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Optimal Impact Angle Guidance for
Exo-Atmospheric Interception Utilizing

Gravitational Effect
Shaoming He and Chang-Hun Lee*

Abstract—This paper aims to develop a new optimal intercept
angle guidance law for exo-atmospheric interception by utilizing
gravity. A finite-time optimal regulation problem is formulated
by considering the instantaneous zero-effort-miss (ZEM) and
the intercept angle error as the system states. The analytical
guidance command is then derived based on Schwarz’s inequality
approach and Lagrange multiplier concept. Capturability anal-
ysis using instantaneous linear time-invariant system concept
is also presented to provide better insights of the proposed
guidance law. Theoretical analysis reveals that the proposed
optimal guidance law encompasses previously suggested optimal
impact angle constrained guidance laws. Numerical simulations
with some comparisons clearly demonstrate the effectiveness of
the proposed guidance law.

Index Terms—Missile guidance, Intercept angle, Optimal con-
trol, Varying-speed, Gravity

I. INTRODUCTION

The ability to constrain the final intercept angle of the anti-
ship or anti-tank missile is often desirable for increasing the
warhead effectiveness as well as the kill probability since it
enables the missile to attack a vulnerable or weak point on a
target [1]–[8]. For other types of homing missile systems, the
interception angle control is required to maintain advantageous
homing engagement geometry against a target as well as to
ensure a better quality of seeker measurement on a target [9]–
[11]. For these reasons, over the past decades, extensive efforts
have been made in the area of intercept angle or impact angle
control for tactical missiles.

Until recently, the optimal control theory has been widely
used to devise advanced intercept angle guidance laws due
to its well-established design process and ability to satisfy
terminal constraints by a state feedback formulation. Optimal
guidance laws bring in the philosophy of trajectory shaping
by optimizing a meaningful cost function as well as meeting
certain terminal boundary conditions [12]. In [13], the authors
first proposed an optimal impact angle control guidance law
in the vertical plane for reentry vehicles. In [14], the authors
suggested a numerical solution to achieve vertical interception
with minimum interception time to increase the attacking
missile’s survivability. Zarchan [15] derived a trajectory shap-
ing guidance (TSG) law to cater for the intercept angle by
minimizing the energy consumption. Later in [16], the TSG
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was extended to missiles with arbitrary order control system,
i.e., autopilot, and the closed-form solution was also provided.
Linear quadratic optimal guidance law and optimal differential
game guidance laws that explicitly enable imposing a prede-
termined intercept angle were proposed in [17]. To provide
one more degree-of-freedom of trajectory shaping, a nth order
time-to-go weighted cost function was utilized in [18], [19] to
design optimal guidance laws for impact angle control. Lee et
al. [20] further developed a generalized optimal guidance law
with arbitrary weighting functions to satisfy terminal angle
constraint.

Note that most previous optimal intercept angle guidance
laws were designed by assuming that the vehicle moves with
constant velocity. Generally, for most homing missile systems,
the interception event takes place during gliding phase (ab-
sence of axial acceleration due to thrust) and the homing
duration is relatively short compared to other flight phases.
Therefore, the speed of the interceptor can be considered as
a slow-varying variable and the constant velocity assumption
is valid. However, for an exo-atmospheric scenario, where
aerodynamic force is not available to control an interceptor,
thrust vector control is widely used as an alternative way
and the interceptor velocity increases due to the presence
of axial acceleration [10], [21]. In this case, obviously, the
constant velocity assumption is not valid and classical optimal
impact angle guidance laws, which relies on the constant-speed
assumption, cannot drive the missile to follow the desired
interception course and is far away from optimality. Optimal
guidance laws that addressed the issue of varying missile
velocity can be found in [10], [22]–[25], but terminal flight
path angle was not constrained in these guidance laws. In a
recent noteworthy contribution [26], the authors provided a
solution to design impact angle guidance law for speed-varying
missiles. However, this guidance law was limited to address
the optimality issue because it was formulated based on a kind
of nonlinear control approach rather than the optimal control
approach.

Another issue of previous optimal intercept angle guidance
laws is that most of them were proposed under the gravity-
free assumption except for some computational guidance al-
gorithms [27], [28]. The gravity-free assumption justifies the
linearization around the straight line collision course and there-
fore simplifies optimal guidance law derivation process. When
implementing these guidance laws in reality, an additional term
is utilized to counteract the effect of gravitational acceleration.
This simple and straightforward method, obviously, requires
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more control energy and cannot guarantee zero final guidance
command, leading to the sacrifice of the direct hit effec-
tiveness as well as the operational margins. Especially, these
issues become more significant in the case of exo-atmospheric
interception. Notice that practical interceptors usually have
constrained maneuverability [29], [30]. Leveraging simple
gravity compensation is not a wise option.

Motivated by the above observations, this paper aims to
propose a new optimal intercept angle guidance law for ac-
celerating missiles in exo-atmospheric interception by utilizing
gravity. In our previous work [25], we suggested a new gravity-
turn-assisted optimal guidance law that directly uses, instead
of compensating for, the gravity for accelerating missiles. This
paper extends [25] to optimal intercept angle guidance. To
achieve this, we first formulate a finite-time regulation problem
by considering instantaneous zero-effort-miss ZEM [25] and
intercept angle as the system states to be controlled. The
proposed guidance law is then analytically derived through
Schwarz’s inequality approach with the aid of Lagrange mul-
tiplier concept. The final guidance command is given in a
feedback form with time-varying navigation gains. Theoretical
analysis shows that the navigation gains gradually converge
to constant values when the missile approaches the target.
Without the consideration of gravity and axial acceleration,
the proposed guidance law reduces to classical time-to-go
weighted optimal impact angle guidance (TWOIAG), proposed
in [18], [19].

The key features of the proposed guidance law are twofold.
On one hand, the gravity-turn concept is leveraged in guidance
law derivation and thus the proposed algorithm requires no
additional term to counteract the gravitational effect. This
strategy enables energy saving and accurate interception, as
confirmed by numerical simulation results. On the other hand,
the commended acceleration of the proposed guidance law
converges to zero at the time of impact. Therefore, the pro-
posed approach provides operational margins and improves
robustness against external uncertainties, especially near the
interception.

The rest of the paper is organized as follows. Sec. II
presents some preliminaries and backgrounds of this paper.
Sec. III derives the proposed optimal intercept angle guidance
law, followed by the capturability analysis and discussion of
the proposed guidance law shown in Sec. IV. Finally, some
numerical simulations and conclusions are offered.

II. PRELIMINARIES AND BACKGROUNDS

This section states some preliminary backgrounds on the
kinematics model and the instantaneous ZEM concept in the
exo-atmospheric guidance problem. The problem formulation
of this paper is also presented.

A. Missile-Target Kinematics

This paper considers the planar exo-atmospheric homing
engagement geometry, shown in Fig. 1, where M and T denote
the missile and the target, respectively. The coordinate XIOYI
represents the inertial frame. r is the relative distance between
the interceptor and the target. The notations λ and γ denote the
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Fig. 1. Planar geometry of homing engagement.

line-of-sight (LOS) angle and flight path angle. V is velocity
of the vehicle. The variable of ax stands for the missile’s axial
acceleration. αM is the interceptor’s shear angle, which is the
angle between the velocity vector and thrust vector for exo-
atmospheric vehicles [31]. In order to allow for a closed-form
formulation, we assume that the missile’s axial acceleration
ax, provided by a mounted rocket motor, is constant. Note that
this assumption is widely-accepted in guidance law design for
accelerating missiles [10], [21].

The differential equations describing the missile-target rel-
ative kinematics are formulated as

ṙ = Vr (1)

rλ̇ = Vλ (2)

where the relative speeds along and perpendicular to the LOS
are

Vr = VM cos δ − VT cosβ (3)

Vλ = VM sin δ − VT sinβ (4)

The complementary equations that determine the relation-
ship between the lead angle and flight path angle are

δ = γM − λ (5)

β = γT − λ (6)

During the exo-atmospheric endgame, there is no aerody-
namic force and the flight path angle is only controlled by
the normal acceleration aM which is introduced by the axial
acceleration and the shear angle as

aM = ax sinαM (7)

The interceptor employs an attitude control system to
change the direction of the thrust, that is αM , to generate
the required normal acceleration for trajectory shaping and
to provide energy increasing [10], [21]. For simplicity, this
paper assumes that the attitude control system is ideal, i.e., the
desired attitude is obtained with no time delays. Note that this
assumption is valid with the purpose of deriving a guidance
law because the control loop is usually designed to be fast
enough with respect to the guidance loop. Then, due to the
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missile’s acceleration and gravitational effect, the flight path
angle and speed of the vehicle evolve according to

γ̇M =
aM − g cos γM

VM
(8)

V̇M = ax cosαM − g sin γM (9)

where g stands for the gravitational acceleration, which is
assumed as a constant because the duration of the terminal
guidance phase is typically very short.

B. Instantaneous Zero-Effort-Miss

In order to intercept a target, the primary control interest
of exo-atmospheric interception is to design a guidance law
to nullify the heading error or the equivalent ZEM. For exo-
atmospheric interception, it is also desirable to reduce the
magnitude of interceptor’s shear angle αM as much as possible
so as to increase the impact energy as well as to maximize
the effectiveness of direct hit. This requirement is equivalent
to reduce the final guidance command because for a given
axial acceleration the normal acceleration is only proportional
to the shear angle as shown in Eq. (7).

Note that most previous exo-atmospheric guidance laws
assumed no gravity in the design process and leveraged an
additional add-on term g cos γM to reject the effect of gravity
in implementation. This straightforward gravity compensation
approach works well in implementation, but requires more
energy and obviously cannot guarantee zero final guidance
command, leading to the sacrifice of the effectiveness of direct
hit and the operational margins. In order to tackle this problem,
a gravity-turn-assisted optimal guidance law that directly uses,
instead of compensating for, the gravity for exo-atmospheric
interception guidance was proposed in our previous work
[25]. Unlike the gravity-free case, the desired collision course
from the missile to the predicted interception point (PIP),
when utilizing gravity, is a curved line, and therefore directly
minimizing the ZEM is intractable. To accommodate this
issue, we introduced a new concept, called instantaneous ZEM,
in [25] to enable analytical derivation of the optimal guidance
law. The instantaneous ZEM is defined as the final distance the
missile would miss the target if the target continues along its
present course and the missile follows a straight line along its
current flight path angle with no further corrective maneuvers.
The geometric interpretation of the proposed instantaneous
ZEM is shown in Fig. 2, where the curved path M − PIP
is the desired trajectory, M − A the uncontrolled flight path
from the current time onward and the straight line M − B
the instantaneous uncontrolled flight trajectory. Note that the
original ZEM converges to zero as the instantaneous ZEM
approaches zero. Therefore, zeroing instantaneous ZEM allows
for the interception of a target.

According to [25], the instantaneous ZEM z and its rate ż
can be obtained as

z = −eγ
(
VM tgo +

1

2
axt

2
go

)
(10)

ż = −aM
(
tgo +

ax
2VM

t2go

)
(11)
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Fig. 2. Definition of instantaneous ZEM.

where eγ = γM − γ∗ is the heading error with γ∗ being the
desired current flight path angle calculated from the collision
triangle, and tgo the remaining flight time calculated from the
geometry. Detailed explanation of how to derive the desired
collision triangle and time-to-go for gravity-assisted-turn case
can be found in [25]. The prediction of future interceptor’s
trajectory for the exo-atmospheric case, which is required to
calculate the desired collision triangle, can be found in [32].

Note that the collision triangle, derived in [25], automati-
cally contains the gravity and therefore one only needs to use
γ̇ = aM/VM in guidance law design.

C. Problem Formulation

The analysis in [25] revealed that nullifying the instan-
taneous ZEM renders perfect interception that directly uses
the gravitational effect. Additionally, constraining the intercept
angle is desirable in terms of increasing the direct hit effec-
tiveness as well as the kill probability for exo-atmospheric
interception in practice. Therefore, the aim of this paper
is to design a new optimal guidance law that drives both
instantaneous ZEM and intercept angle error to converge to
zero simultaneously at the time of impact. The intercept angle
here is defined as the missile’s flight path angle at the time of
impact.

III. DERIVATION OF THE OPTIMAL INTERCEPT ANGLE
GUIDANCE LAW

In this section, the proposed optimal guidance law is derived
by using optimal control theory. In order to intercept the target
with desired impact angle γdf , we formulate the following
finite-time optimal control problem

min
aM

J =
1

2

∫ tf

t

R (τ) a2
M (τ) dτ (12)

subject to

ż = −aM
(
tgo +

ax
2VM

t2go

)
, z (tf ) = 0

γ̇M =
aM
VM

, γM (tf ) = γdf

(13)

where R (t) > 0 is an arbitrary weighting function.
As shown in Eq. (13), the system equation contains the time-

varying nonlinear term due to the time-to-go (i.e., tgo) and
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missile velocity. Accordingly, because of such nonlinearity,
it is relatively difficult to apply the standard optimal control
theory to find the analytical guidance command. We thereby
seek to solve the preceding optimal control problem through
Schwarz’s inequality approach. According to the linear control
theory, the general solution of the guidance system (13) can
be expressed as

z (tf ) = z −
∫ tf

t

h1 (τ) aM (τ) dτ

γM (tf ) = γM −
∫ tf

t

h2 (τ) aM (τ) dτ

(14)

where
h1

∆
=

(
tgo +

ax
2VM

t2go

)
, h2

∆
= − 1

VM
(15)

Imposing the terminal constraints on Eq. (14) gives

f1
∆
= z =

∫ tf

t

h1 (τ) aM (τ) dτ

f2
∆
= γM − γdf =

∫ tf

t

h2 (τ) aM (τ) dτ

(16)

Obviously, in the considered problem, two constraints are
required to be satisfied with only one control input. To this
end, a Lagrange multiplier λ is introduced to merge these two
constraints as

f1 − λf2 =

∫ tf

t

[h1 (τ)− λh2 (τ)] aM (τ) dτ (17)

Introducing a slack variable R(t) renders Eq. (17) to

f1 − λf2

=

∫ tf

t

[h1 (τ)− λh2 (τ)]R−1/2 (τ)R−1/2 (τ) aM (τ) dτ

(18)

Applying the Schwarz’s inequality to the preceding equation
yields

(f1 − λf2)
2

2
∫ tf
t

[h1 (τ)− λh2 (τ)]
2
R−1 (τ) dτ

≤ 1

2

∫ tf

t

R−1 (τ) a2
M (τ) dτ

(19)

which gives a lower bound of the performance index. Accord-
ing to the Schwarz’s inequality, the equality of Eq. (19) holds
if and only if there exists a constant C such that

aM (τ) = C [h1 (τ)− λh2 (τ)]R−1 (τ) (20)

Substitution of Eq. (20) into Eq. (16) results in

f1 = C

∫ tf

t

h1 (τ) [h1 (τ)− λh2 (τ)]R−1 (τ) dτ (21)

Solving Eq. (21) for C gives

C =
f1∫ tf

t
h1 (τ) [h1 (τ)− λh2 (τ)]R−1 (τ) dτ

(22)

Substituting Eq. (22) into Eq. (20) results in

aM (τ) =
f1 [h1 (τ)− λh2 (τ)]R−1 (τ)∫ tf

t
h1 (τ) [h1 (τ)− λh2 (τ)]R−1 (τ) dτ

(23)

which is an incomplete guidance command due to the un-
known Lagrange multiplier λ.

From Eq. (19), it can be obtained that the minimum value
of the performance index is given by

J =
(f1 − λf2)

2

2
∫ tf
t

[h1(τ)− λh2(τ)]
2
R−1(τ)dτ

=
(f1 − λf2)

2

2
(
g1 − 2λg12 + λ2g2

) (24)

where

g1 =

∫ tf

t

h2
1(τ)R−1(τ)dτ

g12 =

∫ tf

t

h1(τ)h2(τ)R−1(τ)dτ

g2 =

∫ tf

t

h2
2(τ)R−1(τ)dτ

(25)

In order to find the optimal Lagrange multiplier λ that
gives the minimum value of the cost function, we impose the
necessary condition dJ/dλ = 0 on Eq. (24) and then one can
easily obtain

λ =
f1g12 − f2g1

f1g2 − f2g12
(26)

Substituting Eq. (26) into Eq. (23) gives the generic optimal
guidance command in a feedback form as

aM = N1
z

t2go
+N2

VM

(
γM − γdf

)
tgo

(27)

where the navigation gains are determined by

N1 =
h1g2 − h2g12

g1g2 − g2
12

R−1t2go, N2 =
h2g1 − h1g12

(g1g2 − g2
12)VM

R−1tgo

(28)
To shape the guidance command, we consider a time-to-

go weighting function as R−1(t) = tngo with n ≥ 0 [15],
[19]. Accordingly, if the value of n is chosen as n = 0,
the resulting optimal guidance law is for energy consumption
minimization. Additionally, we can safely predict that the
designed guidance law with n > 0 guarantees zero terminal ac-
celeration command since the weighting function with n > 0
becomes infinite as tgo approaches 0. This property provides
the missile with guaranteed operational margins to cope with
the undesired disturbances when the missile approaches the
target. It is also desirable to maximize the effectiveness of
direct hit by reducing the shear angle. Obviously, one can
utilize other weighting functions to further shape or distribute
the guidance command during the terminal homing phase.
Since the interceptor’s velocity is time-varying, obtaining
analytical solution of integration (25) is intractable. To address
this problem, we will assume a constant-speed vehicle and
update the velocity at every time instant when implementing
the guidance law. For simplicity, the concept of average
speed during the engagement is utilized here for guidance
command derivation. Also, the average speed is assumed to be
constant and updated at every time instant when computing the
guidance gains. By using small angle approximation of shear
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angle, the average speed can be approximated by the definition
as

V̄M
∆
=

1

2

(
VM + VMf

)
= VM +

1

2
axtgo (29)

where the fact VMf
= VM + axtgo is used. By using the

average speed, the term h1 can be rewritten as

h1 =
V̄M
VM

tgo (30)

substituting Eqs. (15) and (30) with R−1(t) = tngo into Eq.
(25) gives

g1 =
V̄ 2
M

V 2
M

tn+3
go

n+ 3
, g12 = − V̄M

V 2
M

tn+2
go

n+ 2
, g2 =

1

V 2
M

tn+1
go

n+ 1
(31)

Substituting Eq. (31) into Eq. (28) yields the navigation
gains as

N1 = (n+ 2) (n+ 3)
VM
V̄M

, N2 = (n+ 1) (n+ 2) (32)

The explicit guidance command is then obtained by sub-
stituting Eq. (32) into Eq. (27). It is clear that the guidance
command is given by a feedback form with a time-varying
gain N1 and a fixed gain N2. Here, we can readily observe
an interesting feature of time-varying N1: it is scaled by the
ratio of the current speed over the average speed.

IV. ANALYSIS OF THE PROPOSED GUIDANCE LAW

In this section, the capturability of the proposed optimal
guidance law is analyzed first by utilizing the instantaneous
linear time-invariant system concept. Then, the connection
between the proposed guidance law with previous impact angle
guidance laws is discussed.

A. Capturability of the Proposed Guidance Law

In order to provide better insights of the proposed guidance
law, this subsection analyzes the capturability of the proposed
guidance law. According to Eq. (10), the heading error can be

eγ = − z

VM tgo + 1
2axt

2
go

= − z

V̄M tgo
(33)

Let eI = γM − γdf be the intercept angle error. Differenti-
ating Eq. (33) with respect to time and substituting Eq. (27)
into it gives the heading error dynamics as

ėγ = − 1

tgo

(
N1

V̄M
VM
− 1

)
eγ +

N2

tgo
eI (34)

The intercept angle error dynamics is obtained by substitut-
ing Eq. (27) into (13) as

ėI = −N1
V̄M
VM tgo

eγ +N2
eI
tgo

(35)

The entire guidance loop dynamics is then derived by
rearranging Eqs. (34) and (35) with Eq. (32) as

ẋ = g (t)Ax (36)

where
x

∆
= [eγ , eI ]

T
, g (t)

∆
= 1/tgo (37)

A
∆
=

[
− ((n+ 2) (n+ 3)− 1) (n+ 1) (n+ 2)
− (n+ 2) (n+ 3) (n+ 1) (n+ 2)

]
(38)

It is clear that system (36) is a special form of linear time-
varying system, where g (t) is a continuous function for all
t ≥ 0 and A is a nonsigular constant matrix. According to the
reference [19], the linear time-varying system shown in Eq.
(36) is globally exponentially stable if A is Hurwitz, that is
all eigenvalues of A are in the open left-half plane, and g (t)
is positive for all t ≥ 0. First, we can easily know that g (t)
shown in Eq. (37) is always positive because tgo > 0 for all
t ≥ 0 by the definition. Next, the eigenvalues of A are given
by

λ1 = − (n+ 2) , λ2 = − (n+ 1) (39)

From the preceding equation, we can readily observe that
the eigenvalues of A with n ≥ 0 are always negative. Hence,
the system (36) is globally exponentially stable. Since the
equilibrium of system (36) is the origin, both the heading error
eγ and the intercept angle error eI will exponentially converge
to zero. By the definition of the instantaneous ZEM, it also
converges to zero during the endgame, thus guaranteeing
successful target capture with desired angles.

B. Discussion of the Proposed Guidance Law

From Eq. (32) with Eq. (29), it is clear that the initial value
of time-varying navigation gain N1 given by

N1 (0) = (n+ 2) (n+ 3)
VM0(

VM0 + 1
2axtf

) (40)

where tf represents the time of impact, VM0 the initial velocity
of the interceptor. The final value of N1 is determined by

N1 (tf ) = (n+ 2) (n+ 3) (41)

Through simple algebra, it is easy to verify that

N1 (0) < N1 (t) < N1 (tf ) , ∀t ∈ (0, tf ) (42)

which reveals that the navigation gain N1 monotonically
increases and converges to constant value at the time of impact.
This provides the unique information that how the navigation
gain N1 behaves as the vehicle’s speed changes during the
terminal guidance phase. That is, only when the interceptor
is close to the target, the effect of the speed variation can be
ignored. Therefore, it is safe to predict that classical optimal
impact angle guidance laws with constant navigation gains are
not ’real optimal’ in a realistic exo-atmospheric engagement.

In [25], we reveal that, if we remove the gravitational effect,
the instantaneous ZEM reduces to the ZEM, denoted as zG2C ,
that is used for guidance-to-collision (G2C) guidance law [10],
[21] derivation. The dynamics of zG2C is given by [25]

żG2C = −aM
(
tgo +

ax
2VM

t2go

)
(43)

Under this condition, it is easy to verify that the proposed
guidance law becomes

aM = N1
zG2C

t2go
+N2

VM

(
γM − γdf

)
tgo

(44)
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which has the same navigation gains as the proposed guidance
law but with different ZEM definition. Since the time-to-go
weighted cost function is utilized to derive the guidance law,
we call this guidance law as time-to-go weighted optimal G2C
impact angle guidance (TWOG2CIAG). Note that this is also
a new guidance law that has never been proposed in existing
works.

In practical implementation, the TWOG2CIAG requires an
extra term to reject the effect of gravity as

aM = N1
zG2C

t2go
+N2

VM

(
γM − γdf

)
tgo

+ gcosγM (45)

which might require more control energy and lose some
control operational margins and direct hit effectiveness.

If we assume constant-speed vehicle under gravity-free
condition, the instantaneous ZEM will converge to the classical
ZEM, denoted as zPNG, utilized for proportional navigation
guidance (PNG) derivation. The dynamics of zPNG is deter-
mined by [15]

żPNG = −aM tgo (46)

Using zPNG, the proposed optimal guidance law reduces to

aM = (n+ 2) (n+ 3)
zPNG
t2go

+ (n+ 1) (n+ 2)
VM

(
γM − γdf

)
tgo

(47)

which is an exact equivalent form of the TWOIAG proposed in
[18], [19] (proof of the equivalence is given in Appendix A).
This clearly shows that the navigation gains of the proposed
guidance converge to those of the TWOIAG at the time of
impact and hence the proposed guidance law exhibits similar
characteristics as TWOIAG when the missile approaches the
target or PIP.

Similarly, since the TWOIAG is derived without the con-
sideration of gravity, it requires an extra term to compensate
for the gravity as

aM = (n+ 2) (n+ 3)
zPNG
t2go

+ (n+ 1) (n+ 2)
VM

(
γM − γdf

)
tgo

+ gcosγM

(48)

which cannot guarantee zero final guidance command, leading
to the sacrifice of operational gains against unexpected distur-
bances as well as the direct hit effectiveness. As a comparison,
the proposed guidance law utilizes the instantaneous ZEM,
which automatically includes the effect of the gravity. This
means that no extra gravity-compensation term is required for
practical implementation of the proposed approach and zero
final guidance command is theoretically guaranteed.

Additionally, since TWOIAG is derived under constant
velocity assumption, it cannot drive the missile to follow the
desired straight line collision course and is far away from
optimal for exo-atmospheric interception scenarios. Compared
with the constant navigation gains that used in the TWOIAG,
the proposed approach leverages time-varying navigation gain

TABLE I
INITIAL CONDITIONS FOR HOMING ENGAGEMENT.

Parameters Values
Missile-target initial relative range, r(0) 50km

Initial LOS angle, λ(0) 0◦

Missile initial velocity, VM (0) 2500m/s
Missile initial flight path angle, γM (0) 150◦

Missile axial acceleration, ax 20g
Target velocity, VT 3000m/s

Target initial flight path angle, γT (0) 20◦

Desired Intercept Angle, γdf 160◦
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Fig. 3. Instantaneous zero-effort-miss profile.

that is dependent on the missile’s velocity and axial acceler-
ation. This fact shows that how the proposed guidance law
can counteract the effect of speed variation, as discussed
before. In conclusion, the proposed optimal guidance law is
a general formulation, that encompasses both TWOIAG and
TWOG2CIAG, and is more suitable for practical applications.

V. SIMULATION RESULTS

In this section, nonlinear numerical simulations are per-
formed to validate the proposed optimal guidance law in
an exo-atmospheric interception scenario. The required ini-
tial conditions are summarized in Table I. We first analyze
the basic properties of the proposed guidance law with dif-
ferent n and then make comparisons with TWOIAG and
TWOG2CIAG.

A. Characteristics of the Proposed Guidance Law

This subsection analyzes the characteristics of the proposed
guidance law with various design parameters n = 0, 2, 4.
Figures 3 and 4 provide the simulation results of instantaneous
ZEM and flight path angle obtained by the proposed guidance
law. It is clear that both the instantaneous ZEM and intercept
angle error converge to zero at the time of impact, meaning
that the proposed guidance law can successfully guide the
missile to intercept the target with desired terminal angles once
n ≥ 0. One can also note from these two figures that increasing
the cost function order n generates faster convergence of the
system states when the missile approaches the target. The
shear angle commands with different n are depicted in Fig.
5. This figure reveals that the proposed guidance law with
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0 1 2 3 4 5 6 7 8 9

Flight Time (s)

-100

-80

-60

-40

-20

0

20

40

60

80

100

S
he

ar
 A

ng
le

 C
om

m
an

d 
(d

eg
)

n=0
n=2
n=4

Fig. 5. Shear angle command.

n ≥ 1 ensures zero guidance command at the time of impact,
as we expected. Increasing n requires more control energy
during the initial phase to drive the missile to the desired
collision triangle. Figure 6 compares the missile velocity under
the proposed guidance law with various n. The results reveal
that the proposed guidance law initially utilizes all available
energy to drive the interceptor to converge to ideal collision
triangle and maintains close to the collision triangle thereafter.
Therefore, the missile velocity under the proposed guidance
law increases almost linearly once the collision triangle is
achieved. However, guidance law with n = 0 cannot guarantee
zero final guidance command and the shear angle appears to
be saturated when the missile is near the target. Therefore,
the vehicle’s speed with n = 0 remains constant during that
period.

B. Comparison with Other Guidance Laws

To show the superiority of the proposed guidance law,
both TWOIAG and TWOG2CIAG are also performed in the
simulation for the purpose of comparison. These two guidance
laws are implemented by adding a gravity compensation term.
To make fair comparisons, the time-to-go order of all guidance
laws are chosen as n = 3.

Figure 7 shows the simulation results of interception tra-
jectories of different guidance laws. This figure reveals that
these three guidance laws can drive the missile to intercept the
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Fig. 6. Missile velocity profile.

target at some extent, but the trajectories under TWOIAG is
more curved. The time history of the flight angle is presented
in Fig. 8, which clearly shows that the proposed guidance
law and TWOG2CIAG have higher accuracy in driving the
intercept angle error to zero than that of TWOIAG. This
validates the benefits of utilizing time-varying navigation gains
in the TWOG2CIAG and proposed framework, compared to
the constant gains in TWOIAG. Figure 9 presents the ZEM
time histories under different guidance laws, showing that
all guidance laws can ensure zero final ZEM to guarantee
successful interception. The comparison of shear angle guid-
ance commands of different guidance laws is given in Fig.
10. As we stated earlier, by choosing n > 0, the proposed
optimal guidance law guarantees zero guidance command at
the time of impact since the instantaneous ZEM automatically
contains the effect of the gravitational effect. This can be
clearly observed from Fig. 10. As a comparison, the shear
angle command under TWOIAG saturates during the last
2 seconds. Therefore, the proposed guidance law can im-
prove the effectiveness of direct hit compared with the other
guidance laws. Additionally, the proposed guidance has more
operational margins to cope with the undesired disturbances
when the missile approaches the target. This fact is of great
importance in practical applications to reduce the terminal
miss distance and intercept angle error. Compared to the
proposed approach, the TWOG2CIAG requires more energy
during the initial phase and only guarantee bounded terminal
guidance command. The velocity profile, presented in Fig.
11, demonstrates that the proposed guidance law has the
highest terminal impact velocity compared to the other two
laws, leading to the increase of final impact energy. Since the
guidance command of TWOIAG saturates when the missile
approaches the target, the missile velocity remains constant
during that period.

The quantitative comparison results regarding miss distance,
intercept angle error and control effort are summarized in Ta-
ble II, where the control effort is defined as

∫ t
t0
a2
M (τ) dτ . By

comparing TWOG2CIAG with TWOIAG, the results shown
in Table II reveal that utilizing time-varying navigation gain
helps to reduce the control energy and increase the guidance
accuracy. It is also clear that using gravity-turn, instead of
compensating for it, in the proposed guidance law can save
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energy consumption and slightly increase the interception
accuracy, as compared with TWOG2CIAG. In conclusion, the
proposed guidance law exhibits better overall performance
than the other two guidance laws in terms of control effort
and guidance accuracy.

VI. CONCLUSIONS

This paper proposes a novel optimal intercept angle guid-
ance for exo-atmospheric interception. The proposed guidance
law is given in a feedback form in terms of the instantaneous
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ZEM and intercept angle error with time-varying navigation
gain. The uniqueness of the proposed approach is that it
directly uses, instead of compensating for, the gravity and also
accommodate the speed-varying issue. Theoretical analysis
shows that both TWOIAG and TWOG2CIAG are special
cases of the proposed guidance law. Compared with TWOIAG
and TWOG2CIAG, the proposed guidance law has better
performance in terms of energy consumption and guidance
accuracy. It should be noted that the proposed approach can
also be utilized in mid-course guidance as the angle constraint
is important for guaranteeing the lock-on condition of the
onboard seekers.

TABLE II
QUANTITATIVE COMPARISON RESULTS.

TWOIAG TWOG2CIAG Proposed
Miss distance 5.771m 0.940m 0.931m

Intercept angle error 1.66◦ 0.88◦ 0.88◦

Control effort 228575 109008 91503
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APPENDIX A
APPENDIX: EQUIVALENT FORM OF TIME-TO-GO
WEIGHTED OPTIMAL IMPACT ANGLE GUIDANCE

The guidance command of TWOIAG is given by [18], [19]

aM = − (n+ 2) (n+ 3)

t2go
y − 2 (n+ 2)

tgo
v, n ≥ 0 (49)

where y is vertical relative distance to the impact frame with
respect to the PIP, as shown in Fig. 12, and v = ẏ.

Under the assumption that the angle γ̄M = γM − γdf is
small, the kinematics can be obtained as

ẏ = v = VM γ̄M (50)

The flight path angle and LOS angle in the linearized
engagement kinematics as shown in Fig. 12 can be expressed
in terms of y and v from the engagement geometry as

γ̄M =
v

VM
, λ̄ = λ− γdf = −y

r
(51)

The relative range between the PIP and the missile is
approximated by multiplying the missile velocity by time-to-
go as r ≈ VM tgo. Then, one can imply that

y = VM tgo
(
γdf − λ

)
, v = VM

(
γM − γdf

)
(52)

which represents the relationship between the parameters of
the linearized engagement kinematics (i.e., y and v) and the
parameters of the nonlinear engagement kinematics (i.e., λ and
γM ).

Rearranging guidance command (49) and substituting (52)
into it yields

aM =− (n+ 2) (n+ 3)

t2go
(y + vtgo)

+
(n+ 1) (n+ 2)

tgo
VM

(
γM − γdf

) (53)

In the linearized engagement considered in Fig. 12, the ZEM
that used in PNG derivation is given by [15]

zPNG = − (y + vtgo) (54)

Substituting (54) into (53) gives the guidance command as

aM = (n+ 2) (n+ 3)
zPNG
t2go

+(n+ 1) (n+ 2)
VM

(
γM − γdf

)
tgo

(55)
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