

true that is set on the node during the learning phase, it is guaranteed that only

state sequences have high probabilities where the actions are realizations of the

planned routes. The constraint model looks as follows

P (c R |c L ,πR−) =

¨

true: 1−ε if c L ∈LπR−

false: ε else ,
(4.34)

where the parameter 0 ≤ ε � 1 denotes the probability for the exception that

the road user does not follow his planned route. As a consequence, if actions

and planned routes are inconsistent, the corresponding particles are down-

weighted in the E-step. Since consistent state sequences become more likely,

the optimization in the M-step makes this constraint implicit and results in an

action policy model that will produce actions which are increasingly consistent

with each EM iteration. Note that the feedback loop is only needed to guide

the learning process. Once learned, the constraint becomes part of the action

policy model.

Physical constraints Another source of prior knowledge that can be incorpo-

rated to leverage learning and ascertain the semantics of the actions are phys-

ical constraints. The motion model described in Section 3.3.3 already consid-

1This paragraph has also been published with similar content in (Gindele et al., 2015).
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ers some of the non-holonomic constraints induced by the kinematics of a car.

What is not expressed by the differential equation 3.19 are the limitations of

steering and acceleration. We refer to Appendix A.3 for details.

4.4 Summary and Conclusion

In this chapter, we showed how the policy models that resemble the decision

process of traffic participants can be learned from data. We presented a learning

approach that finds patterns in the behavior of traffic participants to derive the

dependencies between situations and the decisions of traffic participants.

The presented method is able to learn these dependencies just by observing

the behavior of participants acting in traffic, even though the true states of in-

terest are never directly observable and the available measurements are noisy.

To leverage generalization, we showed how prior knowledge such as expressive

context relations, traffic regulations, motion models, map data and physical

constraints can be incorporated in the learning process.

One exceptional aspect of the presented learning approach is that it does not

require manually labeled data. This makes it cost-effective to use large amounts

of data for learning. Combined with non-parametric learning techniques, it en-

ables the learning process to scale up and learn even subtle relationships.
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We present a generalization of decision tree models together with novel ma-

chine learning algorithms for decision tree induction with optimized deci-

sion functions.

Decision trees are a popular tool for universal function approximation. They

represent piecewise defined functions and use a tree structure to define a hier-

archical partitioning of the domain of interest. Each partition corresponds to a

leaf node of the tree and is associated with a target value. To evaluate the tree

function, one walks down the tree following the branch corresponding to the

partition the input vector x falls into and returns the value of the leaf node.

Decision trees have a lot of beneficial properties which make them appealing

for researches and practitioners. They can be used for classification as well as

regression tasks. Their simple concept and versatility gave rise to a lot of vari-

ants of the original formulation (Murthy, 1998; Safavian and Landgrebe, 1991).

One of the main advantages of decision trees is their computational efficiency

due to the recursive partitioning of the input space. If applied in the context

of Bayesian networks to represent conditional density functions, they allow to

obtain Monte Carlo estimates of posterior distributions at low computational

costs. This is one of the reasons why we use them in form of ensembles to rep-

resent and learn the action policy model (see Section 4.3.3).

There are three aspects necessary to fully describe a decision tree: The tree

structure, the partitioning defined through split functions at each internal node,

and the values associated with each leaf. Figure 5.1 shows an example of a de-

cision tree function and its corresponding graph representation. Decision trees

are often learned in a non-parametric way, meaning that the complexity of the

model depends on the data. Since finding an optimal decision tree for a given

data set is NP-complete under several aspects of optimality (Hyafil and Rivest,
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x

f(x)

53 7

4

8

6

(a) Decision tree function.
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(b) Decision tree graph.

Figure 5.1: Example of a decision tree (a) together with its graph representation (b). In
the left Figure (a), the function depicted by a red line is approximated by
a piece-wise constant decision tree function depicted in blue. The dashed
lines illustrate the partitioning of input domain. The corresponding graph
representation of the decision tree is shown in the right figure (b). The rect-
angular nodes represent the decision nodes and define the recursive parti-
tioning. The round leaf nodes represent the function values for the associ-
ated partitions.

1976), a lot of effort has been put into designing suitable heuristics for the in-

duction of trees. The most common approach is a recursive construction pat-

tern, where the data is partitioned at each node according to a local optimality

criterion (see 4.3.3 for algorithm details). Fully grown trees obtained by such

greedy procedures tend to overfit the data. This effect can be mitigated by prun-

ing the tree after the construction with the help of a validation data set (Esposito

et al., 1997; Mingers, 1989).

In this chapter, we derive new learning algorithms for decision trees that allow

incremental learning by stochastic gradient descent and show improved gener-

alization performance in high-dimensional learning problems.

We start out by describing a framework for decision trees with arbitrary ba-

sis functions and arbitrary hard split functions for classification and regression

tasks. It is shown that classical tree functions like oblique trees (Murthy et al.,

1994) and model trees (Quinlan, 1992) can be interpreted as specializations of

this general class of tree functions. It is shown that the direct application of

gradient-based learning is not able to optimize the splits for a broad class of

loss functions, which originates from the piecewise constant nature of the split

functions. We approach this problem by relaxing the constraints of the split
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5.1 Parametric Learning of Generalized Decision Trees

functions and obtain a new class of generalized decision trees, which can rep-

resent smooth functions. For this class, we derive a gradient descent algorithm,

which can learn the parameters of both the basis and the split functions simul-

taneously and in an incremental manner.

Generalized decision trees tend to be smaller in size and enable gradient-

based learning but come at the price of increased computational complexity.

Since this is not always preferable, we show how generalized regression trees

can be used to learn decision trees with hard splits by means of a continuation

method (Allgower and Georg, 2003). An evaluation on several data sets shows

that the presented algorithms yield trees that generalize better and are smaller

in size compared to decision trees that are learned with state-of-the-art heuris-

tic methods.

5.1 Parametric Learning of Generalized Decision Trees

5.1.1 Decision Trees and Induction

The class of decision trees with hard splits describes a function T (x ) :X→Y. It

can be formalized in the following way. Let k be an internal node of a tree and

k1, . . . , kn its n child nodes. The associated n–ary split function

sk (x ) :X→{k1, . . . , kn}

divides the input space X into n disjoint regions. The final partitioning of the

input space into regions Rl encoded by the tree is generated by the conjunction

of splits along the pathways from the root to the leaf nodes. Since there exists

only one path from each leaf node l ∈ leafs to the root node, each path can be

described by the set of ancestor nodes anc(l ) of l . A child node of an internal

node a leading to leaf node l is denoted by ca ,l . Each leaf node l has a basis

function g l : X→ Y associated with it, describing the local tree function in the
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region Rl . In the simplest case, this is just a constant value. The tree function

can be stated as follows

T (x ) =
∑

l∈leafs

g l (x )1x∈Rl

=
∑

l∈leafs

g l (x )
∏

a∈anc(l )

1ca ,l=sa (x ) (5.1)

with 1 being the indicator function, which evaluates to 1 if the associated con-

dition is true and 0 otherwise. Due to the crisp nature of split functions, i.e.,

they can either be 1 or 0, only one term of the sum can be nonzero. To evaluate

the whole sum, only the basis function associated with the region x must be

evaluated. This locality feature is one of the main properties that makes tree

models so attractive. The complexity to find the region which x falls into is

O (depth(tree)). In the optimal case of a balanced tree with N nodes, it reduces

to O (log(N )).

Notice that in this formulation each split and basis function is defined on the

whole input space X, not only on the subspace resulting from previous splits

along the path. This yields exactly the same final partitioning of the input space

but is more general since each split function is defined independently from the

others. This property will become useful in the next section when the model is

generalized by making the splits “soft”.

Most of the tree models in the literature can be seen as specializations of (5.1).

Classic decision trees and regression trees (Breiman, 1984; Quinlan, 1986) are

obtained if “axis-parallel” split functions sa (x ) = 1xi>θ are used together with

constant basis functions g i (x ) = vi . In this case, the input space is divided only

in one dimension at each split. By using linear combinations of the input vari-

ables as splitting criteria sa (x ) = 1Ax>θ , the class of oblique trees (Murthy et al.,

1994) is obtained. Trees applying non-linear transformations to the inputs to

partition the input space (sa (x ) = 1φ(x )>θ ) are called multivariate decision trees

(Brodley and Utgoff, 1995). Even multi-resolution hierarchies (Moody, 1989) fit

this kind of tree function, since one can interpret the sparse grid decomposition

at each level as a multi-categorial split function. Exchanging the constant ba-

sis functions with more complex functions yields the class of model trees. Well

known instances of model trees are piecewise-linear trees (Quinlan, 1992) with
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5.1 Parametric Learning of Generalized Decision Trees

linear basis functions and neural trees (Stromberg et al., 1991) that employ ar-

tificial neural networks at each leaf.

5.1.2 Gradient-based Learning of Decision Tree Functions

We approach the problem of finding the (locally) optimal parameters of a de-

cision tree with gradient-based optimization techniques. To apply gradient-

based learning to decision trees, the first-order partial derivatives (Jacobian) of

the tree function T (x ) in (5.1) need to be derived. To do so, we first reduce the

problem to a parametric learning problem, meaning that the number of param-

eters of the tree function does not increase with the number of samples. This

implies that the size and structure of the tree stays fixed during the course of

learning. The parameter vector θ of the function comprises the parameters of

all the split and basis functions

θ = (θs ,θg ) = (θs1
, . . . ,θsn

,θg1
, . . . ,θgm

).

To select an initial model (structure and parameters), one can employ for ex-

ample a standard non-parametric greedy algorithm (Murthy, 1998).

The differentiation of T (x )with respect to the parameters θ yields

∂ T (x )
∂ θ

=
∑

l∈leafs

1x∈Rl

∂ g l (x )
∂ θ

+ g l (x )
∑

k∈anc(l )

∂ 1ck ,l=sk (x )

∂ θ

∏

a∈anc(l )\{k}

1ca ,l=sa (x ) . (5.2)

Several issues concerning the optimization arise from this formula. The first

is the necessary condition that the basis functions g i (x ) need to be differen-

tiable. This is easily resolved by restricting the set of possible basis functions

to the class of differentiable functions. All polynomial functions for example

belong to this class. The second issue stems from the discontinuities of the in-

dicator functions 1ca ,l=sa (x ) associated with the split functions, which render the

function non-differentiable. This is only a minor issue because the indicator

function belongs to the class of functions which are non-differentiable only on

a subset of points with probability zero. It can be shown that the convergence

properties are still met, if we set the gradient of the loss function to zero on the

non-differentiable subset of points (Bottou, 1998).
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(a) Data samples and decision tree function with a split threshold of 0.
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(b) MSE loss function with respect to the split function threshold θs .

Figure 5.2: MSE loss function for a simple decision tree function with one split and data
samples. The loss function is piecewise flat, meaning that the gradient car-
ries no information and as a consequence the split function cannot be di-
rectly optimized with gradient-based methods.
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Replacing the original loss function with this modified loss function renders it

differentiable but discloses the main issue of the current formulation of the tree

function: The gradient of the loss function with respect to the parameters of the

split functions θs are zero for all x ∈X. This can easily be seen by taking a look

at equation (5.2). The derivatives of piecewise constant indicator functions are

zero which renders the right part of the sum zero. The partial derivatives of the

left part are also zero because the basis functions do not share any parameters

with the split functions. Inserting these partial derivatives of zero into (A.14)

results in a loss function gradient of zero for the split function parameters at

any point. Since the gradient does not hold any information on how to opti-

mize the split function parameters, they are not adapted during the learning

procedure. Hence, applying gradient-based learning to a decision tree function

of the form (5.1) will fail to optimize the splits. Figure 5.2 illustrates the prob-

lem of a piecewise flat loss function for a simple decision tree with one split. To

solve this issue, we generalize the tree function in the next section by relaxing

the requirements of the split functions.

5.1.3 Generalized Decision Trees

In order to derive a meaningful gradient, we generalize the tree function T (x )

by allowing “soft” split functions. Switching from discontinuous indicator func-

tions to continuous split functions, such as sigmoidal functions, smooths the

loss function thereby enabling the optimization of splits. This approach is

closely related to the one used to derive a training rule for multi-layer networks

(Rumelhart et al., 1986), where similar issues arose before. In the stated case,

the discontinuous threshold activation functions of the nodes were replaced by

the smooth logistic activation functions, which yielded a differentiable multi-

layer function optimizable by gradient descent.

The n-ary split function sa (x ) in (5.1) could take on values of its n child nodes.

To facilitate soft splits, we change the split functions to sa (x ) : X→ [0, 1]n with

sa (c |x ) denoting the value for child node c . The additional normalization con-
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straint that ∀x :
∑n

i=1 sa (ci |x ) = 1 enforces a soft partitioning. A tree function

with this sort of splits can be stated as

F(x ) =
∑

l∈leafs

g l (x ) rl (x )

=
∑

l∈leafs

g l (x )
∏

a∈anc(l )

sa (ca ,l |x ) . (5.3)

We call this class of tree functions generalized decision tree (GDT). From the

convex combination property of the individual split functions follows that

the summation over all region values rl (x ) itself yields a convex combination.

Hence, the resulting function value F(x ) can be seen as an interpolation be-

tween the function values of the individual basis functions according to their as-

sociated region values. Figure 5.3 shows an example of a GDT that was learned

from noisy samples of a sine function.

Figure 5.3: Example of a GDT learned with noisy samples from a sine function.

Figure 5.4 shows an example of a generalized decision tree with one split and

a logistic split function. The resulting function smoothly interpolates between

the constant basis functions according to the region values rl (x ) (5.4b) and fits

the data better than the regular decision tree from the previous example (5.2a).

In contrast to the regular decision tree, the loss function is smooth with respect
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(a) Generalized decision tree function with one soft split.
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(b) Region values ri (x ) of the according soft partitioning.
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(c) MSE loss function with respect to the split function threshold θs .

Figure 5.4: MSE loss function for a simple generalized decision tree function with one
split and data samples.
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to the split function threshold (5.4) and can be optimized with gradient-based

methods.

Since the influence of a region can take on values out of the interval [0, 1],

regions can overlap. This has a strong implication on the computational com-

plexity of the function evaluation. In the worst case, all basis functions con-

tribute to the function value, i.e. all split and basis functions of the tree have

to be evaluated. The complexity of evaluating GDTs is O (size(tree)) in contrast

to O (depth(tree)) for evaluating decision trees with hard splits. However, some

functions can be represented more efficiently with GDTs, such as smooth func-

tions, so that the size of a GDT can be smaller than the depth of a DT with equal

representational accuracy.

5.1.4 Smooth Split Functions

The requirements of the split functions are the same as for discrete probability

distributions. Hence, we can employ suitable distributions as split functions.

A consistent way to derive split functions from general functions

h (x ) :X→Rn that meet the required criteria, is to use the Gibbs distribution

P (Y |X ) =
exp(−βE (Y , X ))

∑

y ∈Y exp(−βE (y , X ))
(5.4)

and to replace the energy function E with h (x ). The parameterβ is a free scaling

parameter. By setting β to −1 the split function becomes

sa (c |x ) =
exp(hc (x ))

∑n
i=1 exp(hi (x ))

, (5.5)

which is equivalent to applying the “softmax” function (JS., 1989) to h (x ). In the

case of a binary tree and h (x ) being a linear function h (x ) = Ax+b with hc1
(x ) =

−hc2
(x ) and β = − 1

2 , one obtains the well known linear logistic function widely

used in artificial neural networks (Rumelhart et al., 1986). Other examples of

smooth split functions that can be employed for binary trees are Gaussian radial

basis functions and scaled sine functions (Haykin, 1994).
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A soft variant of a binary oblique tree with linear threshold split functions

can be obtained by employing the same linear function together with a sigmoid

function like the logistic functionφ(x ) = (1− e −x )−1.

5.1.5 Partial Derivatives of Generalized Decision Trees

The partial derivatives of F(x ) with respect to the parameters of the basis and

split functions are

∂ F(x )
∂ θ

=
∑

l∈leafs

rl (x )
∂ g l (x )
∂ θ

+ g l (x )
∑

a∈anc(l )

rl (x )
sa (ca ,l |x )

∂ sa (ca ,l |x )
∂ θ

, (5.6)

∂ F(x )
∂ θg l

=rl (x )
∂ g l (x )
∂ θg l

, (5.7)

∂ F(x )
∂ θsn

=
∑

l∈leafs(n )

g l (x )
rl (x )

sn (cn ,l |x )
∂ sn (cn ,l |x )
∂ θsn

(5.8)

with leafs(n ) denoting the set of leaf nodes of the subtree rooted at node n . If

using differentiable basis and split functions, the partial derivatives of F(x ) are

well defined and enable simultaneous learning of both the parameters of the

split and basis functions with gradient-based learning.

The result of a fitted GDT for a 2d-learning problem can be seen in Figure 5.5.

In this example, Gaussian radial basis functions were used as split function,

which yield curved regions in the soft partitioning (5.5b).

5.1.6 Relationship of GDTs to other Models

The class of generalized decision trees proposed in this work is closely related

to hierarchical mixtures of experts (HMEs) (Jordan, 1994; Jordan and Jacobs,

1994) and fuzzy decision trees (FDTs) (Olaru and Wehenkel, 2003). All three

methodologies are tree models and employ split functions that can take on val-

ues between zero and one to yield more expressive models. While both HMEs

and GDTs use conditional multinomial distributions as split functions, FDTs

use membership functions that are in general not normalized. HMEs treat in-

ternal decision nodes and leaf nodes as random variables and thereby define a

fully probabilistic tree model. The probabilistic nature of HMEs enables the ap-

plication of likelihood learning methods like expectation maximization. GDTs
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(a) Generalized decision tree function (green) fitted to data (red).

(b) Soft partitioning. (c) Corresponding soft borders.

Figure 5.5: Example of a 2-dimensional function that is fitted with a generalized de-
cision tree. The upper figure (a) shows the training samples and the fitted
function. The lower figures show the soft partitioning of the input space (b)
and the corresponding soft margins (c).
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are more general than HMEs since they impose no restrictions on the choice

of basis functions. While HMEs always yield a conditional mixture distribu-

tion with one component for each leaf, GDTs can model arbitrary distributions.

This can be achieved for example by using the output values of the tree func-

tion to parametrize a target distribution, analogously to (Williams, 1996). In the

case that GDTs are used with conditional densities as basis functions, GDTs and

HMEs become equivalent. As stated before, FDTs use unnormalized member-

ship functions which form a superset of conditional multinomial probability

distributions. However, they are restricted to constant basis functions. Since

the normalization requirement for split functions of GDTs is only imposed to

preserve a soft partitioning and is not required to derive the gradient (5.6), it

follows that the learning rules of GDTs also apply to FDTs.

x1 x2 ...

... ...g1 g2 gb s1 s2

xdi

...r1 r2 rb

sn

f

1

�

��

input layer

basis and split 
function layer

partition layer

output layer

Figure 5.6: A generalized decision tree cast as a feed forward multilayer network. Higher
order neurons are necessary to calculate the products appearing in the tree
function.

There exists also a connection to artificial neural networks (feed forward mul-

tilayer networks). Authors like (Sethi, 1990) and (Shah and Sastry, 1999) showed
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how a regular decision tree with hard splits and constant basis functions (5.1)

can be cast as a three layer feed forward network with perceptron units. The

interesting part of this conversion is that the number of layers is constant, i.e.

independent of the size of the tree. The size affects only the number of hidden

nodes that are needed to encode the tree structure.

Generalized decision trees can also be stated as 3-layer feed forward networks

but requires more complex node functions than linear sigmoid functions to en-

code them efficiently. The structure of a generalized decision tree cast as a feed

forward multi-layer network is depicted in Figure 5.6. The first hidden layer

calculates the values of all the basis and split functions from the inputs individ-

ually. The second layer combines the split values according to the tree struc-

ture to evaluate the influence values of the regions. The third and also the out-

put layer combines these values with the basis function values to calculate the

weighted sum. Since the combinations in the second and third layer include

multiplications of multiple values, higher order neurons are necessary.

5.2 Optimization of Decision Trees with Hard Splits

Using generalized decision trees with smooth split functions enables gradient-

based learning but comes at the cost of increased computational complexity.

Decision trees with hard splits can be evaluated efficiently due to the non-

overlapping regions, but its split function parameters cannot be trained by gra-

dient descent as shown in section 5.1.2. In this section, we derive a method for

optimizing non-optimal decision trees with hard splits and thereby retaining

the evaluation efficiency. We therefore combine the ideas of generalized deci-

sion trees with a continuation method (Allgower and Georg, 2003) and intro-

duce a new specialized family of meta loss functions in order to connect them.

5.2.1 Continuation Approach to Optimizing Flat Objective Functions

In general, continuation methods are used to solve non-linear equations of the

form F (x ) = 0, but can also serve as a strategy to find optima of non-convex cost

functions (see for example (Moré and Wu, 1997)). The basic idea is to start with

a simplified version of the objective function, e.g., a smoothed version, and then

gradually transform it into the objective function of interest. Starting at a mini-
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mumθ of the simplified objective, the continuation process keepsθ minimized

during the transformation of the objective, guiding it to a dominant minimum

of the final objective.

While a continuation method generally serves the purpose of finding better

minima for optimization problems by decreasing the risk of getting stuck in lo-

cal minima early in the optimization process, we utilize it to optimize an ob-

jective that is piecewise constant in a subspace of the input variables. Our ap-

proach is to start with a soft version of a decision tree and use the gradient of the

smoothed objective to optimize the split parameters. We then gradually reduce

the softness of the splits, forcing both the basis and split functions to adapt. In

the end, the splits become hard and the parameters settle in a local optimum.

In order to apply a continuation method, one has to define a single-parameter

family of objective functions Cλ. The scalar parameter λ ∈ [0, 1] controls the

transition of Cλ from the simplified objective C0 to the objective of interest C1

Algorithm 1 Continuation optimization

Require: samplesD = {z1, . . . , zn}, parametric cost function Cλ, starting param-
eters θ̂0, steps m

1: Init: λ← 0, ∆λ← 1/m , i ← 0
2: while λ≤ 1 do
3: optimize Cλ(θi ,D), using θ̂i as starting value
4: θ̂i+1← θi

5: λ←λ+∆λ
6: i ← i +1
7: end while
8: return θi−1

The simplest version of a continuation algorithm for an optimization task is

listed in Algorithm 1. By gradually shifting the objective and using the last found

optimum as a starting value for the next iteration, one finally obtains a (local)

optimum of the proper objective. Notice that the optimization in line 3 is exe-

cuted until convergence is reached for the current Cλ. More advanced versions

of the predict step (line 4) and the step width adaption (line 5) can be found in

(Allgower and Georg, 2003).
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5.2.2 Parametric Family of Cost Functions

The first step in deriving the family of cost functions Cλ is the definition of a

parametric family of split functions that allows transforming any generalized

decision tree with soft splits into one with hard splits. A reasonable way to turn

any soft split function s (c |x ) into a hard split function ŝ (c |x ) is to assign to it the

child node with the highest influence for a given x : ŝ (c |x ) = 1c=argmaxd s (d |x ). This

transformation minimizes the difference between the soft and the hard version

of the tree function. To enable a smooth transition between s (c |x ) and ŝ (c |x )
we propose the following parametric form of split functions

s̃ (c |x ,λ) =
s (c |x )t (λ)

∑

d s (d |x )t (λ)
with t (λ) =

1

1−λ
(5.9)

and λ ∈ [0, 1] and t (λ) : [0, 1]→ [1,∞). The parametric split function can shift

smoothly between the soft split function s̃ (c |x , 0) = s (c |x ) and the hard one

s̃ (c |x , 1) = ŝ (c |x ). Accordingly, the parametric region function for a leaf node l

becomes

r̃l (x ,λ) =
∏

a∈anc(l )

s̃a (ca ,l |x ,λ) . (5.10)

We propose the following parametric loss function Lλ to derive the parametric

family of cost functions Cλ from the empirical loss (A.10)

Lλ(z ,θ ) =
∑

l∈leafs

Lg l
(z ,θ ) r̃l (x ,λ) . (5.11)

This loss function Lλ weights the loss Lg l
of the individual basis functions g l

according to their scaled influence r̃l (x ,λ) given a sample z = (x , y ). For λ = 0,

the splits are soft and the loss of the basis functions are weighted proportional

to their influence in the overlapping regions. By increasing λ the splits become

sharper, assigning more credit to the basis function with the highest influence,

while the weighted loss of the other basis functions vanishes. In the end (λ= 1),

only the loss of the basis function with the highest influence contributes to the

overall loss Lλ at each point, which equals the loss of the corresponding decision

tree function with hard splits.
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Figure 5.7: Paramteric MSE cost function for increasing values of λ.

Figure 5.7 illustrates the evolution of the parametric cost function for increas-

ing values of λ. The cost function is calculated with respect to the split function

threshold and according to the decision tree and data of the previous examples

(5.4, 5.2). For λ = 0 the cost function surface is smooth and has only one opti-

mum that can easily be found with gradient descent. With increasing values of

λ, the cost function surface shifts to the actual cost function of interest (com-

pare Figure 5.2b), which is reached for λ = 1. By tracking the minimum, the

optimal split function parameter of the decision tree are found.

5.2.3 Partial Derivatives of the Parametric Loss Function

The gradient of the parametric loss function can be calculated with

∂ Lλ(z ,θ )
∂ θ

=
∑

l∈leafs

�

∂ Lg l
(z ,θ ))

∂ θ
r̃l (x ,λ) +Lg l

(z ,θ ))
∂ r̃l (x ,λ)
∂ θ

�

(5.12)

together with the partial derivative of r̃l (x ,λ)

∂ r̃l (x ,λ)
∂ θ

=
∑

a∈anc(l )

r̃l (x ,λ)
s̃a (ca ,l |x ,λ)

∂ s̃a (ca ,l |x ,λ)
∂ θ

(5.13)
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Figure 5.8: Optimized decision tree with hard splits and linear basis functions.

and the partial derivative of s̃a (ca ,l |x ,λ)

∂ s̃a (ca ,l |x ,λ)
∂ θ

=
t (λ)sa (ca ,l |x )t (λ)−1

∑

i∈leafs(a ) sa (ca ,i |x )t (λ)




∂ sa (ca ,l |x )
∂ θ

−
sa (ca ,l |x )t (λ)
∑

i∈leafs(a )
sa (ca ,i |x )t (λ)

∑

i∈leafs(a )

sa (ca ,i |x )t (λ)−1 ∂ sa (ca ,i |x )
∂ θ



 . (5.14)

By optimizing Cλ with a gradient descent algorithm (see Appendix A.4) in

each step of the continuation algorithm (Alg. 1), we are now able to learn a deci-

sion tree with hard splits from any generalized decision tree with differentiable

split and basis functions. Figure 5.8 shows an example of an optimized deci-

sion tree with hard splits and linear basis functions, which was obtained with

the presented continuation method.

5.3 Evaluation of decision tree learning algorithms

The presented learning algorithms are evaluated on three data sets:

Sine (500 samples) A data set consisting of noisy samples drawn from a sine

function.
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Robot Dynamics (1000 samples) This data set is concerned with the forward

dynamics of a robot arm with three joints. The 8-dimensional input con-

sists of the angular positions of the joints, their angular velocities and their

torques. The function is highly non-linear and noisy.

Traffic (1000 samples) The data consists of context feature descriptions of traf-

fic situations. The input is 36-dimensional. The prediction variable is the

yaw rate of a vehicle acting in the given situations.

Three different decision tree learning methods are compared, the two presented

algorithms and a standard DT induction method for comparison.

DT is a decision tree with (hard) linear oblique splits. It serves as a compari-

son model for assessing the level of improvement gained by the presented

algorithms. The used basis functions are constant functions and linear

functions respectively. Cost Complexity Pruning is used to prune the tree

in order to reduce the risk of overfitting (see (Breiman, 1984) for details).

Opt GDT is a GDT which is derived from DT . It uses smooth split functions con-

sisting of compositions of a linear and a sigmoid functions. It is trained

with the GDT learning algorithm presented in Section 5.1.

Opt DT is an optimized decision tree with hard splits. It is trained with the con-

tinuation based learning algorithm presented in Section 5.2.

All models minimize the root mean squared error (RMSE) over the data. The

performance is measured on a test set consisting of 20% of all samples, the rest is

used for training. Each model is trained 10 times, each time randomly drawing

a new test set without replacement.

The gradient-based learning of Opt GDT and Opt DT is realized with stochas-

tic gradient descent and mini batches of 100 samples. To speed-up the con-

vergence, a stochastic diagonal approximation of the Levenberg Marquardt

method together with an adaptive learning rate is used (LeCun et al., 1998).

Results and Analysis Table 5.1 reports the results of the compared decision

tree learning algorithms. The table states the RMSE achieved by the algorithms

on the different data sets together with the standard deviations. On every data
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set the GDT with soft splits (Opt GDT) shows significantly better generalization

over the test sets than the decision trees with hard splits. The optimized deci-

sion tree with hard splits (Opt DT) shows lower errors than the regular decision

tree (DT). The magnitudes of improvement vary depending on the data set. Fig-

ure 5.9 shows the results of the evaluation as box plots.

Table 5.1: RMSE results with standard deviations for different data sets (lower is better)

Regression Model Traffic Kinematics Sine
DT 0.173 ± 0.009 0.224 ± 0.009 0.273 ± 0.033
Opt DT 0.171 ± 0.008 0.18 ± 0.011 0.226 ± 0.016
Opt GDT 0.165 ± 0.009 0.148 ± 0.009 0.127 ± 0.014
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(a) Evaluation on the Traffic data set.
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(b) Evaluation on the Robot Dynamics data set.
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(c) Evaluation on the Sine data set.

Figure 5.9: Comparison of decision tree learning methods.
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5.4 Summary and Conclusion

In this chapter, we derived novel learning algorithms for decision trees and a

newly derived class of generalized decision trees. The developed algorithms

show improved generalization properties over existing approaches, which stem

from their ability of finding better splits functions through optimization. This

becomes increasingly important in high-dimensional spaces where the param-

eter space of the split functions cannot be searched or sampled exhaustively.

Suboptimal split function parameter estimates of greedy induction methods

can be corrected with the presented methods by optimizing all parameters

of the tree simultaneously. These learning algorithms make the learning of

the policy models scalable to complex situations when the dependencies be-

tween high-dimensional context descriptions and the resulting decisions have

to found.

The learning algorithm for generalized decision trees shows faster conver-

gence than the continuation-based learning algorithm but the gain in learning

time comes at the cost of an increased worst-case complexity for function eval-

uation. Depending on the task requirements each of the presented algorithms

can be the right choice.

The incremental nature of the generalized decision tree learning algorithm

makes it possible to tackle learning problems with large amounts of data. Al-

though the requirements on the algorithms originated from their application

in learning predictive models, the developed algorithms are general machine

learning methods for solving classification and regression tasks beyond the traf-

fic domain.
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In this chapter, the presented approach is evaluated in several different traf-

fic scenarios and several aspects are analyzed. The main interesting aspects are

how accurately the Bayesian model can predict the evolution of traffic situations

with learned policy models and which context dependencies can be learned.

The prediction accuracy is compared to a standard Bayesian filter that does not

use any contextual information, but relies solely on the vehicle kinematics and

dynamics to predict the future motions of traffic participants. By comparing the

two approaches, we investigate the importance of the consideration of interac-

tions between traffic participants, their goals and plans as well as information

about the road network. In an additional analysis, the influence of noise in the

observations of traffic participants on the learning process accuracy is exam-

ined.

It is shown that the presented approach is able to learn the situation-specific

behavior of traffic participants. It can provide realistic predictions over time

periods of several seconds. The approach is tested in different traffic scenarios

without special adaptations which underlines the generality of the approach.

6.1 Evaluation of Prediction Accuracy

6.1.1 Settings

It is proceeded as follows to evaluate how well the presented approach is able to

predict future situation developments: Multiple variations of a traffic scenario

are recorded in form of traffic episodes. The data set of traffic episodes is split

into a training set and a test set. The training set is used for learning the policy

models of the presented Bayesian model. The prediction accuracy is estimated

on the test set episodes.
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Measures The prediction accuracy of the approach is measured in two ways.

We calculate the mean log likelihood (MLL) and the root mean squared error

(RMSE) of the data.

For an episode of length T with data { ȳ (t )}Tt=1 and predicted distributions for

the data for each time step {p (y (t ))}Tt=1, the MLL measures how good the predic-

tions match the data. The predicted distributions are calculated according to

the used model. The MLL is defined as

MLLy =
1

T

T
∑

t=1

log p ( ȳt ) . (6.1)

Instead of considering the full predicted distributions of the data, the RMSE

only compares the expected values of the distributions ŷ (t ) = Ep (y (t )) with the

data. The RMSE is defined as

RMSEy =

√

√

√ 1

T

T
∑

t=1

( ŷ (t )− ȳ (t ))2 . (6.2)

While the RMSE is easier to interpret, it has the drawback that it only consid-

ers the mean estimation and not the distribution. It does not represent the pre-

diction accuracy well if the predicted distributions have more than one mode.

This becomes especially important when measuring the long term prediction

accuracy since the prediction then often shows several modes (see for example

Figure 6.9). The MLL is a more informative measure since it considers the full

distributions of predicted values instead of only the mean.

Data The data for learning and testing is acquired with a simulation frame-

work. Figure 6.1 shows a screenshot of a simulation run. The simulator uses

a physics engine to simulate the dynamics of the cars. Cars are driven man-

ually with a steering wheel and pedals as well as by the autonomous driving

software that was developed by team AnnieWAY for the DARPA Urban Chal-

lenge (Gindele et al., 2008; Kammel et al., 2008). For every traffic scenario, mul-

tiple episodes are recorded with variations in the driving behavior. For every

time step of an episode, the positions, orientations and velocities of all traf-

fic participants are recorded as ground truth data. Before learning, we add
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Figure 6.1: Simulation of an intersection scenario with two cars.

white noise to the training data with a standard deviation of
�

σx1
,σx2

,σv ,σψ
�

=
�

0.1 m, 0.1 m, 0.1 m
s , 0.05 rad

�

to simulate measurement errors. The episodes

are recorded with a frame rate of 3.3 resulting in a time step of∆t = 0.3 s.

Comparison model We compare our approach to a Bayesian filter model

which is widely used in tracking applications. It uses a single track motion

model (as described in Section 3.3.3) and relies on the vehicle kinematics and

dynamics to predict the future motions of traffic participants. The model as-

sumes the current velocity and heading to be constant with some Gaussian

noise. The noise parameters are directly estimated from the ground truth con-

trol data. The model uses no contextual information. It is therefore well suited

to evaluate the impact of mutual influences between road users on the predic-

tion. In the following evaluation, the comparison model is called single track

model and the presented approach learned model.

Model learning The policy models are learned as described in Chapter 4. For

learning the action policy model, we use random forests of generalized decision

trees with linear oblique splits (Murthy et al., 1994) and linear basis functions

(Potts, 2004).

——————————————
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Figure 6.2: Overview of the lane following test track from a bird’s-eye perspective.

6.1.2 Lane Following Scenario

The first scenario is a lane following experiment. In this scenario, a single car is

observed that drives around on a curvy track with slight variations in velocity.

Figure 6.2 shows the map of the track from a bird’s-eye perspective. An episode

example is depicted in Figure 6.3.

The goal of this scenario is to evaluate how well the approach is able to learn

the behavior that regular drivers mainly drive along roads. Since the map data

only serves as source of information and not as motion constraint, the depen-

dency between the course of the road and the appropriate control signals in

terms of steering and acceleration have to be learned in order to predict the fu-

ture trajectories correctly.

The models were learned from 50 observed episodes with an average length

of 142 time steps (∼43 s). An additional set of 10 episodes was used to evaluate

the test set performance.

Results and analysis The tables 6.1 to 6.4 provide the measured prediction

accuracy of the learned model and the comparison model. The learned model

yields a significantly better accuracy for the state estimation as well for the pre-

diction. The MLL of the single track model prediction with ∆t = 6 s is not de-

fined (NA) since the Monte Carlo estimate yielded a numerical result of 0 due to

high uncertainty and the limited amount of samples. For a likelihood of 0 the

MLL is not defined due to the logarithm.
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Figure 6.3: Sample episode of the lane following scenario. The numbers indicate the
time steps.

Figure 6.4 and Figure 6.5 show examples of predictions generated by the two

models. The prediction horizon covers 20 steps in the future, which equals a

period of 6 seconds. The densities of the predicted positions are depicted in

different colors to indicate the time. The orange dots behind the car show their

smoothed position estimates for past time steps. The measurements are de-

picted in blue.

The prediction of the single track model (6.5) spreads in all directions since it

uses no map data and therefore, has to consider all kinds of curvatures ahead.

It is clear that no accurate prediction over longer time periods can be obtained

from such a model. The learned model on the other hand is able to predict the

actions well (6.4). This leads to predicted trajectories along the course of the

road. The prediction uncertainty mainly spreads in the longitudinal direction

to account for the different velocity profiles of drivers but is limited in lateral

direction which reflects the behavior of drivers to mainly stay on lanes.

Table 6.1: Prediction MLL (higher is better).

model MLL
(∆t : 0.0 s)

MLL
(∆t : 3.0 s)

MLL
(∆t : 6.0 s)

learned model 1.280 0.362 -0.799
single track model 0.295 -6.537 NA
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t

t ` 3 s

t ` 6 s

evidence

(a) Predicted trajectories of the car over 6 s.

t

t ` 6 s

evidence

(b) Predicted future positions of the car 6 s ahead.

Figure 6.4: Learned model: Predicted trajectories of the car on the lane following track.
Figure (a) shows the predicted trajectories over a period of 6 s. The trajecto-
ries follow the course of the road but vary in their velocity profile. Figure (b)
shows only the prediction 6 s in the future.
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t

t ` 3 s

t ` 6 s

evidence

(a) Predicted trajectories of the car over 6 s.

t

t ` 6 s

evidence

(b) Predicted future positions of the car 6 s ahead.

Figure 6.5: Single track model: Predicted trajectories of the car on the lane following
track. Figure (a) shows the predicted trajectories over a period of 6 s. Since
the prediction only relies on the motion history, the trajectories fan out in all
directions to account for possible curves ahead. Figure (b) shows only the
prediction 6 s in the future.
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Table 6.2: Prediction RMSE of position (x1, x2) in meters (lower is better).

model (x1, x2) RMSE
(∆t : 0.0 s)

(x1, x2) RMSE
(∆t : 3.0 s)

(x1, x2) RMSE
(∆t : 6.0 s)

learned model 0.152 0.904 2.081
single track model 0.157 4.775 14.906

Table 6.3: Prediction RMSE of velocity v in seconds (lower is better).

model v RMSE
(∆t : 0.0 s)

v RMSE
(∆t : 3.0 s)

v RMSE
(∆t : 6.0 s)

learned model 0.143 0.457 0.527
single track model 0.108 0.784 1.111

Table 6.4: Prediction RMSE of headingψ in rad (lower is better).

model ψ RMSE
(∆t : 0.0 s)

ψ RMSE
(∆t : 3.0 s)

ψ RMSE
(∆t : 6.0 s)

learned model 0.054 0.064 0.123
single track model 0.068 0.502 0.859
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6.1.3 Intersection Scenario

In this scenario, the behavior of traffic participants at intersections is investi-

gated. The intersection that is considered is a standard unsignaled intersection

with 4 junctions. German traffic rules apply, i.e., drivers coming from the right

have right-of-way over cars coming from the left (relative positions) and drivers

that make a left turn on the intersection have to yield to other cars coming from

the opposite direction. Figure 6.6 shows an overview of the intersection road

map used for the evaluation and a sample episode of the two cars approaching

the intersection from opposite directions.

The goal of this scenario is to evaluate whether the learning approach is able

to learn the interaction patterns that occur at an intersection where right-of-

way regulations lead to different behaviors. An interesting aspect is that for this

experiment no right-of-way relations are provided in the context features. The

system has to discover the underlying rules based on the motion observations

only.

The models were learned from 60 observed episodes with an average length

of 144 time steps (∼43 s). An additional set of 10 episodes was used to evaluate

the test set performance.

Results and analysis The results of the prediction accuracy evaluation for the

two compared models is provided in the tables tables 6.5 to 6.8. As in the pre-

Figure 6.6: Overview of the intersection scenario. In this scenario, two cars approach
the intersection from various directions and act according to German traffic
rules.
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Figure 6.7: Sample episode of the intersection scenario where the car coming from left
(red) yields to the car coming from the right. The numbers indicate the time
steps.

vious example, the learned model yields a significantly better accuracy for the

state estimation as well for the prediction. The differences become even more

apparent in this scenario due to the situational dependency of the behavior pat-

terns.

Table 6.5: Prediction MLL (higher is better).

model MLL
(∆t : 0.0 s)

MLL
(∆t : 3.0 s)

MLL
(∆t : 6.0 s)

learned model 1.931 -1.456 -3.655
single track model 0.577 -14.971 NA
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Table 6.6: Prediction RMSE of position (x1, x2) in meters (lower is better).

model (x1, x2) RMSE
(∆t : 0.0 s)

(x1, x2) RMSE
(∆t : 3.0 s)

(x1, x2) RMSE
(∆t : 6.0 s)

learned model 0.142 1.662 6.327
single track model 0.161 4.664 14.209

Table 6.7: Prediction RMSE of velocity v in seconds (lower is better).

model v RMSE
(∆t : 0.0 s)

v RMSE
(∆t : 3.0 s)

v RMSE
(∆t : 6.0 s)

learned model 0.113 0.537 0.785
single track model 0.120 0.962 1.362

Table 6.8: Prediction RMSE of headingψ in rad (lower is better).

model ψ RMSE
(∆t : 0.0 s)

ψ RMSE
(∆t : 3.0 s)

ψ RMSE
(∆t : 6.0 s)

learned model 0.053 0.213 0.432
single track model 0.072 0.487 0.797
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Predictions can be seen in the following visualizations of exemplary antici-

pated situations. The following Figures (6.8 – 6.11) show predictions of differ-

ent test episodes at different points in time. As before, the prediction horizon

is set to 20 steps (6 s). The particle densities of the predicted states are depicted

in different colors to indicate the time. Additionally, the predicted routes are

visualized through highlighted lane boarders (green). Although the inference

computes joint predictions for all cars, the figures do not show which predic-

tion of one car belongs to which prediction of the other car for visual clarity.

t ` 1.2 s

t ` 2.4 s

t ` 3.6 s

t ` 4.8 s

t ` 6.0 s

t

Figure 6.8: Prediction of a situation at an intersection over a period of 6 s with a policy
model learned from traffic observations. Due to data-driven approach and
consideration of contextual information the development of the situation is
realistically predicted.

Figure 6.8 illustrates the prediction for a situation where a car (car 2) coming

from the bottom has right of way over a car coming from the left (car 1). Sev-

eral conclusion can be drawn from this example. Again, the learning algorithm

successfully managed to learn the lane following behavior of drivers also in this

more complex example. The second observation is that the drivers’ different
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choices at the intersection lead to multiple modes in the predicted distribu-

tions. Since car 2 has the right of way in this example, it is realistically predicted

that car 1 stops in front of the intersection while car 2 takes one of the possi-

ble ways over the intersection without stopping. The observed driving behav-

ior and the current heading of car 2 together with its velocity profile leads the

Bayesian model to the conclusion that not all modes are equally likely. At this

point, the driver will rather make a left turn or drive straight than make a right

turn.

The prediction that car 1 is stopping at the intersection is only possible

through the consideration of the whole situational context. It is necessary to

take all other traffic participants and their roles into account to determine the

right interpretation and anticipate consequentially that the car will most likely

stop at the intersection. In addition, the model does not only conclude that car 1

is going to stop but also provides an estimate of the distribution over where and

how it is going to stop.

The influence of the situational context becomes even more evident in the ex-

ample shown in Figure 6.9. In this case, only the predictions at t +6 s are plotted

without the intermediate steps. Again, it can seen how the possible decisions

of car 2 lead to different clusters in the density of the predicted states. An inter-

esting aspect is that the learner implicitly learned the effects of traffic rules on

the actions of traffic participants just by observing traffic episodes.

In another example, we can see how the presented Bayesian approach with

learned policy models employs temporal reasoning to make realistic predic-

tions. In Figure 6.10, two cars approach the intersection from opposite direc-

tions. The first car coming from the left begins to slow down while the second

car coming from the right keeps its velocity. The temporal reasoning integrated

the observed changes in behavior over time and put them into relation with

the overall situation. The conclusion of this reasoning process is that the hy-

potheses for car 1 that it will make a left turn are the most likely ones. The other

options became improbable over time since the observed deceleration did not

match the expected behavior when driving straight across the intersection or

making a right turn. Similar reasoning applied for the trajectory hypotheses of

car 2. Since car 2 would have to stop and yield in case of a left turn but does not

exhibit a deceleration behavior, the corresponding hypotheses were ruled out.
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Figure 6.9: Prediction for two cars approaching the intersection from opposite direc-
tions. In this plot, only the predictions at t + 6 s and not the intermediate
steps are shown. One can see that the presented approach was able to learn
traffic rules. As a result, the model is able to predict the different modes cor-
rectly.

Figure 6.11 shows predictions for several episodes. The episodes are typical

examples that show the importance of considering the situational context when

making predictions. Note, even if predictions with the same color (at the same

time) overlap, it does not necessarily mean that a collision is predicted because

they do not necessarily belong to the same joint prediction.
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Figure 6.10: Example of temporal reasoning. The hypotheses for car 1 that it will make
a left turn are the most likely ones. The other options became improba-
ble over time since the observed deceleration did not match the expected
behavior for driving straight across the intersection or making a right turn.
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(a) Episode 1, t=25 (7.5 s). (b) Episode 1, t=35 (10.5 s).

(c) Episode 2, t=20 (6 s). (d) Episode 2, t=30 (9 s).

(e) Episode 3, t=15 (4.5 s). (f) Episode 3, t=25 (7.5 s).

Figure 6.11: Snapshots of the prediction process for different episodes. The prediction
horizon spans 6 s (20 steps). Notice the context dependency of predictions.
These kind of context sensitive predictions are necessary for realistic risk
assessments that go beyond regular time-to-collision estimates.
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6.1.4 Roundabout Scenario

The roundabout scenario is used to examine the learning in a complex setting.

The road network consists of a roundabout with roads connecting the entries

and exists and a three-way intersection. Figure 6.12 gives an overview of the

map and the roundabout. Three interacting cars are observed in this scenario.

In the observed training examples, the cars always stop before they enter the

roundabout.

The goal of this scenario is to evaluate whether the learning approach is able

to learn the interaction patterns that occur at a roundabout.

The models were learned from 30 observed episodes with an average length

of 600 time steps (∼180 s). An additional set of 10 episodes was used to evaluate

the test set performance.

Results and analysis The results of the prediction accuracy evaluation for the

two compared models is provided in the tables tables 6.9 to 6.12. As in the pre-

vious scenarios, the learned model yields a significantly better accuracy for the

state estimation as well for the prediction. Due to the increased complexity of

the road network configuration and context dependency of the behavior deci-

sions of the drivers, the advantage of the learning approach over the compari-

son model becomes even more apparent.

Table 6.9: Prediction MLL (higher is better).

model MLL
(∆t : 0.0 s)

MLL
(∆t : 3.0 s)

MLL
(∆t : 6.0 s)

learned model 2.331 -6.006 NA
single track model 0.130 -21.913 NA

Table 6.10: Prediction RMSE of position (x1, x2) in meters (lower is better).

model (x1, x2) RMSE
(∆t : 0.0 s)

(x1, x2) RMSE
(∆t : 3.0 s)

(x1, x2) RMSE
(∆t : 6.0 s)

learned model 0.160 2.065 6.746
single track model 0.206 4.759 14.391
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(a) Birds-eye perspective view of the roundabout scenario.

(b) Sample episode with 3 cars.

Figure 6.12: Overview of the roundabout scenario.
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Table 6.11: Prediction RMSE of velocity v in seconds (lower is better).

model v RMSE
(∆t : 0.0 s)

v RMSE
(∆t : 3.0 s)

v RMSE
(∆t : 6.0 s)

learned model 0.128 0.990 1.512
single track model 0.094 1.236 1.819

Table 6.12: Prediction RMSE of headingψ in rad (lower is better).

model ψ RMSE
(∆t : 0.0 s)

ψ RMSE
(∆t : 3.0 s)

ψ RMSE
(∆t : 6.0 s)

learned model 0.060 0.218 0.487
single track model 0.085 0.562 0.940

Figure 6.13 shows an example of the predicted behavior of three cars ap-

proaching and entering the roundabout. The prediction period is 6 s. In 6.13a,

car 1 and car 3 are about to enter the roundabout while car 2 follows car 1. Since

car 1 is driving slower ahead, car 2 is predicted to slow down. 12.6 s later (6.13b),

car 3 is leaving the roundabout and car 1 has entered it. Both choices for car 1 of

staying in the roundabout or leaving it at the next exit are predicted with equal

probability since there are no indicators for one choice at this point.

Another episode is shown in Figure 6.14. It shows the prediction of a fol-

lowing behavior at the entry of the roundabout. At t = 122, car 2 is predicted

to keep a safety distance to car 3. Since car 3 has no other road user ahead, it

is predicted to accelerate and take one of the two possible routes with equal

probability (6.14a). Figure 6.14b depicts the same situation but shows only the

predicted positions 6 s ahead instead of all intermediate prediction steps. The

ground truth of the future car positions is also depicted to show the accuracy of

the predicted distributions.

Figure 6.15 shows the predictions of another episode at several time steps. In

this episode, the context-dependency of the behavior prediction can be seen.

At t = 91, car 1 is in the roundabout while car 2 is approaching the roundabout

from the right (6.15a). At t = 117, car 2 has slowed down and is predicted to most

likely stop at the entry of the roundabout since up to this point it is unclear for

car 2 whether car 1 will stay in the roundabout or leave it at the next exit (6.15b).
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(a) Time step 80 (24.0 s).

(b) Time step 122 (36, 6 s).

Figure 6.13: Predictions of three cars at a roundabout.
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(a) Full trajectory predictions at t = 122 (36.6 s).

(b) Predictions 6 s ahead with ground truth at t = 122 (36.6 s).

Figure 6.14: Predictions of two cars at a roundabout with ground truth.
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Note that at this point, the consideration of the mutual influences between road

users is essential for deriving realistic predictions. At t = 124, car 1 has decided

to stay in the roundabout which causes car 2 to be predicted to wait at the entry

(6.15c). As car 1 passes car 2 and making the way free for car 2, it is predicted

in the following time steps (140, 160, 177) that car 2 accelerates and enters the

roundabout. Notice the difference in the prediction probability of the different

route choices of car 1 and car 2 at similar positions at t = 140 and t = 177. Due

to their difference in orientation, it is more likely for car 1 to take the exit in

Figure 6.15d as it is more likely for car 2 to stay in the roundabout in Figure 6.15f.
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(a) Time step 91 (27.3 s). (b) Time step 117 (35.1 s).

(c) Time step 124 (37.3 s). (d) Time step 140 (42.0 s).

(e) Time step 160 (48.0 s). (f) Time step 177 (53.1 s).

Figure 6.15: Trajectory and route predictions of three cars in a roundabout. When car 1
is in the roundabout, it is correctly predicted that car 2 will stop at the entry
and then will wait until the way is clear.

139



6 Evaluation

6.2 Influence of Noise

Traffic situations can only be observed with noise since sensors are imperfect.

In this work several measures have been taken, such as explicitly modelling

the observation noise and using an EM-based iterative learning approach, to

be able to handle noise in the data. In this experiment, the influence of noise

on the learning and prediction process is investigated. To evaluate the influ-

ence of noise, multiple models were trained based on data with increasing lev-

els of noise. Table 6.13 shows the noise levels and the standard deviations

for the white noise applied to the position, velocity and heading data. Fig-

ure 6.16 shows visualizations of an example episode with different noise levels.

To ensure comparability, each model was trained with the same observed traf-

fic episodes but with differing random noise. The data stemmed from observa-

tions in the intersection scenario (see Section 6.1.2). The models were learned

from 60 observed episodes with an average length of 144 time steps (∼43 s). An

additional set of 10 episodes was used to evaluate the test set performance.

Table 6.13: Noise levels.

noise level σx1
σx2

σv σψ
1 0.1 m 0.1 m 0.1 m

s 0.05 rad
2 0.2 m 0.2 m 0.2 m

s 0.10 rad
4 0.4 m 0.4 m 0.4 m

s 0.20 rad
8 0.8 m 0.8 m 0.8 m

s 0.40 rad

Results and analysis The noise in training data has a significant impact on the

learned models. Table 6.14 reports the results for the prediction MLL. With in-

creasing levels of noise the accuracy of predictions which are produced by the

learned models decreases. Figure 6.17 depicts the MLL curve for the 6 s predic-

tions. Due to the degradation of the signal-to-noise ratio with increasing noise

in the data, it becomes more difficult for the learner to identify behavior pat-

terns in the data. This implies that more data is needed for learning models

of the same accuracy when the noise in the data increases. Figure 6.18 shows

the resulting predictions of the learned models for an intersection traffic situa-

tion. As can be seen, the predictions get more uncertain and less accurate with
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6.2 Influence of Noise

(a) Data with noise level 2.

(b) Data with noise level 4.

(c) Data with noise level 8.

Figure 6.16: Predictions over 6 s of the learned models for increasing levels of noise.
With higher levels of noise the predictions get more uncertain and less ac-
curate.
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higher levels of noise. Even though the prediction accuracy decreases with in-

creasing noise, the approach was still able to learn basic behavior patterns such

as lane following at the highest investigated noise level. Models that are more

uncertain in their predictions also have an impact on inference. With higher

uncertainty present in state estimation, more samples (particles) are needed to

obtain reliable Monte Carlo estimates (MacKay, 2003).

Table 6.14: Prediction MLL for increasing levels of noise (higher MLL is better).

model noise level MLL (∆t : 0s ) MLL (∆t : 3s ) MLL (∆t : 6s )
learned model 1 1.931 -1.456 -3.655
learned model 2 0.544 -2.613 -4.858
learned model 4 -3.777 -6.101 -7.618
learned model 8 -7.124 -6.708 -15.884
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Figure 6.17: MLL of predictions∆t =+6 s for different levels of noise.
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(a) Predictions of model learned at noise level 2.

(b) Predictions of model learned at noise level 4.

(c) Predictions of model learned at noise level 8.

Figure 6.18: Predictions over 6 s of the learned models for increasing levels of noise.
With higher levels of noise the predictions get more uncertain and less ac-
curate.
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6.3 Summary and Conclusion

In this chapter, the properties and potentials of the presented learning ap-

proach to traffic prediction were investigated and analysed. The prediction

accuracy was evaluated for different traffic scenarios, which exhibited differ-

ent difficulties to the learner. It was shown that with the hierarchical Bayesian

model and policy models learned from traffic observations realistic predictions

over time periods of several seconds can be obtained. The learning approach

successfully managed to identify the situational dependencies on the action

choices of road users in the different episodes. The right of way rules are learned

solely by observing traffic in the intersection scenario. The comparison to a

standard Bayesian filter with a single track model underlined that the consider-

ation of the mutual influences between traffic participants are crucial for mak-

ing accurate predictions.

We also analyzed the influence of noise on the learning and prediction pro-

cess. As expected, the signal-to-noise ratio has a strong impact on the learned

models and the prediction accuracy. With increasing levels of noise the learning

task becomes more and more difficult and increases the amount of data needed

to obtain models of the same accuracy. A practical consequence of this finding

is that it is worth investing in good sensors and processing technology for the

development of learning cars that are able to learn behavior patterns quickly.
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Traffic participants act in a highly dynamic and only partially observable envi-

ronment. The behavior of traffic participants is highly coupled and uncertain.

How a driver acts strongly depends on a situation and his intentions. All these

properties make the prediction of traffic situations a challenging task. Being

able to anticipate situation developments is a prerequisite for a lot of applica-

tions in the traffic domain such as the realization of self-driving cars, next gen-

eration advanced driver assistance systems and traffic surveillance systems.

In this thesis, we showed that the evolution of traffic situations can be accu-

rately predicted by reasoning about the decision making of traffic participants

and their interactions. By taking their perspectives, it is possible to draw con-

clusions about their goals, plans and actions and take their mutual influences

into account. Modeling the dependencies between situations and behavior de-

cisions is difficult due to the manifold of possible situations and the stochastic

nature of human behavior. We therefore proposed learning these complex de-

pendencies from traffic observations.

This approach was realized in form of a novel Bayesian model for estimating

and predicting whole traffic situations. We derived a learning algorithm to ob-

tain the policy models of traffic participants from incomplete data. To ensure

the feasibility of the learning approach, we introduced novel machine learn-

ing methods for decision trees with improved generalization capabilities. The

presented approach and methods have a wide range of applications beyond the

traffic domain. In the following, we summarize the results covered by this work.

State estimation and prediction of traffic situations We presented a novel

Bayesian model for describing the evolution of traffic situations as a stochas-

tic process (Chapter 3). By resembling the decision making of road users on

several abstraction levels, conclusions about their resulting behavior are drawn

and used to predict the situation development.
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In contrast to existing approaches, goals, plans and actions of traffic partic-

ipants are simultaneously estimated in a unified probabilistic framework un-

der consideration of context-dependent mutual influences. This allows fine-

grained predictions on the level of continuous dynamics as well as long term

predictions on the level of routes and goals. Compared to approaches that

only consider one specific abstraction level, the hierarchical approach can yield

more accurate predictions. The reason is that the flow of information between

the different layers can improve the predictions at each level of detail. For

calculating the state estimation and prediction posteriors, suitable sequential

Monte-Carlo inference methods for the Bayesian model based on likelihood

weighting were derived.

Applications such as decision making or motion planning for autonomous

cars rely on the ability of anticipating future situation developments over a plan-

ning horizon of several seconds. They can thus profit from the improvement

in prediction accuracy achieved by the presented approach over state-of-the-

art methods. To concretize this aspect, we showed how the presented Bayesian

model can be embedded as a process model into (partially observable) Markov

decision processes to derive behavior decision or solve motion planning task in

the traffic domain.

We evaluated the presented approach in several different traffic scenarios

such as lane following, intersection and roundabout scenarios (Chapter 6). The

experiments showed significant improvements in the accuracy of predictions

over standard Bayesian filter approaches that do not consider situational con-

text dependencies.

A direction for future research is the differentiation of traffic participants into

various types such as cars, trucks, bicyclists and pedestrians. The use of individ-

ualized policy models would allow considering their type specific idiosyncrasies

and further improve the prediction accuracy in complex traffic situations.

The complexity of considering the interactions between road users increases

with their number. In future research, methods should be investigated that al-

low reducing the computational demand in situations with many road users in-

volved. One way to achieve this is to consider only road users that are relevant

for the individual decision making.
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Policy model learning from observations The key components of the Bayesian

model we presented in this thesis were the policy models. They describe the

relationships between situations and the probable actions road users are going

to conduct. In the proposed hierarchical setting, this is not only modeled on

the level of actions such as accelerating or steering but also on the more ab-

stract level of routes that road users are likely to choose and intermediate goals

which they pursue. The resemblance of the decision making allows modeling

the mutual influences of road users and their common behavior patterns.

Formulating the policy models manually is difficult and error-prone. In con-

trast to previous approaches, we therefore pursued a data-driven approach to

learn the policy models of road users from traffic observations (Chapter 4). We

used a combination of machine learning methods and domain-specific knowl-

edge to learn the complex non-linear relationships between situations and de-

cisions and to maximize generalization. The learning algorithm is based on a

Monte Carlo expectation maximization scheme to make learning feasible in the

incomplete data setting. The incomplete data is caused by the fact that impor-

tant variables, for instance, the goals and plans of road users, cannot be ob-

served.

We developed a non-parametric learning procedure based on random forests

for learning the action policy model. The learning procedure considers input-

dependent noise and uses efficient basis function estimators for performing the

substeps of decision tree induction. The non-parametric learning technique

adapts the model complexity to the data, which is important to minimize the

risk of over- and underfitting.

In comparison to approaches that learn classifiers for behavior recognition,

the presented approach does not require manually labeled data. This renders

the learning cost-effective. In combination with non-parametric learning, it

makes the learning process scalable. New experiences in form of situations that

are observed for the first time can be easily integrated.

The generalization of the learning approach was leveraged by incorporat-

ing domain-specific knowledge in form of map data, motion models, expres-

sive context features, traffic regulations and conditional independencies. This

makes it possible to transfer the experiences to similar traffic situations, which

has also been demonstrated in the evaluation of the approach.
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In order to further improve the generalization of the policy models, future

research can investigate to learn additional context features that describe situ-

ational aspects which are relevant for the decision making of road users. Deep

learning methods are promising candidates for approaching the feature learn-

ing problem (Arel et al., 2010; Bengio, 2009). By introducing additional hidden

variables that represent memory states with no predefined semantics, temporal

features could be learned that integrate relevant information over time.

Another promising direction for future work is life-long and collaborative

learning. Self-driving cars would benefit if they were able to learn from new

experiences as they drive. An even larger potential has the exchange of new ex-

periences between systems. This is expected to increase the learning rate mas-

sively by parallelization. More importantly, it would produce more robust mod-

els since even rarely occurring situations would be considered.

Machine learning methods As a general contribution to the field of machine

learning, we derived a new class of decision trees called generalized decision

trees, which generalize common tree models such as classic decision trees, hier-

archical mixtures of experts and fuzzy decision trees (Chapter 5). In difference

to classic decision trees, which use discontinuous split functions, generalized

decision trees employ smooth split functions. This improves the representation

capabilities. Additionally, it renders the tree function differentiable and enables

gradient-based learning.

We derived a gradient-based learning algorithm that enables the simultane-

ous optimization of all split and basis functions of generalized decision trees. As

shown in the evaluation, this improves generalization to unseen data because

better split functions are discovered. This property becomes increasingly im-

portant in high-dimensional learning problems, where the parameter space of

split functions cannot be searched exhaustively. Suboptimal split function pa-

rameter estimates of greedy induction methods can also be corrected with the

presented methods by post-optimizing all tree parameters.

In difference to classic decision trees with hard splits, generalized decision

trees have an increased complexity for function evaluation since all paths in a

tree have to be evaluated. However, some functions can be represented more
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efficiently with generalized decision trees so that the smaller tree sizes overcom-

pensate this property.

In order to preserve the efficiency of function evaluation, which is crucial for

Monte Carlo inference, we developed a second learning algorithm for decision

trees with hard splits. It uses the concepts of generalized decision trees in the

framework of continuation methods. A newly developed parametric loss func-

tion allows to gradually optimize the parameters of the split and basis functions.

As in the case of generalized decision trees, the generalization is improved by

finding better split functions. Both presented learning methods achieved sig-

nificantly improved performances on the tested data sets over state-of-the-art

decision tree induction methods.

The developed algorithms are general machine learning methods for solving

classification and regression tasks beyond the traffic domain. The incremental

nature of the learning algorithm for generalized decision trees enables tackling

learning problems for which large amounts of data are available.

The presented methods can be directly combined with incremental non-

parametric tree learning techniques (see for example (Ikonomovska, 2012)). Fu-

ture research should investigate the implications and the potential gains in gen-

eralization that could be achieved by such an approach.

7.1 Conclusion

It has been shown that highly accurate predictions of traffic situations can be

made with learned models that resemble the decision making of traffic partic-

ipants. The combination of machine learning methods with domain-specific

knowledge and the consideration of interactions between traffic participants

yields predictions of unmatched accuracy and is able to generalize to a broad

set of traffic situations. The methods developed in this thesis open new pos-

sibilities in a number of applications. Especially the decision making of au-

tonomous vehicles can benefit from these findings since it heavily relies on the

ability to anticipate future developments. We believe that learning based ap-

proaches have a high potential beyond the topics addressed in this work.
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A.1 Digital Maps

An important source of information for ADAS are digital maps. They provide

topological and geometric information about the route network in a specific

area and are often enhanced with additional information like points of interest

or the current traffic density. While they are currently mostly used for naviga-

tion, we expect future ADAS systems to make heavy use of digital maps.

Digital maps for automotive applications come in different sizes and shapes

with varying level of details. They are mostly represented as annotated graphs.

Besides commercially available maps that are tailored for specific purposes,

there also exist freely available maps. One of the most popular projects to pro-

vide free maps to is the OpenStreetMap (OSM) project (OpenStreetMap, 2013;

Figure A.1: Digital map of the central area of Karlsruhe from open street map (Open-
StreetMap, 2013).

151



A Appendix

(a) Road network. (b) Route network graph.

Figure A.2: Example of a road network and the corresponding graph representation.

Haklay and Weber, 2008; Neis et al., 2011). OSM is an open source project where

the maps are extended and updated by a active user base all over the world.

While the OSM standard allows in principle to specify highly precise lane ge-

ometries, the level of detail in practice often ends at the level of roads. Since the

presented approach makes use of lane information, we build upon a graph rep-

resentation that was first introduced in the DARPA Grand Challenge and then

later extended for the DARPA Urban Challenge to be able to represent basic traf-

fic scenarios including unsignalized intersections, highways and parking lots

(Darpa, 2007).

The graph representation is very similar to the OSM representation. The ver-

tices of the graph represent geospatial points in a global coordinate system.

The edges of the graph define individual lane segments or boundaries of ar-

eas. Vertices as well as edges are tagged with additional attributes to define e.g.

the width of a lane, speed limits or the type of lane markings. The direction of

an edge indicates the intended driving direction. Edges are allowed to overlap

which is necessary to describe the multiple ways in intersections. Figure A.2

gives an example of a simple intersection and the corresponding route network

graph.

The annotated route network provides detailed information about the lane

geometries and the relationship between lanes. This information and the con-

clusions that can be drawn from them are essential for a driver to navigate safely

and according to the traffic rules. An artificial system can use graph search tech-

niques to derive the right of way relations at an intersection or to detect if there
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(a) Aerial image
(City of Karlsruhe, 2010).

(b) OSM representation
(OpenStreetMap, 2013).

(c) Route network graph.

Figure A.3: Comparison of map representations of a part of the Durlacher Tor in Karls-
ruhe.

exists an opportunity to overtake a slower driving vehicle in front. By detecting

overlapping regions, a system can derive possible areas of conflict (Schröder,

2009). Figure A.3 shows a region of the Durlacher Tor in Karlsruhe (Germany)

and the corresponding route network in OSM and our graph representation.
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A.2 Expected Utilities of Routes with Finite Planning Horizon

optimal 
continuation

Goal
area 1

starting 
position

possible 
routes

Figure A.4: Routes can end before the goal is reached, due to the finite planning hori-
zon. In this case the utility of the missing part is estimated based on the
utility of the optimal continuation of a route to the goal. (Aerial image pro-
vided by (City of Karlsruhe, 2010)).

Due to the finite planning horizon, the routes normally end before reaching

the goal area. To make utilities of routes comparable, utilities need to be esti-

mated for the whole route to the goal. Otherwise, it could happen that the utility

of a route is very high but ends at a lane segment from where only paths to the

goal with very low utilities exist. In such cases, the true utility of the whole route

would be over- or underestimated. To estimate the utility of the missing part,

we use the utility of the optimal continuation route π̂R from the last segment

of the route πR to the goal (Figure A.4). The utility of π̂R is defined analogously,

but with the difference that the context is no longer considered in the reward

function r

qg (π
R ) =

|π̂R |−1
∑

l=1

r (seg(π̂R , l ), seg(π̂R , l +1)) . (A.1)

The function builds only upon the static properties of the transitions and lane

segments since the situational context does not provide much information for
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the route continuation past the planning horizon due to the uncertain develop-

ment. Hence it can be precalculated.

The total expected utility of a route policy therefore consists of two parts:

The situation-dependent utility for the route until the planning horizon and the

continuation of the route to the goal

q (πR , s R ) = qs (π
R , s R ) +qg (π

R ) . (A.2)

For a known road network, the optimal routes from each lane segment to a

goal region can be efficiently calculated using dynamic programming with the

well known Dijkstra algorithm (Dijkstra, 1959; Zhan and Noon, 1998). To ap-

ply Dijkstra’s algorithm, the problem of finding the optimal route is cast into a

shortest path graph search problem. By negating the rewards, the expected util-

ity of a route is described in terms of costs. This turns the route with the high-

est utility into the route with lowest costs. With the restriction to reward func-

tions that only allow negative rewards, the requirement of non-negative costs

of Dijkstra’s algorithm is met.
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A.3 Physical Motion Constraints

The front wheels of a normal car can only be turned up to a certain limit, which

results in a minimal turning radius rmin for a car (see Figure A.5a). Knowing the

minimal turning radius, the limitation of the yaw rateωturn can be derived with

the curvature of the corresponding turning circle

1

r
=
ψ̇

ṡ
=
ω

v
  ωturn =

v

rmin
. (A.3)

minimal turning radius

(a) Minimal turning radius.

FS

Flon

Flat

(b) Forces.

Figure A.5: The motion of a vehicle is limited through physical constraints.

A second important limitation stems from the dynamics of the car. If a car is

accelerated strongly, the driver risks that the car looses traction and becomes

harder or even impossible to control. To prevent this kind of behavior, drivers

usually stay within the regions were the car can be controlled. This transition is

reached when the forces applied to the car exceed the static friction between the

wheels and the road surface. The forces stem from steering, which induces a lat-

eral centrifugal force Flat, and from accelerating or decelerating, which induces a

longitudinal force Flon. In order to ensure that the vehicle remains controllable,

the sum of these perpendicular forces must stay below the static friction force FS

(see Figure A.5b), which can approximately be described by the Coulomb model

of friction (Ruina and Pratap, 2008). The force FS is given by

FS =µS FN
flat surface
≈ µS FG =µS mg (A.4)
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with µS being the friction coefficient. FS depends on the normal force FN , i.e.,

the component of the gravity force FG =mg which is perpendicular to the road

surface. The mass of the car is denoted by m and g ≈ 9.81 m
s2 is the gravity con-

stant. Assuming a flat road, it holds that FN = FG .

The lateral centrifugal force Flat is

Flat =m
v 2

r
=m vω . (A.5)

The limitation of the yaw rateωtraction is obtained through

~FS = ~Flat+ ~Flon

µS mg =
Æ

(m vωtraction)2+ (ma )2

ωtraction =

p

(µS g )2−a 2

v
. (A.6)

If both constraints are considered, the absolute limitation of the yaw rate for

a given velocity and acceleration is

ωmax =min(ωturn,ωtraction) . (A.7)

Figure A.6 shows the resulting maximal yaw rate over the velocity for several

accelerations (µS = 1). For small velocitiesωmax is dominated byωturn while at

higher velocities,ωtraction is the dominating factor.

The acceleration and deceleration of a car is also restricted through the car

physics. These bounds result from the powertrain and braking system of the

car and environmental properties such as the road surface type and weather

conditions. We subsume these limitations by constants amax and amin, which

express conservative thresholds for acceleration and deceleration for an aver-

age car and average conditions.

The constrained action policy π̄A of an action policyπA is obtained by limiting

the controls a andω according to the listed constraints

π̄A =

�

ā = max(min(a , amax), amin)

ω̄ = max(min(ω,ωmax),−ωmax)

�

.
(A.8)
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Figure A.6: Plot showing the maximal change in orientation ω in 1 s depending on ve-
locity v and longitudinal acceleration a . The change in orientation is con-
strained by the minimal turning radius and the traction of the car (µS = 1).

The constraints are incorporated in the Bayesian model by using the con-

strained action policy π̄A derived from πA with A.8 as input for the motion

model. To prevent density estimation over redundant actions that lie outside

the valid set, the constrained values are also used for learning the action pol-

icy model. This way the learner concentrates on finding a distribution over the

valid set of actions.
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A.4 Gradient-Based Learning

The task of function estimation in the supervised learning case consists in find-

ing the function that produces the best y given any x . The quality of a function

can be assessed by a cost function C(θ ) called the expected cost function (Tsyp-

kin, 1973)

C (θ ) =E
z

L(z ,θ ) =

∫

L(z ,θ )d P (z ) . (A.9)

The goal is to find the function Fθ ∈ F identified by parameter vector θ that

minimizes C(θ ): θ ∗ = argminθ C(θ ). The scalar loss function L(z ,θ ) measures

the performance of Fθ given sample z = (x , y ). Since the ground truth distri-

bution P (z ) is unknown, the expected cost function cannot be optimized di-

rectly. It is however possible to approximate P (z ) through a finite sample set

S , thereby obtaining an approximation of the expected costs, namely the em-

pirical cost function

CS (θ ) = E
z∈S

L(z ,θ ) =
1

N

N
∑

i=1

L(zi ,θ ) . (A.10)

If the samples S are drawn independently from P (z ), optimizing CS asymp-

totically optimizes C. The empirical cost can therefore serve as an estimator for

the expected cost, if the training set is large enough (Vapnik, 2006).

For most classes of non-linear models the optimum of CS (θ ) cannot be ana-

lytically estimated, but gradient-based learning can be used to find a local op-

timum.

A batch gradient descent algorithm iteratively estimates the optimal param-

eters θ following the update formula

θt+1 = θt −γt

∂ CS (θ )
∂ θ

= θt −γt

1

N

N
∑

i=1

∂ L(zi ,θ )
∂ θ

, (A.11)

where the learning rate γt is a positive number. Many variants of (A.11) and the

following on-line version (A.12) have been defined, like replacing γt with an ap-

propriately chosen positive definite symmetric matrix for scaling the gradient
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(LeCun et al., 1998; Martens and Sutskever, 2012) to make use of second order

information.

An on-line gradient descent algorithm performs the updates on individual

samples zi ∼P (z )

θt+1 = θt −γt

∂ L(zi ,θ )
∂ θ

. (A.12)

The replacement of the summation prevents the need to store samples and to

sweep over the entire training set at each cycle. These properties make the

learning rule applicable for large or even infinite data sets. Le Cun et al. (Bottou

and LeCun, 2004) provide theoretical evidence that a suitably designed on-line

learning algorithm asymptotically outperforms any batch learning algorithm in

the long run. The line of argument follows the idea that an on-line learning al-

gorithm makes more efficient use of the information provided by the training

examples than a batch learning algorithm.

The term that defines the optimization procedure is the gradient of the loss

function regardless of using the batch or on-line variant. In order to apply a

gradient-based learning method the loss function has to be differentiable.

A broad class of loss functions has the form

LF (z ,θ ) = L̃(Fθ (x ), y ) . (A.13)

The squared loss function LM S E (z ,θ ) = 1
2 (Fθ (x )− y )2 is a popular instance of this

class. Applying the chain rule to LF yields the gradient

∂ LF (z ,θ )
∂ θ

=
∂ L̃(Fθ (x ), y )
∂ Fθ (x )

∂ Fθ (x )
∂ θ

. (A.14)

This class of loss functions is differentiable if both the partial derivatives of L̃

and Fθ exist.
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A.5 Partial Derivatives of a Artificial Neural Network

Artificial neural networks are compositions of multivariate functions that con-

stitute the layers of a feed forward network (Rojas, 1996). These functions, also

called layer functions, are often chosen to be compositions of linear functions

and some sort of sigmoid function, like the logistic function as in the case of

a multilayer perceptron. The overall function of an ANN with a linear output

layer and n hidden layers is defined recursively as

f (x ) = A(o ) f (n )(x )− b (o ) : Rm 7→R (A.15)

f (i )(x ) =φ(g (i )(x )) : Rm 7→Rmi (A.16)

g (i )(x ) = A(i ) f (i−1)(x )− b (i ) : Rm 7→Rmi (A.17)

f (0)(x ) = x : x ∈Rm (A.18)

with f (i ) indicating the subnet function up to the i’th layer and φ(x ) being

a vector function that applies a sigmoid function to all inputs. The over-

all parameters of the ANN constitute of the parameters of all layers θAN N =
�

θ (1), . . . ,θ (n ),θ (o )
�

with each set of parameters consisting of the linear function

parameters θ (i ) ≡ A(i ), b (i ).
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The partial derivatives of the ANN with respect to the network parameters are

∂ f (x )
∂ θAN N

=
�

∂ f (x )
∂ θ (o )

∂ f (x )
∂ θ (n )

∂ f (x )
∂ θ (n−1) . . . ∂ f (x )

∂ θ (1)

�

(A.19)

∂ f (x )
∂ θ (i )

=
∂ f (x )
∂ f (i )(x )

∂ f (i )(x )
∂ θ (i )

(A.20)

∂ f (x )
∂ f (i )(x )

=
∂ f (x )
∂ f (n )(x )

∂ f (n )(x )
∂ f (n−1)(x )

. . .
∂ f (i+1)(x )
∂ f (i )(x )

(A.21)

∂ f (i+1)(x )
∂ f (i )(x )

=
∂ f (i+1)(x )
∂ g (i+1)(x )

∂ g (i+1)(x )
∂ f (i )(x )

(A.22)
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The derivatives can be calculated efficiently with back-propagation in order to

optimize a function with gradient-based learning (LeCun et al., 1998).
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A.5 Partial Derivatives of a Artificial Neural Network
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Acronyms

ACC adaptive cruise control.

ADAS advanced driver assistance systems.

AHMM abstract hidden Markov model.

ANN artificial neural network.

BOF Bayesian occupancy filter.

DARPA Defense Advanced Research Projects Agency.

DBN dynamic Bayesian network.

E-step expectation step.

EM expectation maximization.

FDT fuzzy decision tree.

GDT generalized decision tree.

GEM generalized expectation maximization.

GPS Global Positioning System.

HME hierarchical mixture of experts.

HMM hidden Markov model.

IS-MCEM importance sampling Monte Carlo expectation maximization.

LW likelihood weighting.
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Acronyms

M-step maximization step.

MAP maximum a posteriori.

MCEM Monte Carlo expectation maximization.

MCMC Markov chain Monte Carlo.

MDP Markov decision process.

ML maximum likelihood.

MLL mean log likelihood.

OSM OpenStreetMap.

POMDP partially observable Markov decision process.

RMSE root mean squared error.

SLAM simultaneous localization and mapping.

SMC sequential Monte Carlo.

SVM support vector machine.
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Glossary

action policy ΠA,πA Mapping from situations to actions.

episode A sequence of situations describing the ongoing change in the world

from the perspective of an observer.

goal policy ΠG ,πG Mapping from situations to goals.

goal policy termination state T G , t G indicates termination of current goal pol-

icy.

goal regions G The set of all goal regions derived from the road network.

lane segmentsL The set of all lane segments in the road network. Lanes are

divided into several segments since they are approximated by rectangular

shapes.

lane segments of goal areaLπG The set of all lane segments that are part of the

route πG .

lane segments of routeLπR The set of all lane segments that are part of the

route πR .

measurements Z , z Measurements of traffic participants.

route policy ΠR ,πR Mapping from situations to routes.

route policy termination state T R , t R indicates termination of current route

policy.

routesR The set of all routes consists of all possible ways from each lane seg-

ment of the road network to each lane segment of each goal region.
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Glossary

routes to goalRc L ,πG The set of all routes that begin at lane segment c L and can

reach the goal area πG .

situation A situation comprises the state of the world at a point in time. We

restrict the state to aspects that are normally considered by a traffic par-

ticipant for navigating in traffic.

situational context C , c describes the situation from the perspective of a traffic

participant through relations.

traffic participants’ states X , x A state x of a single traffic participant is de-

scribed by his position
�

x1, x2

�

, headingψ (orientation) and velocity v in

a global world frame.
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