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Abstract

On-line parameter estimation is one of the two key components of a typical adaptive
control scheme, beside the particular control law to be used. Gradient and recursive
least squares (RLS) based parameter estimation algorithms are the most widely used ones
among others. Adaptive control studies in the literature mostly utilize gradient based
parameter estimators for convenience in nonlinear analysis and Lyapunov analysis based
constructive design. However, simulations and real-time experiments reveal that, compared
to gradient based parameter estimators, RLS based parameter estimators, with proper
selection of design parameters, exhibit better transient performance from the aspects of
speed of convergence and robustness to measurement noise.

One reason for the control theory researchers’ preference of gradient algorithms to RLS ones
is that there does not exist a well-established stability and convergence analysis framework
for adaptive control schemes involving RLS based parameter estimation. Having this fact as
one of the motivators, this thesis is on systematic design, formal stability and convergence
analysis, and comparative numerical analysis of RLS parameter estimation based adaptive
control schemes and extension of the same framework to adaptive extremum seeking, viz.
adaptive search for (local) extremum points of a certain field. Extremum seeking designs
apply to (i) finding locations of physical signal sources, (ii) minimum or maximum points
of (vector) cost or potential functions for optimization, (iii) calculating optimal control
parameters within a feedback control design.

In this thesis, firstly, gradient and RLS based on-line parameter estimation schemes are
comparatively analysed and a literature review on RLS estimation based adaptive control
is provided. The comparative analysis is supported with a set of simulation examples
exhibiting transient performance characteristics of RLS based parameter estimators, noting
absence of such a detailed comparison study in the literature.

The existing literature on RLS based adaptive control mostly follows the indirect adaptive
control approach as opposed to the direct one, because of the difficulty in integrating an
RLS based adaptive law within the direct approaches starting with a certain Lyapunov-
like cost function to be driven to (a neighborhood) of zero. A formal constructive analysis
framework for integration of RLS based estimation to direct adaptive control is proposed
following the typical steps for gradient adaptive law based direct model reference adaptive
control, but constructing a new Lyapunov-like function for the analysis. After illustration
of the improved performance with RLS adaptive law via some simple numerical examples,
the proposed RLS parameter estimation based direct adaptive control scheme is successfully
applied to vehicle antilock braking system control and adaptive cruise control. The perfor-
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mance of the proposed scheme is numerically analysed and verified via Matlab/Simulink
and CarSim based simulation tests.

Similar to the direct adaptive control works, the extremum seeking approaches proposed in
the literature commonly use gradient/Newton based search algorithms. As an alternative
to these search algorithms, this thesis studies RLS based on-line estimation in extremum
seeking aiming to enhance the transient performance compared to the existing gradient
based extremum seeking. The proposed RLS estimation based extremum seeking approach
is applied to active vehicle safety system control problems, including antilock braking
system control and traction control, supported by Matlab/Simulink and CarSim based
simulation results demonstrating the effectiveness of the proposed approach.
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Chapter 1

Introduction

1.1 Motivation

Control systems in practice typically bear complicated and uncertain dynamics. It is
infeasible to form a mathematical model for these systems accurately based on experimental
data or first principles of physics. To compensate the modelling uncertainties and time
variations, it is desirable to control such systems adaptively, i.e. execute on-line system
identification based on real time measurements and tune the control parameters while the
system is running.

Adaptive control finds itself a place in linear [60, 61] and nonlinear systems [68]. Adaptive
control has two important approaches based on two different control objectives: model
reference control (MRC) and pole placement control (PPC). In MRC, the objective is
asymptotic tracking of a large class of signals via designing the controller such that the
closed loop matches with a predefined reference model; whereas, the objective of PPC is
stability and assigning a desired set of closed loop poles. MRC designs typically require
the plants to be minimum phase while the minimum phase property is not required for
PPC.

On-line parameter estimation is an important part of designing an adaptive control scheme.
Most of the studies in the adaptive control literature have utilized gradient based parameter
estimation and adaptive laws, and examined the stability and convergence of the developed
schemes accordingly. Gradient based estimation algorithms are widely used in adaptive
control due to their intuitive and convenient structures for Lyapunov function based sys-
tem stability and convergence analysis. However, gradient based parameter estimation
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often does not provide the best possible transient performance and best possible level of
robustness to measurement noises.

As another on-line parameter estimation method, least squares (LS) based parameter es-
timation is used for data fitting in almost all scientific and engineering applications such
as statistics, equation solving, signal processing, system identification and most recently
machine learning. Recursive least squares (RLS) parameter estimation algorithm is the
recursive application of LS that provides high performance solutions to adaptive control
of parametrically uncertain systems, although there does not exist a well-established sta-
bility and convergence analysis framework in the literature for adaptive control schemes
involving RLS based parameter estimation. Moreover, RLS based adaptive control mostly
follows the indirect adaptive control approach as opposed to the direct one, because of the
difficulty in integrating an RLS based adaptive law within the direct approaches starting
with a certain Lyapunov-like cost function.

Closely related to adaptive control, where the system or control parameters are estimated
by minimizing a certain cost function, the field of adaptive search and optimization deals
with the problem of reaching the extremum of a signal field or cost function, which could
be a maximum or a minimum. There are many optimization methods to find the extremum
of a function either analytically or numerically including gradient, Newton, Lagrangian,
and Hamiltonian methods. In recent years, extremum seeking (ES) approaches have con-
stituted a popular form of adaptive search and update schemes due to their convenience
for non-model based analysis and a wide range of implementation areas. These approaches
have been mostly used with gradient/Newton based search algorithms. Since RLS algo-
rithms are typically observed to be superior, in terms of convergence speed and robustness
to measurement noises, over gradient algorithms, it is predictable that RLS parameter
estimation based ES schemes will also provide faster convergence and robustness to sensor
noises.

Considering the aforementioned facts, this thesis focuses on RLS parameter estimation
based adaptive control and ES schemes, providing systematic design, formal stability and
convergence analysis, and comparative numerical analysis, aiming to enhance the tran-
sient performance compared to the existing gradient parameter estimation based adaptive
control and adaptive ES schemes. In addition, active vehicle safety system applications
of the systematically developed RLS parameter estimation based adaptive control and ES
schemes are studied in the thesis.
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1.2 Objective

Unlike the existing literature, which has mainly focused on gradient parameter estimation,
this thesis investigates RLS parameter estimation based adaptive control and adaptive ES
schemes:

i. Indirect adaptive PPC and MRC based on RLS parameter estimation is comparatively
analysed in detail, with respect to gradient based schemes, and transient performances
are exhibited via numerical simulation examples.

ii. A formal constructive analysis framework for integration of RLS based estimation to
direct adaptive control is proposed following the typical steps for gradient adaptive law
based direct model reference adaptive control, but constructing a new Lyapunov-like
function for the analysis.

iii. An RLS estimation based ES scheme is designed and analysed for application to scalar
parameter and vector parameter static map and dynamic systems. Asymptotic con-
vergence to the extremum is established for all the cases.

iv. The proposed RLS parameter estimation based direct adaptive control and RLS pa-
rameter estimation based ES schemes are applied to active vehicle safety systems.
Adaptive cruise control (ACC), anti-lock braking system (ABS), and traction control
system (TCS) are considered for demonstrating the effectiveness of proposed schemes
supported by Matlab/Simulink and CarSim based simulation results.

1.3 Organization

Later chapters of the thesis are organised as follows. Chapter 2 provides background and
literature review on adaptive control and adaptive ES. Gradient and RLS on-line param-
eter estimation based adaptive control as well as the previous studies on RLS parameter
estimation are elaborately examined. Adaptive ES with its basics and cornerstone studies
on this research area are given in detail. Application areas for both schemes are presented.

Chapter 3 is devoted to introducing RLS on-line parameter estimation based indirect and
direct adaptive control schemes with a set of numerical and simulation examples. Later in
the chapter, the analysis of RLS parameter estimation based direct adaptive control defin-
ing new Lyapunov functions is given. The implementation of RLS parameter estimation
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based direct adaptive control on ACC and ABS are presented to demonstrate the validity
of the design with Matlab/Simulink and CarSim simulation results.

In Chapter 4, formal problem statement of RLS based ES scheme is given for static map
and dynamic systems. Existing ES scheme developed by [73] is redesigned utilizing RLS
parameter estimation. Later, an RLS estimation based ES scheme is designed and analysed.
Asymptotic convergence to the extremum is prer for all the cases. The performance of the
proposed control schemes is examined in Matlab/Simulink and CarSim simulations with
ABS and TCS. Several driving scenarios are designed to evaluate the capability of the
proposed designs in longitudinal vehicle safety systems.

Chapter 5 provides concluding remarks. In addition, some possible future research direc-
tions beyond the studies in this thesis are stated.
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Chapter 2

Background and Literature Review

This chapter provides the background for the later contribution chapters of the thesis as
well as the relevant literature review. We first summarize background notions and tools
of adaptive control in general. As a key component of adaptive control systems, we focus
on on-line parameter estimators, particularly the gradient and LS based ones. Later, as
another optimization, identification, and control approach, we provide background on ES,
explaining the links with gradient and LS based parameter estimators. The background
and the literature review are presented in a way to highlight the influence of the on-line
parameter estimator selection as well as established and potential benefits of using LS
based parameter estimators.

2.1 Preliminaries

This section gives some definitions from the systems theory and is intended to be the base
for the work in Chapter 3.

Consider a dynamical system with the generic state-space model

ẋ(t) = f(x(t), u(t), t), x(t0) = x0,

y(t) = g((x(t), u(t), t),
(2.1)

where x(t) ∈ Rn, u(t) ∈ Rr, and y(t) ∈ Rl, are, respectively, the state, the control
input, and the output of the system at time instant t. When f, g are linear time-invariant
functions of x, u, (2.1) becomes
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ẋ = Ax+Bu, x(t0) = x0,

y = CTx+Du,
(2.2)

where A ∈ Rn×n, B ∈ Rn×r, C ∈ Rn×l, and D ∈ Rl×r are constant matrices.

The solution of (2.2) can be written as

x(t) = eA(t−t0)x0 +

∫ t

t0

eA(t−τ)Bu(τ)dτ,

y = CTx+Du,

(2.3)

where eAt is identified to be

eAt , L−1[(sI − A)−1], (2.4)

where L−1 and s denote, respectively, the inverse Laplace transform and the Laplace vari-
able. If we take the Laplace transform of both sides of (2.2) setting initial conditions
x(0) = 0, we have

G(s) ,
Y (s)

U(s)
= CT (sI − A)−1B +D, (2.5)

where Y (s), U(s) are Laplace transforms of y, u, and G(s) is the transfer function of (2.2).
G(s) can be written as

G(s) =
Z(s)

R(s)
=
bms

m + bm−1s
m−1 + · · ·+ b0

sn + an−1sn−1 + · · ·+ a0

, (2.6)

where Z(s), R(s) are polynomials. (2.5) leads to

G(s) =
CT (adj(sI − A))B

det(sI − A)
+D, (2.7)

where adj(sI −A) denotes the adjoint of the square matrix (sI −A). If all the eigenvalues
of A lie in R [s] < 0 then A is called a stable matrix, and G(s) is a stable transfer function.
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Moreover, under zero inial conditions, the Laplace variable s can be considered as differen-
tial operator s(x) , ẋ. In this thesis, s will be used to denote both the differential operator
and Laplace variable, i.e. we also use the notation

y = G(s)u, (2.8)

when s is considered as the differential operator. G(s) = Z(s)
R(s)

in (2.8) shall denote the filter

with input u(t) and output y(t).

2.2 Adaptive Control and On-line System Identifica-

tion

2.2.1 Adaptive Control

The main motivator of adaptive control is compensation of plant uncertainties [60, 61, 104]
and variations while performing a specified control task. To perform this compensation,
adaptive control parameters change with time following a certain adaptive law. Consider-
ing the dependence of this adaptive law on plant estimates vs. closed-loop system perfor-
mance, adaptive control schemes are classified as identifier-based vs. non-identifier-based
[60]. Former involves on-line parameter estimators which yield estimates of unknown plant
parameters at each instant time. Rather than having on-line plant parameter estimators,
latter involves different methods including gain scheduling and switching systems to select
or form the best controller from a set of candidate controllers.

Adaptive control design typically involves a parametric model, which has unknown pa-
rameters and known signals, and an adaptive law or update law to adjust the control
parameters directly based on closed-loop system perfomance or indirectly based on estima-
tion of plant parameters. The adaptive law estimating the plant or control parameters can
be combined with a control structure in two different ways, leading to direct adaptive con-
trol and indirect adaptive control. In indirect adaptive control, the plant parameters are
continuously estimated and, simultaneously, the control parameters are calculated using
the plant parameter estimates. In direct adaptive control, the control parameters are di-
rectly adjusted on-line to values minimizing a certain closed-loop system error based on an
implicit parametric model of the closed loop system in terms of these control parameters,
without requiring estimation of the plant parameters [60], as illustrated in Fig. 2.1.
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(a) Direct adaptive control structure.
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(b) Indirect adaptive control structure.

Figure 2.1: Direct and indirect adaptive control structures [60].

In indirect adaptive control design, a model, whose parameters are unknown, is formulated
for the plant, and the plant parameters are recursively estimated utilizing this parametric
model. The controller gains are calculated based on a predefined mapping from plant
parameters to control parameters and utilizing the plant parameter estimates. In order to
estimate the unknown plant parameters, parameter identification steps can be implemented
accordingly.

2.2.2 On-line Parameter Identification

Parameter identification problem is defined as finding the best estimate of the parameters
that govern a dynamical system, using the measured data of the system behaviour. Sys-
tem parameters can be in the form of entries of matrices, transfer function coefficients, or
special model coefficients. On-line parameter identification algorithms generate estimates
of such system parameters at each time by using past and current signal measurements,
and convergence is often asymptotically achieved in time. These algorithms are referred
as recursive parameter identification algorithms because of dependence on past and cur-
rent measurements and since they are expressed in the form of a law generating the time
derivatives or time updates of the parameter estimates.

A systematic on-line parameter identification design consists of three main components or
steps: parametric model, estimation model, and adaptive law.
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Step 1: Parametric Model

A parametric model (preferably linear, or bilinear) is defined. Linear parametric models
are formed as

z = θ∗
T

φ, (2.9)

where z ∈ R and φ ∈ Rn are signals available for measurement, and θ∗ ∈ Rn is the vector
with all unknown parameters. Further varieties of linear and bilinear parametric models
can be seen in [60].

Step 2: Estimation Model

The estimation model and estimation error are formed. For the linear parametric model
(2.9), the estimation model is constructed in the same form as the parametric model, as

ẑ = θ
T

φ, (2.10)

where θ is the estimate of θ∗, and ẑ is the output of this estimation model. To feed the
adaptive laws, the measurable (or observed) estimation error is defined as the difference
between the measured output z of (2.9) and output estimate ẑ produced by (2.10), either
in the unnormalized form

ε = z − ẑ (2.11)

or in the normalized form

ε =
z − ẑ
m2
s

, m2
s = 1 + α‖φ‖2, α ≥ 0, (2.12)

where m2
s is a normalizing signal which guarantees that φ

ms
bounded. The case for α = 0

is equivalent to (2.11). Note here the observed estimation error ε and the parameter
estimation error θ̃ = θ − θ∗ are directly related via

ε =
−θ̃Tφ
m2
s

. (2.13)
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Step 3: Adaptive Law

In continuous time, the adaptive law is usually a differential equation whose state is θ(t).
It is designed following some optimization and stabilization techniques to minimize the
estimation error magnitude |ε(t)| at each time t. As the two main approaches used in the
literature we briefly present the gradient and LS based adaptive laws in the next section.

2.3 Gradient and Least Squares Based Parameter Iden-

tification

2.3.1 Gradient Based Parameter Identification

Gradient based parameter estimation for the system (2.9) aims to recursively produce the
estimate θ(t) of θ∗ that would minimize the cost function

J(θ) =
ε2m2

s

2
=

(
z − θTφ

)2

2m2
s

. (2.14)

which penalizes the mismatch between the actual output z and the output estimate ẑ. The
gradient based solution is given by

θ̇ = −Γ∇J(θ) (2.15)

where ∇J(θ) = −(z−θTφ)
m2

s
φ = −εφ is the gradient of J evaluated at θ(t) and Γ is a

positive definite symmetric gain matrix, called the adaptive gain. Hence, the gradient
based parameter estimator (adaptive law) is obtained as

θ̇ = Γεφ θ(0) = θ0. (2.16)

Gradient based adaptive laws are widely used in adaptive control design because of their
intuitive and convenient structures for Lyapunov based system stability and signal conver-
gence analysis. However, in terms of transient performance, requirements for guaranteed
parameter convergence, and robustness to measurement noises, it is observed that gradient
based parameter estimation, often, is not the best approach. To overcome such issues, LS
based parameter estimation is considered.
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2.3.2 Least Squares Based Parameter Identification

The underlying idea of LS based parameter estimation is, in place of minimizing an instan-
taneous (memoryless) cost function, to minimize an integral cost function that penalizes
the estimation mismatches with the past data as well as the mismatch with the current
instantaneous data. To give less waiting to older data mismatches and more to newer one,
it is beneficial to introduce a time-indexed forgetting factor to this integral cost function.
Hence, instead of the instantaneous cost function (2.14), one can consider the cost function

J(θ) =
1

2

∫ t

0

e−β(t−τ)

[
z(τ)− θT (t)φ(τ)

]2
m2
s(τ)

dτ +
1

2
e−βt(θ − θ0)TQ0(θ − θ0), (2.17)

with design parameters Q0 = QT
0 > 0, β > 0 and initial estimate is θ0 = θ(0). (2.17)

includes estimation errors for past data and a penalty on deviation from the initial estimate
θ0. Since normalization guarantees that z

ms
, φ
ms
∈ L∞, J(θ) is a bounded convex function

of θ over Rn at each time t. Therefore, at each time t, there is a unique local (and hence
global) minimum θmin satisfying

∇J(θmin) = 0. (2.18)

LS algorithm aims to generate θ(t) that satisfies

∇J(θ) = e−βtQ0(θ − θ0)−
∫ t

0

e−β(t−τ) z(τ)− θTφ(τ)

m2
s(τ)

φ(τ)dτ = 0. (2.19)

Direct solution of (2.19) for θ gives the non-recursive LS algorithm

θ(t) = P (t)

[
e−βtQ0θ0 +

∫ t

0

e−β(t−τ) z(τ)φ(τ)

m2
s(τ)

dτ

]
, (2.20)

where

P (t) =

[
e−βtQ0 +

∫ t

0

e−β(t−τ)φ(τ)φT (τ)

m2
s(τ)

dτ

]−1

. (2.21)

P (t) is called the covariance matrix. It is guaranteed to be positive-definite for any t ≥ 0,
since Q0 = QT

0 > 0, and φφT ≥ 0. It is established that θ(t) and P (t) in (2.20),(2.21) can
be asymptotically produced on-line using the recursive LS (RLS) algorithm
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θ̇ = Pεφ, θ(0) = θ0,

Ṗ = βP − P φφ
T

m2
s

P, P (0) = P0 = Q−1
0 ,

ε =
z − θTφ
m2
s

.

(2.22)

If β = 0 in (2.22), algorithm becomes pure LS algorithm and given as

θ̇ = Pεφ, θ(0) = θ0,

Ṗ = −P φφ
T

m2
s

P, P (0) = P0,

ε =
z − θTφ
m2
s

.

(2.23)

One of the disadvantages of the pure LS algorithm is that parameter convergence cannot
be guaranteed to be exponential. Another disadvantage is that P may be arbitrarily small
and makes the adaptation slow. The reason for that is that

d(P−1)

dt
=
φφT

m2
s

≥ 0 (2.24)

gives a growth without bound in P−1 which implies reduction in P towards zero. This case
is called covariance wind-up problem. In order to avoid covariance wind-up problem, we
can modify pure LS algorithm with covariance resetting as follows:

θ̇ = Pεφ, θ(0) = θ0,

Ṗ = −P φφ
T

m2
s

P, P (t+r ) = P0 = ρ0I,

m2
s = 1 + n2

s, n2
s = αφTφ, α > 0.

(2.25)

t+r is the time when λmin(P (t)) ≤ ρ1 and ρ0 > ρ1 > 0 are design parameters. P (t) ≥ ρ1I
because of covariance resetting. The pure LS algorithm with covariance resetting can
be considered as a gradient algorithm with time-varying adaptive gain P . If β ≥ 0, for
the stability, φ

ms
must be PE. In this case, covariance wind-up problem does not exist.

Modified LS algorithm with covariance resetting is given as
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θ̇ = Pεφ,

Ṗ =

{
βP − P φφT

m2
s
P ‖P (t)‖ ≤ R0,

0 else,

(2.26)

where P (0) = P0 = P T
0 > 0, ‖P0‖ ≤ R0 and R0 is an upper bound constant for ‖P‖.

2.3.3 Persistence of Excitation

A particular (measurement) signal property that constitutes a sufficient condition of pa-
rameter convergence for many parameter estimation schemes is persistence of excitation
(PE), with the following formal definition:

Definition 2.1. (Persistence of Excitation (PE)) [61] A piecewise continuous signal
vector φ : R+ 7→ Rn is PE in Rn with a level of excitation α0 > 0 if there exist constants
α1, T0 > 0 such that

α1I ≥
1

T0

∫ t+T0

t

φ(τ)φT (τ)dτ ≥ α0I. (2.27)

Although the matrix φ(τ)φT (τ) is singular for each τ for n ≥ 2, (2.27) requires that φ(τ)
varies in such a way with time that the integral of this matrix is uniformly positive definite
over any time interval [t, t+ T0].

Lemma 2.1. [61] If φ, φ̇ ∈ L∞ and φ is PE, then adaptive laws (2.16) and (2.22) guarantee
that θ(t)→ θ∗ exponentially fast.

2.3.4 Stability and Convergence

Stability of Gradient Based Parameter Identification:

Theorem 2.2. [60]The gradient algorithm (2.16) guarantees that

(i) ε, εms, θ̇ ∈ L2 ∩ L∞ and θ, P ∈ L∞.

(ii) If φ
ms

is PE, i.e.,
∫ t+T0
t

φφT

m2
s
dτ > α0T0I,∀t ≥ 0 and for some T0, α0 > 0, then θ(t)→ θ∗

exponentially fast.
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(iii) If the plant model has stable poles and no zero-pole cancellations and the input u
is sufficiently rich of order n + m + 1, i.e., it consists of at least n+m+1

2
distinct

frequencies, then φ, φ
ms

are PE. Furthermore, |θ(t) − θ∗|, ε, εms, θ̇ converge to zero
exponentially fast.

Stability of Recursive LS Based Parameter Identification:

Theorem 2.3. [60] If φ
ms

is PE, then (2.22) guarantees that P, P−1 ∈ L∞ and θ(t) → θ∗

as t→∞. When β > 0, the convergence of θ(t)→ θ∗ is exponential.

Stability of Pure LS Based Parameter Identification:

Theorem 2.4. [60, 61] (2.23) guarantees that

(i) ε, εms, θ̇ ∈ L2 ∩ L∞ and θ, P ∈ L∞.

(ii) limt→∞ θ(t) = θ̄ in which θ̄ is a constant vector.

(iii) If φ
ms

is PE, then θ(t)→ θ∗ as t→∞.

(iv) If (2.9) is SPM for a SISO plant (y = G(s)u) with stable poles and without zero-pole
cancellation, and u is sufficiently rich of order n+m+1, i.e., contains at least n+m+1

2

distinct frequencies, then φ, φ
ms

are PE; hence, θ(t)→ θ∗ as t→∞.

Stability of Pure LS based Parameter Identification with covariance resetting
and Modified LS Based Parameter Identification:

Theorem 2.5. [60, 61] (2.25) and (2.26) guarantee that

(i) ε, εms, θ̇ ∈ L2 ∩ L∞ and θ, P ∈ L∞.

(ii) limt→∞ θ(t) = θ̄ in which θ̄ is a constant vector.

(iii) If φ
ms

is PE, then θ(t)→ θ∗ as t→∞.

(iv) If (2.9) is SPM for a SISO plant (y = G(s)u) with stable poles and without zero-pole
cancellation, and u is sufficiently rich of order n+m+1, i.e., contains at least n+m+1

2

distinct frequencies, then φ, φ
ms

are PE; hence, θ(t)→ θ∗ as t→∞.

Proofs of given theorems can be found in [60, 61].
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2.3.5 Literature on Least Squares Algorithm Properties

Based on generation time span of the parameter estimates, the parameter identification
algorithms in the literature can be divided into two categories: recursive algorithms [28, 40,
58, 59, 69, 71, 106] and non-recursive algorithms [30, 31]. All algorithms in both categories
aim to minimize a defined cost function. Some of the LS algorithm properties compared
to the other types of update laws such as gradient, passivity-based, Lyapunov-based, are
listed based on the literature outcomes.

• LS algorithm is able to adjust the adaptation rates for different parameters [71].

• RLS algorithms have faster convergence speed [40] and do not exhibit the eigenvalue
spread problem [12]. Eigenvalue spread is defined as the ratio of the largest eigenvalue
to the smallest eigenvalue. Larger eigenvalue spreads result in slower convergence
rates.

• LS algorithms are robust to noise and give better convergence results. [87].

• RLS with forgetting factor has the ability to track time-varying parameters but there
is a possibility of gain wind-up in the absence of persistent excitation. The gain wind-
up problem can be overcome by employing the bounded gain forgetting technique
[87].

• LS algorithms also have the convexity property [28]. Consider

z = θ∗Tφ+ dn, (2.28)

where dn is a noise disturbance (or considered as unmodeled dynamics, in practice,
may be due to sensor noise and external sources). The average value of noise distur-
bance is

lim
t→∞

1

t

∫ t

0

dn(τ)dτ = 0. (2.29)

Let d̄n be bounded by γ.

d̄2
n ≤ γ2

(z − θ∗Tφ)2 ≤ γ2.
(2.30)
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Let S be a subset of Rn+m+1 defined by

S =
{
θ : (z − θ∗Tφ)2 ≤ d̄2

n, θ ∈ Rn+m+1
}

(2.31)

As a geometrical way, S is a convex polytope which is algebraically defined as the set
of solutions to a system of linear inequalities mx ≤ b. Therefore, all measured values
form a convex polytope in the parameter space.

• RLS algorithms have the property of continuity in parameter estimation updates.
Even if a new update is provided and has no better information, the algorithm will
not stop itself. In practice, this might cause the redundancies [4, 28]

• In order to guarantee the boundedness of covariance matrix P and the estimates, some
modifications are introduced, including dead zone, σ−modifications in adaptive laws
[60].

2.4 Least Squares Parameter Identification Based Adap-

tive Control

Adaptive control has played an important role in control theory and most of the adaptive
control schemes have been combined with either gradient or LS based parameter identifica-
tion. To accommodate the later chapters of this thesis, we present a review of the existing
works on LS based adaptive control schemes and open problems to be addressed.

2.4.1 Literature Review on Theory

Adaptive control schemes are classified as direct and indirect in Section 2.2.1. Analyses of
adaptive controller schemes have traditionally been based on Lyapunov function. Among
these controllers, especially indirect adaptive controllers, very few are based on LS param-
eter estimation. LS parameter estimation have been used for convergence and robustness
analysis in indirect adaptive controllers [29, 56, 74, 102, 105, 112, 114].

Stability and convergence analysis of adaptive controller schemes have traditionally been
based on Lyapunov stability notions and techniques [45, 60, 61, 72, 88] . Lyapunov-like
functions are selected in the design of adaptive control to penalize the magnitude of the
tracking or regulation error but at the same time useful in designing an adaptive law to
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generate the parameter estimates to feed the control law. Control designs targeting to drive
the Lyapunov-like functions to zero lead to gradient based adaptive laws using a constant
adaptive gains due to its convenient structure. On the other hand, it is well observed that
LS algorithms have the advantage of faster convergence; hence, LS based adaptive control
has potential to enhance convergence performance in direct adaptive control approaches
as well [40, 51, 60, 71, 74].

Despite wide use of gradient on-line parameter based identifiers, LS adaptive algorithms
with forgetting factor are developed to be capable of faster settling and/or being less sen-
sitive to measurement noises in [40],[51]. Such properties are being justified by simulation
and experiment results. LS parameter estimation have been used for convergence and ro-
bustness analysis in either indirect adaptive controllers or combination of indirect adaptive
controller with direct one [24, 29, 56, 62, 63, 71, 74, 102, 105, 112, 114].

In addition to the existing LS based adaptive control theory studies, there are some publica-
tions in the recent literature on real-time applications to robotic manipulators [85, 86, 113],
unmanned aerial vehicles [3, 80], and passenger vehicles [1, 10, 21, 94, 95, 101, 106].

Most of the existing studies on LS based adaptive control follow the indirect approach
as opposed to direct adaptive control. One reason for this is that the analysis of direct
adaptive control is complicated for producing an LS based adaptive control scheme in
the Lyapunov-based design. Unlike indirect ones, in direct adaptive control schemes, the
estimated parameters are those directly used in the adaptive control laws without any
intermediate step.

In the literature, [60, 61] considered the possible use of LS on-line parameter identifier in
direct model reference adaptive control (MRAC); however, full details of design was not
provided, and Lyapunov analysis with LS parameter estimation was not mentioned. It is
obvious that indirect adaptive control has been utilized with LS algorithm in the literature
rather than direct one. Possible reasons of unpopularity of direct adaptive control are
poor transient performance and complicated analysis of direct adaptive control with LS
algorithm because of integral cost function. Most of the existing works have pointed out
the necessity of LS algorithm to improve the guaranteed transient performance.

2.4.2 Literature Review on Applications

In addition to the studies in theory, there are some applications used with the LS algorithm.
Manipulator applications of LS based adaptive control have been given in [85, 86]. They
considered the trajectory tracking of a robotic manipulator driven by electro-hydraulic
actuators. The controller was constructed based on the indirect adaptive control with
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LS algorithm which overcame poor parameter estimation properties of the direct adaptive
control based on gradient projection algorithm in [113].

[3] presented practical issues in the use of an indirect adaptive controller to control quadro-
tors with an emphasis on LS based estimation and the LPV controller design. [80] pre-
sented the results that quantify how velocity and attitude estimates can benefit from an
improvement to the traditional quadrotor dynamic model based on LS estimator.

In automotive research area, RLS parameter estimation with forgetting factor was used
in [106] for simultaneous estimation of mass and grade. They compared the performance
of single and multiple forgetting RLS algorithms to prove that RLS algorithm with single
forgetting factor could not estimate parameters with different rates of variation. They also
formulated the reason of poor estimation performance in single forgetting. When an error
is detected, the estimates of both parameters are updated without differentiating between
faster changes and constant/little change. [10] used GPS readings to obtain road elevation
and calculate the grade using the measured elevations. They estimated the mass with a
simple LS method based on the longitudinal dynamics equation with the grade known.
Some recent studies in [1, 21, 94, 95, 101] demonstrate the LS application in estimating
the unknown friction models.

2.5 Adaptive Extremum Seeking

In this section, the classical perturbation based ES is presented in detail, then cornerstone
works in ES are given.

2.5.1 Basics

ES is a nonmodel based real-time optimization method for dynamic problems without
requiring any explicit knowledge about input output characteristic other than that it exists
and has an extremum. The main objective of ES is to find the extremum and maintain
the extremum value of the function.

ES is also an approach of adaptive control; however, it is not applicable to model reference
and related schemes that tackle the stabilization problem of known reference trajectories
or set point [6].

The increasing complexity of engineering systems has led to many optimization challenges
since analytic solutions to optimization problems for multi-agent, nonlinear, and infinite-

18



Plant 
Dynamics

The System
𝑑𝑑

𝑦𝑦𝑝𝑝 𝑦𝑦𝑢𝑢

𝑢𝑢

𝑦𝑦∗

𝑦𝑦𝑝𝑝

𝑦𝑦𝑝𝑝 = 𝑔𝑔 𝑢𝑢

𝑢𝑢∗

Figure 2.2: Input output system extremum seeking scheme.

dimensional systems are difficult to obtain. This difficulty arises for many reasons, includ-
ing the presence of competing or adversarial goals, the high-dimensionality of the system,
and the inherent system uncertainty. Moreover, if a model-based solution is obtained for
those complicated optimization problems, it is likely to be conservative due to modelling
deficiencies. Hence, nonmodel based ES methods are an attractive option to solve these
kind of problems.

For better understanding of ES idea, a SISO system as in Fig. 2.2 can be considered. u is
the input to the system and y is the measured output. Moreover, yp is the output of the
plant and d is the bounded disturbance. Input, output and disturbance are functions of
time. It is assumed that the system has a well-defined steady state characteristic (u, yp)
but it does not need to be a function, it could be a multi valued steady state characteristic.

It is assumed that the steady state has a local maximum (u∗, y∗p). The control purpose in
ES is to complete the system in Fig. 2.2 with intent to drive input output pair (u, yp) to
the extremum points (u∗, y∗p). Let the plant dynamics be modelled as

ẋ = f(x, u), yp = h(x), y = yp + d(t). (2.32)

The functions f, h are assumed to be differentiable but not strictly necessary. Also following
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assumptions are made to ensure the well-defined steady state notion.

Assumption 2.1. There exists a differentiable function l : R→ Rn such that

f(x, u) = 0 if and only if x = l(u). (2.33)

Assumption 2.2. For each constant u, the corresponding equilibrium x = l(u) of the
system (2.32) is globally asymptotically stable, uniformly in u.

With Assumption 2.1, well-defined steady state characteristic and the differentiable func-
tion

yp = g(u) = h (l(u)) (2.34)

are stated. With Assumption 2.2, stable and unique steady state characteristic are ensured.
If any attempts to achieve global analysis are abandoned, local results (in therms of x) can
be simply obtained by requiring a local uniqueness and a local stability property for the
equilibria x = l(u).

Assumption 2.3. Consider the differentiable function l defined in Assumption 2.2. There
exists a unique u∗ maximizing g such that

Dg(u∗) = 0 D2g(u∗) < 0,

Dg(u∗ + %)% < 0 ∀% 6= 0,
(2.35)

where D denotes the derivative and D2 denotes the Hessian.

Assumption 2.3 ensures that steady state characteristic has a unique maximum. If local
results are sufficient, there is no need to insist on a global maximum. Local extrema can be
analysed instead. Moreover, differentiability conditions are stronger than being necessary
by Assumption 2.3.

Since we have a plant (2.32) which has an extremum, the classical ES scheme can be
explained. Block diagram of basic ES can be found in Fig. 2.3 [6, 70]. Design parameters
in 2.3 are explained as follows: ωlp, ωhp determine the cut of frequencies of low pass and high
pass filters, respectively, k is the gain of the integrator that determines the signal û, ω is
the excitation signal, and a is the gain that gives the size of the dither or excitation signal.
In order to have a meaningful algorithm, the dither signal asinwt should belong to the
pass band of both low and high pass filters, i.e., ωlp <

2π
ω
< ωhp. The amplitude a is small

enough since the dither is noise signal. Furthermore, the correlation with a narrowband
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Figure 2.3: Basic Extremum Seeking Scheme.

dither signal as implemented by the multiplication operator in Fig. 2.3 followed by the
integration, shows that the high and low pass filters are not main components of the ES
scheme. They can be removed. However, they have the ability to reduce the oscillations
in the system.

After giving necessary information about the components, we can summarize the ES scheme
given in Fig. 2.3 as follows:

ẋ = f(x, û+ a sinωt),

˙̂u = k (y + d) a sinωt,
(2.36)

where the filters are indeed removed. The main points of ES can be expressed as follows:
the dither signal a sinωt explores a neighbourhood of the equilibrium manifold around the
present estimate û, û slowly develops in the direction of the gradient Dg(û) to seek the
maximum u∗. In Fig. 2.3, ES is presented as a gradient based optimization method. The
following studies are given to understand the cornerstone studies in ES.

In 1922, [79] proposed a mechanism that transfers power from an electrical transmission
line to a tram car using a noncontact solution. In order to have an efficient transfer [79]
identified the need to adjust an inductance so as to maintain maximum power. In this
study, there was an explanation on ES solution rather than an analysis. Then, the first
detailed literature paper on ES analysis was given by [37]. [37] explored how to optimize
an internal combustion engine to reach the maximum power output. Internal combustion
engines have been very popular application area of ES since this study.
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During 1950s and 1960s, ES was named differently including extremum seeking regulator,
hill climbing systems, optimalizing systems [37, 91, 99]. After 1970s, [83] studied the
first Lyapunov based stability analysis and [103] introduced a survey study on extremum
seeking. Because of the increase in practice and applications, [8] was published and ES
was titled as one of the most promising adaptive control methods.

Perturbation based ES has become the most popular class of ES approaches in recent
years. Much of this success can be attributed to the work of [73]. They proved that
the performance of the plant can be successfully optimized with a perturbation based
ES approach if the plant satisfies certain properties. [73] also filled a gap proving the
stability of ES feedback for general nonlinear dynamic systems. They used the methods
of averaging developed by [65] and singular perturbation. They showed that the closed
loop system converges to a small neighborhood of the extremum of the equilibrium map.
The following studies are considered as cornerstones of ES and given to be insight into the
thesis work.

2.5.2 Gradient Based SISO Extremum Seeking

[73] considered a general SISO nonlinear model as follows:

ẋ = f(x, u),

y = h(x),
(2.37)

where x ∈ Rn is the state, u ∈ R is the input, y ∈ R is the output, and f : Rn × R→ Rn,
h : Rn → R are smooth. A known smooth control law is supposed to be

u = α(x, θ) (2.38)

parametrized by a scalar parameter θ. θ and y are taken as scalars and static state feedback
control law is known, for simplicity. The closed loop system can be written as follows:

ẋ = f(x, α(x, θ)) (2.39)

and has equilibria parametrized by θ. For the closed loop system, following assumptions
are made by [73]:
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Figure 2.4: Gradient based extremum seeking for SISO dynamic systems [73].

Assumption 2.4. There exists a smooth function l : R→ Rn such that

f(x, α(x, θ)) = 0 if and only if x = l(θ). (2.40)

Assumption 2.5. For each θ, the equilibrium x = l(θ) of the system (2.39) is locally
exponentially stable with decay and overshoot constants uniform in θ.

In the light of Assumptions 2.4 and 2.5, they assume that they have a robust control
law in the sense that it exponentially stabilizes any of the equilibria that θ may produce.
Assumption 2.5 is not restrictive, it means that control law is designed for local stabilization
and this control law does not require the knowledge of either f(x, u) or l(θ).

Assumption 2.6. There exists θ∗ ∈ R such that

y
′
= 0, y

′′
< 0. (2.41)

Hence, it is assumed that y = h(l(θ)) has an extremum (maximum in their case) at θ = θ∗.
Therefore, main objective in [73] is to develop a feedback algorithm that maximizes the
steady-state value of y without the knowledge of θ∗, h, or l.

A periodic perturbation term shown in Fig. 2.4, asinωt is added to the signal θ̂ which is
the best estimate of θ. If the perturbation is slow, then the plant has the characteristics
of a static map y = h(l(θ)). Given system in Fig. 2.4 can be summarized as follows:
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ẋ = f(x, u),

u = α(x, θ),

θ = θ̂ + asinωt.

(2.42)

Substituting θ into (2.39), the closed loop system equation is written as

ẋ = f(x, α(x, θ̂ + asinωt)). (2.43)

The remaining part can be summarized in the following way:

˙̂
θ = kζ,

ζ̇ = −ωlζ + ωl(y − η)asinωt,

η̇ = −ωhη + ωhy.

(2.44)

For further stability analysis, [73] uses the averaging and singular perturbation analy-
sis developed by [65]. They covered the implementation of ES in singular perturbation.
Conditions were very restrictive which meant that the plant had to be very fast and adap-
tation gain needed to be very small. Consequently, y = h(x) converges exponentially to
an O(ω + a)-neighbourhood of its maximum equilibrium value h(l(θ∗)).

2.5.3 Gradient Based MISO Extremum Seeking

A special case of ES for MISO systems is examined in [41]. Gradient based ES is considered
and the results for MISO systems are given.

Fig. 2.5 shows the block diagram of proposed algorithm in [41]. Given system can be
summarized in the following way:

ẋ = f(x, u),

u = α(x, θ),

θ = θ̂ + S(t),

(2.45)

where θ =
[
θ1 θ2 · · · θn

]T
, and S(t) =

[
a1sin(ω1t) a2sin(ω2t) · · · ansin(ωnt)

]T
. It

can also be written
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Figure 2.5: Gradient based extremum seeking for MISO dynamic systems [41].

˙̂
θ = kĜ,

η̇ = yωh − ηωh,
˙̂
G = ωlM(t)(y − η)−Gωl,

(2.46)

where M(t) =
[

2
a1
sin(ω1t)

2
a2
sin(ω2t) · · · 2

an
sin(ωnt)

]T
. In (2.45), x ∈ Rm is the state,

u ∈ Rn is the input, y ∈ R is the output, and f : RmxRn → Rm, h : Rm → R are smooth.
Assumptions 2.4,2.5,4.3 in [73] are still valid.

2.5.4 Gradient Based Extremum Seeking for MISO Static Map

Regarding MISO gradient based ES, it is also a case to obtain gradient based ES for static
maps. In [41], ES based on gradient algorithm is considered for a static map. Consider a
convex static map as

y = Q(θ), θ =
[
θ1 θ1 ... θn

]T
(2.47)

with a local maximum at θ∗. The gradient based ES scheme for this multivariable static
map is given in Fig. 2.6. Gradient based ES for a static map given in (2.6) is defined by

˙̂
θ = kN(t)y,

θ = θ̂ +M(t).
(2.48)
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Figure 2.6: Gradient Based Extremum Seeking for a Static Map [41].

where the parameter error is θ̃ = θ̂ − θ∗. Together with (2.47) and (2.48), the closed loop
system is given by

˙̃θ = kN(t)Q(θ∗ +M(t) + θ̃), (2.49)

whereM(t) =
[
a1sinω1t ... ansinωnt

]T
and N(t) =

[
2
a1
sinω1t ... 2

an
sinωnt

]T
.

Obtained averaged system based on gradient estimation algorithm needs the information
of Hessian matrix which is the second derivative of the output. The convergence rate
depends on that unknown Hessian matrix. Generating the estimate of Hessian matrix is
very challenging in non-model based optimization algorithms. Therefore, the following
study has been done to deal with unknown Hessian matrix.

2.5.5 Newton Based Extremum Seeking

Gradient estimation algorithm is not the only optimization algorithm used in ES. In the
literature, Newton based algorithm is also examined with ES. Newton-based method has
the advantage over gradient based method since Newton’s method uses curvature infor-
mation to take a more direct route. In addition, convergence of Newton algorithm is
independent of the Hessian and can be arbitrarily assigned, while convergence rate of the
gradient algorithm was governed by the unknown Hessian matrix. In this regard, it is also
challenging that the estimate of the inverse of Hessian matrix which is used in Newton
based ES algorithms.
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Figure 2.7: Newton based extremum seeking for MISO dynamic systems [41].

In order to deal with such problems, [41] employed a dynamic system which generates the
inverse asymptotically. Added dynamic system has the form of differential Riccati equation
which gives the estimate of inverse of Hessian matrix. Fig. 2.7 shows the block diagram
of proposed Newton based extremum seeking algorithm. Parallel to the gradient based ES
algorithm for multivariable case, [41] proposed Newton based ES algorithm in the following
way :

˙̂
θ = −kΓĜ,

˙̂
G = ωlM(t)(y − η)− Ĝωl,
Γ̇ = ωrΓ− ωrΓĤΓ.

(2.50)

With Newton based algorithm, the convergence rates of both parameter and of the esti-
mator of the Hessian inverse are independent of the unknown Hessian. It is also assigned
by the user arbitrarily.

Moreover, [70] provided an analysis that they added a dynamic compensator to the integra-
tor. They developed an algorithm and showed by an example that benefits of increasing the
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adaptation gain brings along the increase in sensitivity of noise. Another study regarding
the ES was proposed by [22] for discrete time systems. They used the same plant model
and control algorithm as in [70]. They studied the stability analysis which is rather differ-
ent than that of continuous time. It was established in two steps: without perturbation
and with perturbation. A mild sufficient condition which the system output exponentially
converges to the neighbourhood of the extremum value was derived. They validated their
algorithm by simulations. [48] and [46] considered ES approach as an estimation problem.
They used a discrete time ES scheme to estimate the gradient as a time-varying parameter
using least-squares like update laws.

It is clear that most of the studies on the topic of ES have been established mostly by
gradient and recently by Newton based algorithms. Since we know that RLS estimation
algorithm brings faster convergence rate to forefront, we focus on RLS parameter estimation
based ES design in Chapter 4.

2.5.6 Extremum Seeking Applications

ES has been applied to many engineering domains. Application areas in the automotive
industry include internal combustion engines [53, 67, 78] to minimize the fuel consumption;
anti-lock braking systems [34, 36, 116] to seek the peak point of the tire force–slip curve;
and transmission systems [107, 108] to maximize the efficiency.

ES has been also used to maximize the generated power of wind turbines in [26, 42] and
solar arrays [43, 81]. In addition, navigation and source-seeking applications of mobile
robots using ES have been investigated in [25, 35, 82, 84]. Other application areas of ES
include fuel-cell power plants [27, 118], nuclear-fusion reactors [18, 19].

Applicability of the proposed ES methods are often given by simulation examples. More-
over, there are a number of applications which is given as a proof of concept by practical
experiments [42, 67].
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Chapter 3

Recursive Least Squares Based
Adaptive Control

In Chapter 2, the existing studies on LS based adaptive control have been presented. Most
of these existing LS based designs follow the indirect adaptive control approach as opposed
to direct adaptive control. One reason for this is that the analysis of direct adaptive
control, which typically starts with proposing a Lyapunov-like function that penalizes the
magnitude of the tracking or regulation error but at the same time useful in designing an
adaptive law to generate the parameter estimates to feed the control law, is complicated
for producing an LS based adaptive control scheme in the end. On the other hand, it
is well observed that LS algorithms have the advantage of faster convergence; hence, LS
based adaptive control has potential to enhance convergence performance in direct adaptive
control approaches as well.

This chapter builds a framework for analysis of RLS parameter estimation based adaptive
control and a set of general analysis results on stability and convergence. In order to
achieve this aim, RLS parameter estimation based direct adaptive control is first analysed
by replacing the constant adaptation gain that is used in gradient based direct adaptive
control, with a time varying covariance matrix. RLS parameter estimation based direct
adaptive control is later discussed by defining a new Lyapunov function based on integral
cost function instead of standard quadratic instantaneous cost function.

This chapter starts with the designs of indirect APPC and indirect MRAC as a base to test
and analyse the performance of time-varying RLS parameter estimation based algorithms
in indirect adaptive control, compared to the fixed gain gradient based algorithms. Later,
direct MRAC with RLS parameter estimation is studied, providing details of constructive

29



analysis, and simulation tests. Applications to active vehicle safety systems, ACC and ABS
are provided to demonstrate the applicability of the proposed RLS parameter estimation
based direct adaptive control.

3.1 Indirect Adaptive Control

In this section, the analysis of the performance of RLS based on-line parameter estimation
in indirect APPC and MRAC are given based on simulation comparisons with gradient
based algorithms. Firstly, a brief description is given in each section and then a simulation
study including the comparison of RLS and gradient based algorithms is provided.

3.1.1 Indirect Adaptive Pole Placement Control

APPC schemes are applicable to both minimum phase and non-minimum phase plants. In
an indirect APPC, which is composed of a PPC law and an on-line parameter identifier
(PI), the on-line PI generates on-line estimates of the plant system parameters, e.g., the
coefficients of the plant transfer function, which are later used to calculate the control
coefficients of the PPC law by solving a certain algebraic equation that relates the plant
system parameters and the ideal control coefficients.

Consider the SISO LTI plant as

ẋp = Apxp +Bpup, x(0) = x0,

yp = CT
p xp

(3.1)

where xp ∈ Rn, yp, up ∈ R and Ap, Bp, Cp have the appropriate dimensions. The transfer
function of the plant is given by

yp = Gp(s)up, Gp(s) = kp
Zp(s)

Rp(s)
, (3.2)

where Gp(s) is proper, Zp(s) and Rp(s) are monic polynomials, and kp is the high frequency
gain. The PPC goal is to choose the plant input up so that the closed loop poles are
assigned to those of a given monic Hurwitz polynomial A∗(s) which is referred to as the
desired closed loop characteristic polynomial. Following assumptions are made to facilitate
achieving the PPC goal.

30



Assumption 3.1.

i Rp(s) is a monic polynomial whose degree n is known.

ii Zp(s), Rp(s) are coprime and degree of Zp(s) is less than n.

A typical APPC task, in addition to assigning the desired closed-loop poles, also requires
the output yp of the plant to track a certain reference signal ym, which can be addressed
following an internal model principle approach. In this approach, the reference signal
ym ∈ L∞ is assumed to satisfy the internal model Qm(s)ym = 0 where Qm(s) is a known
monic polynomial of degree q and, having its roots in R[s] ≤ 0 no repeated roots on
imaginary axis. Furthermore, Qm(s) is assumed to satisfy following assumption:

Assumption 3.2.

iii Qm(s), Zp(s) are coprime.

For the tracking objective, the control law is considered as

Qm(s)L(s)up = −P̄ (s)(yp − ym), (3.3)

where P̄ (s), L(s) are polynomials of degree q + n − 1, n − 1, respectively and chosen to
satisfy following polynomial equation

L(s)Qm(s)Rp(s) + P̄ (s)kpZp(s) = A∗(s), (3.4)

where L(s) = sn−1 + ln−2s
n−2 + · · ·+ l1s+ l0, P̄ (s) = pn+q−1s

n+q−1 + pn+q−2s
n+q−2 + · · ·+

p1s+ p0 and A∗(s) = s2n+q−1 + a∗2n+q−2s
2n+q−2 + · · ·+ a∗1s+ a∗0 = s2n+q−1 + α∗Tα2n+q−2(s).

The solutions of L(s) and P̄ (s) coefficients are selected by solving an algebraic equation
given in [60]. The control law in (3.3) is realized as

up = − P̄ (s)

Qm(s)L(s)
(yp − ym). (3.5)

Since we have L(s) in the denominator that is not necessarily Hurwitz, we may have poles
in the right half complex plane, which is not desirable. (3.5) can be rewritten as

up =
Λ(s)−Qm(s)L(s)

Λ(s)
up −

P̄ (s)

Λ(s)
(yp − ym) (3.6)
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with any monic Hurwitz polynomial Λ(s) of degree n+q−1. Since the coefficients of Gp(s)
are unknown, adaptive control is used to estimate the plant polynomials.

Using (3.2), the following parametric model can be derived:

z = θ∗Tp φ, (3.7)

where

z =
sn

Λp(s)
yp, θ∗p =

[
θ∗Tb θ∗Ta

]T
, φ =

[
αT
n−1(s)

Λp(s)
up −

αT
n−1(s)

Λp(s)
yp

]T
,

αn−1(s) = [sn−1, · · · , s, 1]T , θ∗Tb = [bn−1, · · · , b0]T , θ∗Ta = [an−1, · · · , a0]T .

(3.8)

In order to estimate θ∗p, unknown plant parameters, gradient (2.14) and RLS (2.22) esti-
mation algorithms can be used. Thus, the estimated plant parameters are given as

θp =
[
θTb θTa

]T
, θTb =

[
b̂n−1, · · · , b̂0

]T
, θTa =

[
ân−1, · · · , â0

]T
. (3.9)

Using the estimated plant parameters, the adaptive control law is obtained by replacing
the unknown polynomials L(s), P (s) in (3.6) with their on-line estimates L̂(s, t), P̂ (s, t) as

up =
Λ(s)−Qm(s)L̂(s, t)

Λ(s)
up −

ˆ̄P ((s, t)

Λ(s)
(yp − ym). (3.10)

The existence and uniqueness of L̂(s, t), ˆ̄P (s, t) are guaranteed, provided that R̂p(s, t)Qm(s),

Ẑp(s) are coprime at each time t. In order to compare the gradient and RLS on-line esti-
mation algorithms in indirect adaptive control, the following plant model is examined.

Example 3.1. In order to demonstrate the performance of LS based parameter estimation
algorithm in indirect adaptive control, a simulation application is provided. Consider the
plant given by

y =
1

s(s− p1)(s− p2)
u, (3.11)

with unknown parameters p1, p2. (3.11) can be rewritten as follows:
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y =
1

s3 + a2s2 + a1s
u, (3.12)

with a1 = p1p2 and a2 = −(p1 + p2). In order to design an APPC, the closed loop system
is assumed to be stable with a pole at −1.

By following the PPC algorithm, we have APPC law as follows:

u =
Λ− sL

Λ
u− P̄

Λ
(y − ym), (3.13)

where L = s2 + l1s + l0, P̄ = p3s
3 + p2s

2 + p1s + p0, Λ = (s + 2)3, l1 = 6 − a2, l0 =
15− l1a2 − a1, p3 = 20− l0a2 − l1a1, p2 = 15− l0a1, p1 = 6, p0 = 1.

In order to compare the transient performance, RLS and gradient parameter estimation
based adaptive control laws are implemented. Parameter model is written as

z = θ∗p
Tφ (3.14)

where

φ =
[
− s2

Λ
y, − s

Λ
y
]T
, θ∗p =

[
a2, a1

]T
. (3.15)

Next the estimation model and estimation error are written as follows:

ẑ = θp
Tφ, θp =

[
â2 â1

]T
,

ε =
z − ẑ
m2
s

.
(3.16)

And lastly, adaptive law with RLS estimation is given by

θ̇p = Pεφ, Ṗ = βP − P φφ
T

m2
s

P, (3.17)

with β forgetting factor and P covariance matrix. Adaptive law with gradient estimation
to compare the performance is given by

θ̇p = γεφ, (3.18)
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Figure 3.1: Plant results with respect to gradient and RLS for indirect APPC.

where γ is constant adaptive gain.

Simulation results for indirect APPC are given in Figs. 3.1 and 3.2. Fig.3.1 shows applied
inputs and plant results, and Fig.3.2 demonstrates the parameter estimates for both gradient
and RLS based indirect APPC. β = 0.9 for RLS algorithm and γ = 100 for gradient
algorithm are used in the simulation. Estimation results verifies that RLS based indirect
APPC has better convergence performance than gradient one.

3.1.2 Indirect Model Reference Adaptive Control

APPC is considered as the most general class of adaptive control schemes due to its flexi-
bility in choosing the controller design methodology and adaptive law. Indirect MRAC is a
special case where some of the poles of the controller are assigned to be equal to the zeros
of the plant to facilitate the required zero-pole cancellation for transfer function matching.
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Figure 3.2: Parameter estimates with respect to gradient and RLS for indirect APPC.

The details of MRAC scheme will be given broadly in the next section, the idea of MRAC
in indirect adaptive control will be explained with a scalar example from [61].

Consider the plant

ẋ = ax+ bu, (3.19)

where a, b are unknown constants and sgn(b) is known.It is desired to choose u such that
all signals in the closed loop plant are bounded and the plant state x follows the reference
model state xm

ẋm = −amxm + bmr, (3.20)

where am > 0, bm and the reference input signal r are chosen so that xm(t) shows the desired
state response of the plant. If the plant parameters a, b are known, then the control law
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u = −k∗x+ l∗r, (3.21)

with

k∗ =
am + a

b
, l∗ =

bm
b

(3.22)

are one way to meet the control objective. For unknown plant parameters, the control law
becomes

u = −k(t)x+ l(t)r, (3.23)

where k(t), l(t) are the online estimates of k∗, l∗ at time t, respectively. In indirect adaptive
control, k and l are evaluated by the relationship of (3.24) and the estimates â, b̂ of the
unknown parameters a, b as follows:

k =
am + â(t)

b̂(t)
, l =

bm

b̂(t)
. (3.24)

Rewriting the (3.19) as

x =
1

s+ am
[(a+ am)x+ bu] , (3.25)

and the estimate of x becomes

x̂ =
1

s+ am

[
(â+ am)x̂+ b̂u

]
= xm. (3.26)

The tracking error is written as

e1 = x− xm, (3.27)

that satisfies the following differential equation

ė1 = −ame1 − ãx− b̃u
ã = â− a, b̃ = b̂− b.

(3.28)

A Lyapunov function is chosen as
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Figure 3.3: Tracking results and applied control inputs with respect to gradient and RLS
for indirect MRAC.

V =
1

2

(
e2

1 +
ã2

γ1

+
b̃2

γ2

)
, (3.29)

where γ1, γ2 > 0. The time derivative of V is given by

V̇ = −ame2
1 − ãxe1 − b̃ue1 +

ã ˙̃a

γ1

+
b̃ ˙̃b

γ2

. (3.30)

For the selections of

˙̃a = ˙̂a = γ1e1x,
˙̃b =

˙̂
b = γ2e1u, (3.31)
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(3.30) becomes

V̇ = −ame2
1 ≤ 0, (3.32)

which implies that e1, â, b̂, xm, x ∈ L∞, and e1 ∈ L2. The boundedness proof of u can
be found by showing the boundedness of k(t) and l(t) as in [61]. Replacing the constant
adaptive gains γ1, γ2 with time varying covariance matrix P , the adaptive law is written
based on LS parameter estimation as follows:

θ̇ = PE1φ

θ = [â, b̂]T , E1 = e1I2 φ = [x, u]T ,

Ṗ = βP − PφφTP.
(3.33)

Figure 3.4: Estimation results with respect to gradient and RLS for indirect MRAC.
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Simulation results for indirect MRAC are given in Figs. 3.3 and 3.4. Reference signal
is given as sint. System and reference model parameters are given as a = −0.4, b =
0.5, x0 = 0, xm0 = 0, am = 1, bm = 1. Initial estimates are defined as â0 = −0.2, b̂0 = 0.2.
Adaptive gains for gradient algorithm is given as [γ1, γ2] = [5, 3]. Covariance matrix for
RLS algorithm is P0 = 50I2. Tracking results for applied inputs in Fig. 3.3 and estimation
results of â, b̂ in Fig. 3.4 demonstrate that RLS parameter estimation based indirect MRAC
is significantly better than gradient one in terms of convergence rate.

3.2 Direct Model Reference Adaptive Control

In this section, the direct adaptive control problem is revisited by selecting a suitable
Lyapunov function to design the adaptive law. In the literature, the Lyapunov-like func-
tions are typically selected to penalize the tracking error and parameter estimation error
together, since the dynamics of these errors are coupled, and control designs targeting to
drive this Lyapunov-like function to zero leads to gradient based adaptive laws using a
constant adaptive gains.

In this section, the aim is to construct a similar Lyapunov analysis framework with an
appropriate Lyapunov-like function resulting in an adaptive law with a time-varying gain
matrix P , instead of a constant gain Γ, with time variations corresponding to RLS based
parameter estimation. The key motivation is the aforementioned superior characteristics
of RLS based online parameter estimation observed in comparative simulations and ex-
perimental tests, and to further investigate the reasons of the observed superiorities in
Lyapunov function and see the effect of RLS in the analysis.

3.2.1 Adaptive Control Scheme

In MRAC, desired plant behaviour is described by a reference model which can be described
by a transfer function and driven by a reference input. Then, a control law is developed
so that the closed loop plant has a transfer function equal to the reference model. Unlike
APPC, in MRAC, the plant has to be minimum phase, i.e, all zeros have to be stable.

Consider the plant given in (3.1) and the transfer function in (3.2). The reference model
is described by

ẋm = Amxm +Bmum, xm(0) = xm0,

ym = CT
mxm

(3.34)
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The transfer function of the reference model (3.34) is given by

ym = Wm(s)r, Wm(s) = km
Zm(s)

Rm(s)
, (3.35)

with constant design parameter km. The control purpose is to find the plant input up so
that all signals are bounded and the plant output yp follows the reference model output
ym with given reference input r(t). The following assumptions are made for MRAC:

Assumption 3.3. Plant Assumptions

i Zp(s) is a monic Hurwitz polynomial.

ii Upper bound n of the degree np of Rp(s) is known.

iii Relative degree n∗ = np −mp of Gp(s) is known and mp is the degree of Zp(s).

iv The sign of kp is known.

Assumption 3.4. Reference Model Assumptions

i Zm(s), Rm(s) are monic Hurwitz polynomials of the degree of qm, pm, respectively.

ii Relative degree nm = pm − qm of Wm(s) is the same as that of Gp(s), i.e, n∗ = n∗m.

Consider the following feedback control law

up = θ∗1
T α(s)

Λ(s)
up + θ∗2

T α(s)

Λ(s)
yp + θ∗3yp + c∗0r, (3.36)

where

c∗0 =
km
kp
,

α(s) , αn−2(s) = [sn−2, sn−3, · · · , s, 1]T for n ≥ 2,

α(s) , 0 for n = 1.

(3.37)

Λ(s) is an arbitrary monic Hurwitz polynomial of degree n−1 containing Zm(s) as a factor,
i.e.,
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Λ(s) = Λ0(s)Zm(s)

implying that Λ0(s) is monic and Hurwitz. The controller parameter vector θ∗ =
[
θ∗T1 θ∗T2 θ∗3 c∗0

]T
is chosen so that the transfer function from r to yp is equal to Wm(s).

Figure 3.5: Structure of MRAC.

The structure of the closed-loop MRAC scheme is shown in Fig. 3.5 and has the reference
to output relation

yp = Gc(s)r (3.38)

where

Gc(s) =
c∗0kpZp(s)Λ

2(s)

Λ(s)(Λ(s)− θ∗T1 (α(s))Rp(s)− kpZp(s)[θ∗T2 α(s) + θ∗3Λ(s)]
. (3.39)

The control objective is to select the controller parameter θ∗ so that the closed-loop poles
are stable and the closed-loop transfer function satisfies Gc(s) = Wm(s), i.e.,

c∗0kpZp(s)Λ
2(s)

Λ(s)(Λ(s)− θ∗T1 (α(s))Rp(s)− kpZp(s)[θ∗T2 α(s) + θ∗3Λ(s)]
= km

Zm(s)

Rm(s)
∀s ∈ C. (3.40)
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Since Zp(s) is Hurwitz by assumption and Λ(s) = Λ0(s)Zm(s) is designed to be Hurwitz,
all zeros of Gc(s) are stable and hence any zero-pole cancellation can occur only in C−.
Nonzero intial conditions will affect the transient response of yp(t).

A state-space realization of the control law (3.36) is given by

ω̇1 = Fω1 + gup, ω1(0) = 0,

ω̇2 = Fω2 + gyp, ω2(0) = 0,

up = θ∗Tω,

(3.41)

where ω1, ω2 ∈ Rn−1,

θ∗ =
[
θ∗T1 θ∗T2 θ∗3 c∗0

]T
, ω =

[
ω1 ω2 yp r

]T
,

F =


−λn−2 −λn−3 −λn−4 · · · −λ0

1 0 0 · · · 0
0 1 0 · 0
...

...
. . . . . .

...
0 0 · · · 1 0

 ,
Λ(s) = sn−1 + λn−2s

n−2 + · · ·+ λ1s+ λ0 = det(sI − F ),

g =
[
1 0 · · · 0

]T
.

(3.42)

Since the plant parameters are unknown, the desired controller parameter vector θ∗ cannot
be calculated from the matching equation. Following the certainty equivalence approach
the following equation is used instead of (3.41):

ω̇1 = Fω1 + gup, ω1(0) = 0,

ω̇2 = Fω2 + gyp, ω2(0) = 0,

up = θTω,

(3.43)

where θ(t) is the online estimate of the unknown control parameter vector θ∗. In order to
find the adaptive law generating θ(t), first a composite state space representation of the
plant and controller is considered [60] as follows:

Ẏc = A0Yc +Bcup,

yp = CT
c Yc,

up = θTω,

(3.44)
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where Yc = [xTP , ω
T
1 , ω

T
2 ]T ,

A0 =

 Ap 0 0
0 F 0

gCT
p 0 F

 , Bc =

Bp

g
0

 , CT
c =

[
CT
p , 0, 0

]
. (3.45)

When we add and subtract the desired input, we obtain

Ẏc = A0Yc +Bcθ
∗Tω +Bc(up − θ∗Tω) (3.46)

and absorbing the desired input term into the homogeneous part of the above equation,
we have

Ẏc = AcYc +Bcc
∗
0r +Bc(up − θ∗Tω), Yc(0) = Y0

yp = CT
c Yc,

(3.47)

where

Ac =

Ap +Bpθ
∗CT

p Bpθ
∗T
1 Bpθ

∗T
2

gθ∗3C
T
p F + gθ∗T1 gθ∗T2

gCT
p 0 F

 . (3.48)

Let the state error be

e = Yc − Ym, (3.49)

and output tracking error be

e1 = yp − ym. (3.50)

Error equation is written using (3.49) and (3.50) as follows:

ė = Ace+Bc(up − θ∗Tω), e(0) = e0,

e1 = CT
c e,

(3.51)

where Ac, Bc, Cc represent the parameter matrices of the plant in state space realization.
We have
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Wm(s) = CT
c (sI − Ac)−1Bcc

∗
0, (3.52)

then e1 becomes

e1 = Wm(s)ρ∗(up − θ∗Tω). (3.53)

where ρ∗ = 1/c∗0. The estimate ê1 of e1 is given as

ê1 = Wm(s)ρ(up − θTω), (3.54)

where ρ is the estimate of ρ∗. Since the control input is

up = θT (t)ω, (3.55)

the estimate ê1 and the estimation error ε1 becomes

ê1 = 0, ε1 = e1 − ê1 = e1. (3.56)

Substitute (3.56) into (3.51), we obtain

ė = Ace+Bcθ̃
Tω,

e1 = CT
c e,

(3.57)

where

θ̃ = θ(t)− θ∗. (3.58)

3.2.2 Lyapunov-Like Function Composition and Analysis

In the typical direct adaptive control designs of the literature, which are gradient adaptive
law based, the Lyapunov-like function is chosen as

V (θ̃, e) =
eTPce

2
+
θ̃TΓ−1θ̃

2
|ρ∗|, (3.59)
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where θ̃ = θ− θ∗, θ∗ is the desired controller parameter vector, and Pc = P T
c > 0 satisfying

certain conditions to be detailed in the sequel and Γ = ΓT > 0 is a constant positive
definite the algebraic equations

PcAc + ATc Pc = −qqT − νcLc,
PcBcc

∗
0 = Cc,

(3.60)

where q is a vector, Lc = LTc > 0, and νc > 0 is small constant. The time derivative V̇ of
V along the solution of (3.59) is

V̇ = −e
T qqT e

2
− νc

2
eTLce+ eTPcBcc

∗
0ρ
∗θ̃Tω + θ̃TΓ−1 ˙̃θ|ρ∗|. (3.61)

Since eTPcBcc
∗
0 = eTCc = e1 and ρ∗ = |ρ∗|sgn(ρ∗), V̇ ≤ 0 is established by choosing

˙̃θ = θ̇ = −Γe1ωsgn(ρ∗), (3.62)

which leads to

V̇ = −e
T qqT e

2
− νc

2
eTLce. (3.63)

(3.59) and (3.63) imply that V, e, θ̃ ∈ L∞. Since e = Yc − Ym and Ym ∈ L∞, Yc ∈ L∞
that gives use xp, yp, ω1, ω2 ∈ L∞. We also know that up = θTω and θ, ω ∈ L∞; therefore,
up ∈ L∞. All the signals in the closed-loop plant are bounded. Hence, the tracking error
e1 = yp − ym goes to zero as time goes to infinity.

(3.62) is given based on gradient algorithm and considers a constant Γ gain in the Lyapunov
function. Fast adaptation is referred to the implementation of adaptive control with a large
adaptive gain to reduce the tracking error rapidly. However, a large adaptive gain can lead
to high-frequency oscillations which can adversely affect robustness of the adaptive control
law. As adaptive gain increases, time delay for a standard MRAC decreases causing loss of
robustness. Unlike Γ, P is adjusted based on identification error during estimation process,
i.e, it allows an initial large adaptive gain to be set arbitrarily and provides the ability to
drive the adaptive gain to a lower value as the adaptation has achieved sufficiently the
desired tracking performance.

An RLS based direct adaptive control design would start with an alternative Lyapunov-
like function to replace (3.59) and end up with a control law that is either the same as
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or similar to (3.55) together with and adaptive law that is the RLS based alternative of
(3.62).

Here we start with a reverse process of this analysis, starting with the following RLS
based alternative of the adaptive law. We define θ̇ in terms of RLS algorithm by replacing
constant Γ term with time-varying P (t) matrix. In this regard, we write Lyapunov-like
function in (3.59) as follows:

V (θ̃, e) =
eTPce

2
+
θ̃TP−1θ̃

2
|ρ∗|, (3.64)

The time derivative V̇ of V along the solution of (3.64) is expressed by

V̇ = −e
T qqT e

2
− νc

2
eTLce+ eTPcBcc

∗
0ρ
∗θ̃Tω +

1

2
θ̃T
d(P−1)

dt
θ̃|ρ∗|+ θ̃TP−1 ˙̃θ|ρ∗|. (3.65)

where

d(P−1)

dt
= −P−1ṖP−1. (3.66)

If P (t) is updated according to the RLS adaptive law (3.17) with forgetting factor, i.e.,

Ṗ = βP − PωωTP, (3.67)

(3.66) becomes

d(P−1)

dt
= −βP−1 + ωωT . (3.68)

Substituting (3.68) into (3.65), we have

V̇ = −e
T qqT e

2
− νc

2
eTLce+ e1ρ

∗θ̃Tω − β

2
θ̃TP−1θ̃|ρ∗|+ θ̃TP−1 ˙̃θ|ρ∗|+ ε2

2
|ρ∗|, (3.69)

where
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ε = θ̃Tω. (3.70)

V̇ ≤ 0 can be established by choosing

˙̃θ = θ̇ = −Pe1ωsgn(ρ∗) +
1

2
Pεω. (3.71)

A new adaptive law based on RLS parameter estimation with time-varying covariance ma-
trix P is defined in (3.71),(3.67). Substituting these equations into (3.69), (3.65) becomes

V̇ = −e
T qqT e

2
− νc

2
eTLce ≤ 0. (3.72)

Theorem 3.1. The RLS parameter estimation based MRAC scheme (3.43),(3.67),(3.71)
has the following properties:

i. All signals in the closed-loop are bounded and tracking error converges to zero in time
for any reference input r ∈ L∞.

ii. If the reference input r is sufficiently rich of order 2n, ṙ ∈ L∞, and Zp(s), Rp(s) are
relatively coprime, then ω is persistently exciting (PE) given in Definition 2.1, which
implies that P, P−1 ∈ L∞ and θ(t) → θ∗ as t → ∞. When β > 0, the parameter
error ‖ θ̃ ‖=‖ θ − θ∗ ‖ and the tracking error e1 converges to zero exponentially fast.

Proof. i. e ∈ L2, θ, ω,∈ L∞, and ė ∈ L∞. Therefore, all signals in the closed loop plant
are bounded. In order to complete the design, we need to show tracking error e1

converges to the zero asymptotically with time. Using (3.64), (3.72), we know that
e, e1 ∈ L2. Using, θ, ω, e ∈ L∞ in (3.57), we have ė, ė1 ∈ L∞. Since ė, ė1 ∈ L∞ and
e1 ∈ L2, the tracking error e1 goes to zero as t goes to infinity.

ii. By Theorem 3.4.3 of [60], if r is sufficiently rich of order 2n then the 2n dimensional
regressor vector ω is PE. Let Q = P−1 and (3.68) can be rewritten as

Q̇ = −βQ+ ωωT . (3.73)

and taking the integral of both sides, we obtain

Q(t) = e−βtQ0 +

∫ t

0

e−β(t−τ)ω(τ)ωT (τ)dτ. (3.74)
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Since ω(t) is PE,

Q(t) ≥
∫ t

T0

e−β(t−τ)ω(τ)ωT (τ)dτ

≥ ᾱ0e
−βT0

∫ t

T0

e−β(t−τ)ω(τ)ωT (τ)dτ

≥ β1e
−βT0I, ∀t ≥ T0,

(3.75)

where β1 = ᾱ0α0T0, and α0, ᾱ0, T0 > 0 are design constants, given in (2.27). For
t ≤ T0,

Q(t) ≥ e−βT0Q0 ≥ λmin(Q0)e−βT0I ≥ γ1I ∀t ≥ 0, (3.76)

where γ1 = min{α0T0
β
, λmin(Q0)}e−βT0 . Since ω is PE,

Q(t) ≤ Q0 + β2

∫ t

0

e−β(t−τ)dτI ≤ γ2I, β2 > 0. (3.77)

where γ2 = λmax(Q0) + β2
β
> 0. Using (3.76) and (3.77), we obtain

γ−1
2 I ≤ P (t) = Q((t) ≤ γ−1

1 I. (3.78)

Therefore, P (t), Q(t) ∈ L∞. Exponential convergence is established following steps
similar to those in [60].

Comparing two adaptive laws in (3.62) and (3.71), we can clearly see the effect of time
varying covariance matrix reflected as an additional term to the similar part of (3.62).
Now, we reverse the process and consider defining a new Lyapunov function based on
integral cost function instead of standard quadratic instantaneous cost function.

Consider(3.73) and its solution (3.74). For simplicity, instead of (3.64), we consider the
Lyapunov function as follows:

V = θ̃TQθ̃, (3.79)

Substitute (3.74) into (3.79), we obtain
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V = e−βtθ̃T (t)Q0θ̃(t) +

∫ t

0

e−β(t−τ)θ̃T (t)ω(τ)ωT (τ)θ̃(t)dτ,

= e−βtθ̃T (t)Q0θ̃(t) +

∫ t

0

e−β(t−τ)ε(t, τ)εT (t, τ))dτ,

= e−βtθ̃T (t)Q0θ̃(t) +

∫ t

0

e−β(t−τ)ε2(t, τ)dτ.

(3.80)

In literature, e.g. [60], the integral part of (3.80) is called integral cost function for gradient
adaptive law. The additional term in RLS based Lyapunov function penalizes the initial
estimate error.

The time derivative of (3.80) is written as

V̇ = −β
[
−e−βtθ̃TQ0θ̃

]
+ 2e−βtθ̃TQ0

˙̃θ +
(
−β + βe−βt

)
ε2. (3.81)

V̇ = −βe−βtθ̃TQ0θ̃ + 2e−βtθ̃TQ0
˙̃θ − βε2 + βe−βtε2. (3.82)

Choosing the adaptive law as
˙̃θ =

β

2
ε2Q−1

0 (θ̃)−1

= −β
2
P0εω,

(3.83)

we obtain

V̇ = −βe−βtθ̃TQ0θ̃ − βε2 < 0. (3.84)

The abovementioned stability properties applies to this design as well.

Example 3.2. Consider the plant given in (3.11). We design direct MRAC for matching
with the reference model

Rm(s) =
1

(s+ 1)3
(3.85)

We have the followings:
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y = kp
Zp(s)

Rp(s)
u =

1

s3 + a2s2 + a1s
u, a1 = p1p2, a2 = −(p1 + p2), kp = 1, (3.86)

where n = 3,m = 0. By following the MRAC algorithm, the control structure can be
obtained as follows:

n = 3, α(s) =

[
s
1

]
, Λ = (s+ 1)2,

u = θ∗1
T α(s)

Λ(s)
u+ θ∗2

T α(s)

Λ(s)
y + θ∗3y + c∗0r.

(3.87)

with

θ∗1 =
[
a2 − 3, a1 + 5a2 − a2

2 − 9
]T

θ∗2 =
[
10a1 − a2

1 − 5a1a2 + a1a
2
2 − 5− 2θ∗3,−1− θ∗3

]T
θ∗3 = 5a1 + 10a2 − 2a1a2 − 5a2

2 + a3
2 − 10.

For the implementation, we use

ω̇1 =

[
−2 −1
1 0

]
ω1 +

[
1
0

]
u, ω̇2 =

[
−2 −1
1 0

]
ω2 +

[
1
0

]
y,

u = θ∗Tω, θ∗ =


θ∗1
θ∗2
θ∗3
c∗0

 , ω =


ω1

ω2

y
r

 . (3.88)

Parametric model is obtained as

z = ρ∗(θ∗Tφ+ z0), θ∗ =


θ∗1
θ∗2
θ∗3
c∗0

 =


θ∗1
θ∗2
θ∗3
1

 , c∗0 = 1, ρ∗ =
1

c∗0
= 1,

z = y −Rmu, φ = −Rm(s)ω, z0 = Rm(s)u, ω =


ω1

ω2

y
r

 =


α(s)
Λ(s)

u
α(s)
Λ(s)

y

y
r

 .
(3.89)
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Figure 3.6: Input-output signals with gradient and RLS parameter estimation based direct
MRAC.

Since we know c∗0 and ρ∗, parametric model becomes

z̄ = θ̄∗T φ̄, z̄ = e+ ym − z0 = y −Rm(s)u, φ̄ = −Rm(s)ω̄, ω̄ =
[
ω1 ω2 y

]T
.
(3.90)

Therefore, the estimation model is

ˆ̄z = θ̄T φ̄, θ̄ =
[
θT1 θT2 θ3

]T
,

ε =
z̄ − ˆ̄z

m2
s

(3.91)

Adaptive law with gradient estimation is given by
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˙̄θ = γεφ̄, (3.92)

and adaptive law with gradient estimation is given by

Figure 3.7: Parameter estimates in gradient and RLS parameter estimation based direct
MRAC.

˙̄θ = P̄ εφ

˙̄P = βP̄ − P̄ φφ
T

m2
s

P̄ .
(3.93)

The parameters for the simulation are given as follows: θ∗ =
[
−3,−10, 14, 14,−15

]T
,

γ = 100I and β = 0.9.

The results shown in Fig. 3.6 verify the effectiveness of RLS parameter estimation over
gradient one in direct adaptive control. In the gradient based parameter estimation, con-
vergence is reached after 80 seconds, whereas RLS algorithm provides faster convergence in
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20 seconds. Fig. 3.7 also shows the parameter estimates obtained using gradient and RLS
based estimation algorithms.

3.3 Application to Adaptive Cruise Control

Adaptive Cruise Control (ACC) is a crucial part of the self-driving cars. ACC is an ad-
vanced driver assistance system aiming at enhancing the safety and decreasing the number
of people killed or injured in road accidents which has been deteriorated due to the increas-
ing number of the vehicles on the road. ACC needs to track the car in front but also cars
in adjacent lanes in case a lane change becomes inevitable. ACC is an intelligent form of
cruise control that slows down and speeds up automatically to keep desired spacing with
the car in front of you.

The driver sets the desired spacing from leading vehicle in the same lane and ACC system
takes over the control of brake and gas pedals and keep the desired spacing. The driver
is responsible for keeping the vehicle in the center of the lane by managing the steering
wheel. A sensor mounted in the front of the vehicle measures the distance from the front
of the vehicle to the rear of the vehicle in front in the same lane. It also measures the
relative speed between two vehicles. A basic ACC scheme can be seen in Fig. 3.8. ACC
regulates the following vehicle’s speed v towards the leading vehicle’s speed vl and keeps
the distance between vehicles xr close to desired spacing sd.

𝑣𝑣 𝑣𝑣𝑙𝑙
𝑥𝑥𝑟𝑟

𝑠𝑠𝑑𝑑𝛿𝛿
Figure 3.8: Leading and following vehicles.

The control objective in ACC is to make the speed error close to zero as time increases.
This objective can be expressed as

vr → 0, δ → 0, t→∞, (3.94)
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where vr = vl−v which is defined as the speed error or sometimes relative speed, δ = xr−sd
is the spacing error. The desired spacing is proportional to the speed since the desired
spacing between vehicles is given as

sd = s0 + hv (3.95)

where s0 is the fixed spacing for safety so that the vehicles are not touching each other at
zero speed and h is constant time headway. Moreover, the control objective should satisfies
the followings:

amin ≤ v̇ ≤ amax,
|v̈| should be small.

First constraint restricts ACC vehicle generating high acceleration and the second one
is given for the driver’s comfort. For ACC system longitudinal nonlinear model is used.
However, we consider a simple model approximating the actual vehicle longitudinal model
without considering nonlinear dynamics which is given by

v̇ = −av + bu+ d, (3.96)

where v is the longitudinal speed, u is the throttle/brake command, d is the modeling
uncertainty, a and b are positive constant parameters. We assume that d, ḋvl, v̇l are all
bounded. Model reference adaptive control is considered so that the throttle/brake com-
mand u forces the vehicle speed to follow the output of the reference model

vm =
am

s+ am
(vl + kδ), (3.97)

where am and k are positive design parameters.We first assume that a, b, and d are known
and consider the control law as follows:

u = k∗1vr + k∗2δ + k∗3, (3.98)

where

k∗1 =
am − a
b

, k∗2 =
amk

b
, k∗3 =

avl − d
b

. (3.99)
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Since a, b, and d are unknown, we change the control law as

u = k1vr + k2δ + k3, (3.100)

where ki is the estimate of k∗i to be generated by the adaptive law so that the closed-loop
stability is guaranteed. The tracking error is given as

e = v − vm, (3.101)

which satisfies

e =
b

s+ am
(k∗1vr + k∗2δ + k∗3 + u). (3.102)

(3.102) is in the form of B-DPM. Substituting the control law in (3.100) into (3.102), we
obtain

e =
b

s+ am
(k̃1vr + k̃2δ + k̃3), (3.103)

where k̃i = ki− k∗i for i = 1, 2, 3. In order to find the adaptive law, consider the Lyapunov
function [60] as

V =
e2

2
+

3∑
i=1

b

2γi
k̃2
i γi > 0, b > 0. (3.104)

Then, its time derivative is

V̇ = −ame2 + be(k̃1vr + k̃2δ + k̃3) +
3∑
i=1

b

2γi
k̃i

˙̃ki. (3.105)

Therefore, the following gradient based adaptive laws are applied to ACC

k̇1 = Pr{−γ1evr},
k̇2 = Pr{−γ2eδ},
k̇3 = Pr{−γ3e},

(3.106)

where the projection operator keeps ki within the lower and upper intervals and γi are the
positive constant adaptive gains. These adaptive laws lead to

V̇ = −ame2 − b

γi
k̃ik̇
∗
3, (3.107)

where k̇∗3 = aν̇l−ḋ
b

. By projection operator, estimated parameters are guaranteed to be

bounded by forcing them to remain inside the bounded sets, V̇ implies that e ∈ L∞, in
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Figure 3.9: ACC comparison results in Matlab/Simulink.

turn all other signals in the closed loop are bounded. For the purpose of this chapter,
we apply RLS based adaptive law to (3.104) and obtain following equations to be used in
simulations

˙̂
θ = Pr{Piieφ}
Ṗ = βP − PφφTP, P (0) = I3×3,

(3.108)

where e = v−vm, θ =
[
k1, k2, k3

]T
, φ =

[
vr

s+am
, δ

s+am
, 1

s+am

]T
, and Pii are the diagonal

elements of P covariance matrix, i=1,2,3.
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Figure 3.10: ACC results in CarSim.

3.3.1 Simulation Results

Since the throttle and brake cannot be applied at the same time, in this application, throttle
subsystem is simulated. For gradient based algorithm, γ1 = 50I, γ2 = 30I, γ3 = 40I
constant gains are given. For RLS based algorithm β = 0.95 and P (0) = 100I3 are given.
Simulation results from Matlab/Simulink for throttle subsystem are given in Fig. 3.9. Fig.
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3.9 shows the vehicle following for both gradient and RLS based adaptive laws. The speed
error in velocity tracking shows the better performance for RLS adaptive law. The results
give the idea that RLS based adaptive control can be used with this form.

We also implemented RLS based adaptive control algorithm in (3.108) to CarSim for more
realistic results. CarSim is one of the most widely used vehicle dynamics simulation pack-
ages in industry. Adopting the CarSim vehicle model, we can simulate its real operation
condition and reflect the system dynamic characteristic and balance model accuracy, mak-
ing the simulation results better consistent with the real scene. The vehicle parameters
used in CarSim are as follows: m = 567.75 kg, R = 0.3 m, I = 1.7 kgm2, B = 0.01 kg/s.
The adaptive gains for both gradient and RLS are used the same as in Matlab/Simulink.
CarSim results for RLS based ACC can be found in Fig. 3.10. Results demonstrate the
ability of the following vehicle equipped with RLS based adaptive law on dry road by
adjusting the speed and the distance between the leading vehicle and itself.

3.4 Application to Vehicle Braking System

As vehicle safety oriented control systems become more advanced, their dependence on
accurate information on the vehicle state increases. Performance of driver-assistance tech-
nologies such as braking and traction systems is greatly influenced by the characteristics
of the tire-road friction force.

In this section, we consider the vehicle longitudinal dynamics and an MRAC for braking
system is designed. Block diagram of the overall design is given in Fig. 3.11. For the
purpose of our control problem, we first start with the modelling of vehicle longitudinal
dynamics.

In this application, we consider the single wheel model. The wheel characteristic is given
by

Iω̇ = −Bω −NRµ+ τ, (3.109)

where

Nµ = mν̇. (3.110)

v, ω,m,N,R, I are linear velocity, angular velocity, the mass, the weight, radius, and the
moment of inertia of the wheel, respectively. Bω is the bearing friction torque, τ is the
braking torque, µ is the friction force coefficient.
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Figure 3.11: Block diagram of MRAC structure.

Substitute (3.110) into (3.109), the wheel dynamics is written as

ω̇ = −B
I
ω − mR

I
ν̇ +

1

I
τ. (3.111)

The objective of the control design is to make the vehicle wheel velocity ω follow the
response of the reference model ωm

ωm =
am

s+ am
ωd, (3.112)

where ωd is the desired wheel velocity to be tracked. The reference model is used to
smooth the trajectory of the desired velocity ωd. To achieve the control objective, we use
the similar way as in Section 3.3 to design MRAC.

The control input is given in 3.11 as follows:

τ = −k1ω + k2(ωd − ω) + k3, (3.113)

where ki is the estimate of k∗i to be generated by the adaptive law so that the closed-loop
stability is guaranteed. The tracking error is given as

e = ω − ωm. (3.114)
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Using the similar steps as in (3.102)-(3.104) and substituting (3.109), we obtain

ė = −ame+ b(−k̃1ω + k̃2(ωd − ω) + k̃3). (3.115)

In order to find the adaptive laws, we define the Lyapunov function as

V =
e2

2
+

3∑
i=1

b

2Γi
k̃2
i Γi > 0, b > 0. (3.116)

The time derivative of (3.116) is given as follows:

V̇ = −ame2 + be(−k̃1ω + k̃2(ωd − ω) + k̃3) +
3∑
i=1

b

Γi
k̃i

˙̃ki. (3.117)

The following gradient based adaptive laws are obtained to satisfy V̇ < 0.

k̇1 = Γ1 e ω,

k̇2 = −Γ2 e (ωd − ω),

k̇3 = −Γ3 e,

(3.118)

where Γi > 0. With (3.118), we have

V̇ = −ame2 < 0. (3.119)

To define RLS based adaptive laws, we use Lyapunov function in a similar way as follows

V =
e2

2
+

3∑
i=1

b

2Pi
k̃2
i . (3.120)

The time derivative of (3.120) is given as follows:

V̇ = −ame2 + be(−k̃1ω + k̃2(ωd − ω) + k̃3) +
3∑
i=1

b

Pi
k̃i

˙̃ki −
bβ

2Pi
− b

2

Piφiφ
T
i Pi

Pi2
k̃2, (3.121)
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where Ṗi = βPi − PiφiφTi Pi. Choosing RLS based adaptive laws as

˙̂
θ = Pii e φ

Ṗ = βP − PφφTP, P (0) = I3×3,
(3.122)

where

θ =
[
k1, k2, k3

]T
φ =

[
ω, (ωd − ω), 1

]T
,

(3.123)

and Pii are the diagonal elements of P3×3 covariance matrix, i = 1, 2, 3.

Figure 3.12: Braking torque and velocity results of MRAC in Simulink.
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Figure 3.13: Deceleration and slip ratio results in Simulink.

3.4.1 Simulation Results

We tested RLS based MRAC algorithm for vehicle braking system and compared the perfor-
mance with gradient based MRAC algorithm in Matlab/Simulink. The vehicle parameters
are given as follows: m = 400kg, R = 0.3m, I = 1.7kgm2, B = 0.01kg/s. Forgetting factor
for RLS β = 0.9. The simulation is performed under the Gaussian noise (σ = 0.01).

Simulation results with given reference model velocity and velocity results from both gra-
dient and RLS designs are given in Fig. 3.12 and Fig. 3.13. The proposed algorithm is
first tested in Matlab/Simulink. Road condition is chosen as dry road. Results show the
ability of designed MRAC to follow the reference model with small errors for both gradient
and RLS based adaptive laws. Note that simulation time is given based on a realistic time
range to stop the vehicle with an initial speed of 80kph on a dry road. The results show
that the tracking of a reference model ωm can be tracked by a small error near the stopping
time. The vehicle equipped with both gradient and RLS based MRAC stops around 2.7
second, and achieved slip ratios and acceleration can be found in Fig. 3.13.

For CarSim application, vehicle parameters are used the same as in Matlab/Simulink.
Adaptive gains for gradient algorithm are given as Γi = [10, 20, 10] and covariance matrix
is used as Pi = 10I3. Forgetting factor is β = 0.95.
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Figure 3.14: Deceleration and slip ratios with CarSim.

Fig. 3.14 and Fig. 3.15 show the results from CarSim. RLS based MRAC is compared
with ABS module in CarSim. Generated torques is applied to front and rear axle. The
vehicle with RLS based MRAC stops the vehicle in a shorter time while the vehicle follows
the reference wheel velocity.

3.5 Summary

In this chapter, RLS based adaptive control was examined under two structures: indirect
adaptive control and direct adaptive control. As an introductory study, indirect adap-
tive control was studied utilizing APPC and MRAC with numerical simulation examples.
Performance comparisons verified that RLS parameter estimation based adaptive control
provides faster convergence compared to the gradient based adaptive control.

Direct MRAC was analysed by replacing the constant adaptation gain that was used in
gradient based direct adaptive control, with a time varying covariance matrix for a con-
structive Lyapunov analysis. RLS parameter estimation based direct adaptive control was
later studied by defining a new Lyapunov function based on integral cost function instead
of standard quadratic instantaneous cost function.
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Figure 3.15: Braking results of MRAC in CarSim.

For application of RLS based adaptive control, ABS and ACC were considered. Mat-
lab/Simulink results were provided giving the comparison results of RLS and gradient
based adaptive laws. CarSim simulations were also performed for high-fidelity simulation
results.
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Chapter 4

Recursive Least Squares Based
Extremum Seeking

ES is a well established approach for on-line optimization and optimal control of unknown
dynamic systems. However, convergence rate of conventional ES approaches is a limiting
factor in many applications. LS based on-line parameter estimation has significant po-
tential in relaxing this limitation and improving accuracy and robustness to measurement
noises, based on the characteristics discussed in previous chapters.

In this chapter, the integration of ES of static maps and dynamic systems with RLS based
on-line estimation is examined, noting that the existing ES works in the literature have
utilized gradient/Newton-based estimation algorithms.

The formal problem definition for ES of static maps and dynamics systems, each, is given
in Section 4.1. In Section 4.2, RLS based ES system redesign is studied, utilizing high-pass
and low pass filters based on the work of [73]. An alternative approach that does not
involve bandpass filtering and considering ES as an estimation problem is introduced in
Section 4.3. In Section 4.4, the proposed LS based ES schemes are applied to vehicle safety
systems, ABS and TCS with their application to Matlab/Simulink and CarSim.
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4.1 Problem Statement

The ES problem of interest is defined for static map systems and dynamic systems sepa-
rately in the following subsections to be the base of our designs.

4.1.1 Static Maps

Consider a concave static map system

y = hs(u) = h̄s(θ
∗, u), θ∗ =

[
θ∗1 · · · θ∗N

]T
, (4.1)

where θ∗ ∈ RN is a fixed unknown parameter vector, u ∈ Rm is the input and y ∈ R is the
output of the system. Assume that the control input signal u is generated by a smooth
control law

u = α(θ) (4.2)

parametrized by a control parameter vector θ ∈ RN .

Assumption 4.1. The static map h̄s(θ
∗, u) is smoothly differentiable.

Assumption 4.2. hs(u) = h̄s(θ
∗, u) has a single extremum (maximum) y∗ at u = α(θ∗).

The control objective is to maximize the steady-state value of y but without requiring the
knowledge of θ∗ or the system function hs.

4.1.2 Dynamic Systems

Consider a general multi-input-single-output (MISO) nonlinear system

ẋ = f(x, u) = f̄(θ∗, x, u), (4.3)

y = hd(x) = h̄d(θ
∗, θ) = h(θ), (4.4)

θ = π(x) (4.5)
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where x ∈ Rn is the state, u ∈ Rm is the input, y ∈ R is the output, all measurable, and
f : Rn × Rm → Rn and hd = h ◦ π are smooth functions. Assume that the control input
signal u is in the form (4.2), the control parameter θ ∈ RN is dependant on x through a
map π(.) : Rn → RN .

The closed loop system can be written as follows:

ẋ = f(x, α(θ)) = f(x, α(π(x)). (4.6)

The equilibria of (4.6) can be parameterized by θ. The following assumptions about the
closed loop system (4.3) are made, similarly to [73].

Assumption 4.3. There exists a smooth function l : RN → Rm such that

f(x, α(x, θ)) = 0 if and only if x = l(θ), (4.7)

for any (x, θ) ∈ Rm × RN . For each θ ∈ RN , the equilibrium xe = l(θ) of the system (4.6)
is locally exponentially stable with decay and overshoot constants uniformly dependent on
θ.

Assumption 4.4. There exists θ∗ ∈ RN such that for all admissible x values, hd(x) has
its unique maximum at x = x∗ = l(θ∗),

y′(x∗) =
∂h

∂x

∣∣∣
x=x∗

= 0, (4.8)

and the m×m Hessian matrix y′′(x∗) = ∂2h
∂x2

∣∣∣
x=x∗

is negative definite.

The control objective is to maximize the steady-state value of y but without requiring the
knowledge of θ∗ or the system functions hd, f . This objective could be perfectly performed
if θ∗ was known and substituted in (4.2).

4.2 Redesign of ES with respect to RLS

In this section, RLS based ES is introduced as alternative to the designs of [73],[70] involv-
ing bandpass filtering and perturbation signals. The gradient estimation is replaced with
RLS estimation in the following subsection for scalar and vector parameter systems.
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4.2.1 RLS based ES for Scalar Parameter Systems

We first consider scalar parameter case, m = 1. As in Section 4.1, static maps and dynamic
systems will be focused on separately.

Static Maps

Figure 4.1: RLS estimation based ES redesign for scalar parameter static maps.

Consider RLS based ES scheme for static map defined in (4.1). Proposed scheme is given in
Fig. 4.1. In this algorithm, there are three important parts: one generates the covariance
matrix, P , one generates estimation error, ε, one generates regressor signal, φ.

A parameter error variable for the static map is given by

θ = M(t) + θ̂. (4.9)

RLS based ES scheme for a static map is defined as follows:

˙̂
θ = pεφ,

ṗ = βp− p2φ2,

φ = N(t)y = N(t)h̄s(θ
∗, u),

(4.10)
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M(t) = a sin(ωt),

N(t) =
a2

16
sin2(ωt).

(4.11)

where estimation error, ε = θ − θ̂. In this design, perturbation signals M(t) generating
u, and N(t) generating φ, and forgetting factor β have important places and they are
arbitrarily chosen so that parameter convergence can be achieved. This design has design
parameters including β, a, ω that need to be tuned during the application.

Dynamic Systems

In this section, ES scheme is considered for dynamic systems. Consider the defined non-
linear system (4.3) with its input (4.2), state (4.6), and assumptions (4.3-4.4).

Figure 4.2: RLS estimation based ES redesign for scalar parameter dynamic systems.

The proposed algorithm is given in Fig. 4.2 to maximize the steady state value of y without
requiring the knowledge of either θ∗ or the function of h. RLS based ES scheme can be
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derived as follows:
˙̂
θ = Pεφ

ṗ = βp− p2φ2

φ̇ = ωlN(t)(y − ζ)− φωl,
ζ̇ = ζωh + yωh,

(4.12)

where

ε = M(t) = θ − θ̂,
M(t) = a sin(ωt),

N(t) =
a2

16
sin2(ωt).

(4.13)

By appropriate choices of β, M(t) and N(t), convergence will be satisfied. One disad-
vantage of this scheme is that it has multiple design parameters including β, a, ω, ωh, ωl
that need to be tuned accordingly during the application and that makes the scheme very
sensitive to any changes in the design parameters.

4.2.2 RLS based ES for Vector Parameter Systems

In this section, the redesign process is considered for vector parameter systems in scalar
maps and dynamic systems, respectively.

Static Maps

Consider RLS based ES scheme for static map defined in (4.1). Proposed scheme is given in
Fig. 4.1. In this algorithm, there are three important parts: one generates the covariance
matrix, P , one generates estimation error, ε, one generates regressor signal, φ.

A parameter error variable for the static map is given by

θ = M(t) + θ̂. (4.14)

RLS based ES scheme for a static map is defined as follows:

˙̂
θ = Pεφ,

Ṗ = βP − PφφTP,
φ = N(t)y = N(t)hs(θ

∗, u),

(4.15)
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Figure 4.3: RLS estimation based ES redesign for vector parameter static maps.

where estimation error, ε = θ−θ̂. In this design, perturbation signalsM(t), which generates
u, and N(t), which generates φ, and forgetting factor β have important places and they
are chosen so that parameter convergence can be achieved.

Dynamic Systems

In this section, ES scheme is considered for dynamic systems. Consider the defined non-
linear system (4.3) with its input (4.2), state (4.6), and assumptions (2.4-4.3).

The proposed algorithm is given in Fig. 4.4 to maximize the steady state value of y
without requiring the knowledge of either θ∗ or the function of h. LS based ES scheme can
be derived as follows:

˙̂
θ = Pεφ

Ṗ = βP − PφφTP
φ̇ = ωlN(t)(y − ζ)− φωl,
ζ̇ = ζωh + yωh,

(4.16)

where
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Figure 4.4: RLS estimation based ES redesign for vector parameter dynamic systems.

ε = θ − θ̂,

M(t) =
[
a1 sin(ω1t), · · · , an(sinωnt)

]T
,

N(t) =
[
a21
16

sin2(ω1t), · · · , a
2
n

16
sin2(ωnt)

]T
.

(4.17)

By appropriate choices of β, M(t) and N(t), convergence will be satisfied. However, the
same discussion on the number of design parameters are applied here.
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4.3 Adaptive ES design

In absence of the knowledge of θ∗, a series of control/optimization schemes have been
proposed in the literature utilizing certain ES tools such as switching methods ([15]),
signal perturbation for persistence excitation, and band pass filtering ([15],[70],[73],[89]).
In the previous section, we considered the work of [73] and replace the gradient part with
RLS estimation algorithm. However, the high efforts on design and tuning process leads us
to a new design. In this section, we propose following the certainty equivalence approach
[60], producing an estimate θ̂∗ of θ∗ and substituting in place of θ∗ in (4.2) using RLS with
forgetting factor.

The control parameter vector estimation can be done in different ways, leading to different
ES schemes, even for the fixed control structure (4.2). The assumption that h has a
maximum is without loss of generality, considering a maximum seeking task. Minimum
seeking case would be treated identically, replacing y with −y in the subsequent feedback
design.

Figure 4.5: The idea of ES derivation.

The general idea of ES is derived from Fig. 4.5. The idea is to find the gradient of the
output with respect to the input which is basically the direction to the extremum point,
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and add or subtract it, depending on the direction from previous value of the output, to
get closer to the extremum. Once we reach the extremum point, the gradient will be zero
and the algorithm will stop updating and maintain its extremum value. In this design
in the absence of bandpass filtering, we consider scalar parameter and vector parameter
cases separately. The reason behind this consideration is the need of perturbation signal
in vector parameter case. For scalar parameter case, we will not need to use perturbation
signal; however, for vector parameter case, we need to identify the system inputs by given
them enough excitation.

Our proposed RLS estimation based adaptive ES scheme will be separately developed for
two cases: for scalar parameter (N = 1) systems and for vector parameter (N > 1) systems,
respectively.

4.3.1 RLS based ES Design for Scalar Parameter Systems

Static Maps

Consider the static map (4.1) and the control law (4.2) for scalar case, N = 1, under
Assumptions 4.1 and 4.2 about the closed-loop system. The proposed scheme is depicted
in Fig. 4.6. RLS estimation based ES block shown in Fig. 4.6 consists of two parts: an
RLS based adaptive parameter identifier estimating the gradient hθ = ∂y

∂θ
and a control

law to be fed by this estimate.

Figure 4.6: RLS based ES scheme for scalar parameter static maps.

Consider the static map equation (4.1). In this equation, the time derivative of the output
y is given by

ẏ = hθθ̇. (4.18)
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Design of the RLS based estimator to generate ĥθ considers the relation (4.18) that is in
the linear parametric model form.

z = hθφ. (4.19)

where

z = ẏ, φ = θ̇. (4.20)

If ẏ is not available for measurement, then the regressor signals can be generated as

z =
s

s+ ωl
[y], φ =

1

s+ ωl
[θ̇], (4.21)

i.e.,

ż = −ωlz + ẏ, φ̇ = −φωl + θ̇, (4.22)

where ωl > 0 is a constant design parameter. The control law generating θ is proposed to
be

θ̇ = kĥθ, k > 0. (4.23)

Assuming that the time variation of hθ is sufficiently slow, we design an RLS estimator for
the parametric model (4.19) as follows:

˙̂
hθ = pεφ, (4.24)

ṗ = βp− p2φ2, (4.25)

ε = z − ĥθφ, (4.26)

where β > 0 is forgetting factor and p is the covariance term. The overall ES scheme
producing θ(t) can be summarized by (4.23), (4.24), (4.25), and (4.26).
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Dynamic Systems

The RLS estimation based ES control scheme (4.23)-(4.26) applies to the dynamic system
(4.3)-(4.5) for N = 1 with the control law (4.2) under Assumptions 4.3 and 4.4. The
proposed ES scheme is depicted in Fig. 4.7.

Figure 4.7: RLS based ES scheme for scalar parameter dynamic systems.

Stability Analysis

In this section, stability proof of the proposed schemes in Sections 4.1 and 4.2 will be
presented. We know that θ∗ is the equilibrium point and the estimated gradient will be
hθ = 0 at the equilibrium point θ = θ∗. We can write our stability result as follows:

Theorem 4.1. Consider the RLS estimation based ES scheme given in Figs. 4.6, 4.7
and defined in (4.23) - (4.26) with z and φ as given in (4.20) or (4.21), and Assumptions
4.1 - 4.4. For any initial condition θ̂(0) ∈ RN and adaptation gain k, θ(t) asymptotically
converges to small neighborhood of extremum parameter θ∗.

Proof. We consider the Lyapunov function as

V (θ(t)) =
1

2
(θ(t)− θ∗)2 =

1

2
θ̃2. (4.27)

We write the time derivative of V along the solutions of (4.23) as
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V̇ = θ̇ (θ(t)− θ∗) = θ̇θ̃. (4.28)

Substitutung (4.23) into (4.28), we obtain

V̇ = kĥθθ̃. (4.29)

For the maximum case, k > 0. Negative definiteness of (4.29) depends on the initial
condition θ0 that determines the signs of ĥθ and θ̃. If θ(0) < θ∗, then ĥθ > 0 and θ̃ < 0.
On the other hand, if θ(0) > θ∗, then ĥθ < 0 and θ̃ > 0. Hence, for both cases V̇ < 0. We
also need to examine the forgetting factor β and the persistent excitation (PE) of φ. If φ
is PE, then (4.23) guarantees that p ∈ L∞ and θ(t) → θ∗ as t → ∞. When β > 0, the
convergence of θ(t)→ θ∗ is exponential ([60]).

4.3.2 RLS based ES Design for Vector Parameter Systems

In this section, the proposed RLS estimation based ES scheme is extended to the systems
with vector parameters (N > 1). Similar to the classical gradient based analysis, small
sinusoidal perturbation signals with different frequencies (ω1, · · · , ωN) are added to the
control signals to provide sufficiently rich excitation.

Static Maps

Consider the block diagram in Fig. 4.8 for the static map in (4.1). The time derivative of
(4.1) is given by

ẏ = hTθ θ̇, (4.30)

which, similarly to (4.19), can be written in the linear parametric form

z = hTθ φ, (4.31)

where z and φ are again defined by either (4.20) or (4.21). The control law (4.23) is used
for updating θ in the vector case as well.
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Figure 4.8: RLS based ES scheme for vector parameter static maps.

The design of the RLS estimator to produce ĥθ is based on the parametric model (4.31)
and is given as follows ([60]):

˙̂
hθ = Pεφ, (4.32)

Ṗ = βP − PφφTP, (4.33)

ε = z − ĥTθ φ, (4.34)

where β is the forgetting factor and P is the covariance matrix of the RLS algorithm. The
control law generating θ is proposed to be

˙̂
θ = kĥθ, k > 0. (4.35)

θ(t) = θ̂(t) +D(t), (4.36)

where
D(t) = [a1sin(ω1t) · · · aNsin(ωN t)]

T .

aN are dither signals’ amplitudes and ωN are dither signals’ frequencies.

Different from scalar parameter systems, we use perturbation signals, D(t). The need
to use of dither signals in vector parameter systems is that dither signals with different
frequencies can be implemented on each input signal to achieve overall PE.
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Dynamic Systems

Figure 4.9: RLS based ES scheme for vector parameter dynamic systems.

The RLS estimation based ES scheme (4.32) - (4.35) applies to the dynamic system (4.3)-
(4.5) with control law (4.2) under Assumptions 4.3 and 4.4 for vector parameter systems.
Block diagram of the proposed ES scheme is given in Fig.4.9.

Stability Analysis

The intuition in (4.36) is to satisfy persistence of excitation for N -dimensional φ by in-
troducing at least one distinct dither frequency for each input, following the standard
perturbation based ES control approaches mentioned in Section 3. Similar to the analysis
in Section 4.3, consider the Lyapunov function as

V (θ̃(t)) =
1

2
θ̃T θ̃. (4.37)

We write the time derivative of V along the solutions of (4.35) as

V̇ = θ̃T ˙̃θ = θ̃T θ̇. (4.38)
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Substitutung (4.36) into (4.38), we obtain

V̇ = θ̃T (kĥθ + Ḋ). (4.39)

The relationship between θ̃ and ĥθ in Section 4.3 applies to vector parameter case. The
stability again depends on k, initial condition θ(0), forgetting factor β, and PE of φ, that
is guaranteed by addition of dither signals in (4.36). Hence, P ∈ L∞ and θ(t) → θ∗ as
t→∞.

Example 4.1. Consider the following model for scalar parameter case

y = 10m(u),

m(u) = k1

(
1− e−k2u

)
− k3u

u = θ,

(4.40)

where θ∗ = 0.3. θ0 = 0.01 is chosen as initial value for both schemes. k1 = 1.05, k2 =
23, k3 = 0.52 are given. For RLS estimation based ES scheme, the following parameters are
used: kls = 0.01, p0 = 103, and β = 0.98 are given. For classical ES scheme, the following
parameters are given: k = 0.08, ωh = 0.6, ωl = 0.8, S(t) = 0.01 sin 3t, and M(t) = sin3t.

We apply RLS estimation based ES scheme in Fig.4.7. The results for this example is
given in Fig.4.10. It is obvious that proposed scheme can reach very smal neighborhood of
the extremum point θ∗ = 0.3 at y∗ = 8.85 less than 2 second while classical ES finds the
extremum point very late and cannot maintain that extremum point under measurement
noise.

Example 4.2. Consider the following model for vector parameter case

y = y1 + y2,

y1 = am(u1), m(u1) = (2m∗1u
∗
1u1)/(u∗21 + u2

1),

y2 = am(u2), m(u2) = (2m∗2u
∗
2u2)/(u∗22 + u2

2),

u = [u1, u2] = [θ1, θ2].

(4.41)

where [θ∗1, θ
∗
2] = [0.2, 0.3]. For both schemes, initial values are given as u0 = [0.1, 0.1].

We aim to reach y∗1(θ∗1) = 5 and y∗2(θ∗2) = 9. For RLS estimation based ES scheme,
the following parameters are used: k = [0.01, 0.01], P0 = 104, β = 0.98, and D(t) =
[0.01 sin 7t, 0.01 sin 10t] are given. For classical ES scheme, the following parameters are
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Figure 4.10: RLS estimation based ES result for y.

Figure 4.11: RLS estimation based ES results.
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given: k = [0.02, 0.01], ωh = [0.6, 0.6], ωl = [0.8, 0.8], S(t) = [0.01 sin t, 0.01 sin 2t], and
M(t) = [4.5 sin 5t, 11 sin 5t].

Simulation results are given in Fig.4.11 for both RLS estimation based and classical ES
schemes. It is clear that the results taken with RLS can converge the extremum point
and find the maximized output y∗ while classical ES scheme has difficulty to reach the
extremum point. One reason for this difficulty is that in classical ES scheme has many
tuning parameters that must be tuned accordingly.

For vector case, we also emphasize the need to apply perturbation terms to the scheme in
order to observe multiple input channels separately. When there is no perturbation signal
applied, the inputs cannot be distinguished and converge to an average value that caused to
reach a value near the maximum. Similar to scalar case, RLS estimation based ES scheme
outweighs classical ES scheme in terms of reaching extremum.

4.4 Application to Vehicle ABS and TCS

Tire-road friction characteristics affect in all vehicle dynamics control systems, especially,
vehicle safety systems like ABS and TCS [44, 110]. Finding maximum friction force be-
tween the tire and the road is a challenging task for such systems, where the road friction
coefficient is mostly unknown and difficult to estimate on-line.

ABS in passenger vehicles increases safety by preventing wheel lock-up, reducing vehicle
stopping distance and enhancing steerability on low friction surfaces like wet and icy roads
during braking. On the other hand, TCS assures optimal friction coefficient during ac-
celeration. In ABS and TCS applications, wheel lock-up and excessive slip significantly
decreases the friction coefficient between the road and the tires.

[68] developed a gradient estimation based ES which uses classical band pass filtering to
find the maximum friction force on ABS. In this classical approach, ES has a low pass filter,
high pass filter and a multiplier to estimate the optimum slip ratio to obtain maximum
deceleration at the same time. Developed gradient estimation based ES was only used for
ABS and was simulated in Matlab/Simulink for a specific road condition with high effort
of tuning design parameters.

Since RLS based estimation algorithm has the advantage of fast convergence under mea-
surement noises, we develop RLS parameter estimation based ES to find the optimum
slip ratio for ABS to obtain maximum deceleration during emergency braking and also for
TCS to obtain maximum acceleration during driving. Its stability analysis is provided.
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Developed scheme is tested in Matlab/Simulink and compared to [68] for ABS. We also
apply gradient based algorithm to TCS to compare developed RLS estimation based ES.
Moreover, we show the results and effectiveness of our developed algorithm for different
road scenarios and compare it with gradient estimation based ES algorithm. We use Car-
Sim simulation environment to provide high-fidelity results for proposed scheme and give
comparative results with CarSim ABS module itself.

4.4.1 System Modelling

A single wheel tire friction model is considered, as illustrated in Fig.4.12, for both braking
and traction control cases. The wheel characteristics are modelled by the equations

ẋ = f(λ∗, x, τ) =

[
0 0
0 −B

I

]
x+

[
g
NR
I

]
h(λ∗, x) +

[
0
τ

]
,

y = µ = h(λ∗, x) = hλ(λ
∗, λ(x)),

(4.42)

where x =
[
ν, ω
]T

; N = mg; ν, ω,m,N,R, I are the linear velocity, angular velocity, mass,
weight, radius, and the moment of inertia of the wheel, respectively. Bω is the bearing
friction torque. τ is the input torque which will be specified in the sequel as τB for braking
torque, and τD for driving torque. µ(λ) is the friction force coefficient.

λ is the wheel slip defined as

λ(x) =
Rω − ν

max{ν, ωR}
. (4.43)

According to (4.43), λ is negative during braking and positive during traction. It can be
seen from (4.43) that by increasing braking action, slip value λ decreases from 0 to -1.
λ = −1 denotes that the wheel is locked (ω = 0).

The relationship between friction force coefficient, µ, and wheel slip, λ, can be described
in different ways including Magic formula, Dahl’s model, LuGre model, Burckhardt model,
and Pacejka model [98]. The friction relation is further described by various parametric
models in the literature [17].

The Burckhardt model considers a mapping hλ(λ
∗, λ(x)) whose typical shape for different

road conditions is shown in Fig.4.13 and whose approximation is given by [68]

µ = hλ(λ
∗, λ(x)) = 2µm

λ∗λ

λ∗2 + λ2
. (4.44)
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Figure 4.12: Single wheel model.

Note from Fig.4.13 that each friction curve has a single maximum friction force coefficient
µm at a particular wheel slip value λ∗.
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Figure 4.13: Relationship between force coefficient and wheel slip.

4.4.2 Control and Optimization Task

Our control task is to find the optimum wheel slip in order to maximize the force by
measuring velocity and acceleration. We introduce an unknown constant λ0, which is the
optimum slip value to generate the maximum force. We will examine two cases, braking
and traction, to derive torque controllers to generate appropriate torques.
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Braking Case

In braking case, v > ωR; hence, the wheel slip (4.43) becomes

λ(x) =
Rω − ν

v
. (4.45)

We differentiate (4.45) and obtain

λ̇ =
(Rω̇ − ν̇)ν − ν̇(Rω − ν)

ν2
. (4.46)

Substituting (4.42) into (4.46), for λ̃(t) = λ(t)− λ0, we obtain

˙̃λ = λ̇ = −
(
Rω

ν2
+
mR2

Iν

)
ν̇ − RB

Iν
ω +

R

Iν
τ. (4.47)

We assume that longitudinal and angular velocities are available for measurement, i.e., v̇
is measurable. The wheel model given in [68] is written as follows:

λ̇ = −c(λ− λ̂0). (4.48)

where c is a positive constant which makes equilibrium λ0 of the system exponentially

stable ( ˙̃λ = −cλ̃). Substituting (4.48) into (4.47), we obtain our torque controller for
braking case as follows:

τ = τB = −cIν
R

(λ− λ̂0) +Bω +

(
Iω

ν
+mR

)
ν̇. (4.49)

Traction Case

In traction case, v < ωR; hence, the wheel slip (4.43) becomes

λ(x) =
Rω − ν
Rω

. (4.50)

We differentiate (4.50) and obtain

λ̇ =
(Ṙω − ν̇)Rω −Rω̇(Rω − ν)

R2ω2
. (4.51)
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Substituting (4.42) into (4.51), we obtain

˙̃λ = λ̇ = −
(
νm

Iω2
+

1

Rω

)
ν̇ − B

Rω
ν +

ν

RIω2
τ. (4.52)

Substituting (4.48) into (4.52), we obtain the torque controller for driving case as

τ = τD = −cRIω
2

v
(λ− λ̂0) +Bω +

(
mR +

Iω

v

)
v̇. (4.53)

In order to maximize the force µN , we should maximize µ(λ). In our design, estimation
algorithm updates the optimum wheel slip that corresponds to the maximum friction or
traction coefficient.

Note that existing ES scheme [68] is designed only for ABS case. We will design our RLS
based ES scheme for both ABS and TCS control. In simulation part, we will apply existing
algorithm to both ABS and TCS and compare them with proposed RLS algorithm.

4.4.3 RLS Based ES Design

In this section, we present the proposed RLS estimation based ES scheme, where the RLS
estimator will be used to estimate the partial derivative of the acceleration with respect to
the slip. In this way, we will check the slope of the curve and the algorithm will search for
the maximum. Block diagram of the proposed scheme is shown in Fig.4.14. Within the
proposed scheme, the RLS based ES scheme is designed based on the parametric model
[60]

Figure 4.14: RLS parameter estimation based ES scheme.
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z = θ∗φ (4.54)

where z = ν̈, φ = λ̇ and θ∗ = ∂v̇
∂λ

. Note here that θ∗ corresponds to the slope of the curve
in Fig. 4.13 multiplied by the factor g. Hence, θ∗ has the same sign as λ∗ − λ, for any
λ. Treating the time variation of θ∗ to be negligible for parameter estimation purposes.
Based on the parametric model (13), θ∗ is estimated using the following RLS adaptive law
with forgetting factor β:

˙̂
θ = pεφ,

ṗ = βp− p2φ2,

ε = z − θ̂φ,

(4.55)

where p is the time varying adaptive gain, named as the covariance term in the literature
[60]. The estimate θ̂ of θ∗ is then used to steer the estimate λ̂0 towards the optimal value
λ0 via

˙̂
λ0 = kθ̂, (4.56)

where k is a positive gain coefficient. The reasoning of the selection of the RLS based
ES scheme laws as above will be more clear in the following section on stability and
convergence analysis. The proposed scheme is modular to any initial conditions, initial
speeds and noises.

4.4.4 Simulation Results

Matlab/Simulink Results

In this section, we present the results of the simulation tests of the proposed RLS based
ES algorithm (4.54), (4.56), (4.55) for both ABS and TCS cases using Matlab/Simulink.
Then, we compare their performances with the gradient based ES scheme developed in
[68]. Note that in the literature simulation results are not presented for TCS.

The vehicle parameters are assumed to be as follows: m = 567.75 (2271/4) kg, R = 0.3 m,
I = 1.7 kgm2, B = 0.01 kg/s. Controller parameter is selected as c = 5 for both the
proposed RLS and the benchmark gradient-based schemes. RLS estimation algorithm
parameters are selected as β = 0.95, k = ±0.006, p0 = 104. Gradient estimation parameters
are used as a = 0.035, ω = 5, high pass, low pass and regulation gain are selected as
ωh = 0.6, ωl = 0.8, k = ±1.5.

The simulations for both the gradient and RLS based schemes are performed assuming a
Gaussian noise (σ = 0.05) in longitudinal acceleration measurement, v̇. Initial conditions of
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the slip and vehicle speed estimates are set the same for both schemes for a fair comparison,
λ00 = ±0.01, ν0 = 120 for ABS and ν0 = 1 for TCS, respectively . [68] uses an approximate
friction model to match with the original friction model in the form

µ(λ) = 2µmax
λ∗λ

λ∗2 + λ2
, (4.57)

having a maximum µ(λ∗) = µm at λ = λ∗. We use this model in MATLAB/Simulink
simulations to see the effect of the algorithm.

(a) Friction force coefficient and estimated slip
results for ABS.

(b) Braking torque, velocity and deceleration
results for ABS.

Figure 4.15: Wet road comparison results for ABS.

Simulation results of ABS/TCS in a wet road for gradient/RLS based ES scheme compari-
son are given in Figs. (4.15a), (4.15b), (4.16b), and (4.16a). We select wet road scenario to
evaluate the convergence characteristics, because it is safety critical. Results demonstrate
that with gradient based ABS the vehicle stops almost 1.5 sec longer than with the RLS
based ABS. Similar to the ABS results, the vehicle with gradient algorithm reaches optimal
slip in longer time compared to the RLS one. Similar results can be seen for TCS on wet
road. The time to reach optimal slip and maximum acceleration is shorter than the one
with gradient.

We also show the results for different road conditions in Figs. (4.17a), (4.17b), (4.18a), and
(4.18b). Road condition is changed from wet to icy. As can be seen from the figures for
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(a) Traction force coefficient and estimated slip
results for TCS.

(b) Driving torque, velocity and acceleration
results for TCS.

Figure 4.16: Wet road comparison results for TCS.

both ABS and TCS, the gradient based scheme is not robust to road change unlike the RLS
based scheme. Once the road is different, it is hard for the gradient based scheme to adapt
itself. There is a very small discrepancy in slip estimation of the RLS based scheme for icy
road. The reason for this is that if we approach the maximum value from left or right in
Fig. 4.13, the gradient values in the small neighborhood of the maximum are very close to
each other. Results in Matlab/Simulink show how fast the algorithm adapts itself to new
road condition and find optimal slips to reach the maximum deceleration/acceleration.
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(a) Friction force coefficient and estimated slip
results for ABS in wet-icy road change condi-
tion.

(b) Braking torque, velocity and deceleration
results for ABS in wet-icy road change condi-
tion.

Figure 4.17: ABS application results in different road conditions.

Carsim Results

In this section, Carsim is used to present more realistic results for ABS. Since CarSim has
an ABS module itself, ABS is only considered to show the comparison of RLS estimation
based ES scheme performance with ABS module.

The vehicle is selected as E-class Sedan and the vehicle parameters are given as follows:
m = (1650 + 90 ∗ 2)/4 kg (sprung and unsprung mass for each wheel), R = 0.353 m,
I = 1.7 kgm2, B = 0.01 kg/s. The same vehicle parameters are used in ABS module for
a fair comparison. Controller parameter is selected as c = 15. RLS estimation algorithm
parameters are selected as β = 0.95, k = −0.006, p0 = 104.

For wet road, the results of vehicle speeds and accelerations in CarSim are given in Fig.
(4.19a). As can be seen from the results, the vehicle with RLS scheme has the advantage
of stopping in shorter distance and time. The reason for this can be seen in Fig. (4.19b).
Since ABS by its nature is applying pulses to stop the vehicle in any emergency situations,
RLS estimation based ES can find the optimum slip and/or maximum deceleration and try
to maintain these values to stop the vehicle in shorter time. Estimated slips and measured

90



(a) Friction force coefficient and estimated slip
results for TCS in wet-icy road change condi-
tion.

(b) Driving torque, velocity and acceleration
results for TCS in wet-icy road change condi-
tion.

Figure 4.18: TCS application results in different road conditions.

slips are given for the RLS scheme in Fig. (4.20a), and measured slips are given for the
CarSim module in Fig. (4.20b).

ABS Control with Redesigned ES scheme

In this section, proposed RLS based ES redesigned in Section 4.2 is considered. One can
use this redesign; however, tuning parameters should be selected wisely.

Estimation error: ε = λ− λ̂0,

Regressor Signal: φ̇ = ωlN(t)(v̇ − η)− φωl,
η̇ = ωhν̇ − ωhη

LS Estimation Algorithm
˙̂
λ0 = Pεφ,

Ṗ = βP − P 2φ2

m2
s

,

(4.58)
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(a) Acceleration and longitudinal velocity. (b) Applied torques and pressures.

Figure 4.19: CarSim results of RLS based ES and ABS module for wet road.

where M(t) = a sinωt and N(t) = a2

162
sin2 ωt− 1

2
.

The parameters are given as follows: k = 1.5, a = 0.013, ω = 3, ωh = 0.6, ωl = 0.8,
λ∗ = 0.25. The simulation is performed under the Gaussian noise (σ = 0.1) in longitudinal
acceleration measurement, v̇.

Gradient based ES proposed by [68] and proposed RLS based ES are simulated using MAT-
LAB/Simulink. Simulation results for λ0 estimation for both gradient and RLS designs
are given in Fig.4.21a. Results show that the system cannot reach the optimal wheel slip
λ∗ within the time the vehicle stops. However, in RLS based design, the system reaches
the optimal wheel slip within a short period of time.

Fig. 4.21b shows applied braking torque to the wheel and velocity of the wheel for gra-
dient and RLS based designs. It is clear that RLS based algorithm has an advantage
of convergence rate over gradient based one since the vehicle with RLS algorithm stops
less than with gradient one. ES scheme reached the maximum friction force coefficient
is shown in Fig. 4.22. The maximum friction force coefficient is reached in less than a
second with RLS algorithm. The gradient algorithm cannot reach the maximum friction
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(a) Estimated and measured slips for RLS
based ES scheme.

(b) Measured slips for ABS module.

Figure 4.20: CarSim slip results for RLS based ES and ABS module.

force coefficient within the stopping time. Similar to ABS, TCS is also performed with
Matlab/Simulink in dry road and simulation results can be found in Fig. 4.23 and Fig.
4.24. The results show the performance improvement and effectiveness of RLS estimation
algorithm over gradient.
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(a) Braking torque and speed results for gradi-
ent and RLS based ES.

(b) λ− λ0 results for gradient and RLS based
ES.

Figure 4.21: RLS based redesigned ES results for ABS.

Figure 4.22: Acceleration results for gradient and RLS based ES.
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(a) Braking torque and speed results for gradi-
ent and RLS based ES.

(b) λ− λ0 results for gradient and RLS based
ES.

Figure 4.23: RLS based redesigned ES results for ABS.

Figure 4.24: Acceleration results for gradient and RLS based ES.
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4.5 Summary

In this chapter, the formal problem definition for ES of static maps and dynamics systems
was given. RLS parameter estimation based ES scheme was studied for scalar and vector
parameter systems in each case, utilizing high-pass and low pass filters based on the work
of [73].

Secondly, an RLS parameter estimation based ES scheme that does not involve bandpass
filtering and considering ES as an estimation problem was introduced for scalar and vec-
tor parameter systems in static maps and dynamic systems. Their stability results were
presented.

The performance of the proposed RLS based ES designs is examined in simulations for
active vehicle safety systems, ABS and TCS. Several driving scenarios such as one road
condition, road condition change, are designed to evaluate the capability of the proposed
designs in longitudinal vehicle safety systems. Matlab/Simulink and CarSim simulation
applications were presented to prove the effectiveness and validity of the proposed schemes.
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Chapter 5

Conclusion and Future Research

5.1 Summary and Conclusions

This thesis has investigated several aspects of RLS parameter estimation based adaptive
control and adaptive extremum seeking (ES). After providing a comparative numerical
analysis of the use RLS based parameter estimation in adaptive control, with respect to
gradient based parameter estimation, a formal constructive analysis framework for integra-
tion of RLS based estimation to direct adaptive control has been proposed. The proposed
framework follows the typical steps for gradient adaptive law based direct model reference
adaptive control, but is based on construction of a new Lyapunov-like function for the
analysis.

Later, an RLS estimation based ES scheme is designed and analysed for application to
scalar parameter and vector parameter static map and dynamic systems, with established
asymptotic convergence to the extremum.

Finally, the proposed RLS parameter estimation based direct adaptive control and ES
schemes have been applied to active vehicle safety systems, ACC, ABS and TCS.

5.2 Future Research Directions

This thesis has opened several doors for future work. An immediate follow up research
topic is formal transient analysis of RLS parameter estimation based direct adaptive control
based on the framework developed in Chapter 3.
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A second potential future research direction as continuation of this thesis is to conduct
a study on adaptive control using ES. Adaptive ES scheme can be used to estimate the
parameters of MRAC. RLS parameter estimation based ES block will consider the tracking
error as input, and minimizing of the cost function, ES scheme will produce the parameter
estimates as output.

A third potential future research direction is detailed formal frequency domain analysis of
the RLS parameter estimation based ES schemes developed in Chapter 4.

Another potential future research direction is development of RLS parameter estimation
based source seeking algorithms. The main objective of source seeking algorithms is to
steer autonomous agents towards the source location of a field of interest (e.g., a radio
transmitter, a location of chemical contamination, etc.). Source seeking algorithms allow
the autonomous agents to sense or estimate certain information about the field, e.g. the
local distribution of the field strength or the gradient of the field strength, and steer the
agents, accordingly, towards the source location. RLS parameter estimation based ES
schemes can be applied to various such source seeking applications.
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