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I. Introduction

The well justified proportional navigation guidance (PNG) law [1, 2] and its variants have been widely used in

missile guidance during the last few decades. The long history of successful application of PNG proves its simple

implementation and efficiency for various missile systems. The fundamental idea behind PNG is that it issues a normal

acceleration command to nullify the line-of-sight (LOS) rate, thereby forcing the interceptor to maintain on the collision

triangle. Recent developments in nonlinear control theory have also led to many elegant solutions of advanced missile

guidance laws, such as sliding mode control (SMC) [3–7], H∞ control [8], Lyapunov function theory [9], predictive

control [10], feedback linearization control [11, 12] and references therein.

In essence, missile guidance law design is a kind of finite-time tracking problem depending on the operational

objective. If only target interception is considered, the tracking error is defined as the zero-effort-miss (ZEM) distance

[6, 7, 13, 14] or LOS rate [3, 4, 15]. Nullifying the ZEM or LOS rate results in perfect interception. For some modern

missions, the final impact angle or approach angle is required to satisfy certain constraints to enhance the kill probability

of the warhead [16–18]. In such scenarios, the impact angle error is considered as the tracking error in guidance law

design [19–23]. In order to enhance the survivability of the missiles against advanced close-in weapon system of

battleships, the concept of salvo attack [24] is introduced to achieve simultaneous attack among all interceptors. One

typical implementation of salvo attack is the impact time guidance, in which the missile is forced to intercept the target

at desired time and hence the final impact time error is considered as the tracking error in guidance law design [24–28].

In exo-atmospheric interception engagement, maneuvers are obtained by employing thrust in the required direction.

Obviously, it is desirable to drive the missile toward to the target in a straight line along a given collision triangle [29, 30].

This way enables the missile to fully exploit its maximum maneuver capability to increase the final impact energy. In

this regard, the tracking error of missile guidance problem can be defined as the heading angle error, which is the angle

difference between the current flight path angle and the desired flight path angle determined by the collision triangle.

After defining the tracking error for a specific missile guidance problem, many systematic nonlinear control theories

can then be utilized to drive the tracking error to zero asymptotically or in finite time. More specifically, after selecting

the desired error dynamics to be achieved, the control input is derived to force the system trajectory to converge to the
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desired error dynamics. This is a general procedure to establish new missile guidance laws using nonlinear control

methodologies. However, most previous studies only care about how to force the tracking error to converge to zero and

disregard what is the optimal error dynamics in terms of a meaningful performance index.

Inspired by the above observations, this Note aims to examine the optimal convergence pattern of the tracking error

and propose an optimal error dynamics with a meaningful performance index for missile guidance problems. To realize

this, we solve the linear quadratic optimal control problem for a generalized tracking problem that is often observed in

missile guidance law design using Schwarz’s inequality approach. The potential significance of the proposed results is

clear. On one hand, under the proposed optimal error dynamics, the existing nonlinear guidance laws can be further

improved by converting them to their optimal version and the characteristics of existing nonlinear guidance laws can be

easily explained. On the other hand, various new missile guidance laws can be simply developed by using the proposed

results since our solution is formulated on the basis of a generalized tracking problem.

For illustration, we present four examples to show how to apply the proposed optimal error dynamics to missile

guidance law design. The presented examples include zero ZEM guidance, impact angle guidance, impact time guidance

as well as guidance-to-collision for exo-atmospheric interception. It turns out to be that the resulting ZEM guidance law

is the well-known augmented PNG law and the impact angle guidance law is a generalized form of previous optimal

impact angle guidance laws [20, 31–34]. The new impact time guidance law, which is a generalized formulation of

[24, 26], is a combination of PNG and impact time error feedback term. As for guidance-to-collision in exo-atmospheric

interception, the uniqueness of the new guidance law lies in its ability to enable steering the missile to intercept the

target along a straight line. Comparison results show that the proposed guidance-to-collision law requires less control

effort than previous SMC guidance-to-collision law [29].

The rest of the paper is organized as follows. Sec. II presents some preliminaries and the motivations of this Note.

Sec. III provides the details the proposed generalized optimal error dynamics, followed by the illustration examples

shown in Sec. IV. Finally, some simulation results and conclusions are offered.

II. Preliminaries and Motivations
This section states some preliminary backgrounds on the kinematics model in missile guidance problems and also

presents the motivations that why we want to suggest a general optimal error dynamics for guidance law design. Before

presenting the results, we make the following general assumptions for convenience.

Assumption 1. The missile dynamics is assumed to be ideal, i.e., no autopilot lag.

Assumption 2. Gravity is ignored in guidance law design.

Note that these two assumptions are widely-accepted in guidance law design for missile systems. (Assumption 1)

The control loop or the autopilot is usually much faster than the guidance loop and the performance degradation due

to dynamic lag effect is negligible if the flight time is greater than 10 to 20 times the time constant of dynamic lag.
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Fig. 1 The homing engagement geometry and parameter definitions.

Therefore the autopilot dynamics can be ignored in guidance law design. Also, (Assumption 2) After guidance law

design, the gravitational effect can be directly compensated by a biased term g cos γM in practical implementation.

A. Model Derivation

It is assumed that the interceptor employs an ideal attitude control system that provides roll stabilization such that

the homing guidance problem can be treated in two separate channels. Figure 1 shows the planar homing engagement

geometry in this study, where M and T denote the missile and target, respectively. The notation of (XI,YI ) represents

the inertial frame. For the purpose of introducing the linearized kinematics, a new frame called the reference frame

(XR,YR) is also defined. This frame is rotated from the inertial frame by σ0, which is the reference angle. The variables

of σ and γ stand for the LOS angle and flight path angle, respectively. r denotes the relative distance between the target

and the missile. y is the relative distance between the target and the missile perpendicular to XR-direction. aM and

aT are the missile and target accelerations normal to the velocity vectors, respectively. The variables of aMσ and aTσ

denote the missile and target accelerations normal to the LOS direction, respectively.

In the reference frame, the engagement kinematics can be expressed as

Ûy = v

Ûv = aTσ cos (σ − σ0) − aMσ cos (σ − σ0)

(1)

where v is the relative velocity between the target and the missile perpendicular to XR-direction.

The complementary equation that describing the relationship between aMσ and aM is given by

aMσ = aM cos (γM − σ) (2)
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Under the small angle assumption of σ − σ0, one can derive the linearized engagement kinematics as

Ûy = v

Ûv = aTσ − aMσ

(3)

From Fig. 1, the LOS rate in the linearized engagement kinematics can be approximated as

Ûσ =
y + vtgo
Vct2

go

(4)

where Vc denotes the closing velocity.

B. Motivations

As stated earlier, missile guidance law design is a kind of finite-time tracking problem, in which we want to regulate

the tracking error to zero in finite time. The general form of the tracking problem that is often observed in missile

guidance law design is

Ûε (t) = g (t) u (t) (5)

where ε (t) represents the tracking error, g (t) a known time-varying function, and u (t) the control input.

According to missile guidance problems under consideration, the tracking error can be ZEM, LOS rate, impact angle

error, impact time error, heading error, etc. Also, the form of g (t) depends on guidance problems and it is invertible

since the above tracking problem is controllable, i.e. g (t) , 0.

In order to regulate the tracking error to be zero, various control theories such as SMC, Lyapunov function, and

feedback linearization, have been applied to system (5) in previous works. In these approaches, the desired error

dynamics is first selected, and then appropriate control input is calculated to ensure that the system equation shown in

(5) follows the selected error dynamics. Most of the previous works regarding guidance law design adopted the desired

error dynamics as

Ûε (t) + kε (t) = 0 (6)

where k > 0 is the guidance gain to regulate the convergence rate of tracking error.

It is easy to verify that the closed-form solution of differential equation (6) is given by

ε (t) = ε (t0) e−kt (7)

where ε (t0) denotes the initial tracking error.

The preceding equation reveals that the tracking error converges to zero asymptotically with an exponential rate
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governed by the guidance gain k. Accordingly, this desired error dynamics has two major drawbacks: (1) the finite-time

convergence is not strictly guaranteed; and (2) it only focuses on how to drive the tracking error to zero and never

considers how to achieve zero tracking error optimally with respect to a meaningful performance index. To guarantee

finite-time convergence, some approaches such as second-order SMC, terminal SMC, nonsingular terminal SMC

[21, 22, 28] have been applied to missile guidance law design. However, the optimal convergence pattern of the tracking

error was not taken in to account in these approaches, and the resultant guidance law was formulated in a complex form

since these approaches used complex desired error dynamics at the design stage.

Motivated by these observations, this Note aims to investigate the optimal convergence pattern of the tracking

error and propose an optimal error dynamics that achieves this optimal pattern as well as guarantees the finite-time

convergence for guidance law design.

III. Optimal Error Dynamics
In this section, we first derive the proposed optimal error dynamics by using Schwarz’s inequality and then analyze

the properties as well as the potential significance of the proposed approach.

A. Derivation of the Proposed Optimal Error Dynamics

In this subsection, we discuss the optimal error dynamics for missile guidance law design. Suppose that the general

tracking problem of missile guidance law design is given by (5). Then the optimal error dynamics is provided by

Theorem 1.

Theorem 1. Suppose that the system equation is given by (5) and the desired error dynamics is chosen as

Ûε (t) +
Γ (t)
tgo

ε (t) = 0 (8)

where

Γ (t) =
tgoR−1 (t) g2 (t)∫ t f

t
R−1 (τ) g2 (τ) dτ

(9)

Then, the resulting control input minimizes the performance index

J =
1
2

∫ t f

t

R (τ) u2 (τ) dτ (10)

where t f represents the final time, R(t) > 0 the arbitrary weighting function.

Proof. The control input to achieve the selected error dynamics (8) is determined by substituting (8) into (5) as

u (t) = −
Γ (t)

g (t) tgo
ε (t) = −

R−1 (t) g (t)∫ t f

t
R−1 (τ) g2 (τ) dτ

ε (t) (11)
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Next, we seek to prove that control input (11) is the optimal solution of optimal control problem

min
u

J =
1
2

∫ t f

t

R (τ) u2 (τ) dτ (12)

subject to

Ûε (t) = g (t) u (t) , ε
(
t f

)
= 0 (13)

Imposing the integration from t to t f on both sides of (5) gives

ε
(
t f

)
− ε (t) =

∫ t f

t

g (τ) u (τ) dτ (14)

Since ε
(
t f

)
= 0, introducing a slack variable R(t) renders (14) to

− ε (t) =
∫ t f

t

g (τ) R−1/2 (τ) R1/2 (τ) u (τ) dτ (15)

Applying Schwarz’s inequality to preceding equation yields

[−ε (t)]2 ≤
[∫ t f

t

R−1 (τ) g2 (τ) dτ
] [∫ t f

t

R (τ) u2 (τ) dτ
]

(16)

Rewriting inequality (16) as

1
2

∫ t f

t

R (τ) u2 (τ) dτ ≥
[−ε (t)]2

2
[∫ t f

t
R−1 (τ) g2 (τ) dτ

] (17)

which gives a lower bound of the performance index.

According to Schwarz’s inequality, the equality of (17) holds if and only if there exists a constant C such that

u (t) = CR−1 (t) g (t) (18)

Substitution of (18) into (14) results in

− ε (t) = C
∫ t f

t

R−1 (τ) g2 (τ) dτ (19)

Solving (19) for C gives

C =
−ε (t)∫ t f

t
R−1 (τ) g2 (τ) dτ

(20)
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Substituting (20) into (18) gives the optimal control input as

u (t) = −
R−1 (t) g (t)∫ t f

t
R−1 (τ) g2 (τ) dτ

ε (t) (21)

which is identical with (11). QED.

Remark 1. In our derivation, the ideal missile dynamics assumption is utilized for simplicity. However, the proposed

approach can be extended to the case when considering non-ideal missile dynamics in guidance law design. For example,

assume that the autopilot is a first-order system and let τ be the time constant, the system equation can then be obtained

as

Ûε (t) = g (t) u (t)

Ûu = − 1
τ u + 1

τ uc

(22)

where uc denotes the guidance command signal. Then, following similar procedures shown above, one can derive the

optimal error dynamics for system (22). Additional guidance synthesis to minimize the miss distance due to autopilot

lag without using autopilot system in guidance law design can also be found in [35–37].

B. Discussion of the Proposed Optimal Error Dynamics

One of the interesting points of the proposed optimal error dynamics is that it guarantees finite-time convergence

since it is obtained by directly solving the finite-time optimal tracking problem. Also, the optimal error dynamics (8)

is given in a similar form to the existing desired error dynamics (6). The only difference is the proportional gain: a

constant term k in the existing method and a time-varying term Γ (t) /tgo in the proposed method. Unlike the usual one,

the proposed proportional gain changes from an initial small value to a final infinite value as the time-to-go goes to zero,

that is

lim
tgo→0

Γ (t)
tgo
= ∞ (23)

According to the values of Γ (t), the increasing pattern of the proposed proportional gain further changes. Hereafter,

let us discuss the characteristics of Γ (t). From (9), Γ (t) can be rearranged as

Γ (t) =
φ (t)(∫ t f

t
φ (τ) dτ/tgo

) (24)

where φ (t) = R−1 (t) g2 (t) for convenience.

The function of g (t) is given by the missile guidance problem under consideration and the weighting function R (t)

is the design parameter. According to different selections of R (t), the time-varying term Γ (t) changes differently. In

the following, we reveal that Γ (t) > 0 for all the time during the homing engagement in Proposition 1. Proposition 2
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Fig. 2 The graphical interpretation of Γ(t).

provides the limiting values of Γ (t) for different φ (t).

Proposition 1. For given g (t) and R (t), Γ (t) is always greater than zero as Γ (t) > 0.

Proof. By definition, R (t) > 0 and g (t) , 0. From (24), it is obvious that the numerator is positive because of

φ (t) = R−1 (t) g2 (t) > 0. Also, the denominator is positive since the integration of positive function gives positive

value. Accordingly, Γ (t) > 0. QED.

Proposition 2. When the pattern of φ (t) keeps a constant, the equality Γ (t) = 1 holds. If the pattern of φ (t)

decreases as t → t f , then Γ (t) > 1. If the pattern of φ (t) increases as t → t f , we have Γ (t) < 1.

Proof. In (24), the denominator can be considered as the average value of φ (t), denoted by φ̄ (t), during the

remaining time of interception (i.e. tgo), as shown in Fig. 2. Accordingly, the time-varying term Γ (t) is a ratio of the

current value φ (t) to the average value φ̄ (t). If the term of φ (t) is given by a constant value, then the Γ (t) is unity

as Γ (t) = 1 since φ (t) = φ̄ (t). If the term φ (t) decreases as t → t f , Γ (t) is greater than unity due to φ (t) > φ̄ (t).

Conversely, if the term of φ (t) has an increasing pattern, then Γ (t) is less than unity because of φ (t) < φ̄ (t). QED.

It follows from (8) that Γ (t) ≥ 1 is desirable to ensure a stable and a fast convergence rate at the initial time.

Accordingly, Proposition 2 reveals that it is desirable to impose a constant value or a decreasing pattern on the function

φ (t). As shown in (9), the computation of Γ (t) contains of the integration of φ (t), which is given as a function of g (t)

and R (t). If φ (t) is given by a closed-form function, Γ (t) can be obtained analytically or numerically. Even though g (t)

is not given by a closed-form function due to the nature of the guidance problem, we can make φ (t) to be a closed-form

function through appropriate choice of R (t). Under this condition, since the physical meaning of the performance index

shown in (10) changes according to choice of R (t), the chosen optimal error dynamics only considers the minimization

of a specific performance index.

For a specific mission, the function g (t) is fixed. Thus, by properly choosing the weighting function R (t) for

different objectives, the error dynamics is determined by Theorem 1. Here, we provide two special cases. In the case of
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R (t) = 1, the term Γ (t) is given by

Γ (t) =
tgog2 (t)∫ t f

t
g2 (τ) dτ

(25)

The optimal error dynamics with Γ (t) shown in (25) minimizes the performance index

J =
1
2

∫ t f

t

u2 (τ) dτ (26)

which provides an energy optimal guidance law.

In addition, if we choose the weighting function as R (t) = g2 (t) /tK−1
go with K ≥ 1, then φ (t) is given by a function

of time-to-go, regardless of g (t), as

φ (t) = tK−1
go (27)

In this case, the term Γ (t) is a constant value as

Γ (t) = K (28)

And the desired error dynamics minimizes the performance index

J =
1
2

∫ t f

t

g2 (τ)(
t f − τ

)K−1 u2 (τ) dτ (29)

It is obvious that performance index (29) with g (t) = 1 and K = 1 becomes the energy minimization one. The

most interesting point under this desired error dynamics is that the closed-form solution of the tracking error is readily

obtained since the desired error dynamics in such a special case is given by the Cauchy-Euler equation as

ε (t) = ε (t0) tKgo (30)

In practice, this optimal error dynamics is useful due to the fact that the decreasing pattern of the tracking error

is predictable as a function of time-to-go and the desired error dynamics is given by a simplified form. Therefore, in

the next section, we will apply this desired error dynamics to various missile guidance problems for simplicity and

practicality.

C. Potential Significance of the Proposed Optimal Error Dynamics

In this subsection, we discuss the potential significance of the findings in this Note. First, the proposed results

provide a way to improve existing missile guidance laws based on nonlinear controls. For example, existing missile
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guidance laws using SMC are generally composed of two terms as

aM = aeq
M + adis

M (31)

where aeq
M and adis

M are the equivalent control part for disturbance-free dynamics and the SMC control part for

compensating external uncertainties, respectively.

Using (31), some existing missile guidance laws based on SMC can be improved by converting the equivalent control

parts to their optimal forms using the proposed optimal error dynamics and compensating the undesired disturbances by

add-on SMC control part.

Second, the proposed results present a theoretical background to provide a meaningful performance index of existing

nonlinear missile guidance laws, which has not been clearly explained so far. For example, suppose that there is a missile

guidance law using desired error dynamics (6). Comparing (6) with (8), we can easily verify that the existing error

dynamics is a special case of the proposed optimal error dynamics with Γ (t) = ktgo. Then, imposing this condition on

(9) gives

k =
R−1 (t) g2 (t)∫ t f

t
R−1 (τ) g2 (τ) dτ

(32)

For t f →∞, we can obtain that the weighting function R (t) satisfies

R (t) = g2 (t) ekt (33)

Substituting (33) into (10) with t f →∞ gives the performance index of existing missile nonlinear guidance laws

using (6) as

J =
1
2

∫ ∞

t

g2 (τ) ekτu2 (τ) dτ (34)

In a similar way, we can also examine the performance index of existing missile nonlinear guidance laws based on

different desired error dynamics. In addition, if a nonlinear missile guidance law is designed by using the proposed

optimal error dynamics, the performance index of the designed guidance law is given by (11) and its physical meaning

is clear.

Third, provided that the tracking error is suitably defined, the proposed results can be applied to different missile

guidance problems for various operational objectives since we suggest a unified approach of guidance law design for a

generalized tracking problem. Therefore, the proposed error dynamics provides the possibility of developing various

new missile guidance laws for different practical problems.
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IV. Illustrative Examples
In this section, we provide some examples of how to apply the proposed optimal error dynamics in missile guidance

law design. As illustrative examples, we consider guidance law design for homing, impact angle control, impact time

control, and guidance to collision.

A. Zeroing Zero-Effort-Miss

In missile guidance problem, it is well-known that ZEM must be zero to guarantee a perfect interception. Let z

denote the ZEM, then, one can derive the dynamics of ZEM in the linearized engagement kinematics as

z = y + vtgo +
1
2

aTσt2
go (35)

Differentiating (35) with respect to time yields

Ûz = −tgoaMσ (36)

In order to achieve zero ZEM, it is natural to choose the tracking error as εz = z. In this case, we have g (t) = −tgo

and u (t) = aMσ . We select the optimal error dynamics with respect to εz as

Ûεz +
N

tgo
εz = 0 (37)

where N is a positive constant.

It follows from (10) that the corresponding performance index is obtained as

J =
1
2

∫ t f

t

1(
t f − τ

)N−3 u2 (τ) dτ (38)

The preceding index can be viewed as the energy minimization weighted by 1/tN−3
go . Accordingly, if the value

of N is chosen as 3, the resulting optimal error dynamics ensures energy minimization. Additionally, we can safely

predict that the designed guidance law using (37) with N > 3 guarantees zero terminal acceleration command since

the weighting function with N > 3 becomes infinite as tgo → 0. This property provides the missile with guaranteed

operational margins to cope with the undesired disturbances when the missile approaches the target.

Substituting (37) into (36) gives the optimal solution as

aMσ = N
z

t2
go

(39)
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Based on (4) and (35), one can derive the final guidance command as

aMσ = NVc Ûσ +
N
2

aTσ (40)

The obtained guidance command shown in (40) is the well-known augmented PNG [2].

Remark 2. For the considered example, the time-to-go power weighting function is utilized and the resulting

guidance gain N is constant. Obviously, one can choose other weighting functions to accomplish different mission

objectives. For example, in order to reduce the sensitivity with respect to the initial heading error to avoid an abrupt

change during handover, a weighting function that provides a larger initial value can be designed as

R (t) =
1

tgo
+ btgo, b > 0 (41)

It is clear that the term btgo dominate over 1/tgo during the initial time and thus can help to reduce or alleviate the

sensitivity to the initial heading error. Following Theorem 1, the resulting optimal error dynamics in this case is given by

Ûεz +
N1(t)
tgo

εz = 0 (42)

where the time-varying guidance gain N1(t) is determined by

N1 (t) =
2b2t4

go(
1 + bt2

go

) [
bt2

go − ln
(
1 + bt2

go

) ] (43)

For surface-to-air missiles, the aerodynamic maneuverability exponentially decreases with the increasing of the

flight altitude due to air density. In order to shape the guidance command against the loss of maneuverability, the

weighting function can then be designed as

R (t) =
1

emtgo + n
(44)

where m and n are constants. According to Theorem 1, the resulting optimal error dynamics in this case in formulated as

Ûεz +
N2(t)
tgo

εz = 0 (45)

where the time-varying guidance gain N2(t) is determined by

N2 (t) =
3m3t3

go

(
emtgo + n

)(
3m2t2

go − 6mtgo + 6
)

emtgo + m3nt3
go − 6

(46)
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B. Impact Angle Control

Constraining the impact angle is often desirable in terms of increasing the warhead effectiveness as well as the kill

probability for both anti-ship and anti-tank missiles since it enables the interceptor to attack a vulnerable spot on a target.

To achieve this, additional constraint on zero impact angle error needs to be satisfied. Therefore, when controlling

the impact angle, a guidance law providing zero ZEM in conjunction with an additional command term nullifying the

impact angle error is considered as aM = aM0 + aI A. For convenience, we use the optimal zero ZEM guidance law

shown in (40) as aM0 for illustration.

Compared with missiles, both tanks and ships are slowly moving targets and thus can be assumed to be stationary

in guidance law design, e.g. aTσ = 0, Vc ≈ VM in (40). This assumption is widely-accepted in impact angle control

guidance law design in previous works. For stationary targets, the optimal guidance law for zeroing ZEM is given by

aM0 = NVM Ûσ (47)

According to [20], the final flight path angle governed by (47) is

γM f =
N

N − 1
σ −

1
N − 1

γM (48)

Let γ f be the desired final flight path angle. Then, the impact angle error can be defined as εγ = γ f − γM f . In order

to achieve zero impact angle error, consider εγ as the tracking error, which gives error dynamics as

Ûεγ = − ÛγM f

= −
N

N − 1
Ûσ +

1
N − 1

ÛγM

= −
N

N − 1
Ûσ +

1
N − 1

aM

VM

(49)

Substituting aM = aM0 + aI A into (49) gives

Ûεγ =
aI A

(N − 1)VM
(50)

In this example, the control input u (t) and the function g (t) match with aI A and 1/(N − 1)VM , respectively. For the

impact angle error εγ, the optimal error dynamics is selected in a similar way as

Ûεγ +
K
tgo

εγ = 0 (51)

where K ≥ 1 is the guidance gain to be designed.
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The corresponding performance index is obtained as

J =
1
2

∫ t f

t

1
(N − 1)2V2

M

(
t f − τ

)K−1 u2 (τ) dτ (52)

Since the constant terms in the performance index do not affect the optimal pattern, the above performance index is

identical to

J =
1
2

∫ t f

t

1(
t f − τ

)K−1 u2 (τ) dτ (53)

We can clearly observe from the preceding performance index that the weighting function with K > 1 becomes

infinite as tgo → 0. Therefore, one can imply that the optimal error dynamics with K > 1 guarantees zero impact angle

guidance command at the final time. Additionally, if K = 1, the above performance index coincides with the energy

optimal case.

From (50) and (51), the optimal solution of aI A is easily obtained as

aI A = −
K (N − 1)VM

tgo
εγ (54)

Combining (47) with (54), one can derive the final guidance command for impact angle control as

aM = NVM Ûσ −
K (N − 1)VM

tgo
εγ (55)

Using the kinematics equations and consider the reference frame as the impact angle frame [20], guidance law (55)

can also be rewritten in a form as

aM = −
N (K + 1)

t2
go

y −
(N + K)

tgo
v (56)

If we choose N = 3 and K = 1, guidance law (56) becomes optimal guidance law (OGL) for impact angle control

[31]. If the guidance gains satisfy N ≥ 3 and K = 1, guidance law (56) reduces to interception angle control guidance

(IACG) law [20]. If one enforces N = K + 2 and K ≥ 1, guidance law (56) is identical with time-to-go weighted optimal

guidance law (TWOGL) [32, 33]. Finally, if one selects N > K + 1 and K ≥ 1, guidance law (56) turns out to be

time-to-go polynomial guidance (TPG) law [34]. Consequently, using the proposed approach generates a generalized

optimal impact angle control guidance law that covers several previous results.

C. Impact Time Control

Recently, salvo attack has been proved to be an effective way when against naval defense systems such as close-in

weapon systems in many-to-one engagement scenarios. One typical solution of salvo attack is impact time control

guidance. In a similar way, the impact time guidance law requires the guidance command to provide zero ZEM and
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nullify the impact time error as aM = aM0 + aIT [38]. In this case, an alternative form of optimal zero ZEM guidance

law is adopted for aM0 . In the linearized engagement kinematics, the relationship between the LOS rate and the lead

angle is approximated by Ûσ = −η/tgo, with η = γM −σ. Also, the time-to-go is approximated as tgo = r/VM . Applying

these expressions to (47) gives

aM0 = −
NVMη

tgo
(57)

Note that guidance command (57) is an alternative form of PNG for a stationary target. As stated in [24], the

estimated final interception time under aM0 is given by

t f = t +
r

VM

(
1 +

η2

2 (2N − 1)

)
(58)

Let td be the desired impact time. Then, the impact time error can be defined as εt = td − t f . In order to achieve

zero impact time error, consider εt as the tracking error, which gives error dynamics as

Ûεt = −Ût f

= −
Ûr

VM

(
1 +

η2

2 (2N − 1)

)
−

rη Ûη
(2N − 1)VM

− 1

= cos η
(
1 +

η2

2 (2N − 1)

)
−

rη
(
aM0+aIT

VM
− Ûσ

)
(2N − 1)VM

= cos η
(
1 +

η2

2 (2N − 1)

)
+
(N − 1) η2

2N − 1
−

rη
(2N − 1)V2

M

aIT − 1

(59)

In practical flight, the lead angle η = γM − σ is small and thus sin η ≈ η, cos η ≈ 1 − η2/2. Using these

approximations and neglecting the higher order term of η, (59) can be reduced to

Ûεt = −
rη

(2N − 1)V2
M

aIT (60)

In this example, we have g (t) = −rη/(2N − 1)V2
M and u (t) = aIT . The optimal error dynamics with respect to the

impact time error εt is selected as

Ûεt +
K
tgo

εt = 0 (61)

Substituting (61) into (60) gives the guidance command to nullify the impact time error as

aIT =
K (2N − 1)V2

M

rηtgo
εt (62)

15



Combining (57) with (62) leads to the impact time control guidance law as

aM = −
NVMη

tgo
+

K (2N − 1)V2
M

rηtgo
εt (63)

It is obvious that the derived impact time guidance law consists of the PNG command and the impact time error

feedback term. Using the relationships Ûσ = −η/tgo and tgo = r/VM , the above guidance command can also be rewritten

as

aM = NVM Ûσ −
KN (2N − 1)V5

M

NVM Ûσr3 εt (64)

Note that if we choose K = 4 and N = 3, then guidance command (63) is identical to the impact time guidance law

[24]. Also, in the case of K = N + 1, the obtained impact time guidance law becomes the guidance law proposed in

[26]. Therefore, the obtained result is a generalized form of previous impact time guidance laws [24, 26].

In addition, it follows from (10) that the corresponding performance index of (61) is given by

J =
1
2

∫ t f

t

r2η2

(2N − 1)2V4
M

(
t f − τ

)K−1 u2 (τ) dτ (65)

By neglecting the constant terms in the performance index, (65) is further reduced to

J =
1
2

∫ t f

t

r2η2(
t f − τ

)K−1 u2 (τ) dτ (66)

It follows from (66) that the weighting function gradually decreases as r and η decrease. This means that the

acceleration command tends to increase as r and η decrease. This phenomena is not desirable for guaranteeing a finite

guidance command. In order to increase the overall weighting value as tgo → 0, it is clear that the order of time-to-go

in function tK−1
go should be set large enough to converge faster than the decrease rate of r and η. From the observation of

previous result [26], it is desirable to set the guidance gain as K ≥ N + 1 to guarantee a finite guidance command.

D. Guidance-to-Collision for Exo-Atmospheric Interception

In the case of exo-atmospheric interception, there is no aerodynamic force and the interception trajectory is only

controlled by an instantaneous rotation of the missile’s body. Furthermore, as the kinetic kill vehicle, which adopts the

way of direct collision to destroy the target, is becoming both technically and economically feasible for exo-atmospheric

scenario, the concept of nullifying the LOS rate is not preferred due to its lower speed and delayed interception [29, 30].

Recently, the concept of guidance-to-collision was proposed in [29] to accomplish direct collision for exo-atmospheric

engagement. Guidance-to-collision is achieved by nullifying the heading error to follow a straight line towards the

expected collision point. In this subsection, we will show that how to apply the proposed optimal error dynamics to
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Fig. 3 Planar engagement geometry of exo-atmospheric interception.

guidance-to-collision law design.

Figure 3 depicts a schematic view of planar homing geometry for exo-atmospheric engagement. The notation θ is the

interceptor body angle. The target acceleration, denoted by aT , is perpendicular to its velocity vector while the missile

axial acceleration aM is constant provided by a mounted rocket motor along the body axis. The missile angle-of-attack

is denoted by α. Other notations are the same as shown in Fig. 1.

In order to maintain the collision triangle, it is necessary to equalize between the distances traveled by the interceptor

and the target perpendicular to the LOS as

∫ tgo

0
VM (t) sin δdt =

∫ tgo

0
VT (t) sin βdt (67)

At any time instant during the interception, we assume that the target performs no maneuvers. Then, the preceding

equation reduces to (
VM tgo + aM t2

go/2
)

sin δ = VT sin βtgo (68)

Once a collision triangle is reached and maintained, we have

r = VT tgo cos β + VM tgo cos (π − δ) +
1
2

aM t2
go cos (π − δ) (69)

which results in the quadratic equation

t2
go +

2
(
VM tgo cos δ + VT tgo cos β

)
aM cos δ

−
2r

aM cos δ
= 0, δ ,

π

2
(70)

To obtain the required angle δr of δ, we need to solve the coupled equations (68) and (70). After obtaining δr , the
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desired flight path angle that ensures the collision triangle is given by

γ∗M = δr + σ (71)

Then, the heading error can be defined as

εh = γ
∗
M − γM (72)

In order to achieve guidance-to-collision, our objective is to nullify the heading error. Since the desired flight path

angle is slowly varying, we can assume that the variation of γ∗M is negligible as Ûγ∗M ≈ 0. Based on this approximation,

the error dynamics of heading error is given by

Ûεh = − ÛγM = −
aM sinα
VM (t)

(73)

As shown in (73), we have g (t) = −1/VM (t) and u (t) = aM sinα in this case. Here, we choose the optimal error

dynamics with respect to εh as

Ûεh +
K
tgo

εh = 0 (74)

Applying (74) to (73) gives the guidance command as

aM sinα =
KVM (t) εh

tgo
(75)

From (10), the performance index of this error dynamics is given by

J =
1
2

∫ t f

t

1
V2
M (τ)

(
t f − τ

)K−1 u2 (τ) dτ (76)

Here, the velocity of interceptor can be approximated as VM (t) ≈ VM (t0) + aM t since the angle-of-attack is usually

very small for guidance-to-collision interception. From performance index (76), we can readily observe that increasing

the flight velocity serves to reduce the weighting function. Accordingly, it can be predicted that the acceleration

command tends to increase gradually as the velocity increases. This property is not desirable for guaranteeing a finite

guidance command. In order to compensate for the decreasing of the weighting function due to the velocity term, it is

obvious that the guidance gain K should be set greater than the unity as K > 1.

If we introduce the concept of average velocity [39, 40], which is assumed to be a constant during the flight, then the

guidance command can also be approximated by using the average velocity instead of the current velocity as

aM sinα =
KV̄Mεh

tgo
(77)
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Table 1 Initial conditions for homing engagement.

Parameters Values
Missile-target initial relative range, r(0) 50 km

Initial LOS angle, σ(0) 0 deg
Missile initial velocity, VM (0) 2500 m/s

Missile initial flight path angle, γM (0) 160 deg
Target velocity, VT 3000 m/s

Target initial flight path angle, γT (0) 20 deg

where the average velocity is determined by

V̄M =
VM (t0) + VM

(
t f

)
2

= VM (t0) +
1
2

aM t f (78)

In this case, since a constant term in the performance index does not affect the optimal result, it follows from (76) that

J ≈
1
2

∫ t f

t

1(
t f − τ

)K−1 u2 (τ) dτ (79)

The preceding performance index with K = 1 can be considered as the approximated energy optimal case.

V. Simulation Results
In this section, we provide some nonlinear simulations to validate the examples shown in Sec. IV. Since example A

is the well-known augmented PNG, example B is the generalized form of optimal impact angle control guidance law,

and example C is the generalized form of optimal impact time guidance law, we only perform simulations for example D

here. The required initial conditions are summarized in Table 1.

The simulation results, including interception trajectory, angle-of-attack command, flight path angle tracking error

and control effort, with various guidance gains K = 2, 4, 6, 8, 10 are presented in Fig. 4, where the control effort is

defined as
∫ t

t0
u2 (τ) dτ. The results in this figure clearly reveal that guidance law (75) with larger guidance gain K

leads to faster convergence speed of the heading angle tracking error but, in turn, also requires higher angle-of-attack

command during the initial flight period, thereby generating more control effort. When the heading angle tracking error

is close to zero, the control effort almost remains the same for all guidance gain cases, meaning that the interceptor is

maintained on the collision triangle.

To further demonstrate the superiority of the proposed approach, we compare guidance law (75) with PNG and SMC

guidance-to-collision law [29] in simulations. The comparison results, including interception trajectory, angle-of-attack

command and control effort, obtained by these three different guidance laws are shown in Fig. 5. From this figure, it
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(a) (b)

(c) (d)

Fig. 4 Simulation results of guidance-to-collision lawwith various guidance gainsK: (a) interception trajectory;
(b) angle-of-attack command; (c) flight path angle tracking error; and (d) control effort.

(a) (b) (c)

Fig. 5 Simulation results of different guidance laws: (a) interception trajectory; (b) angle-of-attack command;
and (c) control effort.
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can be noted that the axial acceleration of PNG does not align with the velocity vector, thereby forcing the missile to

fly along a curved path to intercept the target. Unlike PNG, both SMC and the proposed guidance law hit the target

following a straight line after the initial heading error is nullified. It is evident from Fig. 5 (b) that the time evolution of

angle-of-attack of guidance-to-collision law remains in a small region around zero after the interceptor is maintained

on the collision triangle. Therefore, guidance-to-collision laws exhibit more energetic interception than PNG as more

energy is used to increase the missile flying speed. Compared to SMC guidance-to-collision law, Fig. 5 (c) reveals that

the proposed guidance law (75) requires less control effort.

VI. Conclusions
This Note proposes a novel optimal error dynamics for missile guidance problems. The uniqueness of the proposed

approach is that it can be applied to any operational objectives if the tracking error of missile guidance problems is

suitably defined. We first reveal that the essence of missile guidance law design is a kind of finite-time tracking problem

in control theory. Based on this result, a generalized error dynamics for unified missile guidance law design is proposed

by solving a linear quadratic optimal control problem through Schwarz’s inequality. As illustrative examples, we provide

the applications of the proposed results to four well-known missile guidance problems, including zero ZEM guidance,

impact angle guidance, impact time guidance and guidance-to-collision.

The proposed results are believed to have an academic significance as well as a practical one. By using the proposed

results, we can exploit advantages of both approaches when designing missile guidance laws since any existing nonlinear

guidance laws can be extended to their corresponding optimal version. The proposed results also provide the theoretical

background to evaluate the performance index of existing nonlinear missile guidance laws. As we suggest a unified

approach for guidance law design, various new missile guidance laws are expected to be developed by applying the

proposed approach to practical problems.

References
[1] Murtaugh, S. A., and Criel, H. E., “Fundamentals of proportional navigation,” IEEE Spectrum, Vol. 3, No. 12, 1966, pp. 75–85.

doi:10.1109/MSPEC.1966.5217080.

[2] Zarchan, P., Tactical and strategic missile guidance, American Institute of Aeronautics and Astronautics, 2012.

[3] Moon, J., Kim, K., and Kim, Y., “Design of missile guidance law via variable structure control,” Journal of Guidance, Control,

and Dynamics, Vol. 24, No. 4, 2001, pp. 659–664. doi:10.2514/2.4792.

[4] Brierley, S., and Longchamp, R., “Application of sliding-mode control to air-air interception problem,” IEEE Transactions on

Aerospace and Electronic Systems, Vol. 26, No. 2, 1990, pp. 306–325. doi:10.1109/7.53460.

21



[5] Koren, A., Idan, M., Golan, O. M., et al., “Integrated sliding mode guidance and control for a missile with on-off actuators,”

Journal of Guidance, Control, and Dynamics, Vol. 31, No. 1, 2008, p. 204. doi:10.2514/1.31328.

[6] Shima, T., Idan, M., and Golan, O. M., “Sliding-mode control for integrated missile autopilot guidance,” Journal of Guidance,

Control, and Dynamics, Vol. 29, No. 2, 2006, pp. 250–260. doi:10.2514/1.14951.

[7] Idan, M., Shima, T., and Golan, O. M., “Integrated sliding mode autopilot-guidance for dual-control missiles,” Journal of

Guidance Control and Dynamics, Vol. 30, No. 4, 2007, pp. 1081–1089. doi:10.2514/1.24953.

[8] Yang, C.-D., and Chen, H.-Y., “Nonlinear H∞ Robust Guidance Law for Homing Missiles,” Journal of Guidance Control and

Dynamics, Vol. 21, 1998, pp. 882–890. doi:10.2514/2.4321.

[9] Lechevin, N., and Rabbath, C., “Lyapunov-based nonlinear missile guidance,” Journal of Guidance, Control, and Dynamics,

Vol. 27, No. 6, 2004, pp. 1096–1102. doi:10.2514/1.8629.

[10] Talole, S., and Banavar, R. N., “Proportional navigation through predictive control,” Journal of Guidance Control and Dynamics,

Vol. 21, 1998, pp. 1004–1005. doi:10.2514/2.4339.

[11] Menon, P., Sweriduk, G., and Ohlmeyer, E., “Optimal fixed-interval integrated guidance-control laws for hit-to-kill missiles,”

AIAA Guidance, Navigation, and Control Conference, AIAA, Austin, Texas, 2003.

[12] Weiss, G., and Rusnak, I., “All-aspect three-dimensional guidance law based on feedback linearization,” Journal of Guidance,

Control, and Dynamics, Vol. 38, No. 12, 2015, pp. 2421–2428. doi:10.2514/1.G001096.

[13] Dwivedi, P., Bhale, P., Bhattacharyya, A., and Padhi, R., “Generalized estimation and predictive guidance for evasive targets,”

IEEE Transactions on Aerospace and Electronic Systems, Vol. 52, No. 5, 2016, pp. 21111–2122. doi:10.1109/TAES.2016.140861.

[14] He, S., and Lee, C.-H., “Gravity-Turn-Assisted Optimal Guidance Law,” Journal of Guidance, Control, and Dynamics, Vol. 41,

No. 1, 2018, pp. 171–183. doi:10.2514/1.G002949.

[15] Zhou, D., Sun, S., and Teo, K. L., “Guidance laws with finite time convergence,” Journal of Guidance, Control, and Dynamics,

Vol. 32, No. 6, 2009, pp. 1838–1846. doi:10.2514/1.42976.

[16] Kim, M., and Grider, K. V., “Terminal guidance for impact attitude angle constrained flight trajectories,” IEEE Transactions on

Aerospace and Electronic Systems, Vol. AES-9, No. 6, 1973, pp. 852–859. doi:10.1109/TAES.1973.309659.

[17] Kim, B. S., Lee, J. G., and Han, H. S., “Biased PNG law for impact with angular constraint,” IEEE Transactions on Aerospace

and Electronic Systems, Vol. 34, No. 1, 1998, pp. 277–288. doi:10.1109/7.640285.

[18] Lu, P., Doman, D. B., and Schierman, J. D., “Adaptive terminal guidance for hypervelocity impact in specified direction,”

Journal of Guidance, Control, and Dynamics, Vol. 29, No. 2, 2006, pp. 269–278. doi:10.2514/1.14367.

[19] Erer, K. S., and Merttopçuoglu, O., “Indirect impact-angle-control against stationary targets using biased pure proportional

navigation,” Journal of Guidance, Control, and Dynamics, Vol. 35, No. 2, 2012, pp. 700–704. doi:10.2514/1.52105.

22



[20] Lee, C.-H., Kim, T.-H., and Tahk, M.-J., “Interception angle control guidance using proportional navigation with error feedback,”

Journal of Guidance, Control, and Dynamics, Vol. 36, No. 5, 2013, pp. 1556–1561. doi:10.2514/1.58454.

[21] Kumar, S. R., Rao, S., and Ghose, D., “Sliding-mode guidance and control for all-aspect interceptors with terminal angle

constraints,” Journal of Guidance, Control and Dynamics, Vol. 35, No. 4, 2012, pp. 1230–1246. doi:10.2514/1.55242.

[22] Kumar, S. R., Rao, S., and Ghose, D., “Nonsingular terminal sliding mode guidance with impact angle constraints,” Journal of

Guidance, Control, and Dynamics, Vol. 37, No. 4, 2014, pp. 1114–1130. doi:10.2514/1.62737.

[23] He, S., Song, T., and Lin, D., “Impact Angle Constrained Integrated Guidance and Control for Maneuvering Target Interception,”

Journal of Guidance, Control, and Dynamics, Vol. 40, No. 10, 2017, pp. 2653–2661. doi:10.2514/1.G002201.

[24] Jeon, I.-S., Lee, J.-I., and Tahk, M.-J., “Impact-time-control guidance law for anti-ship missiles,” IEEE Transactions on Control

Systems Technology, Vol. 14, No. 2, 2006, pp. 260–266. doi:10.1109/TCST.2005.863655.

[25] Jeon, I.-S., Lee, J.-I., and Tahk, M.-J., “Homing guidance law for cooperative attack of multiple missiles,” Journal of guidance,

control, and dynamics, Vol. 33, No. 1, 2010, pp. 275–280. doi:10.2514/1.40136.

[26] Kim, T.-H., Lee, C.-H., Tahk, M.-J., and Jeon, I.-S., “Biased PNG law for impact-time control,” Transactions of the Japan

Society for Aeronautical and Space Sciences, Vol. 56, No. 4, 2013, pp. 205–214. doi:10.2322/tjsass.56.205.

[27] Cho, N., and Kim, Y., “Modified pure proportional navigation guidance law for impact time control,” Journal of Guidance,

Control, and Dynamics, Vol. 39, No. 4, 2016, pp. 852–872. doi:10.2514/1.G001618.

[28] Harl, N., and Balakrishnan, S., “Impact time and angle guidance with sliding mode control,” IEEE Transactions on Control

Systems Technology, Vol. 20, No. 6, 2012, pp. 1436–1449. doi:10.1109/TCST.2011.2169795.

[29] Shima, T., and Golan, O. M., “Exo-atmospheric guidance of an accelerating interceptor missile,” Journal of the Franklin

Institute, Vol. 349, No. 2, 2012, pp. 622–637. doi:10.1016/j.jfranklin.2011.06.024.

[30] Reisner, D., and Shima, T., “Optimal guidance-to-collision law for an accelerating exoatmospheric interceptor missile,” Journal

of Guidance, Control, and Dynamics, Vol. 36, No. 6, 2013, pp. 1695–1708. doi:10.2514/1.61258.

[31] Ryoo, C.-K., Cho, H., and Tahk, M.-J., “Optimal guidance laws with terminal impact angle constraint,” Journal of Guidance

Control and Dynamics, Vol. 28, No. 4, 2005, pp. 724–732. doi:10.2514/1.8392.

[32] Ryoo, C.-K., Cho, H., and Tahk, M.-J., “Time-to-go weighted optimal guidance with impact angle constraints,” IEEE

Transactions on Control Systems Technology, Vol. 14, No. 3, 2006, pp. 483–492. doi:10.1109/TCST.2006.872525.

[33] Ohlmeyer, E. J., and Phillips, C. A., “Generalized vector explicit guidance,” Journal of Guidance, Control, and Dynamics,

Vol. 29, No. 2, 2006, pp. 261–268. doi:10.2514/1.14956.

[34] Lee, C.-H., Kim, T.-H., Tahk, M.-J., and Whang, I.-H., “Polynomial guidance laws considering terminal impact angle

and acceleration constraints,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 49, No. 1, 2013, pp. 74–92.

doi:10.1109/TAES.2013.6404092.

23



[35] Gurfil, P., Jodorkovsky, M., and Guelman, M., “Neoclassical guidance for homing missiles,” Journal of Guidance, Control, and

Dynamics, Vol. 24, No. 3, 2001, pp. 452–459. doi:10.2514/2.4765.

[36] Gurfil, P., “Zero-miss-distance guidance law based on line-of-sight rate measurement only,” Control Engineering Practice,

Vol. 11, No. 7, 2003, pp. 819–832. doi:10.1016/S0967-0661(02)00208-3.

[37] Gurfil, P., “Synthesis of zero miss distance missile guidance via solution of an optimal tuning problem,” Control Engineering

Practice, Vol. 9, No. 10, 2001, pp. 1117–1130. doi:10.1016/S0967-0661(01)00057-0.

[38] Tahk, M.-J., Shim, S.-W., Hong, S.-M., Lee, C.-H., and Choi, H.-L., “Impact time control based on time-to-go prediction for

sea-skimming anti-ship missiles,” IEEE Transactions on Aerospace and Electronic Systems, Accepted for publication.

[39] Gazit, R., and Gutman, S., “Development of guidance laws for a variable-speed missile,” Dynamics and Control, Vol. 1, No. 2,

1991, pp. 177–198. doi:10.1007/BF02169549.

[40] Cho, H., Ryoo, C. K., and Tahk, M.-J., “Closed-form optimal guidance law for missiles of time-varying velocity,” Journal of

Guidance, Control, and Dynamics, Vol. 19, No. 5, 1996, pp. 1017–1022. doi:10.2514/3.21740.

24


	Introduction
	Preliminaries and Motivations
	Model Derivation
	Motivations

	Optimal Error Dynamics
	Derivation of the Proposed Optimal Error Dynamics
	Discussion of the Proposed Optimal Error Dynamics
	Potential Significance of the Proposed Optimal Error Dynamics

	Illustrative Examples
	Zeroing Zero-Effort-Miss
	Impact Angle Control
	Impact Time Control
	Guidance-to-Collision for Exo-Atmospheric Interception

	Simulation Results
	Conclusions

