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Abstract

A nonlinear vision-based guidance law is presented for a missile-target scenario in

the presence of model uncertainty and unknown target evasive maneuvers. To ease

the readability of this thesis, detailed explanations of any relevant mathematical

tools are provided, including stability definitions, the procedure of Lyapunov-based

stability analysis, sliding mode control fundamentals, basics on visual servo control,

and other basic nonlinear control tools. To develop the vision-based guidance law,

projective geometric relationships are utilized to combine the image kinematics with

the missile dynamics in an integrated visual dynamic system. The guidance law is

designed using an image-based visual servo control method in conjunction with a

sliding-mode control strategy, which is shown to achieve asymptotic target

interception in the presence of the aforementioned uncertainties. A Lyapunov-based

stability analysis is presented to prove the theoretical result, and numerical

simulation results are provided to demonstrate the performance of the proposed

robust controller for both stationary and non-stationary targets.
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Chapter 1

Introduction

Nonlinear differential equations are used to model dynamical systems in engineer-

ing. There are many well-established design and analysis techniques for linear time-

invariant (LTI) systems; however, one or more parts of a dynamic system model may

not be linear. Most real life systems contain complex nonlinearities, which render

linear control methods insufficient [Wie, 1998; Khalil, 2002; Nise, 2007]. Nonlinear

differential equations cannot be analytically solved, which creates challenges in con-

trol design for nonlinear dynamic systems. Lyapunov stability analysis is a popular

method for analyzing the stability and convergence properties of nonlinear systems

without explicitly solving the governing differential equations. Lyapunov-based sta-

bility analysis is deeply rooted and well proven in the controls community [Khalil,

2002]. Since mathematical models of dynamic systems are never perfect, paramet-

ric uncertainties and unknown disturbances must be considered for control design.

To address this challenge, adaptive and robust control methods can be used in con-

junction with Lyapunov-based techniques to achieve reliable and accurate control of
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nonlinear systems with ill-defined or uncertain dynamic models.

Although real-world systems are often nonlinear in general, linear approxima-

tion of these systems can sometimes be satisfactory for dynamic system modelling

and control system design. Analysis of linear systems can be simplified since the

corresponding dynamic equations can be solved analytically. Based on this conve-

nient fact, the stability properties of linear systems can be analyzed in a straight-

forward manner. In addition, there exists a set of conditions that can be used to

determine the controllability and observability of a LTI system. However, as stated

earlier, linear approximation of nonlinear systems is valid only under certain condi-

tions when the system is in the vicinity of an equilibrium point. In many situations,

the system motion might not remain sufficiently close to an equilibrium point. In

addition, linearization often discards inherent system nonlinearities such as satura-

tion, switching, and friction, for example, which can lead to dynamic models that

are not accurately defined. Nonlinear control theory studies the application of rig-

orous mathematical methods to control design for systems that cannot be suitably

analyzed using linear design techniques. Nonlinear control methods have the capa-

bility of achieving reliable control over a wide range of operating conditions, mak-

ing nonlinear control systems suitable for a wide range of applications [Utkin, 1977;

Hornik et al., 1989; Slotine et al., 1991; Papanikolopoulos et al., 1991, 1993; Lewis,

1996; Young et al., 1996; Qu, 1998; Deguchi, 1998; Wie, 1998; Hagan and Demuth,

1999; Wang and Stengel, 2000; Khalil, 2002; Zak, 2003; Xu et al., 2004; Chwa et al.,

2004; Patre et al., 2006; Hamel and Mahony, 2007; Yanushevsky, 2007; Mehta et al.,

2011, 2012b, a; Mackunis et al., 2007; Dupree et al., 2007; Dixon, 2007; Hu et al.,

2009; Wilcox et al., 2009; Zaeim et al., 2010; Tahri et al., 2010; Cheah et al., 2010;
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Mebarki et al., 2010; Zong et al., 2011; Copot et al., 2012; Zhubing et al., 2012]. To

develop controllers for nonlinear systems containing significant model uncertainty,

commonly used control methods employ neural network-based approaches [Hornik et al.,

1989; Lewis, 1996; McFarland and Calise, 1997; Hagan and Demuth, 1999; Patre et al.,

2008; McFarland and Calise, 2000; Han and Balakrishnan, 2002; Miljković et al., 2012],

adaptive control methods [McFarland and Calise, 1997, 2000; Han and Balakrishnan,

2002; Miyasato, 2003; Zak, 2003; Dixon, 2007; MacKunis et al., 2010b; Cheah et al.,

2010; Mehta et al., 2011, 2012a], and robust control techniques [Slotine et al., 1991;

Qu, 1998; Wang and Stengel, 2000; Zak, 2003; Wilcox et al., 2009; MacKunis et al.,

2010a; Zhubing et al., 2012].

The uncertainties and complex nonlinearities inherent in vision-based systems

necessitate the development of advanced nonlinear control methods. Challenges in

visual servo control design include dynamic model uncertainty, camera calibration

errors, and pixel noise. Visual servo control (VSC) is the process of using vision-

based feedback measurements to control a dynamic system. The information-rich

nature of vision-based data has made VSC an attractive option in various industrial,

medical, military, and robotic applications [Hutchinson et al., 1996; Malis et al., 1999;

Corke and Hutchinson, 2001; Chaumette and Hutchinson, 2006; Chaumette et al., 2007;

Slotine et al., 1991; Papanikolopoulos et al., 1991; Yanushevsky, 2007; Mackunis et al.,

2007; Dupree et al., 2007; Hu et al., 2009; Mebarki et al., 2010; Mehta et al., 2012b, a].

Although theoretical VSC design has been widely investigated in literature [Hutchinson et al.,

1996; Chaumette and Hutchinson, 2006; Chaumette et al., 2007], implementation of

VSC systems was limited until recent decades due to limitations on available com-

putational power and electronic equipment. With modern electronic capabilities,
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active/passive vision systems have become a more viable option [Kim et al., 2002;

Seetharaman et al., 2006; Langelaan, 2007]. Vision-based missile guidance is one

popular application of VSC.

As presented by Waldmann [2002], the vision-based missile interception problem is

often considered in terms of missile-to-target kinematics, or line-of-sight kinematics,

which neglect the missile dynamics about the center of gravity. Corke and Good

[1996] showed that an accurate representation of the missile system is necessary in

high performance visual servo control to ensure dynamically realizable closed-loop

controller performance. Accurate representation of a missile dynamic model is a

challenge task, however, since it involves quantities that might be difficult to obtain

(e.g., inertia, aerodynamic friction, external disturbances).

Intelligent and adaptive control methods are popularly utilized to compensate for

system uncertainty. Neural-network (NN)-based controllers exploit the universal ap-

proximation property of NNs to compensate for system uncertainty through an offline

learning (training) process. A linearly parameterized feedforward NN controller is de-

veloped by McFarland and Calise [1997] for a bank-to-turn missile to estimate/pre-

dict the uncertainties present in the dynamic system. Miljković et al. [2012], present

a switching NN controller to support the vision-based control of a robotic manipulator

using a reinforcement learning technique. They showed that the NN controller was

capable of choosing the optimal course of action despite camera calibration errors,

modelling errors, and image noise existing in the system. In some cases, NN-based

techniques are combined with other control methods to improve overall system per-

formance [McFarland and Calise, 1997; Patre et al., 2008]. For example, Patre et al.

developed an asymptotic tracking controller for uncertain dynamic systems by aug-
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menting a multilayer NN with a robust nonlinear feedback control element in 2008.

Although NN-based control methods have been shown to perform well in their respec-

tive tasks, such methods can require increased computational power, which might not

be available in certain applications.

Adaptive control methods are a popular alternative to NN-based techniques for

control of systems containing uncertainty. While NNs learn about the dynamic system

through offline training, adaptive controllers can compensate for parametric uncer-

tainty in real time using online adaptive parameter update laws. Unlike NN con-

trollers, adaptive methods handle uncertainties without the necessity to train offline,

making them a more practical control method for some applications [Zak, 2003; Dixon,

2007; MacKunis et al., 2010b; Mehta et al., 2012a]. Mehta et al. [2012a, b] have de-

veloped an adaptive guidance law for a vision-based missile that achieves near zero

miss distance interception of a target undergoing unknown evasive maneuvers.

While adaptive and NN-based control methods can compensate for system un-

certainty, both methods can burden the system with a heavy computational load.

Robust control methods, on the other hand, can compensate for unknown distur-

bances, model uncertainties and nonlinearities without the need for online adaptation

of offline training.

SMC systems appeared as a subset of variable structure control (VSC) in the

1950s at the Institute of Control Sciences, in Moscow, and Moscow University, USSR

[DeCarlo et al., 2000]. SMC has been shown to be capable of compensating for model

uncertainty, unknown disturbances, and nonlinearities without the need for parame-

ter adaptation, state estimation, or linearization [Qu, 1998]. The simplistic approach

and robustness of VSC and SMC systems have resulted in successful utilization in
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a wide range of applications such as autonomous systems, industrial and military

technologies and spacecraft systems [Slotine et al., 1991; Byun et al., 1991, 1992;

Drakunov, 1993; Drakunov and Utkin, 1995; Drakunov et al., 1995; Grossimon et al.,

1996; Moon et al., 2001; Zak, 2003].

VSC and SMC designs involve defining a so-called switching surface (or sliding

surface) at which the controller changes - often instantaneously - its structure based

on the position and velocity of the system’s state trajectory, causing the state to

converge a desired state trajectory. It can be shown that asymptotic (zero steady-

state error) convergence of the state to a desired state trajectory can be achieved

through instantaneous switching between structures. This instantaneous switching is

a characteristic of SMC, and it enables SMC to be extremely robust with respect to

rapidly changing uncertainty in dynamic systems. SMC’s robustness can be used to

address control challenges including underactuation, unmodelled nonlinearities, and

external disturbances, which may be present in a dynamic system. The requirement

of instantaneous switching in SMC has is a concern from an application standpoint,

since no physical actuators can change instantaneously. This instantaneous switching

about the sliding surface can result in the undesirable ”chattering” phenomenon,

which will be described in detail in the SMC section. However, it should be noted that

the capabilities of modern digital electronics can make digital SMC implementation

a more viable option through accurate approximation of the instantaneous switching.

To eliminate the need for infinite bandwidth that is inherent in SMC, techniques

such as higher-order SMC, integral SMC, equivalent control methods, and others

have been proposed [Drakunov, 1992; Wang and Stengel, 2000; Patre et al., 2008;

Wilcox et al., 2009; MacKunis et al., 2010a; Zhubing et al., 2012].
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The robust integral of the signum of the error (RISE) control technique employs

an integral signum term that can compensate for smooth bounded disturbances [Qu,

1998]. The RISE controller structure eliminates the infinite bandwidth requirement

that exists in standard SMC. Integral SMC methods like RISE have been shown

to yield asymptotic tracking in the presence of disturbance and model uncertainty

[Patre et al., 2008].

In 1996, Drakunov et al. proposed the design of an observer using the equivalent

control method to obtain additional information from the system. This approach

approximates equivalent values of the discontinuous signum function in sliding mode

to address problems that arise in SMC due to its discontinuous nature.

A nonlinear vision-based guidance law is presented in this paper for a missile-

target scenario in the presence of model uncertainty and unknown target evasive

maneuvers. To this end, projective geometric relationships are utilized to combine

the image kinematics with the missile dynamics in an integrated visual dynamic sys-

tem. The guidance law is designed using an image-based visual servo control method

in conjunction with a sliding-mode control strategy, which is shown to achieve asymp-

totic target interception in the presence of the aforementioned uncertainties. To ease

readability of this thesis, background on nonlinear control and vision-based methods

are provided. A Lyapunov-based stability analysis is presented to prove the theoretical

result, and numerical simulation results are provided to demonstrate the performance

of the proposed robust missile guidance law for both stationary and non-stationary

targets.
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Chapter 2

Background

2.1 Nonlinear System Stability

Stability theory is an inseparable part of control system design and analysis. There are

various kinds of stability problems that appear in the study of dynamical systems.

We are interested in the stability of equilibrium points. The foundation for the

study of the stability of equilibrium points was laid by the Russian mathematician

and engineer, Aleksandr Lyapunov,in his book The General Problem of Stability of

Motion in 1892. For control purposes, equilibrium points are classified as stable or

unstable. An equilibrium point, x∗, is considered to be stable if all solutions (i.e.,

trajectories) starting within some finite neighbourhood of the point remain within

a finite neighbourhood of the point; otherwise, the equilibrium point is unstable.

The system is asymptotically stable if, in addition to being stable, solutions also

converge precisely to the equilibrium point x∗ as time approaches to infinity. An

example of a stable equilibrium point can be seen in Figure (2.1), where, in the

20



absence of friction, a perturbation causes a pendulum to oscillate indefinitely within

some finite neighborhood of the equilibrium point. If in addition there is friction, the

pendulum will be asymptotically stable and converge to the equilibrium point. An

example of an unstable equilibrium point can be seen in Figure (2.2). In this case,

if there is a small perturbation, the pendulum will never return to the equilibrium

point.

Figure 2.1: Stable Equilibrium Point

Figure 2.2: Unstable Equilibrium Point

The mathematical theorems developed by Lyapunov are indispensable tools for

analyzing the stability properties of nonlinear systems for which explicit solutions

are not be possible to obtain. There are two primary stability theorems proposed

21



by Lyapunov. Lyapunov’s first stability theorem, also known as Lyapunov’s indi-

rect method, uses system linearization near an equilibrium point to analyze the local

stability properties of the corresponding nonlinear system. Lyapunov’s second stabil-

ity theorem, or Lyapunov’s direct method, uses a function (i.e., Lyapunov function)

analogous to a potential function to evaluate nonlinear system stability without lin-

earizing or solving the differential equation of the system. These stability theorems

will be described in detail in the following sections.

Consider a nonlinear dynamic system described by

ẋ = f(x, t) (2.1)

where f : [0,∞]×D → Rn is a locally Lipschitz map from domain D ⊂ Rn into Rn,

and x = {x1, x2, ..., xn} is a vector containing state parameters. A point x∗ ∈ D is an

equilibrium point for the dynamic system defined above provided

f(x∗, t) = 0 ∀t (2.2)

In other words, if the state of the system is at an equilibrium point x∗, it remains

at that equilibrium point for all time t.

The definitions of stability are categorized as follows.

� Lyapunov Stability An isolated equilibrium point x∗ of the dynamic system

described by (2.1), is said to be Lyapunov stable, or just stable, if for any ε > 0

there exists a real positive number δ(ε, t0) such that

‖x(0)− x∗‖ ≤ δ −→ ‖x(t)‖ < ε (2.3)
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δ

ǫx
∗

x0

Figure 2.3: Lyapunov Stability: The system starting at x0 stays in the vicinity of the

equilibrium point x∗.

� Local Asymptotic Stability

An isolated equilibrium point x∗ is said to be locally asyptotically stable, or

simply asymptotically stable, if it is Lyapunov stable and

‖x(0)− x∗‖ ≤ δ =⇒ x(t) → x∗ as t→ ∞ (2.4)

23



δ

ǫx
∗

x0

Figure 2.4: Local Asymptotic Stability: State trajectories starting at x0 in some finite

neighborhood of the equilibrium point x∗ converge to the equilibrium point x∗.

� Global Asymptotic Stability An isolated equilibrium point x∗ is said to be

globally asymptotically stable if it is Lyapunov stable and x(t) → x∗ as t → ∞

for any initial condition x(t0).
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δ

ǫx
∗

x0

Figure 2.5: Global Asymptotic Stability: The system starting at any initial point x0

converges to the equilibrium point x∗.

� Instability An equilibrium point is said to be unstable if it is neither Lyapunov

stable nor asymptotically stable.
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δ

ǫx
∗

x0

Figure 2.6: Instability: If the system is not stable, state trajectories initially displaced

from the equilibrium point x∗ will never converge to the equilibrium point x∗.

Note 1

� It is necessary that an equilibrium point be isolated for it to be locally asymp-

totically stable.

� It is necessary that an equilibrium point be the only equilibrium point for it to

be globally asymptotically stable.

2.1.1 Basic Stability Calculations

Consider the LTI system

ẋ(t) = Ax(t) +Bu(t) (2.5)

where x(t) ∈ Rn, A ∈ Rn×n, B ∈ Rn×n, and u(t) ∈ Rn. The control input u(t) can

be designed based on the full-state feedback law

26



u(t) = −Kx(t) (2.6)

where K ∈ Rn×n is a user-defined control gain matrix. Note that, for simplicity, it

was assumed that the number of control inputs in u(t) equals the number of states

in x(t); a simple extension can be shown to address the case where there are more

control inputs than states, and the scenario where there are more states than control

inputs (i.e., an underactuated system) is not being addressed here. After substituting

(2.6) into (2.5) and reorganizing, the closed-loop system is obtained as

ẋ = (A−BK)x (2.7)

The stability of the origin of the dynamic system (2.5) is determined by the

eigenvalues of (A − BK) from (2.7). The solution to the linear differential equation

(2.7) is

x(t) = e(A−BK)tx0 (2.8)

It is then obvious that for the state x(t) to go to zero as t→ ∞, the real parts of

the eigenvalues of (A−BK) must be negative.

2.1.2 Existence and Uniqueness of Solutions

The existence and uniqueness of solutions to ODEs are important for the state equa-

tion ẋ = f(x, t) to be a useful mathematical model of a dynamic system. The

existence and uniqueness can be guaranteed by applying some constraints on f(x, t).
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Consider the initial value problem (IVP)

ẋ = f(x, t), x(t0) = x0 (2.9)

A continuous function x(t) is considered a solution of (2.9) over an interval [t0, t1] if

ẋ(t) is defined, and ẋ = f(x, t) for all t ∈ [t0, t1]. The solution x(t) will be continuously

differentiable if f(x, t) is continuous in both x and t.

In order to include the time-varying step changes of input, it will be assumed that

f(x, t) is continuous in x, but only piecewise continuous in t. In such a case, the

solution x(t) can only be piecewise continuously differentiable.

A function is piecewise continuously differentiable if it is continuously differen-

tiable throughout the subdomain where it is continuous in t; the function may not be

differentiable at the points between these subdomains.

The IVP given in (2.9) may have several solutions for a given initial condition

(IC). Continuity of f(x, t) and its arguments guarantees that there is at least one

solution; however, this is not sufficient to guarantee the uniqueness of the solution.

The following theorem uses the Lipschitz condition to prove existence and uniqueness

of solutions to (2.9).

Theorem 1 If f(x, t) is a piecewise continuous function in t and satisfies the Lips-

chitz condition,

‖f(x, t)− f(y, t)‖ ≤ L‖x− y‖

∀ x, y ∈ B = {x ∈ Rn|‖x − x0‖ ≤ ρ} for all t ∈ [t0, t0 + δ] then there exists some

δ > 0 such that the IVP defined in (2.9) has a unique solution over [t0, t0+ δ] [Khalil,

2002].
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2.1.3 Stabilization of Nonlinear Systems Using Linearization

In this section, the local stability properties of an equilibrium point of a nonlinear

system will be analyzed by first linearizing the system about the equilibrium point in

question. It will then be shown how information about the stability properties of the

linearized system can be used to determine the stability properties of the nonlinear

system in a finite neighborhood of the equilibrium point.

Consider a nonautonomous system

ẋ = f(x, t) (2.10)

where x ∈ D, f : [0,∞]×D → Rn is locally Lipschitz and piecewise continuous, and

D ⊂ Rn is a domain that contains the origin. To linearize the system about the

equilibrium point, the following transformation is introduced:

z = x− x∗ (2.11)

where z(t) represents a deviation from the equilibrium point x∗, which is used to

obtain

ẋ = ż = f(x∗ + z, t) (2.12)

After linearization, (2.12) can be written as:

ż = Az (2.13)
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where A is a constant Jacobian matrix evaluated at x∗.

The origin z = 0 of the linearized system (2.13) is asymptotically stable if all

the eigenvalues of A have negative real parts. It is Lyapunov stable if none of the

eigenvalues has a positive real part, and if there are no repeated eigenvalues on the

imaginary axis. The stability properties of the linearized system (2.13) can be used to

determine the stability properties of the equilibrium point x∗ of the nonlinear system

within a finite neighborhood of the equilibrium point.

Theorem 2 Lyapunov’s First Stability Theorem

� If the origin z = 0 of the linearized system is asymptotically stable, then the

equilibrium point x∗ of the nonlinear system is locally asymptotically stable.

� If the origin z = 0 of the linearized system is unstable, then the equilibrium

point x∗ of the nonlinear system is also unstable.

� If the origin z = 0 of the linearized system is Lyapunov stable, then nothing

can be said about the equilibrium point x∗ of the nonlinear system based on

linear analysis.

Theorem 3 Lyapunov’s Second Stability Theorem

Lyapunov’s first stability theorem analyzes the local convergence properties of a

solution. Lyapunov’s second stability theorem makes use of a function V (x), which

is analogous to a potential function, to analyze the stability of the nonlinear system

based on the following conditions.
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If there exists in some finite neighborhoodD of the equilibrium point x∗, a positive

definite scalar function V (x) with continuous first partial derivative with respect to

x and t satisfying the conditions

� V (x) > 0 for all x 6= x∗ in D, V (x∗) = 0 for all t.

� V̇ (x) ≤ 0 for all x 6= x∗ in D and t, then the equilibrium point x∗ is Lyapunov

stable.

If in addition:

� V̇ (x) is not identically zero along any solution x of the dynamic system other

than x∗, then the equilibrium point x∗ is locally asymptotically stable.

If in addition:

� There exists in entire state space, a positive definite function V (x) which is

radially unbounded (i.e., V (x) → ∞ as ‖x‖ → ∞), then the equilibrium point

x∗ is globally asymptotically stable. (i.e., x(t) → x∗ as t → ∞ for any initial

condition x(t0))

� V̇ (x) > 0 for all x 6= x∗ and t, and V̇ (x∗) = 0 for all t, then the system is

unstable.

2.2 Robust Control

The theory of robust control has been an active area of research in dealing with

uncertainty since the late 1970s. Robust control methods are designed to achieve

robust performance and/or stability in the presence of bounded modelling errors.
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Unlike adaptive methods, robust controllers do not adapt to measurement variations,

but rather remain static during operation assuming that certain unknown variations

will be bounded. Therefore robust controllers tend to be designed based on the worst

case scenario for uncertainty.

Sliding mode control, a branch of robust control, which is used in the controller

design in this dissertation will be explained in this section.

2.2.1 Nonlinear Damping

Consider the following dynamical system.

ẋ = f(x, t) + u(t) (2.14)

where x(t) ∈ R is the state, u(t) ∈ R is the control input, and f(x, t) is an unknown

disturbance that is bounded and continuous such that the following inequalities hold:

|f(x, t)| ≤ ζ, |ḟ(x, t)| ≤ ζ0, |f̈(x, t)| ≤ ζ1 ∀x ∈ R and ∀t ≥ 0 (2.15)

where ζ, ζ0, ζ1 ∈ R+ are known constants. The control input is designed in order to

minimize the ultimate magnitude of x(t) as

u = −(ks + 1)x (2.16)

where ks ∈ R+ is a constant nonlinear damping gain. The closed-loop dynamics can

be written as

ẋ = f(x, t)− (ks + 1)x (2.17)
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In order to analyse the stability of the dynamic system, we define a Lyapunov

function as

V =
1

2
x2 (2.18)

The time derivative of the Lyapunov function along trajectories of the closed-loop

system can be obtained as

V̇ (x) = xf(x, t)− (ks + 1)x2 (2.19)

The time derivative of the Lyapunov function is then upper bounded as

V̇ (x) ≤ −x2 − ks(|x|2 −
ζ

ks
|x|) (2.20)

where the inequalities in (2.15) were used. After completing the squares, the bounding

inequality can be expressed as

V̇ (x) ≤ −x2 + ζ2

4ks
≤ −2V +

ζ2

4ks
(2.21)

The system is concluded to be globally uniformly ultimately bounded [Corless and Leitmann,

1981]. Specifically, V̇ (x) is negative outside the residual set

S = {x | |x| ≤ ζ

2
√
ks
} (2.22)

This analysis can be used to conclude that x(t) is bounded and converges to the

compact set S. Therefore, the robust feedback control design is capable of achieving

bounded convergence of the states, where the size of the residual set S can be made

arbitrarily small by increasing the control gain ks.
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The nonlinear damping controller introduced is continuous, therefore the closed

loop dynamics can be shown to have a unique solution. The solution is shown to

exponentially converge to a residual set that is a function of the disturbance and can

be made arbitrarily small (but not zero). A disadvantage of the nonlinear damping

is that ks is required to be large in order reduce the residual error.

2.2.2 Sliding Mode Control

Unlike the continuous nonlinear damping-based control method, sliding-mode control

(SMC) uses a discontinuous control signal that can be shown to yield asympotic

convergence of the state to the origin or to a desired state.

Depending on the systems position in state-space, the controller switches from one

continuous structure to another, driving it toward the adjacent region in every cycle.

This will lead the system to slide along the boundaries of the control structures. The

motion of the system sliding along these boundaries is called the ”sliding mode”.
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Figure 2.7: Representation of sliding mode control in state space. (Slotine et al.

[1991])

First-order SMC is robust against bounded disturbances and is capable of achiev-

ing exponential convergence to a sliding mode within finite time. However, due to its

discontinuous structure, the solution of the closed loop dynamics only exists in the

Filippov sense. The discontinuity also has effects on SMC applications and perfor-

mance. The SMC in theory requires infinite bandwidth and therefore is susceptible

to a phenomenon called ”chattering” in real world applications. The controller is

expected to switch between input values instantaneously. This instantaneous switch-

ing about the sliding surface results in chattering. Chattering is undesirable and can

cause damage to physical actuators and/or the system.
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Figure 2.8: Chattering effect represented in state space. (Slotine et al. [1991])

In theory of sliding modes, the system stays on the sliding surface once it reaches

it, and can be viewed as sliding only along the sliding surface. The real application

of SMC approximates this theoretical behaviour with a high-frequency control signal

that causes the system to chatter in a tight neighborhood of the sliding surface.

2.2.2.1 Existance of a Sliding Mode

For the given system, a sufficient condition of existence of a sliding mode is that

V̇ =
δV

δx

δx

δt
= xT ẋ < 0 (2.23)

To achieve xT ẋ < 0, the feedback control law u(x) must be picked so that x and ẋ

always have the opposite signs. A first-order SMC for the scalar nonlinear system

given in (2.14) can be defined as

u(t) = −βsgn(x) (2.24)

where β ∈ R+ is a positive constant control gain, and sgn() is the signum function.

After substituting u(t), into the dynamical system, the differential equation becomes
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ẋ = f(x, t)− βsgn(x) (2.25)

The time derivative of the Lyapunov function then becomes

V̇ = xf(x, t)− β|x| ∀x 6= 0 (2.26)

Based on (2.15) and (2.26), the control gain β is designed as:

β > ζ (2.27)

In order to ensure the sliding mode is reached in finite time, V̇ must be strongly

bounded away from zero.

V̇ ≤ −k(
√
V )α

xẋ ≤ −k|x|α

(2.28)

Taking α = 1 and rearranging terms,1

xẋ ≤ −k|x|

sgn(x)ẋ ≤ −k

(2.29)

This allows the control law to switch between positive and negative input depending

on the sign of ẋ to ensure V̇ remains negative.

The Lyapunov derivative (2.26) is then upper bounded as:

1Note: sgn(x) = x
|x|
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V̇ ≤ −k|x| x 6= 0 or |x| > ε (2.30)

where ε ∈ R+ is an arbitrarily small constant and k ∈ R+ is a constant satisfying the

inequality k ≤ β − ζ deduced from (2.15) and (2.26). Therefore, W , 2
√
V = |x|

satisfies the differential inequality

D+W =
1√
V

dV

dt
≤ −k (2.31)

where D+W is the upper right-hand derivative of W (i.e., Dini derivative).

Comparison lemma shows that

W (x)−W (x0)
t

≤ −k

W (x) ≤ W (x0)− kt

(2.32)

Thus, the trajectory reaches the sliding surface in finite time and once on the surface,

it cannot leave.

2.3 Visual Servo Control

Visual Servo Control (VSC) can be defined as the use of computer vision data to con-

trol the motion of a mechanical system, e.g., a robot. VSC uses techniques from image

processing, computer vision and control theory [Corke, 1996; Chaumette et al., 2007;

Chaumette and Hutchinson, 2006]. Vision is a rich source of information and there-

fore is an attractive sensory option. However, the richness of information becomes
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a disadvantage as well as it is an advantage. Visual data requires large amounts of

memory for storage, and it is computationally costly. Fortunately, with the advance-

ments in computational capabilities in the past decades, use of vision based systems

has become a viable and attractive option for autonomous and tele-operated systems.

Visual systems acquire information using a camera. These systems are split into

two categories based on the location of the camera with respect to the robot. The

camera is either mounted directly on the robot, in which case the robot motion

induces camera motion, or it is fixed somewhere in the workspace so that it can ob-

serve the robot from a stationary point of view. These configurations are known

as eye-in-hand and eye-to-hand in the VSC community [Papanikolopoulos et al.,

1991, 1993; Wijesoma et al., 1993; Hager et al., 1995; Chaumette and Hutchinson,

2006; Chaumette et al., 2007].

2.3.1 The Basics of Visual Servoing

Similar to common controllers, the aim of all vision-based control schemes is to min-

imize an error, e(t), which can be identified as:

e(t) = s(m(t), a)− s∗ (2.33)

where m(t) represents a set of image measurements (i.e., image coordinates of interest

points). These image measurements are used to compute a vector of visual features,

s ∈ R∗, in which a is a set of parameters that contain additional knowledge about

the system (i.e., camera intrinsic parameters, models of objects, etc.). The vector s∗
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represents the desired values of these features.

A simple velocity controller for a camera can be defined as

ṡ = Lνc (2.34)

where νc = (vc, ωc) is the velocity of the camera, L ∈ Rk×6 is the interaction matrix

(Jacobian, camera intrinsic parameters). Taking the time derivative of (2.33), the

rate of error and ṡ can be related as

ė = Lνc (2.35)

In this case, ν is considered to be the control input to the system. For an exponential

decrease of the error, the error rate can be defined as:

ė = −λe (2.36)

Using (2.35) and (2.36), e and νc are related as:

νc = −λL+e (2.37)

where L+ ∈ R6×k is the Moore-Penrose pseudo inverse of L, (L+ = (LTL)−1) when

L is of full rank 6. In real life situations it is impossible to exactly know L, so an

approximation or an estimate is used instead. The approximation of the pseudo-

inverse of the interaction matrix is represented as L̂+. By this notation, the control

law becomes

νc = −λL̂+e (2.38)
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Based on how s is chosen, VSC splits into two major schemes: Position-Based Visual

Servoing (PBVS) and Image-Based Visual Servoing (IBVS).

2.3.2 Position-Based Visual Servo Control

Position-based control techniques use the pose of the camera with respect to a refer-

ence frame to define s [Hutchinson et al., 1996; Malis et al., 1999; Corke and Hutchinson,

2001; Chaumette and Hutchinson, 2006; Chaumette et al., 2007]. In PBVS, features

are extracted from the image to estimate/compute a partial 3D reconstruction of the

target or motion of it in the environment. An error is calculated as the difference

between the current pose and the desired pose in task space which is used by the

control system (see Figure 2.9).
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Figure 2.9: F and F∗ represent current and desired camera frames. PBVS schemes

use the difference between these frames to calculate an error to minimize. [Hu et al.,

2009]

For some applications, the IBVS approach is more popular compared to PBVS

schemes since position-based schemes rely on 3D reconstruction. Therefore any errors

in the calibration of the vision system will subsequently lead to errors in task execution

[Chaumette, 1998]. Position-based schemes also lack a mechanism by which the image

is directly regulated. This can result in the feature points leaving the camera field of

view. An IBVS control law directly links image space velocities to velocities in the

robot work space. This means the robot is directly actuated using the measurements

from the image. In return, computational delay is reduced and the necessity for image

interpretation is eliminated. Furthermore, image-based schemes are robust to camera

calibration and sensor modelling error.
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2.3.3 Image-Based Visual Servo Control

Classically, coordinates of feature points projected onto the image plane are used to

define the set s in image-based control schemes. The image measurement set m is

not necessarily limited to image points (i.e., image moments [Mebarki et al., 2010;

Copot et al., 2012]). The parameter set a is the camera intrinsic parameters which

relate the feature points to the image plane (i.e., projection model). The properties

of the projection model are translated through the interaction matrix.

2.3.3.1 The Interaction Matrix

A point in a 3D Euclidean space with coordinates X = (X,Y, Z), is projected to

the image plane as a 2D point with coordinates x = (x, y) through the pinhole lens

model.
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Figure 2.10: Camera projection model displaying the Euclidean space and image

space relation.

Considering the scenario depicted in Figure 2.10, simple geometry can be used to

obtain

x = X
Z
= (u− u0)/f

y = Y
Z
= (v − v0)/f

(2.39)

where m = (u, v) are the coordinates of the point expressed in pixel units, u0 and v0

are the coordinates of the principal point, a and b are camera scaling factors along

x, y-axes and f is the focal length of camera. In this case, the visual feature set is

selected as the coordinates of the image point (i.e., s = x = (x, y)).
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Taking the time derivative of (2.39) provides:

ẋ = ẊZ−XŻ
Z2 = (u− u0)/f

ẏ = Ẏ Z−Y Ż
Z2 = (v − v0)/f

(2.40)

Then the velocity of the 3D point can be related to the camera spatial velocity by:

Ẋ = −vc − ωc ×X (2.41)

where

Ẋ = −vx − ωyZ + ωzY

Ẏ = −vy − ωzX + ωxZ

Ż = −vz − ωxY + ωyX

(2.42)

After using (2.42) in (2.40), with some factoring and simplification, ẋ can be repre-

sented in the following form,

ẋ = Lνc (2.43)

where L is the interaction matrix defined as

L =

− 1
Z

0 x
Z

xy −(1 + x2) y

0 − 1
Z

y
Z

(1 + y2) −xy −x

 (2.44)
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Chapter 3

Dynamic and Kinematic Models

3.1 Coordinate Frames

The dynamic system being modeled consists of multiple components: the 3D space

where the motion takes place, the missile and target, and the camera used for tracking

the target. In order to relate subcomponents of the system, the following coordinate

frames are defined.

3.1.1 Missile Frame

An orthogonal frame Fm(t) is defined at the center of gravity (CoG) of the missile.

3.1.2 Earth-Fixed Frame

An Earth-fixed reference frame Fe is defined on the surface of the Earth which is used

to track the motion of the missile and target in 3D space.

46



3.1.3 Reference Frame

A body carried reference frame Fr is defined, located at the CoG of the missile.

Frame Fr is fixed to a North-East-Down (NED) navigation frame, and is assumed

to coincide with frame Fe (assuming the Earth’s curvature is negligible). The body-

carried reference frame Fr is used to define the angular orientation of the aircraft

while the Earth-fixed reference frame Fe is used to define its translation.

3.1.4 Camera Frame

A monocular camera would most likely be located at the nose of the missile. However

for model simplification, the camera frame Fc(t) is defined at the center of gravity of

the missile, coinciding with the frames Fm(t) and Fr. If necessary, this can easily be

changed by adding the translation between the nose and the CoG to Fc
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Figure 3.1: Coordinate Frames. (Adapted from Yanushevsky [2007])
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3.2 Missile Dynamics

The dynamic model for a bank-to-turn missile (BTT) is used in the subsequent control

development. The orientation of frame Fm with respect to frame Fr is defined by the

angles of rotation φ(t), σ(t), and ψ(t) about the x, y, and z axes, respectively.

The linear and angular velocities of the missile measured in Fm with respect to

Fe are denoted by

vm = [vx vy vz]
T ∈ R3 (3.1)

ωm = [ωx ωy ωz]
T ∈ R3 (3.2)

3.2.1 Linear Acceleration

The linear acceleration of the missile measure in the body frame Fm(t) is expressed

as

v̇x = ωzvy − ωyvz +
Fx

m
(3.3)

v̇y = ωxvz − ωzvx +
Fy

m
(3.4)

v̇z = ωyvx − ωxvy +
Fz

m
. (3.5)

In the equations above, m ∈ R represents the constant mass of the missile, and

Fx(t),Fy(t),Fz(t) ∈ R are the forces acting along the body axes defined as

Fx = Gx(q) + kFρairV
2
MCx(α, β,Mm) + τx (3.6)

Fy = Gy(q) + kFρairV
2
MCy(α, β,Mm) + τy (3.7)

Fz = Gz(q) + kFρairV
2
MCz(α, β,Mm) + τz (3.8)
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where kF ∈ R is a constant parameter determined by the missile geometry, ρair ∈ R is

the air density, and VM(t) ∈ R is the magnitude of the missile velocity measured with

respect to Fe. Cx(α, β,Mm), Cy(α, β,Mm), Cz(α, β,Mm) ∈ R are the unknown fric-

tion coefficients corresponding to the aerodynamic forces, where α(t), β(t),Mm(t) rep-

resent the angle of attack, sideslip angle, and Mach number, respectively. τx, τy, τz ∈ R

are the control force inputs 1. The x,y, and z components of the gravitational force

acting on the missile, Gx(t), Gy(t), Gz(t) ∈ R are expressed as

Gx(t) = −mg sin(σ) (3.9)

Gy(t) = −mg cos(σ) sin(φ) (3.10)

Gz(t) = −mg cos(σ) cos(φ) (3.11)

where g ∈ R is the gravitational acceleration constant.

1It should be noted that the control force input, τ = [τx τy τz τl τm τn]
T , is assumed

to be decoupled in this preliminary study (i.e., the control input can be applied in 6-DoF indepen-

dently). The 6-DoF independent control is commonly used in order to simplify the dynamic model

(Mehta et al. [2011],Mehta et al. [2012b],Mehta et al. [2012a]). However, use of a realistic dynamic

model is intended for future studies in which deflection surface angles are used to steer the missile

(Yanushevsky [2007]).
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3.2.2 Angular Acceleration

The angular acceleration of the missile measured in Fm with respect to Fe is denoted

by

ω̇x =
Iy − Iz
Ix

ωyωz +
L

Ix
(3.12)

ω̇y =
Iz − Ix
Iy

ωxωz +
M

Iy
(3.13)

ω̇z =
Ix − Iy
Iz

ωxωy +
N

Iz
(3.14)

where Ix, Iy, Iz ∈ R denote the constant unknown moments of inertia about x,y,

and z-axes. L(t),M(t), N(t) ∈ R are the rolling, pitching and yawing moments,

respectively, given by

L = kMρairV
2
MCl(α, β,Mm) + τl (3.15)

M = kMρairV
2
MCm(α, β,Mm) + τm (3.16)

N = kMρairV
2
MCn(α, β,Mm) + τn. (3.17)

Cl(α, β,Mm), Cm(α, β,Mm), Cn(α, β,Mm) ∈ R are the unknown coefficients of friction

corresponding to the aerodynamic moments, and τl, τm, τn ∈ R are control moment

inputs. The friction coefficients in (3.6,3.15) can be linearly parametrized in terms of

linear velocities vx(t), vy(t), and vz(t) for small angles of α(t) and β(t) as

Ci = Ci0 + Ciβ
vy
vx

+ Ciα1
vz
vx

+ Ciα2

(
vz
vx

)2

(3.18)

+ Ciα3

(
vz
vx

)3

+ CiM1

(
vx
vs

)
+ CiM2

(
vz
vs

)
(3.19)

+ CiM3

(
v2z
vxvs

)
+ CiM4

(
v3z
v2xvs

)
(3.20)
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where vs(t) ∈ R denotes the local speed of sound, and Ci0, Ciβ,Ciα1, Ciα2, Ciα3, CiM1,

CiM2, CiM3, CiM4 ∈ R are unknown constant friction parameters, for i = x, y, z, l,m,

or n.

3.2.3 Equation of Motion

The equation of motion for the missile can now be expressed in Euler-Lagrange form,

considering the coordinate frames and dynamical equations defined above, as

Mq̈ = C(q̇)q̇ +G(q) + f(q̇) + τ + τd (3.21)

where q(t), q̇(t) ∈ R6 denote the 6-DOF position and velocity, respectively, of frame

Fm(t) with respect to frame Fe where

q(t) = [x y z φ σ ψ]T (3.22)

q̇(t) = [vTm ωT
m]. (3.23)

In equation (3.21), τd(t) ∈ R6 denotes an unknown, nonlinear, nonvanishing bounded

disturbance, whileM ∈ R6x6 represents the unknown constant inertia matrix, C(q̇) ∈

R6x6 is the Coriolis matrix, G(q) ∈ R6 is the unknown gravity vector, and f(q̇) ∈ R6

denotes the unknown friction vector, which are defined as

M = diag(m,m,m, Ix, Iy, Iz), C(q̇) = diag(−[mωm]×, [mvm]×) (3.24)
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G(q) =



−mg sin(σ)

mg cos(σ) sin(φ)

mg cos(σ) cos(φ)

0

0

0


, f(q̇) =



kFρairv
2
xCx

kFρairv
2
xCy

kFρairv
2
xCz

kFρairv
2
xCl

kFρairv
2
xCm

kFρairv
2
xCn


(3.25)

In equation (1.27), diag(.) represents a diagonal matrix, and [.]× represents the

skew-symmetric cross-product matrix.

3.3 Image Kinematics

This section formulates the relationships between the missile velocity q̇(t) ∈ R6 and

the velocity of the target T in the camera image plane. A monocular camera is

attached to the center of gravity of the missile airframe.

Note 2 Although the camera is placed at the nose of the missile in real life, this

assumption can be made without the loss of generality, since any deviation can be

accounted for by a simple coordinate transformation.

A time-varying orthogonal frame Fc(t) is attached to the camera such that the

origins of Fc(t) and missile body frame Fm coincide with the missile center of gravity.

A target T is represented as a point in the Euclidean space and it is assumed to

remain in the camera field of view.2

2This is to ensure the closed-loop behavior of the system. Some existing vision-based controllers

have a potential field implemented around the FOV within the control law to ensure feature points

stay on the image plane. (Corke and Hutchinson [2001])
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Euclidean coordinates of the target T expressed in the camera coordinate frame

Fc(t) can be represented as

m̄(t) , [xt(t) yt(t) zt(t)]
T (3.26)

where it is assumed that the target is always in front of the camera (i.e., zt(t) > ε, ε ∈

R+ ). The rate of change of the Euclidean coordinates m̄(t) due to the camera motion

is related to the camera velocity as [Mehta et al., 2012a]

˙̄m(t) = −vc(t)− ωc(t)× m̄(t) (3.27)

where vc(t), ωc(t) ∈ R3 are linear and angular velocities of the camera as measured

in Fc respectively. Using transformation of left-hand coordinate frame to right-hand

coordinate frame, left-handed camera coordinate frame can be related to the 6-DOF

missile velocity as measured in Fm as

vc = [vy − vz vx]
T and ω = [ωy − ωz ωx]

T (3.28)
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Figure 3.2: Left-handed camera and right-handed missile frames located at the CoG.

The target T is projected onto an image plane π as the point

p(t) , [u(t) v(t)]T (3.29)

where pixel coordinates p(t) are related to the Euclidean coordinates m̄(t) via pro-

jection geometry as

u(t) =
faxt(t)

zt(t)
+ u0 v(t) =

fbyt(t)

zt(t)
+ v0 (3.30)

where f ∈ R is the focal length, a and b ∈ R are scaling factors along x and y-axes;

[u0v0]
T ∈ R2 are the principal point coordinates (i.e., the intersection of an optical

axis with the image plane) of the camera. Taking the time derivative of p(t), the
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following expression for the rate of change of the pixel coordinates is obtained:

ṗ(t) =

u̇
v̇

 = f

a
b


 ẋz−xż

z2

ẏz−yż
z2

 (3.31)

Figure 3.3: Camera projection model displaying the Euclidean space and image space

relation.

Substituting ẋ, ẏ, ż from ˙̄m into the equation above and factoring out 1
z2
, the

equation becomes

ṗ(t) = f

a
b

 1

z2

−vyzt + ωzz
2
t + ωxytzt + xtvx + xtωyyt + x2tωz

vzzt + ωyz
2
t − ωxxtzt + ytvx + y2tωy + ytωzxt

 (3.32)
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Then linear and angular acceleration terms can be factored out to give

ṗ(t) =

faxt

z2t
−fa

zt
0 fayt

zt

faxtyt
z2t

a(f +
fx2

t

z2t
)

fbyt
z2t

0 fb
zt

−fbxt

zt
b(f +

fy2t
z2t

) fbxtyt
z2t





vx

vy

vz

ωx

ωy

ωz


(3.33)

This relation can be simplified to the following form which relates velocities in Eu-

clidean space to the feature point velocities in the image

ṗ(t) =

u̇(t)
v̇(t)

 = Jq̇(t) (3.34)

where J ∈ R2×6 denotes the Jacobian matrix which contains the projection geometry

as explained earlier in the Visual Servo Control section.

J =

faxt

z2t
−fa

zt
0 fayt

zt

faxtyt
z2t

a(f +
fx2

t

z2t
)

fbyt
z2t

0 fb
zt

−fbxt

zt
b(f +

fy2t
z2t

) fbxtyt
z2t

 (3.35)

The estimation of depth is a challenge using a monocular camera. In this dissertation,

any uncertainties due to inaccurate depth information are assumed to be absorbed

into the unknown auxiliary terms Ñ and Nd, which are introduced in the Control

Development section. These terms are compensated by the robust control law de-

sign. Future work might consider using a homography-based approach, which utilizes

minimal information about the target in order to calculate the depth information

(Hu et al. [2009], Mackunis et al. [2007]).
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Remark 1 The image Jacobian J given above remains bounded everywhere except at

zt = 0. This occurs when the camera frame Fc intercepts the target T . However, the

impact actually happens before Fc intercepts the target which is attached to the missile

CoG for practical purposes. Therefore the missile is considered to have intercepted

the target when 0 < zt ≤ zmin, zmin ∈ R+.

Figure 3.4: Actual camera position vs. virtual camera position. The missile is as-

sumed to have intercepted the target if the relative distance zt is equal to or less than

zmin.
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Chapter 4

Control System

4.1 Control Objective

The control objective of this system is to drive the relative distance between the

missile frame Fm and the target T to zero, or to intercept the target in other words.

This can be achieved by driving the time-varying target pixel coordinates p(t) to the

desired image coordinates pd. Therefore, the control objective can be mathematically

stated as:

p(t) −→ pd where, pd = [u0 v0]
T (4.1)

4.2 Control Development

Property 1: The inertia matrixM is symmetric, positive definite, such that for known

positive constants m1,m2 ∈ R, the following inequality is satisfied:
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m1‖ξ2‖ ≤ ξTMξ ≤ m2‖ξ2‖ ∀ξ ∈ Rn (4.2)

A tracking error term e(t) , [e1 e2]
T ∈ R2 is defined based on the control

objective as the difference between the image coordinates of target and the principal

point.

e(t) , pd − p(t) (4.3)

Taking the time derivative of the error term and using the image kinematic equation

from (3.34), we obtain

ė(t) = −ṗ(t) = −Jq̇ (4.4)

For the subsequent control development and stability analysis, we add and subtract

λe to the equation above

ė(t) = −Jq̇ + λe− λe (4.5)

where λ ∈ R is a positive constant. An auxiliary error term r(t) ∈ R6 is introduced

to facilitate the following controller development and stability analysis

r(t) = −q̇ + J+λe (4.6)

where J+(t) ∈ R6×2 denotes the pseudo-inverse of the Jacobian matrix J(t). By using

(4.5) and (4.6), the rate of change of the error term e(t) then can be expressed as

ė(t) = −λe+ Jr (4.7)
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First by pre-multiplying the auxiliary error signal r(t) and then taking the time

derivative of this term results in the following expression for open-loop dynamics:

Mṙ = −Mq̈ +MJ̇+λe+MJ+λė (4.8)

By substituting the dynamics equation in (3.21), the open-loop error dynamics can

be expressed as

Mṙ = −JT e− τ + Ñ +Nd (4.9)

where

Ñ = −Cq̇ + Cq̇d −G(q) +G(qd)

−f(q̇) + f(q̇d) +MJ̇+λe−MJ̇+(qd)λe

+MJ+λė−MJ+λė(qd) + JT e− JT (qd)e

(4.10)

and

Nd = −Cq̇d −G(qd)− f(q̇d) +MJ̇+(qd)λe

+MJ+λė(qd) + JT (qd)e+ τd

(4.11)

The selective grouping of the terms in (4.10) and (4.11) is motivated by the fact that

the following bounding inequalities can be developed [MacKunis et al., 2010a, b]:

‖Ñ‖ ≤ ρ(‖z‖)‖z‖ , ‖Nd‖ ≤ ζd (4.12)

where ρ, ζd ∈ R are known positive bounding constants, and z is an error vector

defined as
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z(t) , [eT rT ]T (4.13)

Based on the open-loop error system and the subsequent stability analysis, the

control input τ is designed as

τ = (ks + 1)r + βsgn(r) (4.14)

where ks ∈ R and β ∈ R are positive constants and sgn(·) is the signum function.

The closed-loop error system can then be obtained by substituting the control

input expression into the open-loop error system in (4.9) as

Mṙ = Ñ +Nd − JT e− (ks + 1)r − βsgn(r) (4.15)
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Chapter 5

Stability Analysis

Theorem 4 The controller presented in (4.14) ensures that the missile airframe Fm

intercepts the target in the following mathematical sense.

lim
t→∞

r(t), e(t) = 0 (5.1)

Proof 1 Consider a non-negative Lyapunov function, V (t), defined as:

V (t) =
1

2
rTMr +

1

2
eT e (5.2)

Taking the time derivative of V (t) yields

V̇ = rTMṙ + eT ė (5.3)

Substituting (4.5) and (4.15) into the equation above, V̇ can be expressed as

V̇ = rT (Ñ +Nd − τ − 1

2
Ṁr − JT e) + eT (Jr − λe) (5.4)
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After cancelling common terms and substituting the control input τ , the following

equation is obtained.

V̇ = rT Ñ + rTNd − rT (ks + 1)r − rTβsgn(r)− eTλe (5.5)

Based on the bounding inequalities defined in (4.12), V̇ (e, r) can be upper bounded

as:

V̇ ≤
[
‖r‖ρ(‖z‖)‖z‖ − ‖r‖2ks

]
+ ‖r‖ζd − ‖r‖2 − β‖r‖ − λ‖e‖2 (5.6)

After completing the square for the terms in brackets and then reorganizing, the

Lyapunov derivative can be expressed as

V̇ ≤ −ks
(
‖r‖2 − ρ(‖z‖)‖r‖‖z‖

ks
+ ρ2(‖z‖)‖z‖2

4k2s

)

+ρ2(‖z‖)‖z‖2
4ks

+ (ζd − β)‖r‖ − ‖r‖2 − λ‖e‖2

(5.7)

where the control gain β is designed as β > ζd.

Thus, the Lyapunov derivative can be upper bounded as

V̇ ≤ ρ2 (‖z‖) ‖z‖2

4ks
− ‖r‖2 − λ‖e‖2 (5.8)

Using equation (4.13), the upper bound on dotV can be expressed as

V̇ ≤ −λ0‖z‖2 +
ρ2 (‖z‖) ‖z‖2

4ks
(5.9)
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where λ0 , min{1, λ}. Thus, based on (5.9), V̇L ≤ 0 for ‖z‖ ∈ D, where D is defined

as

D , {z(t) ∈ D|‖z‖ ≤ ρ−1(2
√
λ0ks)}

Thus, asymptotic stability is achieved provided z(t) remains in the set D, where D

can be made arbitrarily large be increasing the control gain ks; i.e., a semi-global

asymptotically stable (SGAS) result. Hence, for ‖z‖ ∈ D, the upper bound on the

Lyapunov derivative can be expressed as

V̇ ≤ −c‖z‖2 (5.10)

where c ∈ R is a positive bounding constant.

The inequality (5.9) can be used to show that V (e, r) ∈ L∞ in D. Likewise, using

(5.2), it can be concluded that e(t), r(t) ∈ L∞ in D. By using this conclusion and

equation (4.5), it must be that ė(t) ∈ L∞ in D. Since ė(t) = −ṗ(t), ṗ(t) ∈ L∞ in

D. From standard linear analysis, it can then be proven that q̇(t) ∈ L∞ in D. Given

that r(t) ∈ L∞, the control input τ(t) ∈ L∞ in D. These can be used along with the

closed-loop dynamic equation (4.15) to conclude that q(t) ∈ L∞ in D.
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Chapter 6

Simulation - Stationary Target

The performance of the proposed robust control law was tested via numerical com-

puter simulation using Matlab. The first simulation involved a stationary target

located at a Euclidean point, tt ∈ R3, with respect to the NED earth frame given by

tt = [1200 2400 − 5000]T (m) (6.1)

A missile body frame, Fm, is defined at initial position

tm = [0 0 − 3500]T (6.2)

and initial orientation,

Rm =


0.5000 −0.8138 0.2942

0.8660 0.4698 −0.1710

0 0.3420 0.9397

 (6.3)

The constant modeling parameters are defined below [Mehta et al. [2012a]].
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m = 144.0 [kg] g = 9.81 [m/s2]

Ix = 1.615 [kg −m2] ρair = 0.26 [kg/m3]

Iy = 136.0 [kg −m2] kF = 0.01425 [m2]

Iz = 136.0 [kg −m2] kM = 2.716× 10−3 [m3]

ks = 500 [·] βs = 500 [·]

(6.4)

where m is mass of the missile, g is the gravitational acceleration, Ix, Iy, Iz are missile

moment of inertia around x, y, z-axis respectively. Density of air is represented by ρair,

while kF and kM are constant missile parameters. The missile and target velocities

are initialized as

q̇ = [120 0 0 0 0 0]T [m/s], q̇t = [0 0 0 0 0 0]T [m/s] (6.5)

Friction coefficients are obtained by using,

Cx = −0.57 + 0.0083α

Cy = −0.21β

Cz = (0.0429− 0.5052α+ 0.0125α2 − 0.0015α3)

+(−0.0191− 0.1230α− 0.0138α2 + 0.0006α3)Mm

Cl = 0.116β

Cm = (−0.0381− 2.7419α+ 0.2131α2 − 0.0055α3)

+(−0.4041 + 0.8715α− 0.0623α2 + 0.0014α3)Mm

Cn = 0.08β

(6.6)

The coefficients of friction (6.6) and the missile dynamic parameters are used only

to generate the plant model and are not used in the guidance law. The simulation

has additive white Gaussian noise (AWGN) in the target pixel coordinate p(u, v) with
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standard deviation of 0.1 pixel and the depth measurement z(t) by 10m. The robust

control law compensates for the unmodeled effects and AWGN added into the system.

The figure below displays the tracking and error minimization performance of the

proposed controller. Figure 6.1a shows the initial target position (�) and the final

position of the target (4) in the image plane. Figure 6.1b displays the difference

values between current and desired values of u and v, which were defined as the

tracking error e(t).
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Figure 6.1: Tracking and error minimization performance is displayed for a stationary

target.
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Figure 6.2: Linear and angular velocities of the missile along x, y, and z − axis

measured with respect to the earth frame.

Figure 6.2 shows the linear and angular velocities of the missile airframe during the

tracking process measured with respect to NED earth frame. The force and moment

inputs to the system during target tracking are plotted in Figure 6.3.
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Figure 6.3: This plot shows the control input (τ(t)) applied to the missile airframe

during the simulation.
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Figure 6.4: 3D visualisation of the missile trajectory (in blue) and interception of the

stationary target (◦).

Figure 6.4 displays a 3D visualisation of the missile trajectory. It can be seen

from this figure that the robust control system proposed is capable of tracking the

target and achieving interception in the presence of uncertainties and modeling errors

introduced into the simulated system. In this section, the simulation considered the

case where the target is stationary.
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Chapter 7

Simulation - Non-Stationary

Target

The second simulation involved the evaluation of the proposed controller’s perfor-

mance in the presence of a moving target. The simulation parameters are identical

to the first simulation with an addition of a moving target. The target’s velocity is

initialized as

q̇t = [vt ωt] (7.1)

vt = [50 30 0]T (m/s), ωt = [0 0 0.05]T (rad/s) (7.2)

Figure 7.1 shows the tracking and error minimization capability of the proposed

controller in the presence of a moving target. It can be seen that the controller drives

the target toward the principal point and the error is reduced asymptotically.
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Figure 7.1: Tracking and error minimization performance is displayed for a non-

stationary target.

The missile linear and angular velocities and the control input commands are

plotted in Figures 7.2 and 7.3, respectively.
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Figure 7.2: Linear and angular velocities of the missile along x, y, and z − axis

measured with respect to the earth frame.
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Figure 7.3: This plot shows the control input (τ(t)) applied to the missile airframe

during the simulation.

Finally, the trajectory of the missile in 3D Euclidean space is plotted in Figure

7.4. It was shown that the missile frame is also able to track a moving target and

intercept it.
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Figure 7.4: 3D visualization of the missile trajectory (in blue) and interception of the

stationary target (◦).
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Chapter 8

Conclusion

A robust vision-based missile guidance law is presented for a missile equipped with

a monocular camera system. The guidance law yields asymptotic target interception

of a target in the presence of dynamic uncertainty and unknown target evasive ma-

neuvers. The result is achieved by using an image-based visual servo control method,

where the missile dynamics are combined with the target image kinematics of the

monocular camera. The proposed control law is designed to be inexpensively im-

plemented, requiring no online adaptive laws, NNs, or complex computations in the

control loop. A Lyapunov-based stability analysis is used to prove that the proposed

control law is capable of regulating the pixel coordinates of the target to the principle

point. Once the target image coordinates are driven toward the principal point (op-

tical axis), then the missile converges to a collision course. A numerical simulation

is used to test the performance of the control law in the presence of stationary and

non-stationary targets, where the plant model contains modeling errors and additive

disturbances. The simulation results demonstrate that the proposed vision-based ro-
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bust pursuit guidance law is capable of intercepting the target in both cases with zero

miss distance.
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