12 research outputs found

    Stain Consistency Learning: Handling Stain Variation for Automatic Digital Pathology Segmentation

    Full text link
    Stain variation is a unique challenge associated with automated analysis of digital pathology. Numerous methods have been developed to improve the robustness of machine learning methods to stain variation, but comparative studies have demonstrated limited benefits to performance. Moreover, methods to handle stain variation were largely developed for H&E stained data, with evaluation generally limited to classification tasks. Here we propose Stain Consistency Learning, a novel framework combining stain-specific augmentation with a stain consistency loss function to learn stain colour invariant features. We perform the first, extensive comparison of methods to handle stain variation for segmentation tasks, comparing ten methods on Masson's trichrome and H&E stained cell and nuclei datasets, respectively. We observed that stain normalisation methods resulted in equivalent or worse performance, while stain augmentation or stain adversarial methods demonstrated improved performance, with the best performance consistently achieved by our proposed approach. The code is available at: https://github.com/mlyg/stain_consistency_learnin

    Advancing Content-Based Histopathological Image Retrieval Pre-Processing: A Comparative Analysis of the Effects of Color Normalization Techniques

    Get PDF
    [EN] Content-Based Histopathological Image Retrieval (CBHIR) is a search technique based on the visual content and histopathological features of whole-slide images (WSIs). CBHIR tools assist pathologists to obtain a faster and more accurate cancer diagnosis. Stain variation between hospitals hampers the performance of CBHIR tools. This paper explores the effects of color normalization (CN) in a recently proposed CBHIR approach to tackle this issue. In this paper, three different CN techniques were used on the CAMELYON17 (CAM17) data set, which is a breast cancer data set. CAM17 consists of images taken using different staining protocols and scanners in five hospitals. Our experiments reveal that a proper CN technique, which can transfer the color version into the most similar median values, has a positive impact on the retrieval performance of the proposed CBHIR framework. According to the obtained results, using CN as a pre-processing step can improve the accuracy of the proposed CBHIR framework to 97% (a 14% increase), compared to working with the original images.Color normalization; Computer-aided diagnosis (CAD); Content-based image retrieval (CBIR); Histopathological images; Whole-slide images (WSIs)Tabatabaei, Z.; Pérez Bueno, F.; Colomer, A.; Oliver Moll, J.; Molina, R.; Naranjo Ornedo, V. (2024). Advancing Content-Based Histopathological Image Retrieval Pre-Processing: A Comparative Analysis of the Effects of Color Normalization Techniques. Applied Sciences. 14(5). https://doi.org/10.3390/app1405206314

    Advancing Content-Based Histopathological Image Retrieval Pre-Processing: A Comparative Analysis of the Effects of Color Normalization Techniques

    Get PDF
    Author Keywords: color normalization; computer-aided diagnosis (CAD); content-based image retrieval (CBIR); histopathological images; whole-slide images (WSIs)Content-Based Histopathological Image Retrieval (CBHIR) is a search technique based on the visual content and histopathological features of whole-slide images (WSIs). CBHIR tools assist pathologists to obtain a faster and more accurate cancer diagnosis. Stain variation between hospitals hampers the performance of CBHIR tools. This paper explores the effects of color normalization (CN) in a recently proposed CBHIR approach to tackle this issue. In this paper, three different CN techniques were used on the CAMELYON17 (CAM17) data set, which is a breast cancer data set. CAM17 consists of images taken using different staining protocols and scanners in five hospitals. Our experiments reveal that a proper CN technique, which can transfer the color version into the most similar median values, has a positive impact on the retrieval performance of the proposed CBHIR framework. According to the obtained results, using CN as a pre-processing step can improve the accuracy of the proposed CBHIR framework to 97% (a 14% increase), compared to working with the original images.European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No. 860627 (CLARIFY Project). CLoud ARtificial Intelligence For pathologY. DOI: 10.3030/86062

    A hybrid approach for stain normalisation in digital histopathological images

    Get PDF
    Stain in-homogeneity adversely affects segmentation and quantifi-cation of tissues in histology images. Stain normalisation techniques have been used to standardise the appearance of images. However, most the available stain normalisation techniques only work on a particular kind of stain images. In addition, some of these techniques fail to utilise both the spatial and tex-tural information in histology images, leading to image tissue distortion. In this paper, a hybrid approach has been developed, based on an octree colour quantisation algorithm combined with the Beer-Lambert law, a modified blind source separation algorithm, and a modified colour transfer approach. The hybrid method consists of two stages the stain separation stage and colour transfer stage. An octree colour quantisation algorithm combined with Beer-Lambert law, and a modified blind source separation algorithm are used during the stain separation stage to computationally estimate the amount of stain in an histology image based on its chromatic and luminous response. A modified colour transfer algorithm is used during the colour transfer stage to minimise the effect of varying staining and illumination. The hybrid method addresses the colour variation problem in both H&DAB (Haemotoxylin and Diaminoben-zidine) and H&E (Haemotoxylin and Eosin) stain images. The stain normali-sation method is validated against ground truth data. It is widely known that the Beer-Lambert law applies to only stains (such as haematoxylin, eosin) that absorb light. We demonstrate that the Beer-Lambert law applies is applicable to images containing a DAB stain. Better stain normalisation results are obtained in both H&E and H&DAB images

    Bayesian K-SVD for H and E blind color deconvolution. Applications to stain normalization, data augmentation and cancer classification

    Get PDF
    This work was supported by project PID2019-105142RB-C22 funded by MCIN / AEI / 10.13039 / 501100011033, Spain, and project P20_00286 funded by FEDER /Junta de Andalucía-Consejería de Transformación Económica, Industria, Conocimiento y Universidades, Spain. The work by Fernando Pérez-Bueno was sponsored by Ministerio de Economía, Industria y Competitividad , Spain, under FPI contract BES-2017-081584 . Funding for open access charge: Universidad de Granada / CBUA, Spain.Stain variation between images is a main issue in the analysis of histological images. These color variations, produced by different staining protocols and scanners in each laboratory, hamper the performance of computer-aided diagnosis (CAD) systems that are usually unable to generalize to unseen color distributions. Blind color deconvolution techniques separate multi-stained images into single stained bands that can then be used to reduce the generalization error of CAD systems through stain color normalization and/or stain color augmentation. In this work, we present a Bayesian modeling and inference blind color deconvolution framework based on the K-Singular Value Decomposition algorithm. Two possible inference procedures, variational and empirical Bayes are presented. Both provide the automatic estimation of the stain color matrix, stain concentrations and all model parameters. The proposed framework is tested on stain separation, image normalization, stain color augmentation, and classification problems.CBUAJunta de Andalucía-Consejería de Transformación Económica, Industria, Conocimiento y UniversidadesFamily Process Institute BES-2017-081584Universidad de GranadaEuropean Regional Development FundMinisterio de Economía, Industria y Competitividad, Gobierno de EspañaAgencia Estatal de Investigación P20_0028

    Differently stained whole slide image registration technique with landmark validation

    Get PDF
    Abstract. One of the most significant features in digital pathology is to compare and fuse successive differently stained tissue sections, also called slides, visually. Doing so, aligning different images to a common frame, ground truth, is required. Current sample scanning tools enable to create images full of informative layers of digitalized tissues, stored with a high resolution into whole slide images. However, there are a limited amount of automatic alignment tools handling large images precisely in acceptable processing time. The idea of this study is to propose a deep learning solution for histopathology image registration. The main focus is on the understanding of landmark validation and the impact of stain augmentation on differently stained histopathology images. Also, the developed registration method is compared with the state-of-the-art algorithms which utilize whole slide images in the field of digital pathology. There are previous studies about histopathology, digital pathology, whole slide imaging and image registration, color staining, data augmentation, and deep learning that are referenced in this study. The goal is to develop a learning-based registration framework specifically for high-resolution histopathology image registration. Different whole slide tissue sample images are used with a resolution of up to 40x magnification. The images are organized into sets of consecutive, differently dyed sections, and the aim is to register the images based on only the visible tissue and ignore the background. Significant structures in the tissue are marked with landmarks. The quality measurements include, for example, the relative target registration error, structural similarity index metric, visual evaluation, landmark-based evaluation, matching points, and image details. These results are comparable and can be used also in the future research and in development of new tools. Moreover, the results are expected to show how the theory and practice are combined in whole slide image registration challenges. DeepHistReg algorithm will be studied to better understand the development of stain color feature augmentation-based image registration tool of this study. Matlab and Aperio ImageScope are the tools to annotate and validate the image, and Python is used to develop the algorithm of this new registration tool. As cancer is globally a serious disease regardless of age or lifestyle, it is important to find ways to develop the systems experts can use while working with patients’ data. There is still a lot to improve in the field of digital pathology and this study is one step toward it.Eri menetelmin värjättyjen virtuaalinäytelasien rekisteröintitekniikka kiintopisteiden validointia hyödyntäen. Tiivistelmä. Yksi tärkeimmistä digitaalipatologian ominaisuuksista on verrata ja fuusioida peräkkäisiä eri menetelmin värjättyjä kudosleikkeitä toisiinsa visuaalisesti. Tällöin keskenään lähes identtiset kuvat kohdistetaan samaan yhteiseen kehykseen, niin sanottuun pohjatotuuteen. Nykyiset näytteiden skannaustyökalut mahdollistavat sellaisten kuvien luonnin, jotka ovat täynnä kerroksittaista tietoa digitalisoiduista näytteistä, tallennettuna erittäin korkean resoluution virtuaalisiin näytelaseihin. Tällä hetkellä on olemassa kuitenkin vain kourallinen automaattisia työkaluja, jotka kykenevät käsittelemään näin valtavia kuvatiedostoja tarkasti hyväksytyin aikarajoin. Tämän työn tarkoituksena on syväoppimista hyväksikäyttäen löytää ratkaisu histopatologisten kuvien rekisteröintiin. Tärkeimpänä osa-alueena on ymmärtää kiintopisteiden validoinnin periaatteet sekä eri väriaineiden augmentoinnin vaikutus. Lisäksi tässä työssä kehitettyä rekisteröintialgoritmia tullaan vertailemaan muihin kirjallisuudessa esitettyihin algoritmeihin, jotka myös hyödyntävät virtuaalinäytelaseja digitaalipatologian saralla. Kirjallisessa osiossa tullaan siteeraamaan aiempia tutkimuksia muun muassa seuraavista aihealueista: histopatologia, digitaalipatologia, virtuaalinäytelasi, kuvantaminen ja rekisteröinti, näytteen värjäys, data-augmentointi sekä syväoppiminen. Tavoitteena on kehittää oppimispohjainen rekisteröintikehys erityisesti korkearesoluutioisille digitalisoiduille histopatologisille kuville. Erilaisissa näytekuvissa tullaan käyttämään jopa 40-kertaista suurennosta. Kuvat kudoksista on järjestetty eri menetelmin värjättyihin peräkkäisiin kuvasarjoihin ja tämän työn päämääränä on rekisteröidä kuvat pohjautuen ainoastaan kudosten näkyviin osuuksiin, jättäen kuvien tausta huomioimatta. Kudosten merkittävimmät rakenteet on merkattu niin sanotuin kiintopistein. Työn laatumittauksina käytetään arvoja, kuten kohteen suhteellinen rekisteröintivirhe (rTRE), rakenteellisen samankaltaisuuindeksin mittari (SSIM), sekä visuaalista arviointia, kiintopisteisiin pohjautuvaa arviointia, yhteensopivuuskohtia, ja kuvatiedoston yksityiskohtia. Nämä arvot ovat verrattavissa myös tulevissa tutkimuksissa ja samaisia arvoja voidaan käyttää uusia työkaluja kehiteltäessä. DeepHistReg metodi toimii pohjana tässä työssä kehitettävälle näytteen värjäyksen parantamiseen pohjautuvalle rekisteröintityökalulle. Matlab ja Aperio ImageScope ovat ohjelmistoja, joita tullaan hyödyntämään tässä työssä kuvien merkitsemiseen ja validointiin. Ohjelmointikielenä käytetään Pythonia. Syöpä on maailmanlaajuisesti vakava sairaus, joka ei katso ikää eikä elämäntyyliä. Siksi on tärkeää löytää uusia keinoja kehittää työkaluja, joita asiantuntijat voivat hyödyntää jokapäiväisessä työssään potilastietojen käsittelyssä. Digitaalipatologian osa-alueella on vielä paljon innovoitavaa ja tämä työ on yksi askel eteenpäin taistelussa syöpäsairauksia vastaan

    Data harmonisation for information fusion in digital healthcare: A state-of-the-art systematic review, meta-analysis and future research directions

    Get PDF
    Removing the bias and variance of multicentre data has always been a challenge in large scale digital healthcare studies, which requires the ability to integrate clinical features extracted from data acquired by different scanners and protocols to improve stability and robustness. Previous studies have described various computational approaches to fuse single modality multicentre datasets. However, these surveys rarely focused on evaluation metrics and lacked a checklist for computational data harmonisation studies. In this systematic review, we summarise the computational data harmonisation approaches for multi-modality data in the digital healthcare field, including harmonisation strategies and evaluation metrics based on different theories. In addition, a comprehensive checklist that summarises common practices for data harmonisation studies is proposed to guide researchers to report their research findings more effectively. Last but not least, flowcharts presenting possible ways for methodology and metric selection are proposed and the limitations of different methods have been surveyed for future research

    Analysis of Signal Decomposition and Stain Separation methods for biomedical applications

    Get PDF
    Nowadays, the biomedical signal processing and classification and medical image interpretation play an essential role in the detection and diagnosis of several human diseases. The problem of high variability and heterogeneity of information, which is extracted from digital data, can be addressed with signal decomposition and stain separation techniques which can be useful approaches to highlight hidden patterns or rhythms in biological signals and specific cellular structures in histological color images, respectively. This thesis work can be divided into two macro-sections. In the first part (Part I), a novel cascaded RNN model based on long short-term memory (LSTM) blocks is presented with the aim to classify sleep stages automatically. A general workflow based on single-channel EEG signals is developed to enhance the low performance in staging N1 sleep without reducing the performances in the other sleep stages (i.e. Wake, N2, N3 and REM). In the same context, several signal decomposition techniques and time-frequency representations are deployed for the analysis of EEG signals. All extracted features are analyzed by using a novel correlation-based timestep feature selection and finally the selected features are fed to a bidirectional RNN model. In the second part (Part II), a fully automated method named SCAN (Stain Color Adaptive Normalization) is proposed for the separation and normalization of staining in digital pathology. This normalization system allows to standardize digitally, automatically and in a few seconds, the color intensity of a tissue slide with respect to that of a target image, in order to improve the pathologist’s diagnosis and increase the accuracy of computer-assisted diagnosis (CAD) systems. Multiscale evaluation and multi-tissue comparison are performed for assessing the robustness of the proposed method. In addition, a stain normalization based on a novel mathematical technique, named ICD (Inverse Color Deconvolution) is developed for immunohistochemical (IHC) staining in histopathological images. In conclusion, the proposed techniques achieve satisfactory results compared to state-of-the-art methods in the same research field. The workflow proposed in this thesis work and the developed algorithms can be employed for the analysis and interpretation of other biomedical signals and for digital medical image analysis

    The impact of pre- and post-image processing techniques on deep learning frameworks: A comprehensive review for digital pathology image analysis

    Get PDF
    Recently, deep learning frameworks have rapidly become the main methodology for analyzing medical images. Due to their powerful learning ability and advantages in dealing with complex patterns, deep learning algorithms are ideal for image analysis challenges, particularly in the field of digital pathology. The variety of image analysis tasks in the context of deep learning includes classification (e.g., healthy vs. cancerous tissue), detection (e.g., lymphocytes and mitosis counting), and segmentation (e.g., nuclei and glands segmentation). The majority of recent machine learning methods in digital pathology have a pre- and/or post-processing stage which is integrated with a deep neural network. These stages, based on traditional image processing methods, are employed to make the subsequent classification, detection, or segmentation problem easier to solve. Several studies have shown how the integration of pre- and post-processing methods within a deep learning pipeline can further increase the model's performance when compared to the network by itself. The aim of this review is to provide an overview on the types of methods that are used within deep learning frameworks either to optimally prepare the input (pre-processing) or to improve the results of the network output (post-processing), focusing on digital pathology image analysis. Many of the techniques presented here, especially the post-processing methods, are not limited to digital pathology but can be extended to almost any image analysis field
    corecore