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control missile with uncertainty
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ABSTRACT
The purpose of this paper is to control the trajectory of the nonlinear missile model in the pitch
channel by using Fractional PID controller (FPID) and Gain Schedule Fractional PID controller
(GSFPID). FPID andGSFPIDwith nonlinearmissilemodel are designedwhere their parameters are
tuned by Simulink design optimization in the Matlab toolbox. This optimization method gives
the optimal parameters that achieve the best tracking with step unit reference signal. The GSF-
PID controller compensates the restrictions that represent physical limits of actuators in the pitch
channel. TheGSFPIDwith nonlinearmissilemodel is designed in twophases. The first phase is the
boost phase where the thrust force is maximized and the second phase is sustain phase where
the thrust force is minimized. The equations ofmotion for nonlinearmissilemodel with FPID and
GSFPID are modelled mathematically in the Matlab-Simulink environment. The results of FPID
and GSFPID controllers with the nonlinear missile model are presented and compared. The wind
effect and the dynamic uncertainties effects are researched and the results are compared. The
closed-loopnonlinear system is linearized by the Simulink linear analysis tool at critical operating
point t = 5.8 sec and the stability is studied.
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1. Introduction and literature review

The quality requirements for automatic control have
increased due to the great complication for plants and
the increasingly complicated properties for production.
The controllers with a six degree of freedom (6-DOF)
missile model in pitch channel will be addressed in this
paper. The 6-DOFmissilemodel gives true information
about the missile path. The purpose of this paper:

(1) To develop a complicated mathematical model
of flying path simulation for a missile in pitch
channel. This mathematical model is utilized as
an algorithm for designing, analysis, and devel-
opment of the framework to present the missile
motion by the Simulink environment to ease the
design of the control structure.

(2) According to the system features and application
environment required, GSFPID control strategy is
proposed to solve themissile attitude control prob-
lem. GSFPID controller compensates the restric-
tions that represent physical limits of actuators in
the pitch channel. The dynamic uncertainties are
studied where the aerodynamic coefficients of the
missile are changed to study the robustness [1,2].
The closed-loop nonlinear system is linearized by
the Simulink linear analysis tool at critical operat-
ing point t = 5.8 sec to study the stability system
by the Nyquist diagram and Bode diagram.

In this paper, the autopilot is equipped with thrust
vector control that does not depend on the dynamic
pressure of the atmosphere. Hence, the thrust force and
thrust moment change the motion behaviour of the
missile, [3]. The missile system operates in two phases;
the first phase is the boost phase where the thrust force
is maximized. The second phase is the sustain phase
where the thrust force is minimized [1,2]. FPID and
GSFPID controllers’ gains with nonlinearmissilemodel
are tuned by Simulink design optimization.

According to MacKenzie, guidance is defined as the
procedure for guiding the path of an object toward a
given point [1,4].Moreover,Charles StarkDraper stated
that Guidance depends on main basics and includes
vehicles steering in different environments beyond the
atmosphere with the gravitational field and in space
[1,5]. The most wealthy and ripe for guidance is estab-
lished with the steering missile. A guided missile is
defined as a space-navigating unmanned vehicle that
carries within itself the means for controlling its flying
route [1,6]. Guided missiles are operated since World
War II [1,4]. Today, missile control method involves a
wide field of steering laws such as traditional control,
optimal control, fuzzy logic and neural network con-
trol and differential geometric control rules. The steer-
ing missile evolution through and after World War II
are found in the following literature [1,7–9]. Moreover,
Locke and Westrum placed the evolution of steering
missile methods into a great view [1,10,11].
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At the end of the nineteeth century, the initial
definition of the fractional derivative was introduced
by Liouville and Riemann. However, this idea started to
be enjoyable for engineers in the late 1960s, especially
when it was seen that the characteristic of some systems
is more precise when the fractional derivative is uti-
lized. There are increasing numbers of implementation
of the fractional calculus such as the use of fractional
order controllers, like the FPID (PIλDδ) controller [12].
The PIλDδ controller has both the differentiation and
integration of fractional order, which awards the abil-
ity to adjust control systems. The FPID controller that
is utilized in the path-tracking trouble of the vehicle
industry is given in [13]. Fractional order algorithms
that are used in the hybrid control of robotic manipu-
lators are observed in [14].

The novelty of the contribution of this paper can be
summarized as follows

(1) The main contribution is using the gain schedule
design with fractional order calculus controller for
the first time.

(2) The Simulink design optimization method is used
to tune the controller parameters with nonlin-
ear missile model to improve the tracking perfor-
mance.

(3) GSFPID control can achieve superior performance
and effectiveness by comparing it with FPID con-
trol.

(4) The robustness of the proposed control (GSFPID)
is validated by simulation results where the wind
disturbance effect and dynamic uncertainties will
be studied.

(5) The stability of the proposed control (GSFPID) is
researched by using the Nyquist stability diagram
and Bode diagram.

The rest of this paper is organized as follows.
Section 2 represents the mathematical model of 6-DOF
for the missile. Section 3 displays Gain Schedule FPID
controller design for pitch channel of nonlinear mis-
sile model. Section 4 presents control implementation
and outcomes. Finally, conclusions and future work are
discussed in section 5.

2. Mathematical model of 6-DOF for missile

The 6-DOF equations for nonlinear missile model are
divided into depicting kinematics, dynamics (thrust,
gravity and aerodynamic), leading guidance descent
model, and autopilot (electronics, actuators, and instru-
ments). The inputs of the model are the initial situ-
ations, target movement, and target path description.
The outputs of the model are the missile flying descrip-
tion (missile velocity and attitude angles).

This paper discusses the autopilot of a missile
equipped with thrust vector control (TVC). This

method of control does not rely on the dynamic pres-
sure of the atmosphere but it is based on motor thrust.
The variation of the thrust vector depends on the con-
trol demand. Hence, thrust force and thrust moment
change the motion behaviour of the missile. It allows
for the variation of the direction of the thrust vec-
tor with respect to the symmetry axes of the missile.
Thrust vector control has been seen for many missile
engines using solid or liquid propellants. The missile
can fly in the desired attitude utilizing the thrust vec-
tor control [3,15,16]. The essential framing required
for mathematical evolutions are the body, velocity and
ground coordinates. The origin of these coordinates is
the center of gravity (c.g) for the missile. In the ground
coordinate system, the Xg−Zg is the horizontal plane
and the Yg axis complements a standard right-handed
system and goes up perpendicularly. In the body coor-
dinate, the positive Xb axis corresponds to the center
line of the missile and presents the roll-axis. The pos-
itive Zb axis is vertical to the Xb axis in the horizontal
surface and presents the pitch axis. The positive Yb axis
goes up and presents the yaw axis. The body axis sys-
tem is constant with the missile and gets about with it.
In the velocity coordinate, XV corresponds to the direc-
tion of missile speed (Vm) that is linked to the direction
for missile flying. The axis ZV supplements a standard
right-handed system [1,2,17–19].

The pitch plane is X–Y surface, the yaw plane is X–Z
surface, and the roll plane is Y–Z surface. The ground
coordinate and body coordinate are linked to each other
through attitude angles (� ,�,ϒ). The ground coordi-
nate and velocity coordinate are linked to each other
through the angles(θ , σ). The velocity coordinate sys-
tem is linked to the body frame through the angle of
attack (α) in the pitch plane and sideslip angle (β)

in the yaw plane. The angles between various coordi-
nate systems are represented in Figure 1 [1,2,17,19,20].
The relationship between the velocity and the body
coordinate systems can be obtained as follows:⎡
⎣Xb
Yb
Zb

⎤
⎦=

⎡
⎣cos(β) cos(α) cos(β) sin(α) − sin(β)

− sin(α)

sin(β) cos(α)

cos(α)

sin(β) sin(α)

0
cos(β)

⎤
⎦

×
⎡
⎣Xv

Yv

Zv

⎤
⎦ (1)

The velocity and body axes system, as well as
moments, forces and other quantities are shown in
Figure 2.

There are six kinematic equations (three for rota-
tional movement and three for translational move-
ment) and six dynamic equations (three for rotational
movement and three for translation movement) for 6-
DOFmissile. Themissile 6-DOF equations are obtained
as shown, [1,2,19–21].

Fx = mV̇m (2)
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Figure 1. The angles between different coordinate systems.

Figure 2. Moments, forces and other quantities.

Fy = mVmθ̇ (3)

Fz = −mVm cos(θ) σ̇ (4)

Mx = Ixω̇x − (Iy − Iz )ωyωz (5)

My = Iyω̇y − (Iz − Ix )ωzωx (6)

Mz = Izω̇z − (Ix − Iy )ωxωy (7)

Ẋ = Vm cos(θ) cos(σ ) (8)

Ẏ = Vm sin(θ) (9)

Ż = −Vm cos(θ) sin(σ ) (10)

�̇ = (ωy cos(ϒ) − ωz sin(ϒ))/ cos(�) (11)

�̇ = ωy sin(ϒ) + ωz cos(ϒ) (12)

ϒ̇ = ωx − tan(�)(ωy cos(ϒ) − ωz sin(ϒ)) (13)

α̇ = �̇ − θ̇ (14)

β̇ = �̇ − σ̇ (15)

In these equations,Mx,My,Mz are moments repre-
sented in body coordinate [N.m]; Fx, Fy, Fz are compo-
nent of forces represented in velocity coordinate [N]; Ix,
Iy, Izaremoments of inertia in body coordinate [kg.m2];
ωx, ωy, ωz are angular velocity in body coordinate
[rad/sec]; X is missile range [m]; Z is missile horizon-
tal displacement [m]; Y is missile altitude [m]; and m
is mass of missile [kg]. The moments and the forces
present on the missile due to gravity, aerodynamic and
thrust. These moments and forces are obtained as fol-
lows [1,2,17,19,20,22].

Fx = T cos(α − δα) cos(β − δβ)

− QS(Cx0 + Cx(α
2 + β2)) − mg sin(θ) (16)

Fy = T sin(α − δα) + QSCyα − mg cos(θ) (17)

Fz = −T cos(α − δα) sin(β − δβ) − QSCzβ (18)

Mx = DQSmx0
ωxD
2Vm

(19)

My = −T cos(δα) sin(δβ)Xcg

+ DQS
(
myββ + my0

ωyD
Vm

)
(20)

Mz = T sin(δα)Xcg + DQS
(
mzαα + mz0

ωzD
Vm

)

(21)
In these equations, mx0,myβ , my0,mzα , mz0 are

aerodynamic moment coefficients [dimensionless]; Cx,
Cx0, Cy, Cz are aerodynamic force coefficient [dimen-
sionless]; S is the reference area [m2];D is themaximum
cross section diameter of body [m]; Q is the dynamic
pressure [kg/m.sec2]; δα is the pitch nozzle deflection
angle [o]; δβ is the yaw nozzle deflection angle [o]; T is
the thrust force [N]; Xcg is the dimension between the
nozzle and center of gravity (c.g) [m]; and g is gravity
acceleration constant 9.81 m/sec2.

In this paper, the attitude control structure is
designed in the pitch channel (X–Y plane), the yaw and
roll channels are neglected. The nonlinear equations of
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Figure 3. Block diagram of pitch angle attitude control.

motion in the pitch channel are presented as follows
[23–25].

�̇ = ωz (22)

α̇ = ωz − Fy
mVm

= −QSCy

mVm
α − T

mVm
sin(α − δα)

+ ωz + g
Vm

cos(θ) (23)

ω̇z = Mz

Iz
= QSDmzα

Iz
α + QSD2mz0

IzVm
ωz

+ TXcg

Iz
sin(δα) (24)

The block diagram of pitch angle attitude control is
depicted in Figure 3

3. Gain schedule FPID controller design for
pitch channel of nonlinear missile model

The researchers stated that controllers utilize fractional
order derivatives and integrals to realize performance
and robustness outputs those got with classic (integer
order) controllers. The Fractional-order PID controller
(FPID) controller is the expansion of the classic PID
controller depends on fractional calculus. The theories
of fractional calculus are explained in [1].

3.1. Basic concepts of FPID controller PIλDδ

The differential equation of the PIλDδ controller is
depicted in the time domain by:

u(t) = kpe(t) + kiD−λ
t e(t) + kdDδ

t e(t) (25)

The continuous transfer function of the PIλDδ con-
troller is given through Laplace transform

Gc(s) = kp + kis−λ + kdsδ (26)

The FPID controller not only wants to design 3
parameters kp,ki and kd, but also design 2 fractional
orders λ, δ of integral and derivative controllers. The
orders λ and δ are not necessarily integers but any real
numbers, [1,26].

3.2. Optimal tuning FPID control parameters by
Simulink design optimization

Tuned FPID controller with actuator restrictions is
implemented in theMatlab using Simulink design opti-
mization software that is named the nonlinear con-
trol design block set (NCD) [27,28]. This software
has characteristics to optimize the design standard in
any Simulink model by tuning required parameters
that have natural actuation boundaries. Rise time, set-
tling time, overshoot, and saturation limits are design
requirements in Simulink response optimization. The
gradient descent optimization method is selected to
get the optimal FPID parameters. The gradient descent
is the simplest method for optimization. The gradient
descent method is explained in [3,26,29].

Simulink Design Optimization software gets gains
that permit a proper solution with the given restric-
tions. Once the appropriate signals are constrained
with signal limits the adjusted gains are set, and opti-
mization tuning is given, the optimization is ready
to run. Simulink Design Optimization software ini-
tials by drawing the starting response in blue in the
Signal Constraint window. Through the optimization,
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Figure 4. Simulink design optimization procedures.

the responses are drawn in different colours. The end
response is drawn in black. Simulink Design Opti-
mization software modifies the tuning gains within the
Matlab workspace and depicts the parameter values in
the Optimization Progress window. Figure 4 displays
Simulink Design Optimization procedures [3,28,30].

FPID controller is designed with actuator restric-
tions so deviation response of the actuator and closed-
loop system meets the given constraints for tracking.
FPID parameters, that are tuned, are kd (derivative
gain), ki (integral gain), kp (proportional gain), λ (frac-
tional order of integral gain) and δ (fractional order of
derivative gain) [3,26,28,30].

3.3. Gain scheduling controller

In many situations, the dynamics of plants are varied
with the operating conditions of the process. It is pos-
sible to vary the parameters of the controller by seeing
the operating conditions of the process. This technique
is called gain scheduling. Gain scheduling is simple to
process in computer controlled systems. Gain schedul-
ing depends on measurements of procedures of the
process and it is the best way to compensate for varying
process parameters or unknown nonlinearities. If the
familiar definition of the adaptive controller is utilized,
Gain schedule is a very helpful procedure for decreas-
ing the effects of parameter variations. There are several
commercial process control systems that utilize gain
schedule to compensate for dynamic and static nonlin-
earities. It is possible to decrease the effects of parameter
variations by varying the parameters of the controller as
functions of the additional variables.

Figure 5. General block diagram of gain scheduled controller.

Gain scheduling can be got as a feedback control
system where the feedback gains are tuned by utiliz-
ing feedforward compensation. The essential problem
in the design of systems with gain scheduling is to
obtain appropriate scheduling variables. This is done
by the information basis of the system. When schedul-
ing variables are obtained, the controller parameters are
calculated at a number of operating points. The con-
troller is adjusted for each operating point. The stability
and performance of the system are obtained by simu-
lation [31–35]. The general block diagram of the gain
schedule controller is shown in Figure 5.

4. Control implementation and outcomes

In this section, the path of 6-DOF flight body model in
pitch channel is controlled by GSFPID controller. GSF-
PID controller is designed where their parameters are
tuned by Simulink Design Optimization. The equation
of motion for the nonlinear flying body with GSFPID
controller is modelled mathematically in the Matlab-
Simulink environment. The results of nonlinear flying
body model with GSFPID will be given and compared
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with the results of the nonlinear flying body with FPID
[1,11,20,36].

4.1. Nonlinearmissile model description

Missile solid propellant thrust will be branched into 2
main phases:

(1) Boost phase: At time 0–5.8 sec and thrust force is
maximized.

(2) Sustain phase: At time 5.8–25 sec and thrust force
is minimized.

The deflection angle of the pitch actuator (δα) is lim-
ited with ±22.9° (±0.4 rad). The thrust force curve is
represented in Figure 6.

Missilemasswill be divided into two types according
to variation with time:

(1) Constant with time: That includes missile frame,
the actuation system, gyroscope and electrical
package.

(2) Variable with time: That includesmissile solid pro-
pellant with boost and sustains phases, igniter, and
wire dispensing.

ṁboost = mboost

tboost
(27)

ṁsustain = msustain

tsustain
(28)

ṁvar = mvar

tflight
(29)

mvar = mwire + migniter (30)

tflight = tboost + tsustain (31)

where: mboost is the propellant mass during boost
phase [kg]; tboost is the boost time (0–5.8 sec);
msustain is the propellant mass during sustain phase

Figure 6. Thrust force curve.

Figure 7. Missile body and variable propellant mass curve.

[kg]; tsustain is the sustain time (5.8–25 sec); tflight
is the total flight time; mwire is the wire dispenser
mass [kg]; migniter is the igniter mass [kg]; mvar
is the variable mass (igniter and wire mass) [kg];
ṁboost is the propellant burning rate during boost
phase [kg/sec]; ṁsustain is the propellant burning
rate during sustain phase [kg/sec]; ṁvar is the wire
dispensing rate and igniter burning rate [kg/sec].
The missile mass varies with time and is given as
follows:

m =

⎧⎪⎨
⎪⎩

m0 − (ṁboost + ṁvar)t 0 ≤ t < 5.8
m0 − mboost

−ṁsustain(t − tboost) − ṁvart
5.8 ≤ t < 25

(32)
where: m0 is the initial missile body mass and
the initial propellant mass [kg]; m is the missile
mass and variable propellant mass [kg]. Figure 7
depicts the missile body and variable propellant
mass curve.

The aerodynamic force and moment coefficients are
usually allocated in the form of graphs obtained by
experiments in wind tunnel. Aerodynamic coefficients
are represented as a function of Mach number that
is varied with missile velocity (Vm). All aerodynamic
coefficients are dimensionless. Figure 8 shows the drag
force coefficient at zero angle of attack (Cx0). Drag force
coefficient due to the angle of attack (Cx) is shown in
Figure 9.

Lateral force coefficient (Cy) is displayed in Figure 10.
The aerodynamic damping moment coefficient (mz0)
is depicted in Figure 11. Figure 12 demonstrates the
aerodynamic moment coefficient.

4.2. Controller design

The FPID controller has 5 tuning parameter kp, ki, kd, λ
and δ which are tuned by Simulink Design Optimiza-
tion through signal constraint that was explained in
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Figure 8. Drag force coefficient at zero angle of attack.

Figure 9. Drag force coefficient.

Figure 10. Lateral force coefficient.

Figure 11. The aerodynamic damping moment coefficient.

Figure 12. The aerodynamic moment coefficient.

section 3. The two FPID controllers are used in the
GSFPID control. The first is tuned with boost phase
(0 ≤ t < 5.8 sec) but the second is tuned with sustain
phase (5.8 ≤ t < 25 sec). The optimized parameters of
the FPID controller are shown in Table 1.

The optimized parameters of GSFPID controller at
boost phase (0 ≤ t < 5.8 sec) are seen in Table 2.

The optimized parameters of gain schedule FPID
controller at sustain phase (5.8 ≤ t < 25 sec) are seen
in Table 3.

Table 1. The optimized parameters of FPID controller.

kp ki λ kd δ

18.47 29.9 0.943 4.709 0.6608

Table 2. The optimized parameters of GSFPID controller at
boost phase.

kp ki λ kd δ

21.934 91.4234 0.9241 0.3592 0.949
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Table 3. The optimized parameters of GSFPID controller at sus-
tain phase.

kp ki λ kd δ

155.0734 261.7472 1.0808 298.509 0.244

4.3. Simulation results

In this section, FPID and GSFPID controllers are
designed in pitch channel with step unit reference sig-
nal where its initial value is 40° (0.698 rad) and its final
value at first second is 41° (0.716 rad).

Figure 13 gives simulink diagram of nonlinear
dynamic system with GSFPID in pitch channel.
Figure 14 displays a block diagram of nonlinear
dynamic system with GSFPID in pitch Channel.

Figure 15 represents pitch angle (plant output)
comparison between FPID and GSFPID for nonlinear
model.

Figure 16 depicts the pitch error (the difference
between the step unit reference signal and pitch angle)
comparison between the FPID and GSFPID. The error
for FPID has high overshoot at time 5.8 sec but the
GSFPID does not.

Figure 17 displays the pitch error comparison
between FPID and GSFPID in boost phase. There is no
steady state error for GSFPID.

Figure 18 depicts the pitch actuator (plant input)
comparison between FPID and GSFPID. Figure 19 dis-
plays the pitch actuator comparison between FPID and
GSFPID responses at first second in the boost phase.

Figure 13. Simulink diagram of nonlinear dynamic system with GSFPID in pitch channel.

Figure 14. Block diagram of nonlinear dynamic system with GSFPID in pitch Channel.
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Figure 15. Pitch angle comparison.

Figure 16. Pitch error comparison.

Figure 17. Pitch error comparison in boost phase.

The down overshoot in GSFPID controller is less than
that in FPID controller.

The missile velocity for FPID and GSFPID is given
in Figure 20. The angle of attack for FPID and GS FPID
controllers are shown in Figure 21

Figure 18. Pitch actuator comparison.

Figure 19. Pitch actuator at first second in boost phase.

Figure 20. The missile velocity.

4.4. Wind effect

The wind effect is studied where wind velocity (that is
presented in Figure 22) is summated to missile velocity
(Vm) in the opposite direction and the results are com-
pared. The profile of wind velocity was chosen from the
horizontal wind model in Simulink library [28].
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Figure 21. Angle of attack.

Figure 22. Wind velocity.

Figure 23. Pitch angle comparison with wind effect.

Figure 23 depicts the effect of wind on the pitch angle
in FPID and GSFPID. The pitch angle with FPID gives
the most change due to the wind effect. The pitch error
with wind effect for FPID and GSFPID are shown in
Figure 24.

Figure 25 displays the pitch actuator action due to
the wind effect for FPID and GSFPID controller.

4.5. Dynamic uncertainty

In this section, the aerodynamic coefficients uncertain-
ties are studied. The responses of FPID and GSFPID

Figure 24. Pitch error comparison with wind effect.

Figure 25. Pitch actuator with wind effect.

Figure 26. Pitch angle comparison with 20% dynamic uncer-
tain.

are compared during the change of the aerodynamic
coefficient with 20% and 50%.

Figures 26–28 show the pitch angle, pitch error and
pitch actuator comparison between FPID and GSFPID
up to 20% dynamic uncertainties.

From the above figures, we can conclude that FPID
and GSFPID cope with the change in aerodynamic
coefficient up to 20%.

Figures 29 and 30 show the pitch angle and pitch
actuator comparison between FPID and GSFPID up
to 50% dynamic uncertainties. GSFPID cope with the
change in aerodynamic coefficient up to 50% but FPID
cannot because the pitch angle is out of control and
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Figure 27. Pitch error comparison with 20% dynamic uncer-
tain.

Figure 28. Pitch actuator comparison with 20% dynamic
uncertain.

Figure 29. Pitch angle comparison with 50% dynamic uncer-
tain.

the actuator deflection is saturated during the sustain
phase.

4.6. Performance and stability

Many issues have to be considered in the analysis and
design of control systems. The basic requirements are:

(1) Stability
(2) Ability to follow reference signals (performance)

Figure 30. Pitch actuator comparison with 50% dynamic
uncertain.

(3) Reduction of effects of load disturbances (perfor-
mance)

(4) Reduction of effects ofmodel uncertainties (robust-
ness)

Instability is themajor drawback of feedback. Avoid-
ing instability is thus a primary goal. It is also desirable
that the process variable follows the reference signal.
The system should also be able to reduce the effects of
load disturbances. It must also be considered that the
models used to design the control systems are inaccu-
rate. The properties of the processmay also change. The
control system should be able to cope with moderate
changes. In process control, themajor emphasis is often
on attenuation of load disturbances, while the ability
to follow reference signals is the primary concern in
motion control systems. In other cases, robustness may
be the main requirement [37,38].

Figure 31 illustrates a stable system and an unstable
system in Bode diagrams and polar plots [39].

The system is stable in the following cases:

• All poles of a linear system with negative real parts
(i.e. all poles in the left-hand side in S-plane).

• The root locus in the Nyquist diagram of a linear
system is not encirclement the point −1+ j0.

• The gain and phase margins in the Bode diagram of
the linear system are positive.

In this section, the nonlinear closed-loop missile
system is linearized by the Simulink linear analysis
tool. The step response; Bode diagram; poles and zeros
in S-plane; and Nyquist diagram are obtained by the
Simulink linear analysis tool to study the performance
and stability of the closed-loop linear system. The lin-
earization occurs at the critical operating point t=5.8
sec where this point separates between boost and sus-
tain phases. Figure 32 depicts the step unit response for
the closed-loop linear system.

FPID and GSPID controllers with the linear sys-
tem can follow step unit response so they give a good
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Figure 31. Phase and gain margins of stable and unstable systems (a) Bode diagrams (b) polar plots.

Figure 32. Step unit response for closed-loop linear system.

performance but GSPID control gives the best tracking
and performance.

Figure 33 represents the Bode diagram for the
closed-loop linear system.

The Nyquist diagram of the closed-loop linear sys-
tem is displayed in Figure 34. The poles and zeroes for
the closed-loop linear system in S-plane are given in
Figure 35.
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Figure 33. Bode diagram for closed-loop linear system.

Figure 34. The Nyquist diagram of closed-loop linear system.
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Figure 35. Poles and zeroes of closed-loop linear system in S-plane.

The closed-loop linear system with FPID and GSF-
PID are stable due to the following reasons:

• All poles on the left-hand side in S-plane as shown
in Figure 35.

• The root locus in Nyquist diagram is not encir-
clement the point −1+j0 and fare away it as shown
in Figure 34.

• The phase margin in the Bode diagram is positive as
seen in Figure 33.

5. Conclusion and future work

5.1. Conclusion

In this paper, the flying of 6-DOF missile is simulated
in the Simulink environment. FPID and GSFPID gains
with nonlinear missile model simulation are tuned by
Simulink design optimization. Simulink Design Opti-
mization gives the best tuning parameters for FPID
and GSFPID. The responses of FPID and GSFPID are
compared. Pitch angle response with FPID and GSF-
PID tracks step unit reference signal. GSFPID gives
the best tracking where there is no steady state pitch
error during boost phase and there is no overshoot at
t = 5.8 sec (starting of sustain phase). The pitch actu-
ator with GSFPID is the better response than FPID
because the down overshoot at first second in boost
phase is smaller than that in FPID controller. GSF-
PID gives the best performance because pitch angle
tracks pitch step unit response signal with nonlinear

missile model and with linear missile model at critical
operating point t = 5.8 sec.

The responses with GSFPID are slightly changed
due to wind effect. FPID can overcome plant dynamic
uncertainties up to 20%. The plant with FPID at 50%
dynamic uncertainty is out of control and actuator
deflection is saturated during the sustain phase. GSF-
PID can cope with plant dynamic uncertainties up to
50%. GSFPID with nonlinear missile model is a robust
control because it can overcome the wind effect and
plant dynamic uncertainties up to 50%. FPID and GSF-
PID with the closed-loop linear system at critical oper-
ating point t = 5.8 sec are stable because of all their
poles are on the left-hand side in S-plane and it has posi-
tive phase and gainmargins. Finally,GSFPID controller
gives the best performance, stability and the best deflec-
tion actuator.GSFPID controller is not affected by wind
and it copes with dynamic uncertainties so it is more
robustness.

5.2. Future work

In the future work, the control can be improved to
make a further research. This includes designing a new
controller such as Two-Dimensional Dissipative Con-
trol for Roesser Model that is presented in appendix A.
other controllers can be studied such as model predic-
tive control and L1 adaptive control. GSFPID control
can also be applied to other nonlinear processes such
as robotic arm control to obtain better controller per-
formance characteristics. The containment control of
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fractional order with linear time-varying (LTV) sys-
tem will be investigated in future work. The control
parameter can be tuned by using other optimization
algorithms, like genetic algorithm, ant colony algorithm
or immune algorithm to improve the control perfor-
mance.

The proposed controller can be implemented in the
real system such as the system-on-a-programmable-
chip (SoPC) based hardware to achieve the online
real-time control. SoPC is embedded with many logic
gates, flip-flops, on-chip memory, and silicon intellec-
tual property (SIP) for faster development of systems
and lower cost of devices. Typically, this is realized in
field programmable gate array (FPGA). FPGA is popu-
lar in industrial applications for its low cost, high speed,
small size, and faster execution speed [40].
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Appendix A. Two-dimensional dissipative
control for Roesser model

In this appendix, we consider the 2-D dissipative control
problems for the Roesser model with state-feedback con-
troller based on Linear Matrix Inequality (LMI) approach.
Consider the following 2-D model in the discrete time
Roesser form:

xh(i + 1, j) = A11xh(i, j) + A12xv(i, j) + B1u(i, j) (A1)

xv(i, j + 1) = A21xh(i, j) + A22xv(i, j) + B2u(i, j) (A2)

y(i, j) = C1xh(i, j) + C2xv(i, j) + G3w(i, j) (A3)

z(i, j) = E1xh(i, j) + E2xv(i, j) + Fu(i, j) (A4)
where xh(i, j) ∈ Rm is the horizontal state, xv(i, j) ∈ Rn is
the vertical state, u(i, j) ∈ Rp is the control input, w(i, j) ∈
Rl is the external disturbance, y(i, j) ∈ Rq is the output, and
z(i, j) ∈ Rr is the controlled output.A11, A12, A21, A22, B1, B2,
C1, C2, E1, E2, F, G1, G2, G3, and G4 are the system matrices.

Let us design the following state-feedback controller:

u(i, j) = K
[
xh(i, j)
xv(i, j)

]
(A5)

where K = [K1 K2] is a controller gain. With this controller
we obtain the following closed-loop system:[

xh(i + 1, j)
xv(i, j + 1)

]
= (A + BK)

[
xh(i, j)
xv(i, j)

]
+ Gw(i, j) (A6)

z(i, j) = (E + FK)

[
xh(i, j)
xv(i, j)

]
+ G4w(i, j) (A7)

where

G =
[
G1
G2

]
,E = [

E1 E2
]

Definition: (2-D (Q, S, R)-α Dissipative State Feedback Con-
trol) given some scalarα > 0,matricesQ, S, andRwithQ and
R real symmetric, the controller (A5) is a 2-D (Q, S, R)-α dis-
sipative state-feedback controller for any Ti ≥ 0 and Tj ≥ 0
if the following condition is satisfied under zero boundary
conditions:

Ti∑
i=0

Tj∑
j=0

zT(i, j)Qz(i, j) + 2
Ti∑
i=0

Tj∑
j=0

zT(i, j)Sw(i, j)

+
Ti∑
i=0

Tj∑
j=0

wT(i, j)Rw(i, j) ≥ α

Ti∑
i=0

Tj∑
j=0

wT(i, j)w(i, j)

(A8)

More explanation about this subject is presented in
[41–45].
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