606 research outputs found

    Continuous higher order sliding mode control with adaptation of air breathing hypersonic missile

    Get PDF
    This is the peer reviewed version of the following article: Yu, P., Shtessel, Y., and Edwards, C. (2016) Continuous higher order sliding mode control with adaptation of air breathing hypersonic missile. International Journal of Adaptive Control and Signal Processing, which has been published in final form at 10.1002/acs.2664. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving: http://olabout.wiley.com/WileyCDA/Section/id-820227.html#terms}Hypersonic missile control in the terminal phase is addressed using continuous higher order sliding mode (AHOSM) control with adaptation. The AHOSM self-tuning controller is proposed and studied. The double-layer adaptive algorithm is based on equivalent control concepts and ensures non-overestimation of the control gain to help mitigates control chattering. The proposed continuous AHOSM control is validated via simulations of a hypersonic missile in the terminal phase. The robustness and high accuracy output tracking in the presence of matched and unmatched external disturbances and missile model uncertainties is demonstrate

    Design of gain schedule fractional PID control for nonlinear thrust vector control missile with uncertainty

    Get PDF
    The purpose of this paper is to control the trajectory of the nonlinear missile model in the pitch channel by using Fractional PID controller (FPID) and Gain Schedule Fractional PID controller (GSFPID). FPID and GSFPID with nonlinear missile model are designed where their parameters are tuned by Simulink design optimization in the Matlab toolbox. This optimization method gives the optimal parameters that achieve the best tracking with step unit reference signal. The GSFPID controller compensates the restrictions that represent physical limits of actuators in the pitch channel. The GSFPID with nonlinear missile model is designed in two phases. The first phase is the boost phase where the thrust force is maximized and the second phase is sustain phase where the thrust force is minimized. The equations of motion for nonlinear missile model with FPID and GSFPID are modelled mathematically in the Matlab-Simulink environment. The results of FPID and GSFPID controllers with the nonlinear missile model are presented and compared. The wind effect and the dynamic uncertainties effects are researched and the results are compared. The closed-loop nonlinear system is linearized by the Simulink linear analysis tool at critical operating point t = 5.8 sec and the stability is studied

    Robust Image-Based Visual Servo Control of an Uncertain Missile Airframe

    Get PDF
    A nonlinear vision-based guidance law is presented for a missile-target scenario in the presence of model uncertainty and unknown target evasive maneuvers. To ease the readability of this thesis, detailed explanations of any relevant mathematical tools are provided, including stability definitions, the procedure of Lyapunov-based stability analysis, sliding mode control fundamentals, basics on visual servo control, and other basic nonlinear control tools. To develop the vision-based guidance law, projective geometric relationships are utilized to combine the image kinematics with the missile dynamics in an integrated visual dynamic system. The guidance law is designed using an image-based visual servo control method in conjunction with a sliding-mode control strategy, which is shown to achieve asymptotic target interception in the presence of the aforementioned uncertainties. A Lyapunov-based stability analysis is presented to prove the theoretical result, and numerical simulation results are provided to demonstrate the performance of the proposed robust controller for both stationary and non-stationary targets

    Design Of An Adaptive Autopilot For An Expendable Launch Vehicle

    Get PDF
    This study investigates the use of a Model Reference Adaptive Control (MRAC) direct approach to solve the attitude control problem of an Expendable Launch Vehicle (ELV) during its boost phase of flight. The adaptive autopilot design is based on Lyapunov Stability Theory and provides a useful means for controlling the ELV in the presence of environmental and dynamical uncertainties. Several different basis functions are employed to approximate the nonlinear parametric uncertainties in the system dynamics. The control system is designed so that the desire dresponse to a reference model would be tracked by the closed-loop system. The reference model is obtained via the feedback linearization technique applied to the nonlinear ELV dynamics. The adaptive control method is then applied to a representative ELV longitudinal motion, specifically the 6th flight of Atlas-Centaur launch vehicle (AC-6) in 1965. The simulation results presented are compared to that of the actual AC-6 post-flight trajectory reconstruction. Recommendations are made for modification and future applications of the method for several other ELV dynamics issues, such as control saturation, engine inertia, flexible body dynamics, and sloshing of liquid fuels

    Disturbance observer based control for nonlinear MAGLEV suspension system

    Get PDF
    This paper investigates the disturbance rejection problem of nonlinear MAGnetic LEViation (MAGLEV) suspension system with “mismatching” disturbances. Here “mismatching” refers to the disturbances that enter the system via different channel to the control input. The disturbance referring in this paper is mainly on load variation and unmodeled nonlinear dynamics. By linearizing the nonlinear MAGLEV suspension model, a linear state-space disturbance observer (DOB) is designed to estimate the lumped “mismatching” disturbances. A new disturbance compensation control method based on the estimate of DOB is proposed to solve the disturbance attenuation problem. The efficacy of the proposed approach for rejecting given disturbance is illustrated via simulations on realistic track input

    Optimal impact angle guidance for exo-atmospheric interception utilizing gravitational effect

    Get PDF
    This paper aims to develop a new optimal intercept angle guidance law for exo-atmospheric interception by utilizing gravity. A finite-time optimal regulation problem is formulated by considering the instantaneous zero-effort-miss (ZEM) and the intercept angle error as the system states. The analytical guidance command is then derived based on Schwarz's inequality approach and Lagrange multiplier concept. Capturability analysis using instantaneous linear time-invariant system concept is also presented to provide better insights of the proposed guidance law. Theoretical analysis reveals that the proposed optimal guidance law encompasses previously suggested optimal impact angle constrained guidance laws. Numerical simulations with some comparisons clearly demonstrate the effectiveness of the proposed guidance law

    Nonlinear Feedforward and Reference Systems for Adaptive Flight Control

    Get PDF
    Use of feedforward can alleviate feedback and adaptive actions. Feedforward signals can be generated from reference models and the same models can also be used as reference models in adaptive control. A method for designing the reference models is presented in the paper. By exploiting the structure of the equations describing air vehicles it is possible to find reference models that scale to the present flight condition and vehicle configuration. Such reference systems are derived for flying vehicles in a generic manner, suitable for both winged aircraft and missiles. The same type of reference systems are also used to create trajectories for feedforward signals that compensate known plant non-linearities

    Modelling, Simulation, and Control of a Flexible Space Launch Vehicle

    Full text link
    Modern Space Launch Vehicles (SLVs), being slender in shape and due to the use of lightweight materials, are generally flexible in nature. This structural flexibility, when coupled with sensor and actuator dynamics, can adversely affect the control of SLV, which may lead to vehicle instability and, in the worst-case scenario, to structural failure. This work focuses on modelling and simulation of rigid and flexible dynamics of an SLV and its interactions with the control system. SpaceX's Falcon 9 has been selected for this study. The flexible modes are calculated using modal analysis in Ansys. High-fidelity nonlinear simulation is developed which incorporates the flexible modes and their interactions with rigid degrees of freedom. Moreover, linearized models are developed for flexible body dynamics, over the complete trajectory until the first stage's separation. Using classical control methods, attitude controllers, that keep the SLV on its desired trajectory, are developed, and multiple filters are designed to suppress the interactions of flexible dynamics. The designed controllers along with filters are implemented in the nonlinear simulation. Furthermore, to demonstrate the robustness of designed controllers, Monte-Carlo simulations are carried out and results are presented.Comment: Presented at 20th International Bhurban Conference on Applied Sciences and Technology (IBCAST), 202

    Optimality of error dynamics in missile guidance problems

    Get PDF
    • …
    corecore