325 research outputs found

    Advanced Control of Active Bearings - Modelling, Design and Experiments

    Get PDF

    Control of out of balance servo mechanism subjected to external disturbances

    Get PDF
    There is a category of applications where cantilevered servomechanisms mounted on mobile platforms have to maintain very precise position in inertial space. These systems often referred to as stabilised or line of sight systems have to maintain precise orientation in inertial space in presence of linear and angular external disturbances. Stabilised systems, in general, are designed as balanced systems such that the pivot or centre of rotation coincides with the centre of gravity of the equipment. The research presented in this thesis investigates a general case of stabilising an out-of-balance mechanism; a balanced mechanism is a special case of these systems. The motivation for the research is to remove the requirement for balanced mechanisms enabling engineers to design more effective systems, both in terms of performance and costs, for future needs... cont'd

    Third International Symposium on Magnetic Suspension Technology

    Get PDF
    In order to examine the state of technology of all areas of magnetic suspension and to review recent developments in sensors, controls, superconducting magnet technology, and design/implementation practices, the Third International Symposium on Magnetic Suspension Technology was held at the Holiday Inn Capital Plaza in Tallahassee, Florida on 13-15 Dec. 1995. The symposium included 19 sessions in which a total of 55 papers were presented. The technical sessions covered the areas of bearings, superconductivity, vibration isolation, maglev, controls, space applications, general applications, bearing/actuator design, modeling, precision applications, electromagnetic launch and hypersonic maglev, applications of superconductivity, and sensors

    Modelling and Identification for Control of Gas Bearings

    Get PDF
    Gas bearings are popular for their high speed capabilities, low friction and clean operation, but suffer from poor damping, which poses challenges for safe operation in presence of disturbances Feedback control can achieve enhanced damping but requires low complexity models of the dominant dynamics over its entire envelope of operation. Models from first principles are complex and sensitive to parameter uncertainty. This paper presents an experimental technique for ”in situ” identification of a low complexity model of a rotor–bearing–actuator system and demonstrates identification over relevant ranges of rotational speed and gas injection pressure This is obtained using Parameter-varying linear models that are found to capture the dominant dynamics. The approach is shown to be easily applied and to suit subsequent control design. Based on the identified models, decentralised proportional control is designed and shown to obtain the required damping in theory and in a laboratory test rig

    Systems Development of a Two-Axis Stabilised Platform to Facilitate Astronomical Observations

    Get PDF
    Inertially Stabilised Platforms (ISPs) aim to control the line-of-sight between a sensor and a target. They perform two distinct operations; keeping track of the target as the sensor host and the target move in inertial space and attenuating rotational disturbances incurred to the sensor by host vehicle motion. This project aimed to develop a two-axis ISP for use in astronomical applications. It represents the initial development of all systems of a low-cost ISP designed for a 3.5” compound telescope. To achieve this, relevant literature describing the various components of an ISP were reviewed to inform the design, implementation and testing cycle which comprised most of the project. A set of system specifications was developed to guide design decisions. The performance of the implemented system was compared against these specifications once the project was complete. During the project, the electro-mechanical structure of the ISP was designed and implemented, including a mechanical assembly designed to mount a camera and inertially and geometrically model the specified telescope. This allowed the ISP to be tested at a lower cost than with the telescope itself. The associated electrical systems were specified and configured. An image processing script capable of detecting and locating the centre of the Moon in the camera field of view was written in Python and implemented on a Raspberry Pi Computer. A complete simulation model for the system was written in the simulation language, Simul_C_EM, and used to design various controllers for the ISP control system and help verify certain estimated system parameters such as gimbal friction. For each gimbal, PI controllers were designed to allow manual orientation control of the telescope, compensated P controllers were designed to achieve target tracking, and compensated PI controllers were designed to reject rotational disturbances. These were implemented in C on an STM32F0 microcontroller tasked with managing the various control and communications tasks required by the system. Finally, a user interface was written in LabVIEW to facilitate intuitive user control of the system and perform datalogging of the system runtime data. Testing of the system showed good correlation between the hardware and the simulated results indicating an accurate simulation model that can be used to test future design developments

    Advances and Trends in Mathematical Modelling, Control and Identification of Vibrating Systems

    Get PDF
    This book introduces novel results on mathematical modelling, parameter identification, and automatic control for a wide range of applications of mechanical, electric, and mechatronic systems, where undesirable oscillations or vibrations are manifested. The six chapters of the book written by experts from international scientific community cover a wide range of interesting research topics related to: algebraic identification of rotordynamic parameters in rotor-bearing system using finite element models; model predictive control for active automotive suspension systems by means of hydraulic actuators; model-free data-driven-based control for a Voltage Source Converter-based Static Synchronous Compensator to improve the dynamic power grid performance under transient scenarios; an exact elasto-dynamics theory for bending vibrations for a class of flexible structures; motion profile tracking control and vibrating disturbance suppression for quadrotor aerial vehicles using artificial neural networks and particle swarm optimization; and multiple adaptive controllers based on B-Spline artificial neural networks for regulation and attenuation of low frequency oscillations for large-scale power systems. The book is addressed for both academic and industrial researchers and practitioners, as well as for postgraduate and undergraduate engineering students and other experts in a wide variety of disciplines seeking to know more about the advances and trends in mathematical modelling, control and identification of engineering systems in which undesirable oscillations or vibrations could be presented during their operation

    The 21st Aerospace Mechanisms Symposium

    Get PDF
    During the symposium technical topics addressed included deployable structures, electromagnetic devices, tribology, actuators, latching devices, positioning mechanisms, robotic manipulators, and automated mechanisms synthesis. A summary of the 20th Aerospace Mechanisms Symposium panel discussions is included as an appendix. However, panel discussions on robotics for space and large space structures which were held are not presented herein

    Glosarium Teknik Dirgantara

    Get PDF
    • …
    corecore