7,911 research outputs found

    Damage identification in structural health monitoring: a brief review from its implementation to the Use of data-driven applications

    Get PDF
    The damage identification process provides relevant information about the current state of a structure under inspection, and it can be approached from two different points of view. The first approach uses data-driven algorithms, which are usually associated with the collection of data using sensors. Data are subsequently processed and analyzed. The second approach uses models to analyze information about the structure. In the latter case, the overall performance of the approach is associated with the accuracy of the model and the information that is used to define it. Although both approaches are widely used, data-driven algorithms are preferred in most cases because they afford the ability to analyze data acquired from sensors and to provide a real-time solution for decision making; however, these approaches involve high-performance processors due to the high computational cost. As a contribution to the researchers working with data-driven algorithms and applications, this work presents a brief review of data-driven algorithms for damage identification in structural health-monitoring applications. This review covers damage detection, localization, classification, extension, and prognosis, as well as the development of smart structures. The literature is systematically reviewed according to the natural steps of a structural health-monitoring system. This review also includes information on the types of sensors used as well as on the development of data-driven algorithms for damage identification.Peer ReviewedPostprint (published version

    Electrical Infrastructure Adaptation for a Changing Climate

    Get PDF
    In recent years, global climate change has become a major factor in long-term electrical infrastructure planning in coastal areas. Over time, accelerated sea level rise and fiercer, more frequent storm surges caused by the changing climate have imposed increasing risks to the security and reliability of coastal electrical infrastructure systems. It is important to ensure that infrastructure system planning adapts to such risks to produce systems with strong resilience. This dissertation proposes a decision framework for long-term, resilient electrical infrastructure adaptation planning for a future with the uncertain sea level rise and storm surges in a changing climate. As uncertainty is unavoidable in real-world decision making, stochastic optimization plays an essential role in making robust decisions with respect to global climate change. The core of the proposed decision framework is a stochastic optimization model with the primary goal being to ensure operational feasibility once uncertain futures are revealed. The proposed stochastic model produces long-term climate adaptations that are subject to both the exogenous uncertainty of climate change as well as the endogenous physical restrictions of electrical infrastructure. Complex, state-of-the-art simulation models under climate change are utilized to represent exogenous uncertainty in the decision-making process. In practice, deterministic methods such as scenario-based analyses and/or geometric-information-system-based heuristics are widely used for real-world adaptation planning. Numerical experiments and sensitivity analyses are conducted to compare the proposed framework with various deterministic methods. Our experimental results demonstrate that resilient, long-term adaptations can be obtained using the proposed stochastic optimization model. In further developing the decision framework, we address a class of stochastic optimization models where operational feasibility is ensured for only a percentage of all possible uncertainty realizations through joint chance-constraints. It is important to identify the significant scalability limitations often associated with commercial optimization tools for solving this class of challenging stochastic optimization problems. We propose a novel configuration generation algorithm which leverages metaheuristics to find high-quality solutions quickly and generic relaxations to provide solution quality guarantees. A key advantage of the proposed method over previous work is that the joint chance-constrained stochastic optimization problem can contain multivariate distributions, discrete variables, and nonconvex constraints. The effectiveness of the proposed algorithm is demonstrated on two applications, including the climate adaptation problem, where it significantly outperforms commercial optimization tools. Furthermore, the need to address the feasibility of a realistic electrical infrastructure system under impacts is recognized for the proposed decision framework. This requires dedicated attention to addressing nonlinear, nonconvex optimization problem feasibility, which can be a challenging problem that requires an expansive exploitation of the solution space. We propose a global algorithm for the feasibility problem\u27s counterpart: proving problem infeasibility. The proposed algorithm adaptively discretizes variable domains to tighten the relaxed problem for proving infeasibility. The convergence of the algorithm is demonstrated as the algorithm either finds a feasible solution or terminates with the problem being proven infeasible. The efficiency of this algorithm is demonstrated through experiments comparing two state-of-the-art global solvers, as well as a recently proposed global algorithm, to our proposed method

    Probabilistic Optimization Techniques in Smart Power System

    Get PDF
    Uncertainties are the most significant challenges in the smart power system, necessitating the use of precise techniques to deal with them properly. Such problems could be effectively solved using a probabilistic optimization strategy. It is further divided into stochastic, robust, distributionally robust, and chance-constrained optimizations. The topics of probabilistic optimization in smart power systems are covered in this review paper. In order to account for uncertainty in optimization processes, stochastic optimization is essential. Robust optimization is the most advanced approach to optimize a system under uncertainty, in which a deterministic, set-based uncertainty model is used instead of a stochastic one. The computational complexity of stochastic programming and the conservativeness of robust optimization are both reduced by distributionally robust optimization.Chance constrained algorithms help in solving the constraints optimization problems, where finite probability get violated. This review paper discusses microgrid and home energy management, demand-side management, unit commitment, microgrid integration, and economic dispatch as examples of applications of these techniques in smart power systems. Probabilistic mathematical models of different scenarios, for which deterministic approaches have been used in the literature, are also presented. Future research directions in a variety of smart power system domains are also presented.publishedVersio

    Reliability and Maintenance

    Get PDF
    Amid a plethora of challenges, technological advances in science and engineering are inadvertently affecting an increased spectrum of today’s modern life. Yet for all supplied products and services provided, robustness of processes, methods, and techniques is regarded as a major player in promoting safety. This book on systems reliability, which equally includes maintenance-related policies, presents fundamental reliability concepts that are applied in a number of industrial cases. Furthermore, to alleviate potential cost and time-specific bottlenecks, software engineering and systems engineering incorporate approximation models, also referred to as meta-processes, or surrogate models to reproduce a predefined set of problems aimed at enhancing safety, while minimizing detrimental outcomes to society and the environment
    • …
    corecore