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Abstract

In recent years, global climate change has become a major factor in long-term electrical

infrastructure planning in coastal areas. Over time, accelerated sea level rise and fiercer, more fre-

quent storm surges caused by the changing climate have imposed increasing risks to the security and

reliability of coastal electrical infrastructure systems. It is important to ensure that infrastructure

system planning adapts to such risks to produce systems with strong resilience. This dissertation

proposes a decision framework for long-term, resilient electrical infrastructure adaptation planning

for a future with the uncertain sea level rise and storm surges in a changing climate. As un-

certainty is unavoidable in real-world decision making, stochastic optimization plays an essential

role in making robust decisions with respect to global climate change. The core of the proposed

decision framework is a stochastic optimization model with the primary goal being to ensure op-

erational feasibility once uncertain futures are revealed. The proposed stochastic model produces

long-term climate adaptations that are subject to both the exogenous uncertainty of climate change

as well as the endogenous physical restrictions of electrical infrastructure. Complex, state-of-the-

art simulation models under climate change are utilized to represent exogenous uncertainty in the

decision-making process. In practice, deterministic methods such as scenario-based analyses and/or

geometric-information-system-based heuristics are widely used for real-world adaptation planning.

Numerical experiments and sensitivity analyses are conducted to compare the proposed framework

with various deterministic methods. Our experimental results demonstrate that resilient, long-term

adaptations can be obtained using the proposed stochastic optimization model.

In further developing the decision framework, we address a class of stochastic optimiza-

tion models where operational feasibility is ensured for only a percentage of all possible uncertainty

realizations through joint chance-constraints. It is important to identify the significant scalability

limitations often associated with commercial optimization tools for solving this class of challeng-
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ing stochastic optimization problems. We propose a novel configuration generation algorithm which

leverages metaheuristics to find high-quality solutions quickly and generic relaxations to provide solu-

tion quality guarantees. A key advantage of the proposed method over previous work is that the joint

chance-constrained stochastic optimization problem can contain multivariate distributions, discrete

variables, and nonconvex constraints. The effectiveness of the proposed algorithm is demonstrated

on two applications, including the climate adaptation problem, where it significantly outperforms

commercial optimization tools.

Furthermore, the need to address the feasibility of a realistic electrical infrastructure system

under impacts is recognized for the proposed decision framework. This requires dedicated attention

to addressing nonlinear, nonconvex optimization problem feasibility, which can be a challenging

problem that requires an expansive exploitation of the solution space. We propose a global algorithm

for the feasibility problem’s counterpart: proving problem infeasibility. The proposed algorithm

adaptively discretizes variable domains to tighten the relaxed problem for proving infeasibility. The

convergence of the algorithm is demonstrated as the algorithm either finds a feasible solution or

terminates with the problem being proven infeasible. The efficiency of this algorithm is demonstrated

through experiments comparing two state-of-the-art global solvers, as well as a recently proposed

global algorithm, to our proposed method.
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Chapter 1

Introduction

The electrical grid, one of the most critical infrastructure systems, fundamentally supports

modern society. The loss of electricity can introduce serious security threats along with massive

financial losses. Although the modern infrastructure systems are designed to survive disturbances,

severe natural events can still cause significant damages. For example, during a hurricane, the

electricity transmission system can suffer localized inundation damage due to hurricane-induced

water surge. As defined by National Oceanic and Atmospheric Administration (National Hurricane

Center-Storm Surge Unit [2013]), “storm surge (SS) is an abnormal rise of water generated by a

storm, over and above the predicted astronomical tide.” Unexpected SS can jeopardize electricity

substations and force them to shut down, which causes drastic generation and transmission capacity

shedding and eventually leads to massive blackouts.

In 2009, Hurricane Sandy, which had the greatest SS in the northeastern US along coastal

areas, struck New York City (NYC) as a Category II hurricane (Yates et al. [2014]). Although its

associated winds were not impressively strong, a record-breaking five-foot surge happened at the

Battery in lower Manhattan. At the same time in Long Island, this unprecedented SS destroyed

51 substations, nearly 2, 500 transformers, and 4, 400 distribution poles while causing more than

90% of the 1.1 million Long Island power authority customers to lose electricity. The excessive

damages stressed bulk transmission systems to cause even more outages due to the interdependence of

transmission systems, which led NYC to become crucially dependent on its local reserve generators.

According to a report by Bloomberg [2013], local utility companies deployed preemptive actions, such

as facility perimeter protection using temporary barriers and sandbags. Meanwhile, grid operator
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enforced emergency dispatch policy to minimize potential downtime. However, when key substations

were knocked out due to insufficient protection against the unexpected SS, massive power failures

still occurred across a wide area. The severity of Hurricane Sandy was far worse than predicted

(Abi-Samra and Malcolm [2011]).

Over the last 40 years, climate change is evident: the intensity, frequency, and duration of

North Atlantic hurricanes have increased ever since 1980 (Webster et al. [2005]). Data from the

U.S. Energy Information Administration suggests that weather-induced power outages have been

increasing during the past two decades (see Executive Office of the President [2013]). An important

immediate effect of the changing climate is sea level rise (SLR). A recent study by DeConto and

Pollard [2016] uses an improved ice sheet mechanism to predict the SLR will reach up to one

meter in the next century. According to Woodruff et al. [2013], SLR impacts electrical grids in

a fundamentally different way than SS. First, the rising sea level increases the baseline of SS to

superimpose the damages. If we assume Hurricane Sandy happens again, 50 years in the future,

the damages associated with SS are exacerbated with SLR (Little et al. [2015]). Furthermore, SLR

also imposes issues such as population displacement and accelerated coastal basin erosion, both of

which can result in more uncertain, future risks for the electrical grid. To effectively manage risks

in the long-term, it is necessary to incorporate the uncertainties of both SS and SLR when making

electrical infrastructure planning decisions.

In climatology research, scientific studies have assessed the evolving, uncertain risks to the

electrical grid under a changing climate. By coupling a circulation-based hurricane model with a

hydrodynamic model, Lin et al. [2012] projected that SS levels are to evolve by a magnitude compa-

rable to the projected SLR in NYC. Meanwhile, the rising sea level can also increase the frequency

of catastrophic hurricanes, which collectively expose significant vulnerability of NYC to SS. Another

study by Tebaldi et al. [2012] focusing on global temperature change used a semi-empirical model to

predict the substantial SS frequency increase on tail events (i.e., today’s “century-level” SS events

can become “decade-level” events by mid-century). Furthermore, another study by Lin et al. [2016]

indicates a ∼ 3 to ∼ 17 return rate of Hurricane Sandy in next nine decades, which can significantly

increase flood risks in NYC. The SLR is dependent on representative concentration pathways (RCP)

simulations which are used to describe four representative climate futures of different greenhouse

gas concentration in the atmosphere. In another study by Little et al. [2015] about joint projection

with SLR and SS, it is suggested that higher RCP trajectory will further increase the coastal flood
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risks of SS together with a higher SLR. Finally, Nateghi et al. [2014] suggests that increasing flood

risks can lead to massive electric system outages and blackouts.

Even though the topic of climate change can be highly controversial, it is important to

realize that the future of the electrical grid is under substantial, uncertain risks. Recognition of the

emerging impacts can provide valuable insights in building a resilient system for extreme events (see

Cook et al. [2016], Nicholls and Cazenave [2010], and Van Vliet et al. [2012]). During a catastrophic

event such as a hurricane, utility companies rely on state-of-the-art outage prediction models com-

bined with scenario analyses to coordinate preemptive operations and logistics to promote electricity

transmission system resilience (see Nateghi et al. [2011] and Nateghi et al. [2014]). These practices

are often conducted days ahead of the hurricane’s landfall, which is a relatively short time frame.

Hence, security efforts against extreme events is limited due to this short time frame for deploying

effective protection.

Utilizing the above short-term, prediction-based framework can hinder the developments

of an electrical grid with reduced the overall risk and a strengthened long-term resilience, as sug-

gested by Francis et al. [2011] and Ranger [2011]. Decisions can be made ahead of time to better

prepare the system for uncertain extreme events. The adaptation provided should not be limited to

short time frame options. Although hurricanes can happen within a week, the climate adaptation

should consider long-term time frame to avoid locally optimal conclusions. Last but not least, the

adaptation needs to consider endogenous system development, such as power systems physics, elec-

tricity demand growth, and population distribution adjustments. Therefore, an advanced, long-term

electrical grid adaptation plan is needed for a more resilient future. However, drafting a climate

adaptation for electrical infrastructure is non-trivial due to the dual complication of power systems

physics as well as the uncertainty of nature. Base on climatology study projections by Bierkandt

et al. [2015], SLR and the evolving hurricane-induced SS are two major stressors to coastal electrical

grid security. This motivates decision-makers to seek adaptation plans that incorporates a changing

climate, i.e., a climate adaptation. A forward-thinking climate adaptation can economically develop,

strengthen, and protect electrical a infrastructure system to address a system’s vulnerability to ex-

treme events. The need for climate adaptation has been called for in multiple governments reports,

such as Bloomberg [2013], Department of Defense [2014], and of Louisiana [2017]. However, there

has been little research works to develop valid methodologies for making valid climate adaptations.

There exist many state-of-the-art physical models that quantify how nature evolves, such
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as Pasqualini [2016], Paolo et al. [2015], Schmidtko et al. [2014], and Kopp et al. [2016]. These

studies also incorporate the assessment of which impact to electrical infrastructure. What is missing

in practice is validated decision-making models that couple engineered decisions with an evolving

nature. In practice, decision makers draft climate adaptations intuitively using either a robust

decision-making (RDM) framework or geographical information system (GIS) heuristic methods

based on their experiences or simulated scenarios (see Groves and Sharon [2013], Kasprzyk et al.

[2013], Russo et al. [2013], and Simm et al. [2015]). The RDM framework is widely considered

under an assumed deterministic setup without any freedom in specifying reliability levels for decision

makers. This framework can often bias decision making process by focusing solely on low probability

events while omitting the more common decisions. Other methods utilizing rule-based heuristics

either simplify by aggregating uncertainty approximations or by neglecting the underlying system’s

physical restrictions. These result in a local solution with biased or rigid suggestions that have

poor system resilience. Additionally, overlooking the physical restrictions of electrical grids can

overestimate reliability and underestimate adaptation costs, which lead to investments for failures.

The notion of electrical grid climate adaptation can essentially be interpreted as a decision-

making process in a physically restricted system with some quantifiable objectives. The goal is to

achieve climate adaptation plan with the best objective possible while obeying power flow physics

during operations under exogenous uncertainty. Therefore, the determination of a climate adaptation

can be formally be expressed as a stochastic optimization model. To the best of our knowledge, an

optimization-based climate adaptation framework has not been addressed in climatology research.

However, optimization models have been extensively studied in power systems research for operations

scheduling, economic analysis, and expansion planning applications (Wood and Wollenberg [2012]).

In modern society, many industries, governments, and commercial applications rely on opti-

mization models to support decision-making processes. These models are used to improve operational

efficiency, ensure engineering constraints are enforced, and maintain safety and reliability standards.

Unfortunately, many aspects of the underlying conditions are either uncertain or unknown in prac-

tice as suggested by Birge and Louveaux [2011] and Wallace and Fleten [2003]. To address these

issues, stochastic optimization has been studied to model and analyze complex systems under un-

certain setups. Stochastic optimization determine decisions that are robust or are of low cost across

random relaxations realizations. Within the stochastic optimization literature domain, researchers

have characterized uncertainties using a variety of approaches; Birge and Louveaux [2011] suggested
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that there is no single superior approach for all problems.

In recent works, stochastic optimization has been applied to cope with electrical grid applica-

tions, helping achieve higher quality solutions that are more actionable for real-world implementation

(see Gangammanavar et al. [2016], Morales et al. [2009], and Constantinescu et al. [2011]). Such

developments provide viable and flexible ways to link state-of-the-art physical simulation models

with optimization models to help obtain better decisions. Electrical grid expansion problems under

uncertainty provide valuable insights for methodology development on long-term climate adapta-

tion. Gorenstin et al. [1993] formulate an early stochastic electric infrastructure expansion planning

problem by considering uncertain demand growth, fuel costs, and financial constraints. Moreno

et al. [2013] demonstrates a basic two-stage stochastic optimization model that is also used by

a transmission system planning model. Other stochastic optimization modeling schemes, such as

probabilistic constraints (see López et al. [2007] and Yu et al. [2009]), multi-stage formulations (see

Ahmed et al. [2003] and Collado et al. [2012]), and sample average approximation (see Jirutitijaroen

and Singh [2008]), have also been investigated. For applications with extreme natural events, short-

term preemptive power system outage prediction is investigated extensively by Nateghi et al. [2011].

However, a study of the long-term climate adaptation of evolving SS under climate change impacts

is lacking in the literature.

My proposed research focuses on developing an integrated Simulation-Optimization Climate

Adaptation (SOCA) framework for resilient electric grid adaptation under time-evolving, uncertain

climate changes. First, I propose and implement a mixed-integer stochastic optimization model

that incorporates Joint Chance Constraints (JCC) and operational power flow physics. The JCC

contain a risk parameter ε that controls how often the feasible solution is obtained. As suggested

by Kleywegt et al. [2002] and Luedtke and Ahmed [2008], stochastic optimization models with JCC

generalize the robustness criteria to reflect the willingness of decision-makers to assess the trade-off

between non-trivial risks and effective cost savings. The research goal is to show the value of long-

term climate adaptation via advanced decision-making methodologies under uncertainty in mind.

SOCA bridges the gap between the topics of climate change and optimization-based decision-making

to provide valuable insights for decision makers. My proposed optimization model will be evaluated

and compared to scenario-based or GIS heuristics commonly found in practice.

Given the complexity of the proposed optimization model, we then focus on algorithmic

design to solve the general form of SOCA, which can be referred to as Joint Chance-Constrained
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programs with Finite-Support and Feasible, Integer Recourse (JCC-FSFIR). A key feature of the

JCC-FSFIR is its representation of uncertainty in the optimization problem: the uncertainty is

modeled with a finitely supported scenario set that approximates all possible realizations of uncer-

tainty. To develop a solution approach for JCC-FSFIR, we develop an algorithm which decomposes

JCC-FSFIR into scenarios. This algorithm, which will be referred to as scenario-based heuristic con-

figuration generation (SHCG), concludes objective bounds and find high-quality solution by creating

solution configurations by solving multiple, smaller-sized, tractable FSFIR problems.

As a next step, we focus on incorporating realistic modeling of the electrical grid operations

in the SOCA framework to provide more accurate estimations of climate adaptation. To do this, we

investigate the feasibility of the alternative current power flow (ACPF) problem, which is a nonlinear

nonconvex problem that is applicable to both the SOCA framework and the SHCG algorithm.

Detecting a feasible solution for the ACPF problem requires an exploitation of the solution space,

which can be computationally expensive. Alternatively, the same goal can be achieved by proving an

ACPF’s relaxation is infeasible. With this motivation, we combine the idea of tight piece-wise convex

relaxation and adaptive domain discretization techniques to design an ACPF infeasibility proof

(ACPF-IP) algorithm guaranteed to find either a feasible solution or prove the problem infeasible.

ACPF-IP outperforms state-of-the-art global solvers which are based on spatial branch-and-bound

techniques.

The research contributions of this dissertation are summarized as follows:

• A simulation-optimization framework for long-term electrical infrastructure climate adapta-

tion design by linking state-of-the-art climate simulations with an optimization model. This

framework is meant to address the short-comings of deterministic methods in practice. State-

of-the-art climate simulations, which models evolving climate change and SS, are incorporated

in the decision-making process by requiring the decisions to be aware of exogenous uncertain-

ties.

• An optimization model that incorporates network-based power flow physics for multi-period

electrical infrastructure climate adaptation designs. At each period, the optimization model

allows decision makers to develop and harden the existing system in the face of growing and

uncertain impacts. Unlike short-term outage prediction models, the proposed model investi-

gates long-term climate adaptation under uncertainty, which allows for the consideration of
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more viable options to reduce the overall risk and cost.

• A stochastic setup containing probabilistic constraint is applied in a stochastic optimization

model to ensure system resilience with a probabilistic measurement. This stochastic setup

requires the resulting adaptation to withstand the impacts of a hurricane with probability

1− ε, where parameter complicated uncertain.

• A comprehensive computational experiment design, using 118-bus IEEE test system to repre-

sent the Norfolk, VA area. The experiment investigates a 50-year climate adaptation. Exoge-

nous uncertainties are modeled by SLR projection model (Kopp et al. [2016]) and hurricane

and SS simulators (Pasqualini [2016]). Based on the experimental result, the advantages of

SOCA is demonstrated over several deterministic methods.

• A solution approach that efficiently solves a class of mixed-integer stochastic optimization

models. The combinatorial nature of the proposed optimization model in the SOCA framework

makes the stochastic optimization model NP-hard; it is nearly impossible to solve realistic-size

problems using the state-of-the-art commercial software. The proposed algorithm targets a

more general class of optimization programs other than just the climate adaptation problem

and uses decomposition methods to find a high-quality solution with objective bounds.

• A global algorithm that performs infeasibility proof on a class of nonlinear, nonconvex pro-

grams. For these programs, proving problem infeasibility can require an exhaustive search of

the decision space. Alternatively, our proposed algorithm applies tight piece-wise relaxation

with dedicated algorithmic designs to achieve the same goal more efficiently. Moreover, global

convergence of the proposed algorithm is discussed and demonstrated.

The rest of this dissertation is structured as follows. We first introduce the SOCA framework

for coastal electrical infrastructure climate adaptations in Chapter 2. The model applied in the

SOCA framework is a stochastic optimization model with JCC and a finite scenario support. To

validate the SOCA, we conduct a series of numerical experiments using SOCA to compare it with a

number of methods used in practice and observe that SOCA is able to achieve high-quality solutions

that are resilient to uncertainty. SOCA is then used to conduct sensitivity analyses to further

understand the relaxation between the costs of climate adaptation and the potential risks. Through

our experiments, it was clear that the proposed optimization model is computationally challenging
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due to JCC-FSFIR’s combinatorial nature. By exploiting the formulation’s structural properties, we

develop objective bounds and propose a converging global algorithm to improve model tractability in

Chapter 3. The proposed algorithm for solving JCC-FSFIR shows promising results for both large-

scale applications and the classical stochastic knapsack problem. Next, we discuss the necessity and

challenges of analyzing a more realistic model that reflects the complex physics of the electrical grid.

In Chapter 4, a general piece-wise convex relaxation formulation for ACPF is described, followed by

our ACPF-IP algorithm that focuses on it. Numerical experiments are conducted with ACPF-IP to

demonstrate it efficiency compared to state-of-the-art global solvers and a recent global algorithm.

Finally, in Chapter 5, we provide a summary of this dissertation discuss future research directions.
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Chapter 2

A Simulation-Optimization

Framework for Critical Electrical

Infrastructure Adaptation to Sea

Level Rise and Storm Surge

2.1 Introduction

A key challenge of planning a climate adaptation is how to incorporate future uncertainty

in the decision-making process (Walker et al. [2013]). The uncertain sea level rise (SLR) and storm

surge (SS) are often characterized by state-of-the-art probabilistic models (Lin et al. [2012], Staid

et al. [2014]). Decision frameworks that treat uncertainty deterministically using statistical or prob-

abilistic measures can misrepresent the benefits of the climate science due to their ignorance of

desirable alternative outcomes (Price [2015]). While down-scaling uncertainty to a “most likely” fu-

ture can lead to an optimal local decision, it falls short of the goal of resilience requirements and can

result in unnecessary investments, as the future’s realization is unknown. For example, as shown

by McInerney et al. [2012], when focusing on a low probability but high impact event, resulting

adaptations can be surrounded by a deep probability valley “trap” that only considers few extreme
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events.

In general, climate adaptation frameworks are categorized by Walker et al. [2013] as: 1)

assumption-based, 2) robust decision-making, or 3) adaptive policy-making frameworks. In the

scope of electrical grids, common decision frameworks are assumption-based frameworks using 1)

down-scaled scenarios based on Geographic Information System (GIS) analyses, which are a group of

heuristics that utilize past experience and GIS metric, and 2) simulated, worst-case scenarios based

on statistical metrics and deterministic heuristics to target adaptation robustness.

Many current decision frameworks overlook the physical restrictions of the electricity grid.

Although it may be viable in trivial situations, the inter-connected grids operate under complex

power flow physics. Developing a climate adaptation by neglecting such system dynamics can cause

unnecessary power imbalances and excessive transmission burden when responding to uncertain

impacts. This, in turn, can leads to infeasible operational conditions that trigger massive outages.

The challenges of developing a climate adaptation are many. First, it is non-trivial to

formulate the decision model while encompassing the inherent uncertainties appropriately. Next,

the size of realistic electrical grids presents fundamental computational challenges in identifying a

quality solution. Finally, incorporating power system physics during decision-making can magnify

the challenge by enforcing a non-convex solution space. Therefore, developing a climate adaptation

framework is an interesting research question that requires both stochastic decision modeling and

guided solution search approaches.

The rest of this chapter is organized as follows. In Section 2.2, a brief overview of our

Simulation-Optimization Climate Adaptation (SOCA) framework is presented. Next, the optimiza-

tion model is introduced in Section 2.3. A case study is presented in Section 2.4, followed by a

series of numerical experiments in Section 2.4.1 to show how and why SOCA can be used as a more

advanced decision framework. Finally, Section 2.5 summarizes the conclusions of the SOCA and

offers future research directions.

2.2 Overview of SOCA

SOCA bridges climate simulation models with a generic stochastic optimization model

(STO) to provide climate adaptations for electrical grids. In SOCA, SLR and SS are incorpo-

rated as the two uncertain sources of flooding damage to the system. The work flow of SOCA is
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presented in Figure 2.1 (under the blue shaded area). In contrast to state-of-the-art outage pre-

diction models by Nateghi et al. [2011] and Nateghi et al. [2014] (Figure 2.1’s gray shaded area),

SOCA focuses on long-term adaptation to reduce overall risks and costs. SOCA uses stochastic opti-

mization modeling techniques, which consider the presence of randomness during optimization. The

link between uncertainty and the decision-making process are simulated scenario, which characterize

future uncertainty empirically. The STO takes randomly sampled simulated scenarios, transmission

system data, and user parameters as inputs. The output of SOCA is a long-term climate adaptation

that is resilient to uncertainty and obeys power flow physics constraints. In contrast to other long-

term adaptation frameworks (Figure 2.1’s magenta shaded area), the novelty of SOCA is its more

advanced decision-making model that enlarges problem scope to a more accurate representation of

uncertainty. Moreover, SOCA enables decision makers to perform flexible analyses by tuning user

parameters, a feature which is not trivially embedded in other long-term adaptation frameworks.

Climate Simulation Models

SLOSH GCM

scenarios

…

Stochastic Optimization

Mean

 

Risk 0

 

Long-term Energy
Infrastructure Adaptation

SOCA Framework

Outage Prediction

Short-term 
Utility Protection 

Schemes

down-scale with assumptions

GIS-based Analysis

Deterministic 
Optimization

Robust Analysis

Policy-based 
Heuristics

Figure 2.1: SOCA work flow comparing to other frameworks

2.3 Stochastic Optimization Model for Climate Adaptation

Power systems optimization encompasses a wide range of problem domains associated with

various modeling techniques and solutions approaches. In recent years, stochastic optimization,

which is tailored for decision-making under the presence of uncertainty, has attracted the attention
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of many researchers (Birge and Louveaux [2011], Higle [2005]). Among power systems research

studies, this modeling technique has been validated to address system intermittency more effectively

and provide high quality solutions as shown in Sen et al. [2006] and Gangammanavar et al. [2016].

The proposed climate adaptation problem shares some similarity with stochastic transmis-

sion expansion planning (STEP) problem, which was conceptually proposed to address exogenous

uncertainty impacts on transmission expansion planning in power systems (Gorenstin et al. [1993]).

In STEP problems, the integral expansion decisions increase problem complexity by introducing

disjunctive decision space, which proves the problem to be NP-hard. The initial STEP research by

Gorenstin et al. [1993] has less focus on detailed power systems modeling since the detailed modeling

can superimpose computational intractability for realistic-sized problems (see Zhang et al. [2012a],

López et al. [2007], and Zhang et al. [2013]). Main stream power systems research try to address this

challenges through formulation improvements (such as Alguacil et al. [2003], Zhang et al. [2012b],

and Teimourzadeh and Aminifar [2016]) and/or more dedicated algorithmic developments (such as

Escobar et al. [2004], Moreno et al. [2013], Qiu et al. [2016a], Ugranli and Karatepe [2016], da Silva

et al. [1999], and Rahmani et al. [2013]).

Among existing stochastic STEP models, probabilistic constraints (see Yu et al. [2009],

Zhang et al. [2012a], and López et al. [2007]), scenario approximations Jirutitijaroen and Singh

[2008], and N − 1 security (see Zhang et al. [2013], Ugranli and Karatepe [2016], and Qiu et al.

[2016a]) are popular methods used during the development of an expansion plan to satisfy assumed

uncertain risk criteria. Traditional perspectives of applied uncertainty are demand growth, costs,

and contingencies (see Gorenstin et al. [1993], Zhang et al. [2013], and Qiu et al. [2016b]) while

more recent efforts focus on renewable generation resources with high intermittency (see Ugranli

and Karatepe [2016], Qiu et al. [2016a], and Yu et al. [2009]).

STEP models develop the system by adding new units of resources to ensure demand in-

crements are satisfied with the lowest cost. When power systems are exposed to natural impacts,

additional hardening options are available to strengthen power system component resilience for a

lower failure probability. In more recent work, models incorporating both expansion and hardening

decisions have been introduced in power system resilience research by Nagarajan et al. [2016] and

Yamangil et al. [2015]. These models concentrate on resilient power systems design under optimal

operation conditions. In the face of extreme events such as hurricanes, a feasible operation serves

as the last line of defense. Hence, assessing the benefits of power systems designs under feasible
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conditions is a new and interesting research direction. In addition, to the best of our knowledge,

there has been little research on stochastic optimization models incorporating an evolving exogenous

uncertainty.

We now introduce a STO that aims to produce long-term adaptation decision x for trans-

mission systems under evolving exogenous uncertainty ω̃. Consider a transmission system with B

buses and T multiple periods. Let sets N := {1 · · ·B} and T := {1 · · ·T} denote all buses and all

periods, respectively. Further, let set E := {(i, j), i, j ∈ N} denote all transmission lines. Adap-

tation decisions x are meant to fulfill the growing electricity demand and probabilistic resilience

requirements under random variable ω̃ (i.e., expand and protect system resources to keep the sys-

tem feasible/operating under the impacts of a changing climate). The exogenous uncertainty ω̃

considers two dependent random variables, ω̃sl for SLR and ω̃ss for SS, which impact the transmis-

sion system in different ways. To formulate the STO in a closed form, a scenario approximation

technique is used to empirically represent ω̃ through a finite scenario set Ω.

2.3.1 Adaptation Decisions

Additional generation capacities are required to fulfill the growing electricity demand during

adverse weather events. What, where, and how many in terms of to expand new capacity are the

primary questions of interest (López et al. [2007]). As generators can fail during extreme events

of SLR or SS, expansion decisions g require more sophisticated considerations. A trivial solution

may exist that only considers new capacity addition in flood-free buses. However, such triviality

may not be feasible or economically viable since delivery of electricity must obeys the restrictions of

transmission resources. During a hurricane, generator loss not only jeopardizes local supply but can

also cause potential transmission congestion that creates the flow imbalances. For example, during

Hurricane Sandy, the inner city of New York was more dependent on local generators since nearby

floodplain power plants were shut down due to security issues or damages (Bloomberg [2013]). In this

situation, demand loads are met with local resources while transmission lines hold power imbalances

in the wider area. In the long run, demand profile change and geographical limitations also play

important roles in making expansion decisions.

A majority of power plants require nearby water resources for cooling purposes (Bierkandt

et al. [2015]), which inevitably makes the plants vulnerable to flooding damage. During an unex-

pected SS, operators are forced to shut down generation units, which can consequentially introduce
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unnecessary transmission stresses that cause blackouts (see Bloomberg [2013] and Bienstock and

Mattia [2007]). However, system component availability changes are subject to both the passive

exogenous impacts and active protection. To overcome the potential loss of system components,

hardening decisions (e.g., sandbags, plywood, temporary barriers, flood walls, parameter sealing,

equipment raising, and other initiatives) can be applied to strengthen resource resilience and keep

them operational (Bloomberg [2013]). These decisions are practical and cost-effective in preserving

the stability of the power supply during extreme events for the long run.

In reality, as suggested by Nateghi et al. [2011] and Nateghi et al. [2014], utility companies

rely on outage prediction models to schedule temporary hardening one week before the hurricane

landfall. The decision scope is short which limits the possibility of more sustainable hardening

decisions. In the long run, relying on short-term hardening decisions can be more expensive and less

efficient than a longer-term fix. Moreover, hardening decisions need to co-optimized with expansion

decisions in a complex transmission systems. There are more effective hardening options available

to withhold more risk, such as equipment raising, flood walls, and parameter sealing. However,

they take a longer time (e.g., > one week) to build. Hence, a forward-thinking hardening plan

incorporated along with the expansion would mitigate long-term risks and costs.

In summary, adaptation decisions x incorporate electricity generation expansion decisions

git ∈ Z+ and facility hardening decisions hit ∈ Z+, where i ∈ N , t ∈ T . For a given bus i in period

t, git and hit denote the total units of generators and hardening, respectively. These variable are

bounded by the initial condition of the existing network as well as the maximum amount physically

allowed. As it is assumed that STO does not consider relocating and removing existing facilities,

variables g and h are monotonically increasing over time t ∈ T . Adaptation variable restrictions are

modeled in constraints (2.1), where [giniti , gmaxi ] and [hiniti , hmaxi ] are initial and terminal restrictions

for generation and hardening units at each bus i ∈ N , respectively.

gi1 ≥ giniti , ∀i ∈ N (2.1a)

hi1 ≥ hiniti , ∀i ∈ N (2.1b)

gi(t−1) ≤ git, ∀i ∈ N , t ∈ T \ {1} (2.1c)

hi(t−1) ≤ hit, ∀i ∈ N , t ∈ T \ {1} (2.1d)

giT ≤ gmaxi , ∀i ∈ N (2.1e)
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hiT ≤ gmaxi , ∀i ∈ N (2.1f)

2.3.2 Modeling Probabilistic Climate Resilience through Scenario Ap-

proximation

A resilient power system should be able to maintain its stability under drastically changing

conditions (Nagarajan et al. [2016]). In SOCA, the resilience criteria considered is the capability to

maintain operational flexibility under ω̃. At a minimum, the electrical grid should maintain “feasible

operation (FO),” which is defined as maintaining electricity supply to the majority of demand with

high probability 1− ε. Since the modeling method can vary when representing FO, we use a literal

form of Joint Chance Constraint (JCC) to address the resilience requirements here, but note that,

detailed FO modeling will be described in later this section.

Pr{system is FO given ω̃} ≥ 1− ε (2.2)

To explicitly express constraint (2.2), ω̃ requires a closed-form representation as a first step. This

representation can be, but is not limited to, a distribution function, a static point prediction, or any

other approximations. Realistically, uncertainty ω̃ results from costly, complex physical simulation

models, such as Pasqualini [2016], which have no closed-form formulation. In order to formulate the

STO, a natural intuition is to simulate the outcomes of ω̃ empirically, which is commonly referred

to as Sample Average Approximation (SAA) (see Kleywegt et al. [2002] and Luedtke and Ahmed

[2008]). We perform Monte Carlo sampling to approximate ω̃ with a finite scenario set composed

of S scenarios Ω =: {ω1, ω2, · · · , ωS}. For notational convenience, let set S := {1, 2, · · · , S} be an

index set for the scenarios.

When given a specific scenario ωs ∈ Ω comprised of SLR and SS data, a system of constraints

is required to model FO. Without abusing the notation of formulating constraints (2.2), the condition

of FO is lifted with a binary indicator (fs)s∈Ω̃ ∈ {0, 1} denoting whether FO can be achieved

with scenario ωs (i.e., the system is FO when (fs = 1), otherwise (fs = 0)). Then, JCC (2.2) is

reformulated as linear constraints (2.3) which specifically requires FO must be obtained for at least
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dS(1− ε)e scenarios.

∑
s∈S

fs ≥ |S|(1− ε) (2.3)

The notion of constraint (2.3) is a disjunctive approximation of JCC (2.2), which implies how system

risks are evaluated. The convergence of this scenario approximation is proven by Pagnoncelli et al.

[2009] and Luedtke and Ahmed [2008] if S → ∞. A key to using this method is to determine

how many scenarios |S| should be incorporated for convergence of the approximation. Theoretical

estimation of |S| for convergence guarantee can be conservative, which is often criticized for its

consequential computational intractability. However, it applies to conducted posterior evaluation

for solution quality without convergence proof. We refer the readers to the work by Pagnoncelli

et al. [2009], Luedtke and Ahmed [2008], and Mak et al. [1999] for more details.

2.3.2.1 Objective Function

The objective of STO is to minimize the total cost of climate adaptation x := {p, g}, which

is modeled in (2.4) by tracking the difference of expansion and hardening at each period. Let cgit and

chit, where i ∈ N and t ∈ T , denote the cost of adding one unit of generation or hardening resources,

respectively, at bus i at period t.

Min
∑
t∈T

(
∑
i∈N

cgit(git − gi(t−1)) +
∑
i∈N

chit(hit − hi(t−1))) (2.4)

2.3.3 Modeling impacts of the exogenous uncertainty

A scenario ωs is comprised of SLR scenario ωslts ∈ R, where t ∈ T and s ∈ S, and SS scenario

ωssits ∈ R, where i ∈ N , t ∈ T , and s ∈ S. It is assumed that SLR is universal for the entire system

while SS can vary at different buses1. Let binary indicators aits ∈ {0, 1}, where i ∈ N , t ∈ T , and

s ∈ S, denote the availability of bus i at period t. Since SLR and SS impact the system differently,

two additional binary variables aslits ∈ {0, 1} and assits ∈ {0, 1}, where i ∈ N , t ∈ T , and s ∈ S, are

required to denote component availability under the impacts of SLR and SS, respectively. Naturally,

if a bus i is available at period t (aits = 1), this requires the bus to be available under both SLR

1In order to free buss natural/artificial protected from sea levels impacts in the optimization model, the elevation
of these buss pre-processed by choosing a large value
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(aslits = 1) and SS (assits = 1). The disjunctive formulation of this logic is presented in equation (2.5).

aits = aslits ∩ assits ∀i ∈ N , t ∈ T , s ∈ S (2.5)

Equation (2.5) is linearly modeled using constraints (2.6).

∀i ∈ N , t ∈ T , s ∈ S (2.6a)

aits ≤ aslits (2.6b)

aits ≤ assits (2.6c)

aits ≥ aslits + assits − 1 (2.6d)

We next model the impacts of SLR and SS given scenario ωs using disjunctive functions (2.7) and

(2.8) for a given adaptation decision x. In SOCA, it is assume that SLR shuts down a bus definitively

(i.e., generator and associated transmission lines will be unavailable while the local load is dispensed

to other places). In function (2.7), bus i will be turned off permanently if scenario s SLR exceeds

its elevation ei.

aslits =


1 if ωslts < ei

0 if ωslts ≥ ei
(2.7)

For a bus to operate normally under a hurricane, it is assumed that the bus either stays

above the SS or is sufficiently hardened. Function (2.8) indicates that bus i will be turned off if

insufficient hardening decisions are made. Parameter ci implies the additional height protected from

SS by one unit of hardening decision applied to bus i.

assits =


1 if ωssits < ei

1 if ωssits < ei + chit

0 if ωssits ≥ ei + chit

(2.8)

With functions (2.7) and (2.8), the impacts of scenario ωs is reflected using binary variables

a, which will be later used to determine FO conditions through an operational dispatch model. With

buses and transmission lines shut off, a partially disabled network can still be FO. Unfortunately,

functions (2.7) and (2.8) cannot be directly embedded into an optimization model. The logic is
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modeled using a set of linear constraints (2.9):

(2aslits − 1)(ωslits − ei) ≤ 0, ∀i ∈ N , t ∈ T , s ∈ S (2.9a)

(2assits − 1)(ωssits − (ei + cihit)) ≤ 0, ∀i ∈ N , t ∈ T , s ∈ S (2.9b)

With given a scenario ωs and adaptation decision variables g and h, constraints (2.9a) and

(2.9b) formulate the function (2.7) and (2.8), respectively. Constraints (2.9a) implies variable asl

by setting the variable = 0 if SLR is above the bus elevation, otherwise it equals 1. Constraint

(2.9b) implies variable ass by setting the variable = 0 if the SS is beyond the reach of hardening,

otherwise it equals 1. The non-linearity introduced with variable products in constraints (2.9b) can

be equivalently linearlized using McCormick relaxation (Tsoukalas and Mitsos [2014]).

2.3.4 Modeling Dispatch Operation

As the impact of exogenous uncertainty on system topology are modeled through binary

variables a, modeling the FO condition additionally requires a dispatch model that simulates system

operation. It is ideal to consider the Alternative Current Power Flow model (ACPF) proposed

by Carpentier [1962], which capture both Ohm’s Law and Kirchhoff’s circuit law with non-convex,

nonlinear constraints. However, due to its computational intractability, it is often approximated by

the Direct Current Power Flow model (DCPF), which is reviewed by Stott et al. [2009]. For further

simplification, it is also plausible to omit the approximated power flow equations in DCPF and only

consider a Capacitated Network Flow model (CNF). In practice, decision makers omit the inter-

connected network assumptions and simply consider a Capacity-Based model (CB), which evaluates

system operation through aggregated supply and demand as shown in Gorenstin et al. [1993].

Although approximations can effectively alleviate the computational burden, they also in-

troduce biased estimations of system operations and costs that could hurt solution validity. For

example, over-estimating the system capability in delivering electricity can result in underestimated

costs and resilience . On the other hand, a more realistic model will provide solutions that estimate

costs accurately but the optimization model suffers from the increased model complexity.

For finalizing the model formulation, the STO for climate adaptation is formally defined

with notation P(Ω, ε)→ x∗, where Ω denotes the input scenario Ω, ε denotes the risk parameter for

JCC (2.3), and x∗ denotes the output adaptation design. Let y be the consolidated dispatch decision
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variables for describing system operations. Details of decision y vary when different dispatch models

are utilized. For a given scenario ωs, let ξ(ωs)→ fs denote a general dispatch model that concludes

decisions fs. FO is achieved when there exists a feasible dispatch decision y (i.e., fs = 1⇔ y ∈ ξ(ωs)).

This disjunctive logic is presented in (2.10).


fs = 1 if y ∈ ξ(ωs)

fs = 0 if y /∈ ξ(ωs)
(2.10)

Recall that fs = 1 means the system is able to satisfy ξ with the “majority” demand request, where

“majority” is defined through a ratio parameter λ ∈ [0, 1]. Let Dt, where t ∈ T , denote the total

demand at period t.

For CB with a given scenario ωs, aggregated available generation capacity is required to

be at least the majority demand λD. Dispatch decision y is defined with generation variables pgits,

where i ∈ N , t ∈ T , and s ∈ S. Each generation variable pg is bounded by the product of unit

generation capacity and total available generation units 2. Let ḡi, where i ∈ N , denotes the unit

generation capacity parameter in MW. Then, the CB dispatch model is modeled in (2.11).

pgits ≤ ḡigit, ∀i ∈ N , t ∈ T , s ∈ S (2.11a)∑
i∈N

ḡip
g
itsaits ≥ fsλDt, ∀t ∈ T , s ∈ S (2.11b)

These constraints control variables f to relax the dispatch decision’s feasible region by each scenario.

To summarize, STO (Ω, ε) with CB is characterized with (2.1), (2.3), (2.4), (2.9), and (2.11).

For CNF with a given scenario ωs, fs = 1 means the majority demand λD is satisfied under

a capacitated network (i.e., power must be delivered through a interconnected network while obeying

flow balances at each bus). In this case, dispatch decisions y are defined with power flow decisions

pijts for each transmission line (i, j) ∈ E , power generation variable pgits, and demand fulfillment

decision pdits, where i, j ∈ N and t ∈ T . Let p̄Dit denote the electricity demand parameters in MW

at bus i in period t. For each transmission line (i, j) ∈ E , let pmin and pmax denotes the minimum

and maximum flow allowed, respectively. Given this notation, the CNF dispatch model is modeled

2This variable is introduced for the consistency of model introduction. In model implementation, this variable can
be omitted by combining constraints in (2.11)
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in (2.12):

∀t ∈ T , s ∈ S

pdits ≤ p̄ditaits, i ∈ N (2.12a)∑
i∈N

pdits ≥ fsλDt (2.12b)

pminij aits ≤ pijts ≤ pmaxij aits, ∀(i, j) ∈ E (2.12c)

pminij ajts ≤ pijts ≤ pmaxij ajts, ∀(i, j) ∈ E (2.12d)

pgits ≤ ḡigit, ∀i ∈ N (2.12e)

M(fs − 1) ≤
∑

j|(j,i)∈E

pjits −
∑

j|(i,j)∈E

pijts + ḡiaitsgits − pdits ≤M(1− fs), ∀i ∈ N (2.12f)

Constraints (2.12a) fulfill demand if the bus is free from SLR and SS. Constraints (2.12b) requires

the total fulfilled demand must satisfy the majority demand λD. Constraints (2.12c) and (2.12d)

shut off a transmission line if either end bus is unavailable. Generation variable pg is bounded with

available generation resources in constraints (2.12e). Finally, constraints (2.12f) enforce flow balance

at each bus (i.e., the power flow into a bus must equal the power flow out of the bus, plus the power

consumed, minus the power generated). Note that constraints (2.12e) and (2.12b) are relaxed with

fs = 0 when no feasible dispatch decision y is identified. This relaxation is conducted through a

large value M . To summarize, STO P(Ω, ε) with CNF is characterized with (2.1), (2.3), (2.4), (2.9),

and (2.12).

The use of approximations for power flow physics is an useful and common practice justi-

fied by their design and operations (Coffrin and Van Hentenryck [2014]). For DCPF with a given

scenario s, fs = 1 means the majority demand λD is satisfied under DC approximated power flow.

The key assumptions of DCPF require 1) transmission conductance to be relatively small compared

to susceptance, 2) small voltage angle differences, and 3) voltage magnitudes of each bus consid-

ered equalling 1. Collectively, these assumptions linearize the voltage products and trigonometric

functions in ACPF.

Here, DCPF is built upon CNF by enforcing additional constraints, which means constraints

(2.12) must be satisfied previously. Dispatch decision y is defined with all CNF dispatch decisions

together with voltage angle decisions θits, where i ∈ N , t ∈ T , and s ∈ S. Let [θmini , θmaxi ] denote the

allowed voltage angle interval. For each transmission line (i, j) ∈ E , let bij denotes the line reactance.
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To formulate DCPF, a reference bus with zero voltage angle is required. The index of the reference

bus is denoted using R. DCPF requires the delivery of electricity to obey the network constraints

presented in (2.12). Additional constraints are required to approximate power flow physics more

accurately:

θRts = 0 t ∈ T , s ∈ S (2.13a)

θmini fsaits ≤ θits ≤ θmaxi fsaits, ∀i ∈ N , t ∈ T , s ∈ S (2.13b)

(fs + aitsajts − 2)M ≤ pijts − bij(θits − θjts) ≤ (2− aitsajts − fs)M ∀(i, j) ∈ E , t ∈ T , s ∈ S

(2.13c)

Constraints (2.13a) regulate the reference bus voltage angle while constraints (2.13b) regulate bus

voltage angle limits. Approximate power flow equations are enforced in (2.13c), which is relaxed

with value M when no feasible dispatch decision y can be identified. To summarize, STO P with

DCPF is characterized with (2.1), (2.3), (2.4), (2.9), (2.12), and (2.13).

2.4 Case Study

We now focus on conducting a series of numerical experiments using an IEEE standard test

system from Coffrin et al. [2014] that has 118 buses and 177 transmission lines. The standard test case

is adjusted to represent the Norfolk, VA area based on additional information from Pennsylvania-

New Jersey-Maryland (PJM) electric regions (see PJM [2017]). Generation expansion is allowed on

104 buses while expanded generation types are determined based on information from the test case.

Hardening is allowed for all buses, while unit hardening protection height c is chosen based on local

generation capacity. Due to limited data sources, an ad-hoc cost system is used for determining the

costs of expansion and hardening based on local terrain and generation type. The STO horizon is

100-years with a resolution of five decision periods: adaptation plan for year 2020, 2030, 2050, 2070,

and 2090. The system layout is presented in Figure 2.2, where both the realistic network (left side)

from PJM [2017] and test system (right side) are presented. Exogenous uncertainty is characterized

by coupling a novel hurricane simulator by Pasqualini [2016] with the surge simulator Sea, Lake,

and Overland Surge from Hurricanes (Jelesnianski et al. [1992]) . The scenario inputs are generated

by climate scientists thanks to at the Los Alamos National Laboratory.
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Figure 2.2: Testing Network representations: (Left) PJM Electric Regional Map for Norfolk and
RichmondPJM [2017]; (Right) Adjusted IEEE 118-Bus Test SystemCoffrin et al. [2014]

2.4.1 Numerical Experiments

2.4.1.1 Comparison of Dispatch Models

When developing policies for power systems, a popular practice is to approximate the system

by aggregating resources using CB. Although CB can be computationally easy, it can lead to less

reliable decisions which result in little room for error during implementation. An experiment was

created to demonstrate the differences among three models (CB, CNF, and DCPF introduced in

2.3.4) by simulating their adaptation decisions in other dispatch models.

STO is tested with all dispatch models using 100 simulated scenarios for one period, which

result in optimal adaptation decisions x∗ including x∗CB , x∗CNF , and x∗DCPF . The parameter ε is set

equal to 0.0 for a robust decision to eliminate the noise from risks allowed.

To evaluate solution quality, we define a special case of STO with P({ω}, 0, x = x̄) →

f̂ , where adaptation variables x are set to x̄ for a single scenario input ω and binary output f̂

captures whether FO can be achieved (f̂ = 1) or not (f̂ = 0). This special case is a single scenario

simulation of adaptation design x̄. A resilience evaluation of decision x̄ denotes a series of simulations

P({ω ∈ Ω̂}, 0, x = x̄) using scenarios from a test scenario set Ω̂. The outputs of these simulations

f̂ are summarized to form a resilience ratio between 0 and 1, which equals the total number of

scenarios out of |Ω̂| that achieve FO. Note that this resilience evaluation will also be applied for

other experiments in this chapter.

The results for the three adaptation solutions are summarized in Table 2.1, where each row

focuses on one adaptation solution. The associated costs of the solutions are recorded in column
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“Estimated Costs.” The resulting adaptations are evaluated under all dispatch models for 2000

externally sampled scenarios. Evaluation results are summarized in the three columns, one for each

of the three different dispatch models.

Estimated Cost CB CNF DCPF

x∗
x∗CB 13166 97.5% 0.00 % 0.00 %
x∗CNF 27228 98.1% 96.80% 0.00 %
x∗DCPF 31282 98.1% 97.65% 96.80%

Table 2.1: Solution of different dispatch modes and resilience evaluation results

As expected, CB has the lowest cost, but resilience evaluation indicates x∗CB fails when

simulated against more realistic dispatch models. The cost x∗CNF is roughly twice the cost of x∗CB ,

which indicates a significant underestimation of adaptation costs when using CB. Although the cost

of x∗CNF is only about 10% lower than the cost of x∗DCPF , the simulation results of x∗CNF are not able

to satisfy a single scenario when approximated power flow equations are incorporated. This suggests

that marginal objective value difference can also affect decisions. From this experiment, STO with

DCPF is found to be the best approach with available computational tractability. Solution x∗DCPF ,

which results from the most complicated dispatch model proposed, remains highly resilient across

other dispatch models. In summary, we recognize the necessity and adequacy of utilizing DCPF

dispatch model for the subsequent experiments.

2.4.2 Comparing Optimization with the Heuristic Methods

In this experiment, we demonstrate the benefits of utilizing an optimization-based framework

for climate adaptation as compared various deterministic heuristic-based frameworks. In practice,

heuristics are commonly considered for electrical infrastructure planning. Some assume a non-

probabilistic uncertainty space by down-scaling simulated scenarios using statistical metrics. Others

rely on simple rule-based or historical-data-based principles.

Heuristics decouple the climate adaptation problem into an expansion problem and a hard-

ening problem. These methods neglect the anticipations of local changes which can propagate their

effect through a system globally, and hence, yield a local solution. Recall that the goal of SOCA is

to properly incorporate uncertainty in the decision-making process for higher solution quality in real

world instances. If any heuristic works well, it implies that there exists certain trivial rules in the

decision-making process. To begin with, we first describe four heuristics methods motivated from
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previous research by Groves and Sharon [2013], Russo et al. [2013], government reports by Simm

et al. [2015], and other unofficial communications.

• Passive Hardening (PH): First, determine expansion decisions by solving a static expansion

planning problem. This problem can be reduced from the proposed STO by considering an

artificial scenario without any SLR or SS. Then, based on the input scenario, harden a bus

from its worst local SS after that bus is flooded at any period. For example, if bus i was

flooded by a 2-meter SS in period t, harden bus i to ensure it is safe from this 2-meter surge in

period t+ 1. If the same bus is subject to a 4-meter SS in period t+ 1, then harden the bus to

4 meters at period t+ 2. PH mimics what realistic decision makers do in reacting to previous

events. This method has a natural time lag, which can expose significant vulnerability in an

evolving climate.

• Highland Expansion (HE): First, determine expansion decisions similarly to PH but only

add new generation capacity at buses with elevation higher than the 90-the percentile of SS

based on the input scenario. Then, determine hardening decisions just like PH. HE tries to

prioritize generation addition to more secured buses to avoid potential flooding risks. It can

create inoperable plans since generation units in urban floodplain areas may heavily rely on

local operating reserves Bloomberg [2013].

• Bathtub Hardening (BH): First, determine expansion decisions just like PH. Then, deter-

mine hardening decisions by preemptively hardening buses subject to the highest SS of the

input scenario if that bus is not flooded by SLR. For example, if the scenario indicates bus i

is subject to a 2-meter SS in period t, harden this bus to the worst SS in the same period. BH

intends to stretch hardening decisions to its limitation by considering a conservative course

of action preemptively. This method can be over-estimate of the costs when less representa-

tive scenario input is given. Intuitively, BH is supposed to provide high resilience. However,

decoupling expansion and hardening decisions may trigger this heuristic to fail.

• Extreme Hardening (EH): First, determine expansion decisions similarly to PH but con-

sider an additional 1% of demand growth. Then, preemptively harden buses to ensure the

entire system is protected from the worst SS based on the input scenario. Finally, EH has

the most conservative scheme with excessive demand growth expected to make up for the
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decoupling of adaptation decisions. Meanwhile, additional hardening is provided to ensure

the system is safe from any surprises. It is expected that EH will provide very resilient but

expensive adaption plans.

The results of this experiment are summarized in Figure 2.3. The input scenarios are

down-scaled from a large scenario set using percentile metrics: 50-th, 90-th, 95-th, and 100-th. For

example, a 50-th percentile scenario is generated by summarizing the 50-th percentile SS and SLR

at each period (and at each bus if necessary). Each heuristic is fed these four percentile scenarios

while the result is represented by a line and four dots in Figure 2.3. In contrast to these heuristics,

a deterministic optimization model (DET) is used with the same inputs. This DET can be reduced

from STO by providing a single scenario and setting ε = 0. The results of DET are shown as the

orange line with four dots in Figure 2.3. Finally, STO is tested with 200 Monte Carlo-sampled

scenarios changing ε from 0.0 to 0.5. The results are presented as a red line with multiple triangles

for different ε values. The changing ε demonstrates how the concept of risk is interpreted differently

between the deterministic and stochastic frameworks. For example, a 10% risk using STO yields has

a fundamentally different result than considering 90-th percentile scenario to DET or heuristics.

All adaptation solutions are evaluated with an additional 2000 scenarios for 10 replications,

and the average resilience ratio values are collected and presented in Figure 2.3. The x-axis indicates

resilience ratio while the y-axis denotes the associated adaptation costs. The desired adaptation

should be driving towards the right-bottom corner (a resilient adaptation with low costs).

Figure 2.3 suggest that STO is the more advanced framework since no other method can

matches its level of resilience. The only resilient solution comes at a price when using EH with the

maximum input scenario. SOCA balances costs with resilience by only focusing on a limited number

of scenarios. Apart from SOCA, DET is the second best approach when fed with the maximum

scenario. The results also suggest that resilience is not a monotonic function of costs. In this

experiment, it is clear that 1) there exists no trivial rules in making climate adaptations and 2)

implementing SOCA shows great benefits.

2.4.3 DET vs. STO

In the previous experiments, we observe that DET with a 100-th percentile scenario can

yield a similar cost to STO with ε = 0. Both frameworks try to address the goal of “robustness” while

25



median 90-th 95-th max 𝜖 = 0.5 𝜖 = 0.0𝜖 = 0.05𝜖 = 0.6 …

0

20000

40000

60000

80000

100000

120000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
da
pt
at
io
n
Co
sts

Realiability (%)

PH BH HE EH DET STO

Figure 2.3: Comparison of optimization-based and heuristic-based methods

the resilience ratio suggests a difference of nearly 30%. A closer look at both adaptation solutions is

presented in Figure 2.4. Each solution is separated into expansion (red maps) and hardening (blue

maps). At each bus of the test system, we present the adaptation by stacking decisions over time

from bottom to top. The color depth of each layer represents how many generation or hardening

units are deployed, with a deeper color meaning more units. To better contrast the two solutions,

the differences are marked with green boxes.

From the results, STO spends more on expansion by building more generation capability.

DET intuitively trades-off expansion for hardening given its awareness of the worst scenario at each

bus. Between the two solutions, the choice of bus for adaptations are obviously different. STO

is not aware of the worst SS but an empirical distribution of uncertainty is formed at each bus,

which causes STO to be more aware of what part of the system needs to be left out to satisfy

the probabilistic risk. Furthermore, distinct differences can also be observed in the decision timing

between the two solutions.

We next explore SOCA’s flexibility to provide trade-offs between cost and resilience by

tuning the parameter ε. In robust optimization-based frameworks, constraints (2.2) are usually
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DET with maximum scenario STO with 𝜖 = 0.0

Total Costs: 46689 k$ Total Costs: 47446 k$

Expansion Cost: 26996

Hardening Cost: 19693 Hardening Cost: 15467

Expansion Cost: 31999

Figure 2.4: Detailed Solution Comparison between STO with ε = 0 and DET 100-th percentile
scenario
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considered as a hard constraint, where ε is a sufficiently small value that requires all included

scenarios to be feasible. Alternatively, STO enables ε to be a more general, real value. Recall this

change of assumption is attractive due to the potentially high cost in fulfilling extreme events, which

reflects a policy maker’s willingness to agree to a non-trivial violation in exchange for a sufficient

decrease in costs. However, this can create tremendous computational burden given the disjunction

introduced during feasible scenarios selection.

We compare STO and DET in finding an adaptation plan that allows a maximum 5% or

10% uncertain risk. For STO, these purposes are achieved through parameter ε in constraints (2.3).

For DET, 95-th or 90-th percentile scenario inputs are considered as counterparts, respectively. In

Table 2.2, the details of each solution, basic details about expansion or hardening including costs,

total buses chosen, total units added, average costs per MW/meter, and a median height of chosen

buses 3 are presented. To better represent the details, the terminal expansion and hardening counts

are plotted cumulatively by bus elevation in Figure 2.5.

STO DET
ε = 0% ε = 5% ε = 10% 100-th 95-th 90-th

Expansion Cost 31999 29506 29047 26696 26676 27468
Buses 13 11 10 9 9 9
Unit 27 23 25 21 21 22

$ per MW 18.50 15.55 18.75 16.39 16.41 16.58
Ave. Height (m) 12.50 10.15 9.15 9.32 8.67 10.79
Hardening Cost 15467 14768 12198 19693 9566 9254

Buses 30 27 26 30 23 22
Units 156 152 122 173 90 80

$ per Meter 212.61 212.49 192.86 202.38 203.53 231.36
Ave. Height (m) 2.60 2.53 2.84 3.17 2.84 2.83
Total Costs ($) 47446 44274 41246 46309 36284 36722
Evaluation (%) 93.27% 91.43% 92.08% 66.28& 16.00% 1.8%

Table 2.2: Comparing STO and DET solutions

Results in Table 2.2 reveal the fundamental difference of how risks are interpreted between

the two perspectives of uncertainty. The cost breakdown between expansion and hardening are

fundamentally different. STO consistently suggests investing more in expansion due to the various

load profiles caused by SLR scenarios. As ε increases, adaptation costs gradually decreases to trade-

off for resilience. In cases when risk is allowed with ε = 5% or 10%, STO compensates adaptation

resilience with conservative expansion for more flexibility in hardening. This is clear on the left side

3Note that average costs per MW/meter and a median height of chosen buses are calculated based on a weighted
and aggregated vector of each bus.
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of Figure 2.5, where the blue line selects buses with higher elevations. As for DET, the single scenario

estimate leads the decision to the low probability “trap” of a single severe scenario. Although the

finite scenario set has a rather limited scope compared to the true uncertainty, it describes the

uncertainty space through an empirical distribution rather than a point estimate. DET is more

sensitive to scenario change during elevation as hardening sharply drops when risks are allowed, as

indicated on the right side of Figure 2.5. This change also degrades the system’s resilience which is

reflected in the resilience evaluation.

2

7

12

17

22

27

32

010203040

Cu
m

ul
at

iv
e 

Ex
pa

ns
io

n 
Co

un
t

Elevation (meters)

Sto-O EPS=0.0

Sto-O EPS=0.05

Sto-O EPS=0.1

DET-MAX

DET-95P

DET-90P

STO 𝜖 = 0.0
STO 𝜖 = 0.05
STO 𝜖 = 0.1
DET 100-perc
DET 95-perc
DET 90-perc

2

22

42

62

82

102

122

142

162

182

02468

Cu
m

ul
at

iv
e 

H
ar

de
ni

ng
 C

ou
nt

Elevation (meters)

Figure 2.5: Solution representation using cumulative build count on different evaluations

These results suggest the fact that climate adaptation under uncertainty is not an easy

problem. It is necessary to use a complex quantitative decision-making model, such as STO, to

exploit the underlying complexity of developing better adaptation plans. Furthermore, the flexibility

of SOCA to trade-off costs with resilience is valuable functionality for policymakers to learn and

improve their decision-making process.

2.5 Conclusions and Future Research

Developing effective climate adaptations is challenging due to how nature evolves, how

uncertainty is modeled and represented, and how electrical grids respond to exogenous impacts.

These underlying complications suggest that it is inadequate to individually consider either climate

studies or intuition-based decision-making methods for actionable adaptations. In this Chapter,

we develop the SOCA decision framework to address these challenges by bridging state-of-the-art

climate simulation models with optimization model to create economic, resilient climate adaptations.
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Using a standard test system case study, we verify that SOCA is capable of providing high-quality

solutions when compared to a number of deterministic approaches. Next, we discuss SOCA flexibility

in providing trade-off analyses between cost and resilience. Finally, we provide an in-depth discussion

of how a stochastic decision framework can benefit climate adaptation.

A critical next step in the future research is to address the computational tractability of

SOCA for realistic-sized problems with a large number of scenarios. Although scenario approxima-

tion is a popular technique to formulate the STO, it imposes an NP-hard mathematical program

that typically proves intractable for commercial solvers. To achieve improved tractability, a viable

research direction, as suggested by related works by Luedtke [2014] and Ahmed et al. [2016], is to

develop efficient algorithms that take advantage of the formulation’s structural properties. It is also

viable to consider an context-dedicated modeling techniques, such as Song and Luedtke [2013] and

Song et al. [2014], to strengthen the current problem formulation, thereby, improving the STO’s

tractability. Furthermore, it is worthwhile to investigate how different climate simulation assump-

tions can affect the adaptation decisions using SOCA. For example, it is interesting to learn how

adaptations responses to climate change when accelerated coastal basin erosion is considered.
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Chapter 3

A Scenario-based Algorithm for

Joint Chance-Constrained

Programs with Finite support and

Feasible, Discrete Recourse

3.1 Introduction

In modern society, many industrial, government, and commercial applications rely on opti-

mization technologies and models to support decision making. These models are used to improve

operation efficiency, ensure engineering constraints are enforced, and maintain safety and reliability

standards. Unfortunately, many aspects of the underlying applications are uncertain or unknown

in practice. To address this feature of such problems, stochastic optimization has been used exten-

sively to model and analyze complex systems under uncertainty. Optimization models determine

choices (decisions) that are robust or of low cost for most realizations of the uncertainty. Within

the stochastic optimization literature, researchers have characterized uncertainties using a variety of

approaches; no single approach is suitable for all problems (see Birge and Louveaux [2011]). Gen-

erally speaking, the approach used to model and solve a stochastic problem is based on structural
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assumptions, such as problem size, solution region, and convexity.

In this section, we focus on problems that are modeled as joint chance-constrained programs

with finite support and feasible integer recourse (JCC-FSFIR). A key feature of the JCC-FSFIR is

its model of uncertainty: the uncertainty is modeled with a finitely supported scenario set that

approximates all possible realizations of uncertainty. Most variations of the JCC-FSFIR (see Ne-

mirovski and Shapiro [2006] and Bertsimas and Sim [2004] for examples) assume a full robustness

criteria (i.e., that feasible recourse exists for all scenarios). In contrast, JCC problems define a risk

parameter ε that controls how often a feasible recourse is performed. As described in Luedtke and

Ahmed [2008], our model of the FSFIR generalizes the robustness criteria to reflect the willingness

of decision makers to assess the trade-off between nontrivial risks and effective cost savings.

Recently, there has been increased interest in problems that have a JCC-FSFIR structure.

For example, the U.S. Department of Energy has identified resilient electric power system design

as critically important (Ton and Wang [2015], Office of Electricity Delivery and Energy Reliability

Smart Grid R&D Program [2014]). These problems have discrete decisions that model hardening

and redundancy (design) options. The goal is to choose a minimum cost set of design options that

meet a specified resiliency criteria during extreme events (see Yamangil et al. [2015] and Nagarajan

et al. [2016]). JCC-FSFIR problems also arise in climate adaption applications. In these problems,

the goal is to adapt engineered systems (such as electric power and natural gas) to survive the

long-term impacts of climate change (United States Department of Energy [2013], Organization for

Security and Co-operation in Europe [2016], Wang et al. [2017, submitted]). Given the computational

challenges associated with solving JCC problems (discussed later), most existing solutions to these

problems have used the full robustness (FSFIR) criteria and developed approaches to exploit this

specific structure.

To address the JCC-FSFIR, we develop an algorithm that decomposes JCC-FSFIR by

scenario. This algorithm, which we refer to as scenario-based heuristic configuration generation

(SHCG), creates solution configurations by solving multiple smaller-sized tractable FSFIR problems.

Without the loss of generality, we always consider the minimization problem where the maximization

can be converted by nagating the objective function. The SHCG is tailored for those JCC-FSFIR

that have the following properties:

1. Adding scenarios to an FSFIR always results in a monotonically increasing objective function.
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2. Adding scenarios to an FSFIR that has a feasible solution always results in a JCC-FSFIR that

also has a feasible solution.

It is important to note that the approach itself does not require that the JCC-FSFIR have these

properties, only that the convergence and optimality guarantees of the proposed algorithm do. The

SHCG algorithm makes the following key contributions:

1. It computes lower bounds for the JCC-FSFIR based on configurations generated from scenario-

decomposed problems.

2. It computes upper bounds for the JCC-FSFIR based on configurations generated from scenario-

decomposed problems.

3. It proposes a finite time convergence algorithm that solves stochastic optimization problems

with integer recourse.

4. It has strong computational performance when compared to state-of-the-art commercial solvers.

3.2 Literature Review

The JCC-FSFIR falls into the general class of stochastic optimization problems that are

modeled with two stages. The first stage captures non-anticipative decisions (here and now), and

the second stage captures anticipative decisions (recourse). The first-stage decisions are made before

realizations of uncertainty, and the second-stage decisions are made after uncertainties are revealed.

Conceptually, the JCC-FSFIR is a two-stage stochastic optimization problem where the anticipative

stage adjusts here-and-now decisions to achieve desirable feasibility on a set of scenarios (the sup-

port). In many stochastic optimization models, uncertainty is quantified via the objective function

that comprises both here-and-now costs and expected recourse costs (see Shapiro et al. [2014]). This

is in sharp contrast to the JCC-FSFIR, where the focus is obtaining a feasible recourse and the

objective function is deterministic.

The JCC-FSFIR also assumes a finitely supported scenario set (i.e., a finite number of uncer-

tainty realizations or scenarios). This is a common approach for modeling uncertainty in stochastic

optimization because it can be challenging to analytically model arbitrary distribution functions (see

Yuan et al. [2015] and Ahmed [2008]). These support sets are often constructed via sampling from
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the corresponding distribution. In practice, the obtained scenario set can be representative of the

majority outcomes of the random variables. Monte Carlo simulation is one important approach for

constructing such sets because it has solution quality and convergence guarantees (see Pagnoncelli

et al. [2009] and Luedtke and Ahmed [2008]). This method is typically used to approximate opti-

mal decision making under an arbitrary uncertainty. This sampling method have been frequently

applied to problems with expectation-based recourse in the anticipative stage. For problems with

quantifiable anticipative stages, this method is often referred to as sample average approximation

(SAA) and is discussed in detail in Kleywegt et al. [2002]. Here, we also assume that samples are

used to approximate the uncertainty. However, because the scope of this section assumes that these

samples are given, we do not focus on how to generate the samples.

Because the feasibility requirement is enforced via chance constraints, the support set intro-

duces a disjunctive model that is atypical for stochastic optimization (see Pagnoncelli et al. [2009]).

Generally, this disjunctive model is very hard to solve because of the nonconvex solution space.

Some of the approaches used to solve disjunctive optimization models are (1) reformulation strate-

gies (see Sen [1992]), (2) decomposition algorithms with specialized recourse (see Liu et al. [2016]),

and (3) branch-and-cut algorithms of the scenario disjunctions (see Luedtke [2014] and Luedtke

et al. [2010]). In most of this earlier work, it is assumed that the problem is convex, aside from the

chance constraints. This assumption supports the use of strong duality to generate cutting planes

which improve algorithmic performance.

In some cases, this convexity assumption can be too strong for real-world applications (i.e.,

Yamangil et al. [2015], Nagarajan et al. [2016], Bienstock and Shapiro [1988], Ralphs and Hassan-

zadeh [2014], Ahmed et al. [2004]). Some recent works extend the scope of this early work by

assuming nonconvex here-and-now decisions. Song and Luedtke [2013] and Song et al. [2014] ad-

dressed applications through reformulation based on exploiting dedicated combinatorial structures.

Zhang et al. [2014] focused on JCC, which integrates disjunctive structure in a multistage setup

using a dynamic model. A study by Ahmed et al. [2016] focused on the generalized JCC problem.

Here, nonconvex here-and-now decisions are allowed but the anticipatory-stage decision must be

convex. This previous work provides some interesting ideas on how to reformulate the model by

relaxing a part of the nonconvex space to handle stochastic integer problems. The reformulation

penalizes deviations of duplicated first-stage decisions to captures the penalty them trying to differ-

ing themselves to satisfy each decomposed structure through Lagrangian dual. Using this method,
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the algorithm attempts to conclude better relaxations. However, the recourse problem with fixed

first-stage decisions is convex.

From a modeling perspective, the JCC-FSFIR also shares similarities with robust optimiza-

tion (see Ben-Tal et al. [2009]). A key difference between robust optimization and the JCC-FSFIR

is that the JCC-FSFIR requires the feasibility of recourse decisions to hold for a fraction of an

uncertainty set (and the JCC-FSFIR gets to choose this fraction). Generally, as the risk parameter

ε→ 0, structurally the JCC-FSFIR looks more and more like a robust optimization problem where

the support set is analogous to a finite uncertainty set. Indeed, our algorithm relies heavily on

solving small robust optimization problems of this form.

The rest of this section is organized as follows. In Section 3.3, we introduce our notation,

problem formulation, and the proposed decomposition scheme. Next, Section 3.4 discusses the

structural properties of the JCC-FSFIR that are used to build our algorithm. The SHCG algorithm

is presented in Section 3.5, followed by two example problem cases for evaluating the performance

of SHCG in Section 3.6. Because these problems are computationally intractable when using state-

of-the-art commercial solvers, numerical experiments are presented in Section 3.7. Finally, Section

3.8 summarizes our findings and conclusions and presents direction for future research.

3.3 General Formulation and Notations

In this section, we formally describe our formulation of the JCC-FSFIR and its assumptions,

decomposition, and commonly used notation.

3.3.1 General Formulation

The JCC-FSFIR is formulated as a two-stage stochastic optimization problem with random

variables ω̇:

min c>x (3.1a)

s.t. Ax ≤ b (3.1b)

Pr{y ∈ ξ(x, ω̇) ≤ 0} ≥ 1− ε (3.1c)
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The here-and-now decisions, x, are made in response to any realization of random variables ω̇. For

a realization of ω̇, a feasible recourse action, y, is determined based on function ξ(x, ω̇), which is

a system of constraints. The probability of feasible recourse is modeled via the chance constraint

specified in constraint (3.1c). An important distinction of this formulation is that it does not assume

that x and y are continuous and hence that the feasible region imposed by ξ(·) is convex.

Formulation (3.1) assumes an arbitrary distribution over ω̇. Because arbitrary distributions

are generally hard to formulate in closed form or via tractable optimization models, we use the SAA

method to approximate the distribution using a finite support scenario set Ω := {ω1, ω2, · · · , ωS} (see

Pagnoncelli et al. [2009] and Luedtke and Ahmed [2008]), where S = |Ω| is the total scenario count.

The binary indicator variables, fω,∀ω ∈ Ω, are used to select the scenarios with a feasible recourse

action (constraint (3.2a)). With SAA and this notation, chance constraint (3.1c) is reformulated in

(3.2) as

fω = 1⇔ {yω ∈ ξ(x, ω) ≤ 0} ∀ω ∈ Ω (3.2a)∑
ω∈Ω

fω ≥ d|Ω|(1− ε)e (3.2b)

fω ∈ {0, 1} ∀ω ∈ Ω (3.2c)

We formally define a JCC-FSFIR problem with notation P(Ω, ε) in Formulation (3.3). Here,

Ω and ε are the input parameters of a JCC-FSFIR.

P(Ω, ε) = min c>x (3.3a)

s.t (3.1b) and (3.2) (3.3b)

Given a P(Ω, ε), we use σΩ∗
ε and hΩ∗

ε to denote an optimal solution and optimal objective value (i.e.,

P(Ω, ε)→ 〈hΩ∗
ε , σΩ∗

ε 〉). We add a third argument to P(Ω, ε) when other constraints are included in

the formulation.

For example, P(Ω, ε, x = x̄) constrains the assignments of variables x to take value x̄. The

functional usage of σ is denoted with σ(·), which returns the variable assignments of · in solution σ.

For example, σΩ∗
ε (x) denotes the assignments of here-and-now variables x in the optimal solution of

P(Ω, ε).
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3.3.2 Special Cases of P

P(Ω, ε) has a two-stage structure (i.e., for fixed x, constraint (3.2a) is separable on Ω). Note

that no recourse of first-stage decisions is considered; the second stage is purely a feasibility problem.

We now introduce special cases of P(Ω, ε) that are used later to exploit this separable structure.

Our first special case defines a subproblem P(Ω̃, 0) → 〈hΩ̃∗
0 , σΩ̃∗

0 〉, where Ω̃ ⊆ Ω. This

subproblem defines the case where a subset of scenarios must all have feasible recourse. This is a

general robust optimization formulation.

In this special case, the formulation of P(Ω̃, 0) is simplified by dropping the fω variables,

i.e.,

P(Ω̃, 0) = min c>x (3.4a)

s.t Ax ≤ b (3.4b)

yω ∈ ξ(x, ω) ≤ 0 ∀ω ∈ Ω̃ (3.4c)

Our second special case defines solving P(Ω̃, 0, x = x̄) → 〈hΩ̃∗
0 , σΩ̃∗

0 〉, where Ω̃ ⊆ Ω and the

here-and-now variables x are set to be x̄. Because this variant of the problem may not be feasible,

we find it useful to define a new problem, S(Ω̃, x = x̄)→ 〈hΩ̃∗
s , σΩ̃∗

s 〉, that minimizes the violation of

recourse feasibility constraints for all included scenarios, given x = x̄ (i.e., the violation of constraints

(3.4c) and (3.4b)).

S(Ω̃, x = x̄) = min λ+
∑
ω∈Ω̃

λω (3.5a)

s.t Ax̄− λ ≤ b (3.5b)

yω ∈ ξ(x̄, ω)− λω ≤ 0 ∀ω ∈ Ω̃ (3.5c)

λ ∈ R+ (3.5d)

λω ∈ R+ ∀ω ∈ Ω̃ (3.5e)

In this formulation, variables λ and λω are slack variables that are used to allow violation of all

constraints and ensure that S always has a feasible solution. It is useful to note that hΩ̃∗
s = 0 implies

that P(Ω̃, 0, x = x̄) has a feasible solution (i.e., decision x̄ is feasible for all scenarios ω ∈ Ω̃).
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3.4 JCC-FSFIR Properties

In this section, some key structural properties of the JCC-FSFIR are described to motivate

the algorithm proposed in Section 3.5.

3.4.1 Relations of P(Ω, 0) and P(Ω, ε)

I first focus on the properties of P(Ω, 0). Let Ω̃ ⊆ Ω, P(Ω̃, 0) → 〈hΩ̃∗
0 , σΩ̃∗

0 〉 and P(Ω, 0) →

〈hΩ∗
0 , σΩ∗

0 〉, then

Lemma 1. hΩ̃∗
0 ≤ hΩ∗

0 .

Proof. By construction, P(Ω̃, 0) contains a subset of the constraints in P(Ω, 0) and is a relaxation.

Let P(Ω, ε)→ 〈hΩ∗
ε , σΩ∗

ε 〉 and α = d|Ω|(1− ε)e, then

Lemma 2. There exists an Ω̃ ⊆ Ω such that |Ω̃| = α and hΩ̃∗
0 = hΩ∗

ε .

Proof. Let Ωa ⊆ Ω be the subset of active scenarios in an optimal solution of P(Ω, ε). By construction

hΩa∗
0 = hΩ∗

ε and by (3.2b) we know that |Ωa| ≥ α. If |Ωa| = α, then the existence of Ω̃ is shown. If

|Ωa| > α, one can define a new scenario subset Ωb ⊂ Ωa such that |Ωb| = α. By construction, Ωb

satisfies (3.2b) and Lemma 1 ensures hΩb∗
0 ≤ hΩa

0 . Because hΩa∗
0 is an optimal solution, hΩb∗

0 = hΩa∗
0 ,

which demonstrates that hΩb∗
0 = hΩ∗

ε and the existence of Ω̃.

It is useful to know that every problem P(Ω, ε) can be converted into an equivalent P(Ω̃, 0)

problem. However, in practice, finding the correct Ω̃ can be very challenging. This observation

motivates the final relation presented. Let Ω̃ ⊆ Ω, P(Ω̃, 0) → 〈hΩ̃∗
0 , σΩ̃∗

0 〉 and S(Ω, x = σΩ̃∗
0 (x)) →

〈hΩ∗
s , σΩ∗

s 〉, then

Lemma 3. If hΩ∗
s = 0, then P(Ω, 0)⇔ P(Ω, 0, x = σΩ̃∗

0 (x)).

Proof. σΩ̃∗
0 is a feasible solution to P(Ω, 0) because hΩ∗

s = 0. P(Ω̃, 0) is a relaxation of P(Ω, 0)

because Ω̃ ⊆ Ω. Consequently, P(Ω, 0, x = σΩ̃∗
0 (x)) yields an optimal solution of P(Ω, 0).

Lemma 3 yields the following insight: when the solution to P(Ω̃, 0) happens to be feasible

for all scenarios in Ω, then the equivalence between P(Ω̃, 0) and P(Ω, 0) is established. This is a key

insight that motivates Algorithm 7 and was also considered by Yamangil et al. [2015].
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3.4.2 An Upper Bound of P(Ω, ε)

When ε > 0, we cannot leverage Lemma 3 because P(Ω̃, 0) is not necessarily a relaxation

of P(Ω, ε). However, we show in Lemma 4 that for a sufficiently large scenario set Ω̃, the solution

to P(Ω̃, 0) provides an upper bound of P(Ω, ε). Let Ω̃ ⊆ Ω, P(Ω̃, 0) → 〈hΩ̃∗
0 , σΩ̃∗

0 〉 and P(Ω, ε) →

〈hΩ∗
ε , σΩ∗

ε 〉, then we have

Lemma 4. If |Ω̃| ≥ d|Ω|(1− ε)e, then hΩ∗
ε ≤ hΩ̃∗

0 .

Proof. Because of the cardinality of Ω̃ and the fact that all of the scenarios in Ω̃ are satisfied by the

definition of P(Ω̃, 0), the assignment σΩ̃∗
0 satisfies constraints (3.1b) and (3.2) and hence is a feasible

solution to P(Ω, ε).

3.4.3 Lower Bounds of P(Ω, ε)

The lower bound procedures presented in this section use sorted lists of a fixed cardinality

of scenario subsets. We begin by defining some structural properties of these lists. Given a collection

of scenarios Ω, there are γ =
(|Ω|
n

)
possible subsets of cardinality n. Define Ln = 〈Ω̃1, Ω̃2, . . . Ω̃γ〉 as

the collection of all subsets of Ω where |Ω̃| = n sorted such that hΩ̃i∗
0 ≤ hΩ̃i+1∗

0 . We can immediately

observe two interesting properties of Ln lists:

1. Based on Lemma 2, without loss of generality, it is sufficient to consider Ln in the range of

1 ≤ n ≤ α = d|Ω|(1− ε)e.

2. For each scenario ω ∈ Ω, we can define Lωn as the first subset in Ln that includes ω, and by

definition Lωn is the lowest-cost subset of size n that includes ω.

We now establish how Ln can be used to compute lower bounds for P(Ω, ε). Let Ωo ⊆ Ω be the

subset of feasible scenarios in the optimal solution of P(Ω, ε). The first observation is that for any

n ≤ α, the following property holds:

Lemma 5. maxω∈Ωo h
Lωn∗
0 ≤ hΩ∗

ε .

Proof. By Lemma 2, it is sufficient to show that maxω∈Ωo h
Lωn∗
0 ≤ hΩo∗

0 . For each ω ∈ Ωo, there are

two possibilities: (1) Lωn ⊆ Ωo, in which case Lemma 1 applies; and (2) Lωn 6⊆ Ωo, in which case

h
Lωn∗
0 is cheaper than all subsets of Ωo of size n that include ω, which follows from the definition of

Lωn .
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Note that the strength of this bound increases as n approaches α. In fact, when n = α this

computation would compute the optimal solution of P(Ω, ε).

A key shortcoming of Lemma 5 is that we do not know the optimal scenario subset Ωo a

priori. To address this issue, we further relax Lemma 5 to consider only the α-cheapest scenarios

in Ln. Given Ln, let Ωα ⊆ Ω be the collection of the first α = d|Ω|(1 − ε)e scenarios when sorting

ω ∈ Ω by h
Lωn∗
0 , then

Lemma 6. maxω∈Ωα h
Lωn∗
0 ≤ hΩ∗

ε .

Proof. As before, by Lemma 2 it is sufficient to show that maxω∈Ωα h
Lωn∗
0 ≤ hΩo∗

0 . There are two

possibilities: (1) Ωα = Ωo, in which case Lemma 5 applies; and (2) Ωα 6= Ωo, in which case Ωα

includes some ω that are cheaper than those in Ωo and provides a lower bound to Lemma 5. This

follows the construction of Ωα, which sorts ω by increasing values of h
Lωn∗
0 .

Note that the special case of Lemma 6 for L1 was proposed in Ahmed et al. [2016], where

it is referred to as a quantile bound. A key feature of Lemmas 5 and 6 is that they do not rely on

the strong duality theorem, which is commonly used for deriving lower bounds in the joint chance-

constraint literature. In contrast, the lower bound described in Lemma 6 is valid for nonconvex

structures.

Given Lemmas 4 and 6, we now have a procedure to compute upper and lower bounds to the

JCC-FSFIR that will converge to the optimal solution of P(Ω, ε). We next derive valid inequalities

for P(Ω, ε), which improve convergence of these bounding procedures.

3.4.4 Scenario Pruning

Let P(Ω, ε) → 〈hΩ
ε , σ

Ω
ε 〉 be a feasible solution and P(Ω̃, 0) → 〈hΩ̃∗

0 , σΩ̃∗
0 〉 be an optimal

solution to a relaxed problem where Ω̃ ⊂ Ω and |Ω̃| ≤ d|Ω|(1 − ε)e. Then the following inequality

holds:

Lemma 7. If hΩ
ε ≤ hΩ̃∗

0 , then
∑
ω∈Ω̃ fω ≤ |Ω̃| − 1 is a valid cut for P(Ω, ε).

Proof. Because hΩ
ε ≤ hΩ̃∗

0 , there is no way that all of the scenarios in Ω̃ are satisfied in the optimal

solution of P(Ω, ε). At least one ω ∈ Ω̃ must be removed.
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In general, Lemma 7 provides valid cuts that eliminate some scenario combinations and

make it easier to solve P(Ω, ε). However, the special case when |Ω̃| = 2 is leveraged in the following

scenario pruning procedure.

We next derive another set of inequalities by leveraging a counting argument to eliminate

individual scenarios. Let G = (Ω, E) be an undirected graph with one vertex for each scenario i ∈ Ω.

An edge exists between vertex i and vertex j if we cannot prove fi + fj ≤ 1 is a valid inequality for

P(Ω, ε) (i.e., using Lemma 7). Let deg(i) denote the degree of vertex i ∈ Ω and we show that for

any vertex

Lemma 8. If deg(i) < d|Ω|(1− ε)e − 1, then fi ≤ 0 is a valid cut for P(Ω, ε).

Proof. First observe that deg(i) indicates the maximum number of scenarios that can be paired with

i in a solution of P(Ω, ε). By (3.2b), all feasible solutions to P(Ω, ε) satisfy d|Ω|(1− ε)e scenarios. If

deg(i) + 1 < d|Ω|(1− ε)e, there is no feasible solution that includes i and fi ≤ 0 is valid.

3.5 Scenario-Based Heuristic Configuration Generation Al-

gorithm

The two-stage formulation of P(Ω, ε) is a deterministic mixed-integer linear program (MIP);

thus, commercial MIP solvers, such as CPLEX or Gurobi, are a natural choice for solving such prob-

lems. However, as will be demonstrated in Section 3.7, these general-purpose solvers often struggle

with instances of P(Ω, ε) that feature a large number of scenarios and/or complex recourse decisions.

To help address these challenges, we develop an algorithm that leverages the structural properties

of P(Ω, ε) developed in Section 3. The algorithm is inspired by formal two-stage decomposition

approaches, such as Benders decomposition by Van Slyke and Wets [1969] and Dantzig-Wolfe de-

composition by Dantzig and Wolfe [1960], and heuristic decomposition schemes, such as Coffrin et al.

[2011] and Pillac et al. [2016]. A key advantage of this approach compared to previous works is that

it does not rely on the strong duality theorem and is applicable to problems with integer recourse.

The algorithm, referred to as scenario-based heuristic configuration generation (SHCG), is

designed to decouple the two core combinatorial challenges presented by P(Ω, ε):

1. The feasibility of any given scenario (i.e., constraint (3.2a))
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2. The scenario subset selection needed to satisfy the chance constraint (i.e., (3.2b))

The first key idea of SHCG identifies a first-stage assignment configuration, which encodes a spe-

cific assignment of the first-stage variables that identifies the scenarios that are feasible given that

assignment. The second key idea of SHCG identifies a configuration union operator, which encodes

what happens to the first-stage variables if two or more configurations occur simultaneously. With

these two ideas, at a high-level, the SHCG algorithm generates a collection of first-stage assignment

configurations and uses the configuration union property to solve a set cover-like master problem

that satisfies the chance constraint (3.2b). A key advantage of this configuration-based approach

is that determining which scenarios are feasible requires solutions to only small P(Ω̃ ⊆ Ω, 0) prob-

lems, which are assumed to be significantly easier to solve than P(Ω, ε). The rest of this section

is organized as follows. First, an overview of the SHCG algorithm is described. This high-level

description leverages subroutines for solving the set-covering master problem, generating new con-

figurations, computing lower bounds, and pruning scenarios, each of which is described in detail in

the subsequent sections.

3.5.1 SHCG Overview

The overall structure of SHCG is presented in Algorithm 1. SHCG takes a set of sce-

narios Ω and the chance-constraint parameter ε as inputs (line 2). The algorithm first initializes

an upper bound, h̄Ω
ε , a lower bound, hΩ

ε , a best solution, σ̄Ω
ε , a configuration set, C, and a cut

set, Λ (line 1). With the current set of configurations, a new feasible solution is found by solving

a master problem, M(·) (line 4).1 Leveraging the latest upper bound, valid cuts are computed

using the GenerateCuts subroutine (line 5). A revised lower bound is determined with the

UpdateLowerBound subroutine (line 6) and, lastly, new configurations are generated using the

UpdateConfigurations subroutine (line 7).

This procedure is repeated until the upper and lower bounds converge and global optimality

is proven or the algorithm times out (line 3). Upon completion, an assignment of all the decision

variables is computed (line 9) and the upper bound, lower bound, and best solution are reported

(line 10).

1In the interest of providing convergence guarantees, throughout this section we assume that Formulation (3.6) is
solved to global optimality. However, in practice this formulation often benefits from a time limit.
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Algorithm 1 SHCG Algorithm

1: Initialize h̄Ω
ε ←∞, h

Ω
ε ← −∞, σ̄Ω

ε ← ∅, C ← ∅,Λ← ∅
2: function SHCG(Ω, ε)
3: while h̄Ω

ε > hΩ
ε & Timeout = false do

4: h̄Ω
ε , σ ←M(C,Λ,Ω, ε)

5: Λ← GenerateCuts(C,Λ,Ω, ε, h̄Ω
ε )

6: hΩ
ε ← UpdateLowerBound(C,Λ,Ω, ε)

7: C ← UpdateConfigurations(C,Λ,Ω, ε)
8: end while
9: 〈h̄Ω

ε , σ̄
Ω
ε 〉 ← P(Ω, ε, x = σ(x), f = σ(f))

10: return h̄Ω
ε , h

Ω
ε , σ̄

Ω
ε

11: end function

3.5.2 The Master Problem

Before introducing the master problem formulation, we must first formally define what a

configuration is. A configuration, c ∈ C, is associated with a subset of scenarios Ωc ⊆ Ω and a solution

to the subproblem P(Ωc, 0) → 〈hΩc∗
0 , σΩc∗

0 〉. To simplify computations across configurations, for a

configuration c, we define the scenario feasibility variable fω ∀ω ∈ Ω as fω ⇔ ω ∈ Ωc.

The master problem, M, takes a collection of configurations C and the chance-constraint

parameter ε to compute the lowest-cost combination of configurations such that the chance constraint

(3.2b) is satisfied. The method for combining configurations depends on the problem context, namely

how the first-stage variables are affected when two configurations are considered simultaneously. In

practical applications we have encountered, such as resilient design by Yamangil et al. [2014], power

system network expansion by Gorenstin et al. [1993], ambulance location by Nickel et al. [2016],

multi-commodity flow by Ruszczyński [2002], and optimal vaccination planning by Tanner et al.

[2008] and Tanner and Ntaimo [2010], the max operation is sufficient for computing a configuration

union and satisfies constraints (3.1b) and (3.2a). We use this operation in constraint (3.6c). A key

feature of M is that scenario feasibility is captured in the configurations. Hence this formulation

implicitly satisfies constraint (3.2a) and can focus on the combinatorics of satisfying constraint

(3.2b).

We first reformulate P(Ω, ε) into a new optimization problem, M(C,Λ,Ω, ε). Given config-

uration c ∈ C, we use the shorthand x̄c = σΩc

0 (x) to denote the first-stage assignment vector and

f̄ c = f̄Ωc

0 to denote the scenario feasibility vector. M is then defined as follows:

M(C,Λ,Ω, ε) = min c>x (3.6a)
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s.t Ax ≤ b (3.6b)

xi ≥ x̄cizc ∀i = 1 · · · |x|, c ∈ C (3.6c)

fω ≥ zcf̄ cω ∀ c ∈ C, ω ∈ Ω (3.6d)

fω ≤
∑
c∈C

zcf̄
c
ω ∀ ω ∈ Ω (3.6e)

∑
ω∈Ω

fω ≥ d|Ω|(1− ε)e (3.6f)

f ∈ Λ (3.6g)

zc ∈ {0, 1} ∀c ∈ C (3.6h)

fω ∈ {0, 1} ∀ω ∈ Ω (3.6i)

In this model, constraints (3.6a) and (3.6b) preserve the first-stage structure of the original problem

P. Binary variables z control whether a configuration is selected to satisfy these constraints. Con-

straints (3.6c)–(3.6e) perform a union of the selected configurations based on the max operation.

Constraint (3.6f) ensures that the union of configurations satisfies the chance constraint (i.e., con-

straint (3.2b)). The cuts are added in constraint (3.6g). In practice, if any knowledge of variables z

exists, it is applicable to warm start the master problem with a supported MIP solver.

3.5.3 Configuration Generation

Line 7 of Algorithm 1 generates configurations to solve P(Ω, ε). In this section, we first

introduce a heuristic method to generate an initial upper bound configuration. Then, we dis-

cuss two approaches for updating the configurations (the advantages and disadvantages of these

two approaches are discussed in the numerical studies in Section 3.7). To generate these config-

urations we solve a specific collection of subproblems. For brevity, we define this procedure as

Collect(Ω, d, ω,Λ) := {Ω̃ : Ω̃ ⊆ Ω, ω 6∈ Ω̃, |Ω̃| = d, (3.6g)}. This procedure defines scenario subsets

of cardinality d that do not include scenario ω and satisfy constraint (3.6g) on Λ and Ω̃.

3.5.3.1 Generate Initial Upper Bound Configuration

It is important to consider a scheme to prepare the master problem with at least one tangible

solution. We consider a heuristic that solves a considerable-sized subproblem for an initial upper

bound configuration. We define this heuristic as GenerateConfiguration-Initial and present
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it in Algorithm 2. On lines 3–4, it sorts all single-scenario subproblems based on costs and selects

the first d|Ω|(1 − ε)e scenarios to compose a scenario subset Ωc. Line 5 solves the corresponding

subproblem and the resulting configuration is returned. In the following discussions of configuration

generation approaches, this heuristic is applied right after all single-scenario subproblems are solved.

Therefore, the cost of line 3 is minor.

Algorithm 2 Generate Initial Upper Bound Configuration

1: initialize Ωc ← ∅
2: function GenerateConfiguration-Initial(C,Ω, ε)
3: ω̃ ← Sort(ω ∈ Ω by hω∗0 )
4: Ωc ← Ωc ∪ ω̃i for i = 1 : d|Ω|(1− ε)e
5: 〈hΩc∗

0 , σΩc∗
0 〉 ← P(Ωc, 0)

6: C ← C ∪ 〈Ωc, σΩc∗
0 , hΩc∗

0 〉
7: return C
8: end function

3.5.3.2 Enumeration

Our first implementation of UpdateConfigurations is based on an enumeration routine

described in Algorithm 3. It generates configurations by exhaustively solving subproblems using

scenario subsets with increasing cardinality. Line 3 maintains a cardinality counter that is initialized

during the first call, and line 4 enumerates the scenario subsets with cardinality d that satisfy

constraint (3.6g). Line 5 computes the solution to each subproblem, and line 6 stores that solution

as a configuration. Coincidentally, solutions to a subproblem may be feasible for additional scenarios

in Ω beyond those included in Ωc. In lines 7–12 we build an extra extended configuration, Ωc
′
, that

includes these additional scenarios. When d = 1, a heuristic is applied in line 14 to collect one

additional configuration. Note that the convergence of Algorithm 1 is guaranteed when the solutions

to all subproblems in this procedure are solved to optimality.

3.5.3.3 Incremental Enumeration

A key shortcoming of Algorithm 3 is that the number of additional subproblems that need to

be solved in each iteration increases at a prohibitive rate. To address this challenge, we next propose

an alternative approach for generating configurations. Algorithm 4 performs the enumeration incre-

mentally on a scenario-by-scenario basis. In the first call, the algorithm creates all configurations

for d = 1 (line 4) and sorts these configurations based on cost (line 5). It also generates and collects
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Algorithm 3 Enumeration-based Configuration Generation

1: initialize d = 0
2: function UpdateConfigurations-Enumeration(C,Λ,Ω, ε)
3: d← d+ 1
4: for Ωc ∈ Collect(Ω, d, ∅,Λ) do
5: 〈hΩc∗

0 , σΩc∗
0 〉 ← P(Ωc, 0)

6: C ← C ∪ 〈Ωc, σΩc∗
0 , hΩc∗

0 〉
7: Ωc

′ ← Ωc

8: for ω ∈ Ω \ Ωc do
9: 〈hω∗s , σω∗s 〉 ← S(ω, 0, x = σΩc∗

0 (x))
10: Ωc

′ ← Ωc
′ ∪ ω if hω∗s = 0

11: end for
12: C ← C ∪ 〈Ωc′ , σΩc∗

0 , hΩc∗
0 〉

13: end for
14: if d = 1 then C ← GenerateConfiguration-Initial(Ω, ε)
15: return C
16: end function

an initial upper bound configuration (line 1). In subsequent calls, one scenario is selected from the

sorted list (line 9) and all combinations of other scenarios with this one are considered (line 10).

For each of these combinations, both a configuration and an extended configuration are computed

(lines 11–19). Finally, if all of the scenarios have been considered, the subset size is increased and

the scenario counter is reset to start enumerating larger subsets (line 22). It is useful to note that,

given a sufficient amount of time, this algorithm will enumerate all scenario subsets and has the

same convergence properties as Algorithm 3.

3.5.4 Lower Bound Computation

The UpdateLowerBound subroutine leverages Lemma 6 to compute the lower bound

of P(Ω, ε). This subroutine scans through sequences of sorted scenario subsets to calculate lower

bounds; hence, we denote a sorted sequence as Sequence(Ω, d, C,Λ) → 〈Ω1,Ω2, . . . ,Ω(|Ω|
d )〉 such

that |Ωi| = d and hΩi∗
0 ≤ h

Ωi+1∗
0 ∀i = 1 . . .

(|Ω|
d

)
. Because it is not practical to compute all of the

hΩi∗
0 values in this sequence, we relax the computation of hΩi∗

0 to

hΩi∗
0 =


hΩi∗

0 if P(Ωi, 0)→ 〈hΩi∗
0 σΩi∗

0 〉 has been solved in C

∞ if fω̃ = 1 for ω̃ ∈ Ωi is infeasible for (3.6g)

−∞ if P(Ωi, 0) has not been solved

(3.7)
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Algorithm 4 Incremental Enumeration-Based Configuration Generation

1: initialize d← 1, i← 0, ω̃ ← ∅
2: function UpdateConfigurations-Incremental(C,Λ,Ω, ε)
3: if d = 1 then
4: C ←UpdateConfigurations-Enumeration(C,Λ,Ω, ε)
5: ω̃ ← Sort(ω ∈ Ω by hω∗0 : P(ω, 0)→ 〈hω∗0 , σω∗0 〉)
6: d← d+ 1
7: return C
8: end if
9: i← i+ 1

10: for Ωc ∈ Collect(Ω, d− 1, ω̃i,Λ) do
11: Ωc ← Ωc ∪ ω̃i
12: 〈hΩc∗

0 , σΩc∗
0 〉 ← P(Ωc, 0)

13: C ← C ∪ 〈Ωc, σΩc∗
0 , hΩc∗

0 〉
14: Ωc

′ ← Ωc

15: for ω ∈ Ω \ Ωc do
16: 〈hω∗s , σω∗s 〉 ← S(ω, 0, x = σΩc∗

0 (x))
17: Ωc

′ ← Ωc
′ ∪ ω if hω∗s = 0

18: end for
19: C ← C ∪ 〈Ωc′ , σΩc∗

0 , hΩc∗
0 〉

20: end for
21: if i = |Ω| then
22: i← 0, d← d+ 1
23: end if
24: return C
25: end function
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The first case of (3.7) uses the actual value of hΩi∗
0 , which is available in C. The second case of (3.7)

eliminates known infeasible scenario combinations, and the last case of (3.7) provides a lower bound

on unknown hΩi∗
0 with −∞. This function ensures the correctness of the lower bound computation

while leveraging any information that is available as part of the already-computed configurations

from C.

Algorithm 5 presents the complete bounding procedure. The bound is initialized to −∞

(line 2) and then strengthened by considering subsets of increasing cardinality (line 3). For each

cardinality level, the sorted sequence of subsets is computed (line 5) and the bound is improved until

Lemma 6’s α-limit is reached (lines 6–9). Finally, the lower bound value is returned (line 12).

Algorithm 5 Update Lower Bound

1: function UpdateLowerBound(C,Λ,Ω, ε)
2: hΩ

ε ← −∞, α = d(1− ε)Ωe
3: for d = 1 : α do
4: γ ←

(|Ω|
d

)
, Ω̂← ∅

5: Let 〈Ω1,Ω2, . . . ,Ωγ〉 ← Sequence(Ω, d, C,Λ)
6: for i = 1 : γ do
7: Ω̂← Ω̂ ∪ Ωi
8: break if |Ω̂| > α
9: hΩ

ε ← max(hΩ
ε , h

Ωi∗
0 )

10: end for
11: end for
12: return hΩ

ε

13: end function

3.5.5 Generating Valid Inequalities

The GenerateCuts subroutine, presented in Algorithm 6, uses the upper bound, h̄Ω
ε , and

configurations C to generate cuts using Lemmas 7 and 8. GenerateCuts is initialized with a fully

connected graph G (see Lemma 8 for the definition of G). The pruning process has two loops. The

first loop (lines 3–6) generates cuts based on Lemma 7 (line 4) for each c ∈ C. If a cut is generated

on a scenario set of size two, the edge between the two scenario vertices is removed from the graph

G (line 5). The second loop (lines 7-10) adds Lemma 8 cuts for all scenarios ω ∈ Ω whose degree

has become too small. Finally, the updated cut set Λ is returned in line 11.
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Algorithm 6 Generate Cuts

1: Initialize complete graph G = (Ω, E)
2: function GenerateCuts(C,Λ,Ω, ε, h̄Ω

ε )
3: for c ∈ C do
4: Λ← Λ ∪

∑
ω∈Ωc fω ≤ |Ωc| − 1 if hΩc∗

0 > h̄Ω
ε

5: Remove (ωi, ωj) from G if ωi, ωj ∈ Ωc, |Ωc| = 2, and hΩc∗
0 > h̄Ω

ε

6: end for
7: for ω ∈ Ω do
8: Λ← Λ ∪ fω ≤ 0 if deg(ω) ≤ d|Ω|(1− ε)e − 1 for ω ∈ Ω
9: Remove ω ∈ G if deg(ω) ≤ d|Ω|(1− ε)e − 1 for ω ∈ Ω

10: end for
11: return Λ
12: end function

3.5.6 Solving P(Ω, 0)

The SHCG algorithm relies heavily on solving subproblems of the form P(Ω, 0), usually for

Ω̃ ⊆ Ω. For cases when |Ω| is large, the iterative algorithm described in Yamangil et al. [2015]

has significant computational advantages. Hence, as a performance enhancement, SHCG utilizes

this algorithm when solving P(Ω, 0). In the interest of completeness, this procedure is presented in

Algorithm 7.

Algorithm 7 is built on the premise that finding solutions for Ω̃ ⊆ Ω that are coincidentally

feasible for all of Ω is faster than finding a solution for Ω directly. More formally, Algorithm 7

determines a solution to P(Ω̃, 0) for a subset Ω̃ ⊆ Ω (line 4) and then checks whether this solution

is feasible for all Ω (line 5). If this condition holds, by Lemma 3, this solution is returned as optimal

(line 6). Otherwise, the most-infeasible scenario is found and added to Ω̃ (line 8). The process

repeats until feasibility for all scenarios is achieved.

Algorithm 7 Algorithm for Solving for P(Ω, 0)

1: function P(Ω, 0)
2: Ω̃← {arg maxω{hω∗0 : P(ω, 0)→ 〈hω∗0 , σω∗0 〉, ω ∈ Ω}}
3: while Ω̃ 6= Ω do

4: hΩ̃∗
0 , σΩ̃∗

0 ← P(Ω̃, 0)

5: if max(hω∗s : S(ω, 0, x = σΩ̃∗
0 (x))→ 〈hω∗s , σω∗s 〉, ω ∈ Ω \ Ω̃) = 0 then

6: return hΩ̃∗
0 , σΩ̃∗

0

7: end if
8: Ω̃← Ω̃ ∪ arg maxω{hω∗s : S(ω, 0, x = σΩ̃∗

0 (x))→ 〈hω∗s , σω∗s 〉, ω ∈ Ω \ Ω̃}
9: end while

10: end function
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3.6 Example Problem Cases

In this section, we test SHCG on two problems: (1) a stochastic knapsack problem (SKP)

with feasibility recourse (Ross and Tsang [1989] and Abraham Flaxman [2011]), and (2) the climate

adaptation problem (CAP) presented in Section 2.3. Although the problems have different recourse

structure, they are both computationally intractable using commercial MIP solvers as the number

of scenarios considered increases.

The SKP is a variation of the classic knapsack problem. Like the classic knapsack problem,

the SKP finds the best subset of a collection of items, N , subject to capacity constraints. However,

unlike the classic knapsack problem, in the SKP each item has a random weight (ḋi)i∈N and the

knapsack has a random capacity, Ḃ:

max
∑
i∈N

cixi (3.8a)

s.t. Pr{
∑
i∈N

ḋixi ≤ Ḃ} ≥ 1− ε, (3.8b)

xi ∈ {0, 1} ∀i ∈ N (3.8c)

Here, constraint (3.8a) maximizes the value of included items in the knapsack. Constraint (3.8b)

constrains the probability of satisfying the knapsack capacity. For an arbitrary distribution of

the random variables, scenarios Ω := {(d1, B1), · · · , (d|Ω|, B|Ω|)}, are drawn using Monte Carlo

sampling whereas the weight is assumed to be positive (i.e., di ∈ R+ ∀i = 1 . . . |Ω|). Hence, (3.8b)

is reformulated as its deterministic problem (3.9).

∑
ω∈Ω

fω ≥ d|Ω|(1− ε)e, (3.9a)

∑
i∈N

dωi xi −Bω ≤ (1− fω)Mω ω ∈ Ω (3.9b)

The recourse function in constraint (3.9b) checks the capacity violation for each scenario. In this

model, Mω =
∑N
i=1 d

ω
i − Bω. Therefore, the JCC-FSFIR formulation of problem (3.8) is formally

defined in (3.10):

P(Ω, ε) = max
∑
i∈N

cixi (3.10a)
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s.t (3.9) and (3.8c) (3.10b)

Furthermore, constraint (3.11) is used in SHCG for the configuration union operator (i.e., constraint

(3.6c)). This union operator will pick the lesser option when union configurations.

xi ≤ zcx̄ci + 2(1− zc) ∀c ∈ C, i ∈ N . (3.11)

3.7 Numerical Experiments

In this section we provide empirical results that evaluate the performance of SHCG. We first

show the general applicability of SHCG by comparing SHCG with a general-purpose MIP solver.

Second, we compare different column generation methods embedded within the SHCG framework.

3.7.1 Experiment Configuration

Our numerical experiments were conducted using the high-performance computing clusters

at Los Alamos National Laboratory. Each experiment was performed on a single dedicated Intel(R)

Xeon(R) CPU E3-2660-v3 processor with 22 Dual Threads Cores and 251 GB RAM. CPLEX 12.7

was used as the benchmark commercial solver for MIP test cases (32 threads). Our SHCG algorithm

was implemented in Julia 0.5 and the mathematical program model package JuMP 0.15.1 (see Lubin

and Dunning [2015]). All mixed-integer subproblems of SHCG (i.e., Algorithm 7) were solved using

CPLEX. For SKP, a total time limit of 3600 seconds was used, and for CAP a time limit of 21600

seconds (i.e., 6 hours) was used. Any subproblem of SHCG was limited to 1800 seconds. We note

that the lower bound of suboptimal solutions is used to calculate lower bound. We also note that

SHCG can run Algorithms 3 and 4 in parallel. In this case, we limit SHCG to at most 16 parallel

computations, each with 2 threads. The results in Table 3.1 are with sequential SHCG. The results

in Tables 3.2, 3.3, 3.4 and 3.5 use parallel implementation of SHCG.

The SKPs have 8000 items. The costs of items were generated from a uniform distribution

between 1 and 100. Each item’s weight was generated using a normal distribution with a mean of 0.5

times the cost and a variance of 0.2 times the cost. All the weights were ensured to be positive, with

a minimum threshold of 0.3 times the cost. Scenario sets of size 1000 were created (experiments with

|Ω| ≤ 1000 scenarios use the first |Ω| of the scenario sets). The SPSAPs are based on the NESTA
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IEEE-118 bus transmission system from Coffrin et al. [2014]. Scenario sets of size 200 were created

(experiments with |Ω| ≤ 200 scenarios use the first |Ω| of the scenarios).

3.7.2 Analysis of the SKP

Table 3.1 compares CPLEX and SHCG on the SKP. The rows of the table show results for

different ε values between 0.05 and 0.8. The results are grouped by |Ω| = (200, 500, 1000). In these

results, SHCG uses Algorithm 3. The best solution for both methods is reported in the columns

labeled “h̄”. The associated relative optimality gaps are recorded in the columns labeled “Gap(%)”.

The column labeled “T ∗(s)” reports the CPU time (in seconds) when the best solution was found. To

clearly show the benefits of SHCG, two additional columns explicitly compare SHCG with CPLEX.

The column labeled “CPU Time for h(S) ≥ h(C)” shows the CPU time (in seconds) when SHCG

first finds a solution that is the same or better than the best solution found by CPLEX in 1 hour.

The column labeled “Gap(S) ≤ Gap(C)” indicates whether the optimality gap of SHCG is smaller

than that of CPLEX.

The SKP is difficult to solve for both CPLEX and SHCG. Neither approach is able to prove

optimality within 1 hour. However, from Table 3.1, it is clear that SHCG consistently finds solutions

that are better than those found by CPLEX. Moreover, the time required for SHCG to find a solution

that is as good as CPLEX’s best solution is much shorter in almost all cases. This suggests that

SHCG has a natural advantage as a heuristic for finding high-quality solutions. Finally, SHCG has

better optimality gaps than CPLEX in 22 of 27 test runs, which also suggests that SHCG has better

convergence properties than CPLEX.

3.7.3 Analysis of the CAP

Table 3.2 and 3.3 summarizes our results on the CAP using Algorithm 3 for generating

configurations in SHCG. The CAP is much more complicated than the SKP because it has integer

recourse. Table 3.2 and 3.3 is organized by grouping choices of ε with sizes of Ω. CPLEX and SHCG

are compared at four time intervals: 10 minutes, 1 hour, 2 hours, and 6 hours. The best results are

highlighted in bold.

In Table 3.2 and 3.3, CPLEX is generally the best approach for finding a solution within

10 minutes when |Ω| ≤ 20. However, after an hour of computation, the advantages of SHCG are
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Table 3.1: Performance summary of SKP with a 1-hour time limit

CPLEX (C) SHCG (S) CPU Time for Gap(S) ≤
ε h̄ Gap(%) T ∗(s) h̄ Gap(%) T ∗(s) h(S) ≥ h(C) Gap(C)

|Ω| = 200

0.05 299 39.4 499 304 73.0 89 50 N
0.10 310 96.6 3375 318 72.6 270 41 Y
0.20 327 101.9 1385 343 72.6 407 28 Y
0.30 346 105.3 117 371 74.7 158 35 Y
0.40 377 88.5 1134 399 71.4 328 28 Y
0.50 401 86.4 1154 428 74.2 331 28 Y
0.60 429 79.2 850 459 74.7 263 28 Y
0.70 471 66.5 3345 482 77.6 284 36 N
0.80 504 53.5 2719 518 73.9 130 28 N

|Ω| = 500

0.05 284 134.1 1548 290 73.0 1490 156 Y
0.10 292 157.8 2823 304 83.2 1225 103 Y
0.20 309 159.4 1425 329 80.6 1266 82.4 Y
0.30 334 147.6 3268 353 86.1 195 196 Y
0.40 359 148.2 809 381 84.3 2195 76.3 Y
0.50 392 131.5 1425 408 85.5 1982 110 Y
0.60 413 - 2546 434 74.7 1785 62 Y
0.70 471 102.4 2005 456 87.1 1785 77 N
0.80 473 53.5 1826 485 84.7 854 83 N

|Ω| = 1000

0.05 268 - TO 277 91.7 679 200 Y
0.10 285 - TO 290 92.7 582 214 Y
0.20 305 198 219 316 91.5 712 195 Y
0.30 332 - 3336 341 92.7 1848 182 Y
0.40 358 - 349 366 91.8 2466 261 Y
0.50 382 - 350 390 94.1 692 299 Y
0.60 406 - 441 410 95.4 1286 269 Y
0.70 431 - 928 439 92.9 2276 177 Y
0.80 460 - 502 463 50.2 2138 1115 Y

Y=Yes; N=No; TO=Timeout; (-)=no gap is reported

clear because SHCG consistently outperforms CPLEX, especially when |Ω| > 20. Once |Ω| = 200,

CPLEX is not able to find a feasible solution, whereas SHCG continues to improve. Table 3.2 and

3.3 also shows that the bounds of SHCG are better than those of CPLEX. There are only a few

instances where CPLEX outperforms SHCG.

All the results in Table 3.2 and 3.3 SHCG use Algorithm 3 for generating configurations.

Although it has convergence guarantees, the convergence rate slows considerably as |Ω| grows. Slow

convergence is a combination of the number subproblems that need to be solved and the resulting

increased computational time of solving the master problem (i.e., (3.6)).

In our experience, we noticed that a large number of configurations and subproblems are

unproductive and do not contribute much to the optimal solution. In Section 3.7.4, we leverage this
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observation and introduce a more incremental approach to generating configurations (Algorithm 4).

3.7.4 Comparisons of Configuration Generation Approaches on the CAP

In Table 3.4 and 3.5, the two proposed approaches for generating configurations (i.e., Al-

gorithm 3 and Algorithm 4) are evaluated. This table’s layout is similar to that of Table 3.2 and

3.3.

Based on these results, it is clear that Algorithm 4 outperforms Algorithm 3 if |Ω| ≥ 50.

This behavior is largely a product of Algorithm 4’s ability to focus on promising scenario subsets and

use those results to tighten bounds and eliminate the need to generate some of the configurations

that are generated by Algorithm 3.

3.8 Conclusions and Future Research

This chapter considers JCC-FSFIR problems where uncertainty is modeled through a finite

support set and risk is managed via a chance constraint that provides flexibility in the feasibility

of the scenarios in the support set. A key property of the JCC-FSFIR problems considered herein

is that they feature discrete decision variables in both the anticipative and recourse stages, which

precludes the application of many established algorithms Luedtke [2014], Ahmed et al. [2016]. To

address these types of JCC-FSFIR problems, we develops a scenario-based heuristic configuration

generation algorithm (SHCG) which supports discrete variables. The convergence of the SHCG

algorithm to the global optimum, given sufficient time, is ensured by leveraging relaxations and

upper bounds of the generated configurations. An experimental evaluation of SHCG demonstrates

how the algorithm outperforms CPLEX 12.7, a state-of-the-art commercial solver, on two problems

from the literature.

The SHCG algorithm represents a significant first step in increasing the size and complexity

of JCC-FSFIR problems that can be solved. However, there are a number of interesting points to

explore in future research. For example, the upper bound procedure could be improved by extending

Lemma 8 to consider on multiple scenarios at a time, or the results of Ahmed et al. [2016] could

be leveraged to improve the runtime performance of the SHCG subproblems. It would also be

worthwhile to consider a wider range of heuristics for generating high-quality configurations, or to

develop specialized, problem-specific configuration generation schemes for the SHCG. Overall, the
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SHCG algorithm provides a flexible solution approach for JCC-FSFIR problems, and a number of

other opportunities remain to leverage problem structure and improve the algorithm’s performance.
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Chapter 4

A Global Optimization Algorithm

for Proving Rectangular AC Power

Flow Infeasibility

4.1 Introduction

Based on our previous research, it is clear that any effective analysis of the climate adapta-

tion problem requires careful consideration of electrical grid physics. When proposing the stochastic

optimization model in Chapter 2, it was mentioned that capacity-based approximation techniques

are commonly used in practice. For research purposes, more conservative approximations such as

capacitated network flow or DC-approximation power flow (DCPF) are tested given their tractability

for large size problems. In Chapter 2, we reviewed these approximations as to how each captures the

electricity demand fulfillment physics for climate adaptation. The numerical experiment in Section

2.4.1.1 suggested the necessity to apply a more realistic power flow model for accurate cost estimation

as well as to generate actionable plans. However, for computational tractability, a DC-approximation

model was used for previous studies.

The use of DC-approximations is justified by its design and network operations (Coffrin

and Van Hentenryck [2014]). The practice of embedding DC-approximations for tractable power

flow problems in more complex problem systems is common, e.g. see works by Stott et al. [2009],
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Gangammanavar et al. [2016], and Papavasiliou et al. [2011]. However, this method draws criti-

cisms for its potential to produce unreliable solutions that violate true power flow physics during

dispatching operations. DC-approximation omits imaginary power flow by assuming relatively small

phase angle differences between connected buses, which changes the focus from a complex voltage

representation to a linear, real voltage component. As suggested by Stott et al. [2009], the accuracy

of DC-approximation varies enormously given different system profiles as well as different system

conditions, especially when the system is under contingency. Hence, to better understand system op-

erating conditions under scenarios such as hurricanes, it is not wise to consider DC-approximation

alone without further AC-based analyses. In the context of this dissertation, developing adapta-

tions using DC-approximations can underestimate costs and overestimate power system feasibility

in delivering electricity under contingencies, which could result in unexpected load shedding and

additional investments in practice.

Ever since it was first proposed by Carpentier [1962], the AC optimal power flow (ACOPF)

problem has been one of the most interesting optimization problems in power systems research. The

goal of ACOPF is to seek the optimal operating point of a transmission system under both power

flow and physical network constraints. Local solution approaches for ACOPF have been extensively

investigated and shown to be useful for large-scale systems (see the survey by Castillo and ONeill

[2013] for more details). More recent research focuses on addressing the global optimal solution (see

Molzahn et al. [2014] and Gopalakrishnan et al. [2012] for examples). Past studies of ACOPF have a

clear focus on global optimality conditions. However, this focus may not be relevant when the system

is under the severe impacts of exogenous uncertainty since the system operator’s primary concern

is to maintain feasible operations rather than efficient operations. In this Chapter, we look into

the focus on AC power flow (ACPF) system feasibility (i.e., the objective function in the ACOPF

problem is omitted). Note that ACPF feasibility is a prerequisite problem to ACOPF (i.e., if there

no solution exists for ACPF then no solutions exist for the ACOPF problem). Realistically, ACPF

serves as the “last-line” problem for system operations. Under specific extreme conditions, where

there exists only one operations solution, ACPF is equivalent to ACOPF. Power systems applications

can reach different conclusions when applying power flow solutions as the solutions profiles of both

ACPF and ACOPF can vary drastically.

Although it is desirable to incorporate ACPF in the CAP, it is not easy to solve the ACPF

problem due to its nonlinear, nonconvex solution space induced by complex power laws. Proving of
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linear DC-approximation feasibility can be easily accomplished with Farkas’s lemma (see CPLEX

manual Manual [1987] for more details). For both ACPF and ACOPF, each problem is often

evaluated using a local solver (e.g. Ipopt by Wallace and Fleten [2003] and KNITRO by Byrd

et al. [2006]) that attempts to find a local stationary point. There also exist heuristics techniques

for general nonlinear, nonconvex programs, such as feasibility pump (Fischetti et al. [2005]) and

particle swarm optimization (AlRashidi and El-Hawary [2009]), which can effectively search feasible

solutions. In practice, we observe local solution approaches can effectively handle standard test

transmission systems, as tested in Coffrin et al. [2014] and Coffrin et al. [2017a], without requiring

any additional assumptions. However, this is not the case when the system is further constrained by

contingency events such as congestion, topology change, or other physical restrictions locally. Given

the potentially conclusive in nature of local approaches, the ACPF can be solved with no feasible

solution retrieved. In fact, for nonconvex problems, Horst and Tuy [2013] suggest that a conclusive

proof of general nonlinear program feasibility requires a globally exhaustive search of solution space.

In cases when a local stationary point is infeasible, it is unclear whether the problem is truly

infeasible or not, and the ACPF problem is not solved. The counterpart of solving the ACPF problem

is to prove the problem is infeasible. To do so, one can apply infeasibility diagnostics tools which

are useful optimization techniques based on domain reduction and conflict analysis that provide a

conclusion on the infeasible subsystem. Such studies are quite mature for mixed-integer programs

and are often addressed for general optimization programs in constraint programming (Puranik and

Sahinidis [2017a] and Guieu and Chinneck [1999]). Existing state-of-the-art infeasibility diagnostics

tools are implemented as pre-solvers in global solver implementations (see Optimization [2014],

Puranik and Sahinidis [2017b], and Tawarmalani and Sahinidis [2005] for more details). Although

these tools have been validated to be effective in use, unfortunately they have no guarantee of proving

infeasibility, especially for challenging ACPF problem instances.

Theoretical work conducted by Lehmann et al. [2016] and Bienstock and Verma [2015] prove

that the ACPF problem is strongly NP-hard. This motivates additional focus on algorithmic devel-

opment for solving the ACPF problem. Global optimization tools (e.g., BARON by Tawarmalani

and Sahinidis [2005], COUENNE by Belotti et al. [2009]) provide a viable choice for proving infea-

sibility using spatial branch and bound (SB&B) until all branches are proven to be infeasible. A

common criticism of SB&B is its relaxation applied at each branch can be weak, resulting in compu-

tational inefficiency during searches of the SB&B tree with extensive breadth and width. Work by
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Gopalakrishnan et al. [2012] tried to address such issues by applying tighter semi-definite relaxations

with no assumption of system restrictions or topology changes. A more recent work by Molzahn

[2017] tries to compute the feasible region globally using and SB&B-based algorithm through fully

discretized domains. In their paper, it was observed that it can take > 10 days to fully exploit the

feasible region for a 9-bus system. In cases when system feasibility is non-trivial to assess for local

solvers, proving system infeasibility can require an exhaustive exploration of the variable domain.

In recent years, convex relaxation (CR) of the ACPF problem has attracted more attention

to provide optimal information in large-scale systems. The relaxation formulations varies over a

wide range of optimization techniques, such as second-order cone relaxation (Jabr [2006]), quadratic

convex relaxation (Coffrin et al. [2016]), semi-definite programming (Bai et al. [2008]), and moment-

based relaxation (Molzahn and Hiskens [2014] and Molzahn [2017]). As indicated in Coffrin et al.

[2016], Low [2014a], and Low [2014b], the strength of CRs can vary under different system profiles or

operating conditions when it is used to prove ACOPF optimality conditions. In the meanwhile, the

computational burden of solving these CRs is significantly less than that required by global methods

given the recent progress of convex optimization solution tools (e.g. Gurobi by Optimization [2014],

CPLEX by Manual [1987], KNITRO by Byrd et al. [2006], and Ipopt by Wächter and Biegler [2006]).

As the strength of CRs on ACOPF has been validated, little research focus has been given to the

use of CRs for ACPF problems.

A recent global optimization study by Nagarajan et al. [2016] proposes the adaptive mul-

tivariate partitioning (AMP) algorithm that focuses on constructing converging relaxation models

using adaptive partitioning schemes. Unlike traditional SB&B algorithms, this algorithm is based

on the idea of limited discrepancy search (LDS) by Harvey and Ginsberg [1995]. It first creates mul-

tiple SB&B leaves without revealing the entire tree using a heuristic partitioning scheme on variable

domains. Then, it constructs a piece-wise McCormick-based relaxation (PMR) over the partitioned

domains and selects the least relaxation as the best lower bound through state-of-the-art mixed-

integer linear program solvers. The proposed algorithm also considers sequential optimality-based

bound-tightening (OBBT) scheme as a pre-solver to improve global optimization computational

performance. The OBBT applied can obtain the tightest bound possible when given a specific relax-

ation. This method is also considered by Narimani et al. [2018]. The global algorithm ensures global

convergence as the heuristic applied can eventually achieve full domain discretization. Although the

method can be very complex in the worst case, the numerical performance observed is more efficient
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when compared to some state-of-the-art global solvers, namely BARON and COUENNE.

The AMP method is designed to address the optimality of general, mixed-integer nonlinear

programs. The idea of combining LDS, PMR, OBBT, and adaptive partitioning motivates new

research questions under the context of infeasibility proof. In contrast to the optimality problem,

any infeasibility proof requires the separation between the system constrained space and relaxed

region of model nonconvexity. These facts lead us to three research questions of interests. First,

as previous studies clearly indicate that the effort required for obtaining global optimality can be

lessened by incorporating some generally designated heuristic methods, is there a better algorithmic

design for the purpose of effectively conducting an infeasibility proof? Second, if there exists such

an algorithm, can infeasibility proof convergence be guaranteed or will the algorithm eventually find

a non-trivial feasible solution to prove the problem infeasible? Finally, what insights from analyzing

the ACPF problem can gleamed for general nonlinear, nonconvex programs infeasibility proofs?

In the light of these questions, we propose an iterative infeasibility proof algorithm based

on a tight piece-wise relaxation for the ACPF problem. Our proposed algorithm flexibly adapts

the algorithmic structure developed in AMP and creatively strengthens its approach based on ob-

servations of a numerical pattern in piece-wise ACPF relaxations. Furthermore, we theoretically

demonstrate that our algorithm is applicable for proving general nonconvex nonlinear programs

globally (i.e., it is guaranteed to find a feasible solution or to prove a problem infeasible). In the

algorithm presentation, we show observed patterns of the numerical information about ACPF that

help shaped the algorithm. We demonstrate the efficiency of our approach by comparing it to both

state-of-the-art solvers and AMP. Lastly, we use experimental algorithm results to provide insights

for both general nonlinear, nonconvex program infeasibility proofs and ACOPF problems.

The rest of this chapter is organized as follows. In Section 4.2, we review the rectangu-

lar ACPF formulation and define the problem formulation of interest. Then, in Section 4.3, we

conduct some observatory experiments with congested transmission systems to demonstrate the

non-triviality of detecting nonconvex ACPF infeasibility. To address these challenges, we first pro-

pose a partition-based, piece-wise convex relaxation for the nonconvex ACPF problem in Section

4.4. After considering the proposed relaxation and other inherent properties of the ACPF problem,

we construct a global algorithm in Section 4.5 for proving the infeasibility of the ACPF problem. In

Section 4.6, we compare our proposed algorithm with SB&B-based global solvers and the AMP algo-

rithm through numerical experiments. The result of these experiments demonstrates our method’s
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computationally superiority. Finally, we conclude this study and provide insights for future research

in Section 4.7.

4.2 Review of the Rectangular ACPF Formulation

In this section, we review the rectangular ACPF formulation based on the work of Car-

pentier [1962]. We first list the notation required for the formulation. General ACPF principles

are introduced with complex numbers, and then we present the rectangular ACPF, which is a real

number formulation. For readability, parameters are always shown in boldface font to differentiate

them other notation.

4.2.1 Notation

Sets

N Set of buses

L Set of directed transmission lines

Gi Set of generators located at bus i ∈ N

Variables

vpi , v
q
i real and imaginary voltage at bus i ∈ N

gpk, g
q
k real and imaginary power generated by generator k ∈ Gi at bus i ∈ N

fpij , f
q
ij active and reactive power flow on line (i, j) ∈ N

Parameters

Sd
i complex power demand at bus i ∈ N

Yij complex admittance on line (i, j) ∈ L

dpi ,d
q
i real and imaginary power angle on line (i, j) ∈ L

gεij , b
ε
ij conductance and susceptance on line (i, j) ∈ L

gsi , b
s
i shunt conductance and susceptance at bus i ∈ N

bCij charging susceptance on line (i, j) ∈ L

φ
ij
,φij lower and upper bounds of angle differences on line (i, j) ∈ L

gp
k
, gpk lower and upper bounds of real power generated by generator k at bus i ∈ N

gq
k
, gqk lower and upper bounds of imaginary power generated by generator k at bus i ∈ N

vi,vi lower and upper bounds of voltage magnitude at bus i ∈ N
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lij thermal limits on line (i, j) ∈ L

4.2.2 Power Flow Laws

In its most general form, ACPF is defined within a transmission network, under the con-

straints of Kirchhoff’s Current Law, Ohm’s Law, and necessary physical and security requirements.

A transmission network can be seen as a graph G = (N ,L) comprised of buses, lines, generators,

and demands. We first define the nodes N as a set of buses and the arcs L as be a set of di-

rected transmission lines. A bus serves as the electricity bridge that connects flowing power with

local generations and demands. At each bus i ∈ N , there exists a set of generators Gi, where each

generator k ∈ Gi injects complex power Sk into the network. On the demand side, we use Sd
i to

denote the complex power demand at bus i ∈ N . To transmit power flow, each bus i ∈ N carries a

variable complex voltage Vi that serves as the force to push power flowing. Transmission lines serve

to transmit power flow from one bus to another under the guidance of complex admittance Yij . For

each directed line (i, j) ∈ L, we denote the variable complex power flow Fij . The general power flow

law is formulated in (4.1) 1:

Fij = Y ∗ijViV
∗
i + Y ∗ijViV

∗
j ∀(i, j) ∈ L (4.1a)

Sgi − S
d
i =

∑
j:(j,i)∈L

Fij −
∑

j:(i,j)∈L

Fij ∀i ∈ N (4.1b)

4.2.3 Rectangular ACPF Formulation

Formulation (4.1) contains a series of complex numbers: complex voltage V , power genera-

tion Sg, power flow F , and demand Sd. The real number interpretation of a complex number c can

be of two forms: rectangular form c = a+iθ or polar form c = |c|∠θ. Comparison studies of different

real-number formulations can be found in Cain et al. [2012] and Park et al. [2017], where each paper

has a different perspective in addressing the advantages and disadvantages of different formulation

methods. It remains unclear as to which formulation is better for ACPF problems given system,

network profile, etc. Now, we consider a naive rectangular ACPF (4.2). We note an important future

1Superscript ∗ used in (4.1) to represent the conjugate of complex numbers.
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direction of this study is to compare different formulations and understand how each formulation

impacts ACPF problem tractability.

The rectangular representation separates complex numbers into two components: real (ac-

tive) components and imaginary (or reactive) components. For each bus i ∈ N , voltage variables

Vi = vi+iθi, where vi is the voltage magnitude and θi is voltage angle, are modeled with real voltage

components vpi ∈ R and imaginary voltage components vqi ∈ R through θi = arctan−1(
vqi
vpi

). Simi-

larly, deterministic demand Sd
i is separated into real power demand dpi ∈ R+ and imaginary power

demand dqi ∈ R+. For each generator k ∈ Gi at bus i ∈ N , the power generated Sgk incorporates

both a real component gpk ∈ R+ and an imaginary component gqk ∈ R+. For each line (i, j) ∈ L, real

power flow fpij ∈ R and imaginary power flow fqij ∈ R are the two components that represent Fij .

Note that power at both line ends can be different due to the physical resistance of transmission

lines. This creates asymmetric power transmission, i.e., for any line (i, j) ∈ L, the values of fpij , f
q
ij

are not necessarily the same as the values of −fpji,−f
q
ji, respectively. As the rectangular ACPF

formulation is a notation-heavy formulation with complicated parameters calculations, we refer the

reader to Section 4.2.1 for reference notation. The rectangular ACPF formulation of interest is

presented in (4.2):

∀(i, j) ∈ L

fpij =
1

τ2
ij

gεij((vpi )2 + (vqi )
2)− 1

τij
(gεij cos(φij)− bεij sin(φij))(vpi v

p
j + vqi v

q
j )

− 1

τij
(bεij cos(φij) + gεij sin(φij))(vpj v

q
i − v

p
i v
q
j )

(4.2a)

fpji =gεij((vpj )2 + (vqj )
2)− 1

τij
(gεij cos(φij) + bεij sin(φij))(vpj v

p
i + vqj v

q
i )

− 1

τij
(bεij cos(φij)− gεij sin(φij))(vpi v

q
j − v

p
j v
q
i )

(4.2b)

fqij = − 1

τ2
ij

(bεij +
bCij
2

)((vpi )2 + (vqi )
2)− 1

τij
(gεij cos(φij)− bεij sin(φij))(vpj v

q
i − v

q
i v
p
j )

− 1

τij
(bεij cos(φij) + gεij sin(φij))(vpi v

p
j − v

q
i v
q
j )

(4.2c)

fqji = −(bεij +
bCij
2

)((vpi )2 + (vqi )
2)− 1

τij
(gεij cos(φij) + bεij sin(φij))(vpi v

q
j − v

p
j v
q
i )

− 1

τij
(bεij cos(φij)− gεij sin(φij))(vpj v

p
i + vqj v

q
i )

(4.2d)

vqi v
p
j − v

p
i v
q
j ≥ tan(φ

ij
)(vpi v

p
j + vqi v

p
j ) (4.2e)
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vqi v
p
j − v

p
i v
q
j ≤ tan(φij)(vpi v

p
j + vqi v

p
j ) (4.2f)

(fpij)
2 + (fqij)

2 ≤ l2ij (4.2g)

∀i ∈ N∑
k∈Gi

gpk −
∑

j:(i,j)∈L

fpij +
∑

j:(j,i)∈L

fpji − d
p
i = gsi ((vpi )2 + (vqi )

2) (4.2h)

∑
k∈Gi

gqk −
∑

j:(i,j)∈L

fqij +
∑

j:(j,i)∈L

fqji − d
p
i = −bsi ((vpi )2 + (vqi )

2) (4.2i)

(vpi )2 + (vqi )
2 ≥ v2i (4.2j)

(vpi )2 + (vqi )
2 ≤ v2i (4.2k)

vi ≤ v
p
i ≤ vi (4.2l)

vi ≤ v
q
i ≤ vi (4.2m)

gp
k
≤ gpk ≤ g

p
k ∀k ∈ Gi (4.2n)

gq
k
≤ gqk ≤ g

q
k ∀k ∈ Gi (4.2o)

Constraints (4.2a)-(4.2d) are real-number representations for (4.1a), where real power flow

fpij , f
p
ji and imaginary power flow fqij , f

q
ji are calculated based on voltage variables vpi , v

p
j , v

q
i , v

q
j , and

line admittance parameters. The angle difference limitation between connected buses is enforced

with constraints (4.2e) and (4.2f). Note that, in practice, angle limitations are often set to be less

than 10 degrees (Purchala et al. [2005]), which is a relatively small magnitude. Thermal limits of

transmission lines are critical physical restrictions for security concerns, which is measured using

the current on line (i, j). Constraints (4.2g) regulate the thermal limits on line (i, j) by measuring

|Fij | =
√

(fpij)
2 + (fqij)

2. At each bus, the network requires flow balance to be maintained (4.1b).

This is enforced for both real and imaginary power components in constraints (4.2h) and (4.2i),

respectively. Bus voltage limitations are enforced in constraints (4.2j) and (4.2k) by measuring the

magnitude of the complex voltage through |Vi| =
√

(vpi )2 + (vqi )
2. In constraints (4.2l) and (4.2m),

tighter bounds are enforced on voltage components given practical operating conditions. Finally,

generator capacities are regulated in constraints (4.2n) and (4.2o).
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4.3 Preliminary Experiment with ACPF

The formulation presented in (4.2) is a challenging optimization problem due to its nonlinear,

nonconvex continuous variable products. As elaborated in Section 4.1, recent research on ACPF or

ACOPF applies CRs. Optimization models relaxations serve many purposes, such as proving dual

bounds, guiding SB&B tree search, and generating cutting-planes, to name a few. In this study, we

focus on an infeasibility proof. CRs are becoming more popular in ACOPF studies as they provide

tight formulations and reliable solutions for a variety of applications with computational efficiency.

Theoretical studies and practiced applications provide comprehensive overview on the strengths and

weaknesses of existing CRs relaxation approaches (Coffrin et al. [2016], Low [2014a], Low [2014b]).

It is important to note that most CRs are static optimization problems. As we focus on

systems under exogenous influences, transmission network components can be disabled to create

congestion and/or imbalance. When the system is influenced in this way, a narrower operating con-

ditions can hinder the local optimization solver from finding a feasible solution, while a relaxation

may still be feasible. In these circumstances, assuming a system is feasible while it is actually not can

potentially bias decision processes by overestimating the network resilience and compromising secu-

rity. On the other hand, assuming a system is infeasible while it is feasible introduce overestimation

on capability in fulfilling power demand and result in unnecessary costs.

We conduct an experiment to show the existence of situations when a rectangular ACPF

problem cannot be solved by either a local solver, or some CRs, namely McCormick-based relaxation,

QC relaxation, and SOC relaxation. Sixteen test systems from NESTA cases (Coffrin et al. [2014])

are selected for this experiment. Each instance is gradually congested by decreasing the thermal

limits lij for every line (i, j) ∈ L.

The results are summarized in Figure 4.1. From left to right, the thermal limits capacity

gradually increases as congestion decreases. In the green area, local solver Ipopt is able to obtain a

feasible solution, while the grey region denotes areas of proven infeasibility by the tested relaxation

approaches. The red region shows the congestion range for which the system’s feasibility in undeter-

mined. While for some instances there can be a relatively small red region, the necessity to address

the remaining red regions is clear.
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Figure 4.1: Initial experiment with congested transmission networks

4.4 Piece-wise Convex Relaxation for ACPF Formulation

In this section, we construct a piece-wise convex relaxation for the nonlinear, nonconvex

ACPF (PCR-ACPF). This piece-wise convex relaxation (PCR) is constructed based on spatial dis-

cretization of variable domains, which means the tightness of the PCR-ACPF is a function of domain

discretization. Our method is motivated by the work of Sundar et al. [2018], which provide theoret-

ical analyses on tight PCR for general multilinear products. A brief review of theoretical develop-

ments on different PCR formulations is presented here, and then we propose some additional valid

inequalities for the PCR-ACPF and show they are not necessarily redundant to its linear relaxation.

4.4.1 General Representation of ACPF and PCR-ACPF

For ease of readability, we abstract the ACPF and PCR-ACPF with general formulations.

We first define a general ACPF in (4.3) using F . Let x define all general decision variables. The

notation xl and xu are variable lower and upper bound vectors, respectively.

F : {min 0 | g(x) 6 0,xl 6 x 6 xu} (4.3)
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In (4.3), g(x) is a system of ACPF constraints (4.2).

To systematically construct our PCR-ACPF, we first apply a reformulation scheme proposed

by Smith and Pantelides [1999] that symbolically lifts nonconvex terms in g(x) with relaxed variables.

Let x̂ ∈ R denote all lifted variables which are bounded by lower vector x̂l and upper bound vectors

x̂u. To constructed PCR, an additional continuous variable λ and binary variables z are required

which will be later discussed in this section. The general form of PCR-ACPF R is defined in (4.4):

R : {min 0 | g′(x, x̂) 6 0, h(x, x̂, λ, z) 6 0,xl 6 x 6 xu, x̂l 6 x̂ 6 x̂u} (4.4)

In (4.4), g′(x, x̂) is a system of reformulated linear constraints based on g(x) with all nonconvex

terms lifted as x̂, and h(x, x̂, λ, z) is a system of linear constraints required for PCR.

4.4.2 PCR for General Bilinear Terms

We use subscripts of x to denote a specific variable, i.e., xk ∈ x. Let xl
k and xu

k denote the

lower and upper bound of variable xk, respectively. A bilinear term xmxn → R, which is considered

as a subset nonconvex terms, is generally defined as

xmxn, where xm, xn ∈ x,xl
m ≤ xm ≤ xu

m,x
l
n ≤ xn ≤ xu

n (4.5)

To construct a PCR for a bilinear term, the domains of variables xm, xn ∈ x are spatially discretized

into Pm and Pn partitions, which are represented through sorted sets of partition points Bm =

{bmi | i = 0 · · ·Pm} and Bn = {bni | i = 0 · · ·Pn}, respectively. For ease in denoting the discretized

domains, we define two index sets. First, let index set Qm := {i | i = 0 · · ·Pm} associate each

partition point in Bm, i.e., i → bmi ∈ Bm ∀i ∈ Qm. Second, let index set Pm := {i|i = 1 · · ·Pm}

be associated each partition, i.e., i→ pmi = [bmi−1, b
m
i ] ∀i ∈ Pm. It is obvious that Qm = Pm ∪ {0}.

The purpose of discretization is to regulate a variable’s value to a tighter sub-region as a “piece” of

the PCR. Any partition pmi , where i ∈ Pm, is considered to be active if xm ∈ pmi . Clearly, there

can exist one and only one active partition, i.e., xm ∈ ∃!pmi , where i ∈ Pm. Let binary variables

zmi ∈ {0, 1}, where i ∈ Pm denotes whether the i-th partition of variable xm is active or not. This

notation can be applied for any variable xn ∈ x, yielding the corresponding Qn, Pn, zn.

The discretized domains of the variables in bilinear terms forms a two-dimensional lattice
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Figure 4.2: Example discretized domain and the resulting lattice for bilinear term xmxn, where
there are three partitions for variable xm and four partitions for variable n.

with crossing partitions. Each crossing is defined with two partitions, one from each variable. A

crossing is also defined by four corner lattice points, where each point is associated with a locally

extreme value of the bilinear product based on the associated partition points. We encode each

lattice point through (i, j), where i ∈ Qm and j ∈ Qn. For each lattice point (i, j), let emn
ij = bmi b

n
j

denote the corresponding extreme values. Let continuous variable λmnij ∈ [0, 1], where λmn ∈ λ,

i ∈ Qm and j ∈ Qn, be the scalar variables associated with each lattice point (i, j) for term xmxn.

Figure 4.2 provides an example of this notation system for PCR.

With all variables and parameters defined, we formulate h(x, x̂, λ, z) in (4.4) for bilinear

term xmxn:

x̂mxn =
∑
i∈Qm

∑
j∈Qn

emn
ij λmnij (4.6a)

∑
i∈Qm

∑
j∈Qn

λmnij = 1 (4.6b)

∑
i∈Pm

zmi = 1 (4.6c)
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∑
j∈Pn

znj = 1 (4.6d)

∑
j∈Qn

λmn0,j ≤ zmi (4.6e)

∑
j∈Qn

λmnij ≤ zmi−1 + zmi ∀i ∈ Qm \ {0,Pm} (4.6f)

∑
j∈Qn

λmnPm,j ≤ zmPm (4.6g)

∑
i∈Qm

λmni,0 ≤ znj (4.6h)

∑
i∈Qm

λmnij ≤ znj−1 + znj ∀i ∈ Qn \ {0,Pn} (4.6i)

∑
i∈Qm

λmni,Pn ≤ znPn (4.6j)

xm =
∑
i∈Qm

bmi
∑
j∈Qn

λmnij (4.6k)

xn =
∑
j∈Qn

bnj
∑
i∈Qm

λmnij (4.6l)

λmnij ≥ 0 ∀i ∈ Qm, j ∈ Qn (4.6m)

zmi , z
n
j ∈ {0, 1} ∀i ∈ Pm, j ∈ Pn (4.6n)

First, a convex combination is constructed with all extreme points emn from the lattice and

their associated scalar variables λmn to regulate lifted variable x̂mxn through constraints (4.6a) and

(4.6b). Constraints (4.6c) and (4.6d) controls the logic that value of variable xm or xn must fall

into a partition. The purpose of PCR is to regulate a tighter region of lifted variable x̂mxn when

xm, xn fall in some active partitions. That means the convex combination must be constructed

using only four extreme points associated with partition crossing. Constraints (4.6e)-(4.6j) are used

for this purpose, where binary variables zm and zn are used to control the value of λmn under the

form of special-order-set type-2 constraints. Furthermore, the value of xm and xn are regulated

through a convex combination in constraints (4.6k) and (4.6l). Hence, variables zm, zn, and λmn

link how lifted variable x̂mxn reacts to the value of xm and xn. Finally, variable bounds and integral

requirements are enforced in constraints (4.6m) and (4.6n).
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4.4.2.1 Special Case for Quadratic Terms

Consider a special form of the defined bilinear term where m = n which are referred to

as quadratic terms. For quadratic terms, variable domain partitioning is necessary for a single

dimension. Although formulation (4.6) can be applied directly a more compact formulation for

quadratic term xmxm is given in (4.7). Here, variable λmm is reduced to a single dimension. This

formulation is based on (4.6) with additional convex, quadratic constraints (4.7b), and is readily

solvable using state-of-the-art convex solvers:

x̂2
m =

∑
i∈Qm

bmi λ
mm
i (4.7a)

x̂2
m >= x2

m (4.7b)∑
i∈Qm

λmmi = 1 (4.7c)

λmm0 ≤ zmi (4.7d)

λmmi ≤ zmi−1 + zmi ∀i ∈ Qm \ {0,Pm} (4.7e)

λmmPm ≤ zmPm (4.7f)∑
i∈Pm

zmi = 1 (4.7g)

xm =
∑
i∈Qm

bmi λi (4.7h)

λmmi ≥ 0 ∀i ∈ Qm (4.7i)

zmi ∈ {0, 1} ∀i ∈ Pm (4.7j)

4.4.3 Comparing PCR and PMR

PCR for bilinear terms (4.6) is a special case of the method proposed by Sundar et al.

[2018]. Theoretical analysis suggests that (4.6) is not locally ideal for h(x, x̂, λ, z), where ideal is

defined as all extreme points of the mixed integer relaxation describe the convex hull of the mixed-

integer formulation. An alternative to PCR, which we refer to as PCR-C (4.8), is locally ideal. The

piece-wise McCormick-based relaxation (PMR) is also locally ideal. Note that this local property

is designated for the subsystem h(x, x̂, λ, z). It is not proven for PCR, PCR-C, or PMR whether
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known local properties still holds or not when system g(x, x̂) is incorporated.

(4.6a), (4.6b), (4.6c), (4.6d), (4.6k), (4.6l), (4.6m), (4.6n)

k∑
i=0

zmi ≥
k∑
i=0

∑
j∈Qn

λij ∀k ∈ Qm \ {|Qm|} (4.8a)

k∑
i=0

zmi ≤
k+1∑
i=0

∑
j∈Qn

λij ∀k ∈ Qm \ {|Qm|} (4.8b)

k∑
i=0

zni ≥
k∑
j=0

∑
i∈Qm

λij ∀k ∈ Qn \ {|Qn|} (4.8c)

k∑
i=0

zni ≤
k+1∑
j=0

∑
i∈Qm

λij ∀k ∈ Qn \ {|Qn|} (4.8d)

To differentiate PCR, PCR-C, and PMR, we summarize some basic properties in Table

4.2. We list the dimensionality of system h(x, x̂, λ, z) in terms of “# of additional variables“ and

“# of additional constraints“ required for constructing the relaxation. Furthermore, we show local

property of each formulation in the row labeled “Local property.” Note that a tighter formulation

does not necessarily imply better numerical performance given the potential under-exploitation of

its structural properties.

PCR PCR-C PMR
# of additional variables 1 +M +N +MN 1 +M +N +MN 1 + 2M + 2N +MN

# of additional constraints 8 +M +N 6 +M +N 6 + 4M + 4N + 3MN
Local property Locally sharp Convex hull Convex hull

Performance rank 1 2 3

Table 4.2: Comparison of PCR, PCR-C, and PMR on bilinear term xmxn, where xm’s domain has
M partitions and xn’s domain has N partitions

We evaluate each relaxation method using test instances from Nagarajan et al. [2017] and

rank general performance in row “Performance rank” where 1 =best (numerical tests results are

provided in the APPENDIX A). Given these results we choose PCR for relaxing the ACPF problem

in this study given its formulation compactness and superior performance.

4.4.4 Bounding Cuts

As shown in Section 4.4.3, PCR is not locally idea, which means the linear relaxation is

not the convex hull of all integer solutions to h(x, x̂, λ, z). We propose additional bounding cuts in
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(4.9) to strengthen the PCR. These cuts use the binary variable z to alternatively enforce the active

partition onto x. Cuts (4.9) can be generated for any general variable xm or xn in bilinear term

xmxn. However, these cuts will not be added if the associated count of partitions is less or equal

than two 2.

∑
i∈Qm\{Pm}

bmi−1z
m
i ≤ xk ≤

∑
i∈Qm\{0}

bmi z
m
i (4.9)

As shown in (4.6), the value of x is directly controlled through the variable λ, which is then con-

strained by z. The bounding cuts are meant to directly address this indirect relationship. Next, we

discuss how bounding cuts (4.9) are valid to (4.6), but are not necessarily redundant to the linear

relaxation of (4.6).

First, inequalities (4.9) do not eliminate any feasible integer solution. As there exists one

and only one partition active for xm, there exist Pm possible solution for zm. Note that zm has

no impact on zn through (4.6) since the lifted variable x̂mxn is unbounded. Thus, we only focus

on the possible solution on zm. For each partition i ∈ Pm, inequalities (4.9) can be rewritten as

bmi−1z
m
i ≤ xk ≤ bmi zmi , which is redundant to the subsystem comprised of constraints (4.6e), (4.6f),

(4.6g), (4.6b), and (4.6k) with zmi = 1. Hence, (4.9) are valid inequalities. Next, we show that

(4.9) is not necessarily redundant to the linear relaxation of (4.6) via counter examples Let xm

have three partitions: [1, 10], [10, 100], [100, 1000] (i.e., Bm =: {1, 10, 100, 1000}), and let xn have

only one partition [1, 2] (i.e., Bn : {1, 2}). The linear relaxation solution to (4.6) λmn00 + λmn01 = 0,

λmn10 + λmn11 = 2
8 , λmn20 + λmn31 = 3

8 , λmn40 + λmn41 = 3
8 , zm1 = 5

8 , zm2 = 0, zm3 = 3
8 , xm = 415, xn = 1.5 is

feasible for (4.6) but violates (4.9) on the right side, which requires zm1 ≤ 10zm1 + 100zm2 + 1000zm3 .

Also, consider the solution to λmn00 + λmn01 = 3
8 , λmn10 + λmn11 = 3

8 , λmn20 + λmn31 = 2
8 , λmn40 + λmn41 = 0,

zm1 = 3
8 , zm2 = 0, zm3 = 5

8 , xm = 650.375, xn = 1.5 is feasible for (4.6) but violates constraints (4.9)

on the left side.

4.4.5 PCR-ACPF

With PCR for bilinear terms discussed in Section 4.4.2, we denote the relaxation procedures

on a bilinear term xmxn as 〈xmxn〉R. This procedure incorporates two steps: 1) lifting bilinear term

xmxn with a relaxed variable x̂mxn, and 2) adding additional variables and constraints as in (4.6)

2When partition count is less or equal than two, cuts (4.9) are trivially redundant.
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or (4.7) to h(x, x̂, λ, z). PCR-ACPF R is then formulated in (4.10). We note that in practice it is

viable to recursively parse ACPF constraints g(x) for any bilinear terms and construct PCR term

by term instead of directly using (4.10). It follows that PCR-ACPF R is a mixed-integer quadratic

convex program (MIQCP).

∀(i, j) ∈ L

fpij =
1

τ2
ij

gεij(〈(vpi )2〉R + 〈(vqi )
2〉R)

− 1

τij
(gεij cos(φij)− bεij sin(φij))(〈vpi v

p
j 〉
R + 〈vqi v

q
j 〉
R)

− 1

τij
(bεij cos(φij) + gεij sin(φij))(〈vpj v

q
i 〉
R − 〈vpi v

q
j 〉
R)

(4.10a)

fpji =gεij(〈(vpj )2〉R + 〈(vqj )
2〉R)

− 1

τij
(gεij cos(φij) + bεij sin(φij))(〈vpj v

p
i 〉
R + 〈vqj v

q
i 〉
R)

− 1

τij
(bεij cos(φij)− gεij sin(φij))(〈vpi v

q
j 〉
R − 〈vpj v

q
i 〉
R)

(4.10b)

fqij =− 1

τ2
ij

(bεij +
bCij
2

)(〈(vpi )2〉R + 〈(vqi )
2〉R)

− 1

τij
(gεij cos(φij)− bεij sin(φij))(〈vpj v

q
i 〉
R − 〈vqi v

p
j 〉
R)

− 1

τij
(bεij cos(φij) + gεij sin(φij))(〈vpi v

p
j 〉
R − 〈vqi v

q
j 〉
R)

(4.10c)

fqji =− (bεij +
bCij
2

)(〈(vpi )2〉R + 〈(vqi )
2〉R)

− 1

τij
(gεij cos(φij) + bεij sin(φij))(〈vpi v

q
j 〉
R − 〈vpj v

q
i 〉
R)

− 1

τij
(bεij cos(φij)− gεij sin(φij))(〈vpj v

p
i 〉
R + 〈vqj v

q
i 〉
R)

(4.10d)

〈vqi v
p
j 〉
R − 〈vpi v

q
j 〉
R ≥ tan(φ

ij
)(〈vpi v

p
j 〉
R + 〈vqi v

p
j 〉
R) (4.10e)

〈vqi v
p
j 〉
R − 〈vpi v

q
j 〉
R ≤ tan(φij)(〈vpi v

p
j 〉
R + 〈vqi v

p
j 〉
R) (4.10f)

(4.2g)

∀i ∈ N∑
k∈Gi

gpk −
∑

j:(i,j)∈L

fpij +
∑

j:(j,i)∈L

fpji − d
p
i = gsi (〈(vpi )2〉R + 〈(vqi )

2〉R) (4.10g)

∑
k∈Gi

gqk −
∑

j:(i,j)∈E

fqij +
∑

j:(j,i)∈E

fqji − d
p
i = −bsi (〈(vpi )2〉R + 〈(vqi )

2〉R) (4.10h)
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〈(vpi )2〉R + 〈(vqi )
2〉R ≥ v2i (4.10i)

(4.2k), (4.2l), (4.2m), (4.2n), (4.2o)

Furthermore, some additional cutting planes are added based on the work by Coffrin et al.

[2017b] to regulate the nonconvex constraints (4.2j). To construct the cutting planes, we define the

following parameters:

vbi = vli + vui ∀i ∈ N

ωp
i = max((vpi )2, (vpi )2)

ωp
i = min((vpi )2, (vpi )2)

ηij =
θij + θij

2
∀(i, j) ∈ L

ψij =
θij + θij

2
∀(i, j) ∈ L

Next, we append constraints (4.12a) and (4.12b) to PCR-ACPF (4.10) for a tighter relaxation:

vbiv
b
j (cos(ηij)v̂pi v

p
j + sin(ηij)v̂qi v

q
j )− (ωp

j )
1
2 cos(ψij)vbj (̂vpi )2

− (ωp
i )

1
2 cos(ψij)vbi (̂vpj )2 ≥ (ωp

i )
1
2 (ωp

j )
1
2 cos(ψij)((ωp

i )
1
2 (ωp

j )
1
2 − (ωp

i )
1
2 (ωp

j )
1
2 )

(4.12a)

vbiv
b
j (cos(ηij)v̂pi v

p
j + sin(ηij)v̂qi v

q
j )− (ωp

j )
1
2 cos(ψij)vbj (̂vpi )2

− (ωp
i )

1
2 cos(ψij)vbi (̂vpj )2 ≥ (ωp

i )
1
2 (ωp

j )
1
2 cos(ψij)((ωp

i )
1
2 (ωp

j )
1
2 − (ωp

i )
1
2 (ωp

j )
1
2 )

(4.12b)

4.5 ACPF Infeasibility Proof Algorithm

In this section, we propose an ACPF infeasibility proof algorithm algorithm (ACPF-IP) for

ACPF problem. ACPF-IP iteratively tightens PCR-ACPF with the assistance of OBBT, automatic

adaptive partitioning, and network-based heuristics. Moreover, ACPF-IP also incorporates common

optimization techniques, including symbolic reformulation, bound propagation, and conflict analysis.

The notation system is expanded for the ease of algorithm introduction. The ACPF-IP algorithm

is presented through a function-based structure in Algorithm 8. Each function is discussed in a

separate subsection with detailed pseudocode blocks. Finally, we discuss the convergence of ACPF-

IP and demonstrate to argue that it either finds a feasible solution or proves the ACPF problem
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infeasible.

4.5.1 Notation and Usage

Let s denote a general solution to a PCR-ACPF problem instance. The functional usage

of s is denoted as s(xi), which returns the solution of variable xi ∈ x. For example, s(vpi ) returns

the solution of the real voltage variable at bus i ∈ N , which is a real number. This usage is also

applied when the input argument is a variable vector (e.g., s(x) returns the solution vector of all

variables x). The tightness of PCR-ACPF is dependent on the discretized variable domains, i.e.,

partitions information stored in Bi for some variables xi ∈ x. Let B denote a partition information

collection (PIC), which is a dictionary-like data structure indexed by variable reference xi ∈ x. We

assume each entry in PIC B maintains a sorted array data structure ( i.e., partition information Bi

of variable xi is sorted when stored in B). Let B ← B(xi) denote the use of B to fetch variable xi’s

partition information B. Further, let B(xi)← B denote the assignment of partition information B

to the PIC B on variable xi.

Recall that R is used to denote the general PCR-ACPF from Section 4.4.1. We define the

usage Rl ← R(B) as a formulation constructor, where PCR-ACPF Rl is constructed based on the

PIC B. By default, the constructed Rl is a feasibility problem since no objective function exists.

Next, we define an additional usage of R with an optional argument. Let Rl ← R(B, min xi)

denote the construction of PCR-ACPF Rl with the objective function of minimize xi. For example,

Rl ← R(B, min
∑
i∈N

∑
k∈Gi c

p
kg
p
k) constructs a PCR-ACPF with PIC B while minimizing the total

cost of real power generation, where cpk is defined to be the real power generation cost of generator

k ∈ Gi at bus i ∈ N .

In addition, we define function 〈L, s〉 ← Solve(R(·)) to solve a PCR-ACPF using a MIQCP

solver. This function allows one input argument, which is the returned problem of a PCR-ACPF

constructor R(·). The output of this function is the best objective bound L and the best solution

s reported from the MIQCP solver. In the case of an infeasible problem, the return values are

〈−∞, ∅〉. Function U ← LocalSearch(F , x = s(x)) defines a local solve of ACPF problem F

using a nonlinear program (NLP) solver with s(x) as the starting solution point. Given our focus

on ACPF feasibility, the solution to LocalSearch is not of interest. The best objective value U is

sufficient to solve ACPF when L <∞. In cases when the NLP solver finds an infeasible stationary

point, we assume the returned value is ∞. Note that the dimension of the solution s can be larger
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than x, as s comes from a PCR-ACPF solution which contains additional variables (e.g., x̂.λ, z).

4.5.2 ACPF-IP Algorithm Overview

Algorithm 8 ACPF-IP Algorithm

1: function ACPF-IP
2: 〈B, T , s, U, L〉 ← PreProcess(F)
3: while U =∞ and L > −∞ do
4: V ← UpdatePartitioningVars(T , s)
5: B ← BoundTightening(V,B)
6: B ← AddPartitions(B,V, s)
7: Rl ← R(B)
8: 〈L, s〉 ← Solve(Rl)
9: U ← LocalSearch(F , x = s(x))

10: end while
11: return 〈L,U〉
12: end function

The proposed ACPF-IP is presented in Algorithm 8. ACPF-IP iteratively solves tighter

PCR-ACPF problems by further partitioning variable domains until the termination criteria is met.

At Step 2, Algorithm 8 first performs function PreProcess (see Section 4.5.3) to initialize essential

information, propagate variable bounds, and perform a root relaxation without discretizing variable

domains. The main loop begins at Step 3. At each iteration, ACPF-IP first selects a subset of

partitioning variables using function UpdatePartitioningVars at Step 4 (see Section 4.5.5). The

selected variables’ domain will have new partitions added, which specify the direction of subsequent

discretization based on the most recent relaxation solution s. OBBT is performed sequentially at

Step 5 with function BoundTightening (see Section 4.5.4). OBBT produces tighter bounds for

the upcoming PCR-ACPF at Step 8. Based on the relaxation solution s, PIC B is updated with new

partitions added to selective variable domains in function AddPartitions at Step 6 (see Section

4.5.6). A PCR-ACPF Rl is constructed based on the updated PIC B at Step 7. This relaxation

is solved at Step 8 using a MIQCP solver which then updates the relaxation solution s and best

lower bound L. Function LocalSearch is then applied at Step 9 to detect any feasible solution

using the most recent relaxation solution s as the starting point. Finally, the algorithm terminates

at Step 3 if: 1) a feasible solution is detected with U <∞ or 2) an infeasible relaxation is detected

with L = −∞ 3

3In our implementation, ACPF-IP can also be terminated given parameters such as time limits, maximum itera-
tions, etc. For clarity, these practical termination criteria are not listed in Algorithm 8.
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4.5.3 ACPF-IP Pre-processor

The function PreProcess, presented in Algorithm 9, prepares ACPF-IP by parsing ACPF

formulation F for bilinear terms, performing basic bound propagation, and initializing algorithmic

variables.

Algorithm 9 ACPF-IP Pre-Processor

1: function PreProcess(F)
2: U,L←∞,−∞
3: T ← Parse(F)
4: for j = 1 · · ·N do
5: for xk ∈ x If akj 6= 0 do

6: xl
k = max(xl

k,
1

akj
(bj −

∑N
i=1:j 6=k max(aijx

l
i,aijx

u
i )−

∑D
i=1 max(a′ijx̂

l
i,a
′
ijx̂

u
i )))

7: xu
k = min(xu

k ,
1

akj
(bj −

∑N
i=1:j 6=k min(ajix

l
i,ajix

u
i )−

∑D
i=1 min(a′ijx̂

l
i,a
′
ijx̂

u
i )))

8: end for
9: end for

10: B0 ← {xi : {xl
i,x

u
i } ∀xi ∈ x}

11: 〈L, s0〉 ← Solve(R(B0))
12: return 〈B0, T , s0, U, L〉
13: end function

Algorithm 9 takes ACPF problem F as input. The first step in Algorithm 9 is to initialize

the problem’s best upper bound U to +∞ and its best lower bound L to −∞. Function Parse is

applied to ACPF problem F in order to collect a distinct set T of bilinear terms. This function is

based on the work by Smith and Pantelides [1999], who observed that general algebraic expression

is comprised of five basic operations of arithmetic, limited transcendental functions, and unary

operators. The symbolic expressions of F can be parsed recursively to obtain all algebraic terms

that are responsible for problem nonconvexities, i.e., terms that fit (4.5). For brevity, we use this

method to collect T := {〈xmxn〉|xm, xn ∈ x, xmxn ∈ F} instead of exhaustively listing all bilinear

terms as in (4.2). We also observe that reformulated constraints g′(x, x̂) in PCR-ACPF R can also

be created using this symbolic reformulation technique.

The next step of function PreProcess is a basic algebraic propagation for trivial variable

bounds. Reformulated linear constraints g′(x, x̂) take the form of (4.13) with N constraints, M

variables of x, and D lifted variables x̂:

M∑
i=1

aijxi +

D∑
i=1

a′ij x̂i − rj ≤ 0 ∀j = 1 · · ·N (4.13)
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In (4.13), aij and a
′

ij are coefficients of variable xi and x̂i at the j-th constraint, respectively.

Parameter rj is the right hand side of the j-th constraint. The bound propagation, as shown in

Steps 4 to 9 is performed for all variables x.

At Step 10, function PreProcess initializes a root PIC B0 of all x using the propagated

lower and upper bounds. A root relaxation R0 based on B0 is solved at Step 11. Given B has no

discretization on variable domains, R0 is a tractable quadratic program (QP). At Step 11, a root

lower bound L and the associated root relaxed solution s0 are obtained. Algorithm 9 returns PIC

B0, all bilinear terms T , root relaxation solution s0, and initialized best upper and lower bound U

and L to ACPF-IP.

4.5.4 OBBT Algorithm

As surveyed in Puranik and Sahinidis [2017a], OBBT solves the optimization problem in

(4.14) for each variable xi ∈ x by placing them in the objective function. This yields lower and

upper limits that are considered the tightest lower and upper bounds of xi, respectively.

{min ±xi | g(x) 6 0,xl 6 x 6 xu} (4.14)

Applying OBBT in optimization algorithm is a common practice because it can effectively reduce

the search space and improve convergence performance. At each iteration of ACPF-IP, a tighter

PCR-ACPF is solved using a MIQCP solver based on a branch-and-bound algorithm. Therefore,

tighter bounds on PCR-ACPF can effectively reduce the required solver effort and, thus, improve

the performance of ACPF-IP. However, the efforts required to solve (4.14) can be very expensive

given its nonconvex nature. In this study, we consider using PCR-ACPF for OBBT as in (4.15):

R(B, min ±xi) (4.15)

Function OBBT BoundTightening is called in Algorithm 8. The quality of bound tighten-

ing is dependent on the tightness of PCR-ACPF, which is dependent on PIC B. The computational

challenge of ACPF-IP lies in solving PCR-ACPF Rl through an exhaustive tree search to assess

infeasibility. OBBT is applied at every iteration based on the updated PIC B to further narrow

variable domains. Reducing variable domains can effectively eliminate binary variables in PCR-
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ACPF to ease computational requirements. However, the required computational effort for OBBT

increases as variable domains are further discretized. A trade-off exists between the computational

efforts required for OBBT and PCR-ACPF. In our implementation, a time limit is enforced for each

OBBT in ACPF-IP.

Algorithm 10 OBBT Algorithm

1: function BoundTightening(V,B)
2: for xi ∈ V do
3: 〈xmin

i , s〉 ← Solve(R(B, minxi))
4: B(xi)← {b | b ∈ B(xi), b ≥ xmin

i }
5: if |B(xi)| = 1 then
6: B(xi)← {1,−1}
7: break
8: end if
9: 〈xmax

i , s〉 ← Solve(R(B, maxxi))
10: B(xi)← {b | b ∈ B(xi), b ≤ xmax

i }
11: if |B(xi)| = 1 then
12: B(xi)← {1,−1}
13: break
14: end if
15: end for
16: return B
17: end function

OBBT is presented in Algorithm 10. It takes two inputs: a subset of variables V ⊆ x to

perform OBBT and a PIC B. For each variable xi ∈ V, we first tighten its lower bound by solving a

PCR-ACPF based on B at Step 3. The resulting xmin
i is used to update the corresponding partition

information B at Step 4. A conflict detection is performed at Step 5 to see if the updated lower bound

xmini violates its upper bound, which results in B(xi) with length of one. If detected, we inject a

dummy infeasible partition set at Step 6 and exit OBBT since the problem is proven infeasible. This

dummy set will make the next PCR-ACPF infeasible. If not, OBBT proceeds to the upper bound

side and performs the same algorithm in the opposite direction from Step 9 to Step 14. Finally, the

updated PIC B is returned to ACPF-IP.

4.5.5 ACPF Partitioning Variable Selection

Partitioning variable selection has been rarely discussed in previous research. An adapted

method proposed by Boukouvala et al. [2016] is commonly considered for global optimization meth-

ods. This method constructs a graph to represent nonconvexities in the formulation. In our study,
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the graph is limited to focus on bilinear terms. In the graph, variables involved in bilinear terms

are nodes while the bilinear product relationship are denoted as undirected arcs. Selecting all nodes

in the graph for partitioning can be challenging for PCR-ACPF given that number of binary vari-

ables in PCR-ACPF can increase drastically when partitions are added. However, selecting more

partitioning variables provides a tighter relaxation to reduce the total number of iterations required

by ACPF-IP. Alternatively, a minimum vertex cover (MVC) problem can be solved on the graph

to determine the partitioning variables with all arcs covered. On a sparse graph, this MVC-based

method has been proven to be effective on the global convergence for general mixed-integer nonlinear

programs as shown in Nagarajan et al. [2017].
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(a) Example network where the thin line (a, b)
has a tight thermal limit while other lines have
relatively large thermal limits.
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(b) Example network adapted from 4.3a with by-
pass line (c, d) constructed to alleviate congestion
on line (a, b). The bypass line also limited ther-
mal limits, which is reflected by the line’s thick-
ness.
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(c) A more complex example network with non-trivial infeasi-
bility from congested lines in relaxation solutions. The dashed
lines indicate an intermediate thermal line in comparison to large
thermal limits on lines.

Figure 4.3: Example networks to demonstrate the heuristic design for partitioning variable selection

MVC-based partitioning variable selection is not ideal for ACPF as the corresponding graph

is dense. This motivates the need for a dedicated partitioning variable selection method for the

ACPF problem. ACPF-IP is iteratively tightening PCR-ACPF to reduce the overlaps between the

relaxed nonconvex space defined through h(x, x̂, λ, z) and the lifted linear space defined by system

g′(x, x̂). A dedicated method should consider the properties of the linearly lifted space g′(x, x̂),

84



where all problem context is described with ACPF constraints. In Algorithm 11, we consider a

hybrid heuristic that adaptively selects partitioning variables at every iteration of ACPF-IP based

on network analysis with relaxed solution s. The algorithm takes PCR-ACPF solution s as input

and the outputs a subset of variables V for further partitioning.

When a PCR-ACPF with few variable domain partitions is solved, the linear lifted system

g′(x, x̂) is likely to induce infeasible conflicts with trivially violated ACPF constraints. Consider

the example in Figure 4.3a, where demand is marked as an exit arrow, while power generated is

marked as an inflow arrow. The thin line has the most constrained thermal limits while the other

lines’ thermal limits are relatively large. When the nonconvexities are relaxed, line (a, b) is the most

important line for a feasible relaxation. Further, line (a, b) is also the most congested line when

pushing the flow through this relaxed problem (i.e., the relaxation is infeasible if line limits are less

than 5). This observation that trivial infeasibility can be proven through conflicts even with a weak

relaxation. If the thermal limits on line (a, b) exceeds 5, the true limitations for an infeasible ACPF

is nontrivially limited through nonconvexities. In this case, the line (a, b) stays congested as the

relaxation will try to push as much flow on this line as possible to fulfill demand. If the problem

is actually infeasible, focusing on tightening the relaxation with line (a, b) (i.e., adding partitions to

associated voltage variables) is a viable choice to quickly create an infeasible PCR-ACPF.

In example Figure 4.3b, if bypass line (c, d) is added to alleviate stress on line (a, b), the

relaxed flow on (c, d) is likely to increase when tighter relaxation is imposed on the nonconvexities

associated with line (a, b). This can result in shifting of focus from line (a, b) to line (c, d) when line

(a, b) is fully tightened, which then selects variables associated with line (c, d) for further partitioning.

Therefore, we consider a heuristic from Step 5 to Step 7 that collects partitioning variables based on

line congestion given a PCR-ACPF solution. The congestion is measured through |(f̃pij)2 + (f̃qij)
2 −

l2ij |, where f̃pij and f̃qij are obtained from a PCR-ACPF solution s at Step 4.

The analysis above can result in a local trap in a complex network since a partial knowledge

of the network is revealed. One can continue to focus on partitioning variables associated with the

congested lines while the infeasibility of ACPF exists elsewhere. For example in Figure 4.3c, focus

on line (a, b) may not be effective while infeasibility exists in the shaded region, i.e., where relaxation

on line thermal limits are not actually congested. In this case, line (a, b) is congested because the

true thermal limits overlap with the tightest relaxation obtained while the rest of the network is

relaxed. Hence, we need to direct the algorithm to escape the local trap.
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Algorithm 11 Partitioning variable selection algorithm

1: function UpdatePartitioningVars(s)
2: 〈V, d∗〉 ← ∅,−∞
3: for (i, j) ∈ L do
4: 〈f̃pij , f̃

q
ij〉 ← s(fpij), s(f

q
ij)

5: if |(f̃pij)2 + (f̃qij)
2 − l2ij | ≤ ε then

6: V ← V ∪ {vpi , v
p
j , v

q
i , v

q
i }

7: end if
8: 〈ṽpi , ṽ

p
j , ṽ

q
i , ṽ

q
i 〉 ← s(vpi ), s(vpj ), s(vqi ), s(v

q
j )

9: 〈ω̃pi , ω̃
p
j , ω̃

q
i , ω̃

q
j 〉 ← s(v̂pi v

p
i ), s(v̂pj v

p
j ), s(v̂qi v

q
i ), s(v̂

q
j v
q
j )

10: 〈ω̃pij , ω̃
q
ij , ω̃

p
ji, ω̃

pq
ij , ω̃

qp
ij 〉 ← s(v̂pi v

p
j ), s(v̂qi v

q
j ), s(v̂

p
j v
p
i ), s(v̂pi v

q
j ), s(v̂

q
i v
p
j )

11: a = |ω̃pi − (ṽpi )2|+ |ω̃pj − (ṽpj )2|+ |ω̃qi − (ṽqi )
2|+ |ω̃qj − (ṽqj )

2|
12: b = |ω̃pij − ṽ

p
i ṽ
p
j |+ |ω̃

q
ij − ṽ

q
i ṽ
q
j |+ |ω̃

p
ji − ṽ

p
j ṽ
p
i |+ |ω̃

pq
ji − ṽ

p
i ṽ
q
j |+ |ω̃

qp
ij − ṽ

q
i ṽ
p
j |

13: if a+ b > d∗ then
14: V̄ ← {vpi , v

p
j , v

q
i , v

q
i }

15: d∗ ← a+ b
16: end if
17: end for
18: V ← V ∪ V̄
19: return V
20: end function

Given a PCR-ACPF solution s, we define the deviation d of bilinear term 〈xmxn〉 to be the

distance between the solution of lifted variable s(x̂mxn) and variable solution product s(xm)s(xn)

(i.e., d = |s(x̂mxn) − s(xm)s(xn)|). This value reflects the magnitude lifted variable x̂mxn ∈ x′ is

trying to “cheat” in relaxed space for a feasible solution to system g′(x, x̂). Clearly, for any solution

s∗ of PCR-ACPF, if the maximum deviation of all bilinear terms is less than the feasibility tolerance,

then s∗ must be a feasible solution. Therefore, in additional to the line congestion heuristic, the

total deviation of all bilinear terms associated with each line (i, j) ∈ L is measured at Step 11 and

Step 12 4, while the values are obtained from Steps 8 to 10. The variables associated with the most

deviated line are selected for further domain discretization in Steps 13 to 16.

4.5.6 Constructing New Partitions

An effective method proposed by Nagarajan et al. [2017] discretizes variable domains by

injecting a new partition pivoting around the relaxed solution, where the radius of the new partition

is controlled through a constant parameter. Although this method is directly applicable to ACPF-IP,

it requires a local search to obtain the best parameter.

4For brevity, the associate bilinear can be collected through ACPF formulation (4.2) or augment bilinear terms
collection T with witch line (i, j) ∈ L each term is associated with.
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Figure 4.4: Graph for constructing new partitions

When a PCR-ACPF is feasible, the relaxed region still overlaps with the linear lifted space

defined by g′(x, x̂). Newly constructed partitions should be able to eliminate the known feasible

solution based on the existing relaxation solution s. However, is it possible that using a constant-

based partition construction may not tighten PCR-ACPF to eliminate the known feasible region. If

it fails to do so, then the upcoming PCR-ACPF, which is harder to solve, can have a trivial feasible

region which extends the required iterations of ACPF-IP.

We adapt the constant-driven method with a new scheme that automatically select parame-

ters for creating new partitions in Algorithm 12. This algorithm uses the collection of bilinear terms

T , current PIC B, selected partitioning variables V, and the best PCR-ACPF relaxation solution s

as inputs.

For each partitioning variable xi in V, we first collect its solution value x̃i and the associated

active partition [bl, bu], such that x̃i ∈ [bl, bu], at Step 3 and 4. For each bilinear term that contains

xi, we obtain the solution to the lifted variable ω̃ij and variable x̃j at Step 9. Step 10 measures

the required radius for the new partition that guarantees the existing relaxed solution (x̃i, x̃j , ω̃ij)

is left outside the convex envelope on the contour line as shown in Figure 4.4. The measured radius

is regulated within an from 4 to 32 based on past experiences by Nagarajan et al. [2017]. It is

important to observe that a variable may exist in multiple bilinear terms, which leads to different

radius measurements. To resolve this, measured radius are collected into ∆ at Step 10. The average
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Algorithm 12 Construct New Partitions

1: function AddPartitions(T ,B,V, s,∆)
2: for xi ∈ V do
3: x̃i ← s(xi)
4: 〈bl, bu〉 ← max{bk|bk ∈ B(xi), bk ≤ x̃i},min{bk|bk ∈ B(xi), bk ≥ x̃i}
5: ∆← ∅
6: for 〈xmxn〉 ∈ T do
7: if i ∈ {m,n} then
8: if i = m then j = n else j = m end if
9: 〈ω̃ij , x̃j〉 ← s(x̂mxn), s(xj)

10: ∆← ∆ ∪ {max(4,min(32, |bu−bl|
|ω̃ij/x̃j−x̃i| ))}

11: end if
12: end for
13: r ← Average(∆)
14: if x̃i − r > bl then
15: B(xi)← B(xi) ∪ {x̃i − r}
16: end if
17: if x̃i + r < bu then
18: B(xi)← B(xi) ∪ {x̃i + r}
19: end if
20: if x̃i − r ≤ bl and x̃i + r ≥ bu then
21: k̄ ← argmaxk|bk − bk−1| := {bk, bk−1 ∈ B(xi)}
22: 〈bl, bu〉 ← B(xi)[k],B(xi)[k − 1]

23: B(xi)← B(xi) ∪ {bl + |bu−bl|
2 }

24: end if
25: Sort(B(xi))
26: end for
27: return B
28: end function
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∆ is used as the selected radius r (at Step 13) to create new partitions around the pivot point x̃i

within [bl, bu] from Steps 14 to 19. In cases of failing to create new partitions at both Step 15 and

18, a scheme to avoid the local trap is in Steps 20 to 24 by dividing the largest partition in two. This

construction appends new partition data to the PIC B, where the order of partition information is

rearranged at Step 25. Finally, the updated PIC is returned in Step 27.

4.5.7 Discussion on Algorithm Convergence

The convergence of ACPF-IP is defined as ACPF-IP can either find a feasible solution or

prove infeasibility in a finite number of iterations. As suggested by Horst and Tuy [2013], the

sufficient condition for global algorithm convergence is the exhaustiveness on a given mixed-integer

nonlinear program. The exhaustiveness of ACPF-IP is constructed in Algorithm 8 Steps 4 and

6, where new partition are added for a strictly tighter PCR-ACPF in each iteration. Let s∗, u∗

denotes the optimal solution and objective value for an ACPF, respectively. Let sn, ln denote the

PCR-ACPF solution and corresponding bound detected at the n-th iteration of ACPF-IP. Given

that ACPF is a subset of mixed-integer nonlinear programs, applying the proof in Nagarajan et al.

[2017] shows that lower bound ln monotonically increases to u∗ as n increases for ACPF problems.

Next, we assert that sn will converge to s∗ when there exists a feasible tolerance ε > 0 in a

finite number of iterations. In ACPF-IP Steps 4 and 6, new partitions are constructed for variables

with the largest deviation of bilinear term relaxation based on the previous iteration. In a finite

number of iterations, there will exist enough partitions for variables in bilinear term xmxn, which

means the maximum deviation of the relaxed variable d∗ = |x̂mxn − xmxn| converges to d∗mn ≤ ε,

where d∗mn is defined by (4.16):

d∗mn ≤ max{max([bmi−1, b
m
i ]× [bnj−1, b

n
j ]>)−min([bmi−1, b

m
i ]× [bnj−1, b

n
j ]>) | ∀i ∈ Pm, j ∈ Pn} (4.16)

Equation (4.16) provides the least maximum magnitude of the relaxed region of any partition’s on

bilinear term variables. As ACPF-IP seeks to tighten the largest deviated bilinear term relaxations,

the maximum deviation of all bilinear term relaxations eventually converges to below ε at some

iteration n. In this circumstance, solution sn from PCR-ACPF R is feasible for g(x) in ACPF

F within feasibility tolerance ε. Otherwise, ACPF-IP will terminate with ACPF being proven

infeasible, which completes the assertion.
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4.6 Experimental Results

In this section, we present experimental results from using the proposed ACPF-IP to analyze

a few standard test systems. We compare the effectiveness of ACPF-IP to the commercial global

solver BARON, an open-source global solver COUENNE, and AMP.

4.6.1 Experimental Setup

Four standard test systems from Coffrin et al. [2014] are tested within the congested thermal

limit range (marked as the red region in Figure 4.1) as described in Section 4.3. For each congested

range, we use a 2% step size in our experiments. Table 4.3 contains a summary of the test systems,

including basic dimensional information and the thermal limit capacity range of interest.

Test System # of buses # of lines Thermal limit capacity test range
nesta case6 c 6 7 14% - 6%
nesta case6 ww 6 11 94% - 86%

nesta case14 ieee 14 20 54% - 32%
nesta case24 ieee rts 24 38 78% - 50%

Table 4.3: Summary of selected test systems

We implement the ACPF-IP in Julia 0.6.2 supported by the interface packages of JuMP.jl

0.18.0 and MathProgBase.jl 0.6.4. The implementation of the comparison algorithm AMP is sup-

ported by the same packages. Both ACPF-IP and AMP require dependent solvers, namely a MIQCP

solver and an NLP solver. In this study, we use Gurobi 7.5.2 as the MIQCP solver and Ipopt 3.12.1

as the NLP solver (Note: these solvers are connected to Julia through solver interface packages

Gurobi.jl 0.3.3 and Ipopt.jl 0.2.6). When solving test systems with either ACPF-IP or AMP,

we limit Gurobi to using 8 threads for its parallel branch-and-bound algorithm. For the benchmark

global solvers, we use BARON 17.10.16 and COUENNE 0.5 with their default settings.

All tests are conducted on the Palmetto high-performance cluster at Clemson University

using compute nodes equipped with Intel(R) Xeon(R) CPU L5420 processor(s) @ 2.50GHz and 16

GB of RAM. Based on initial test’s, we see that benchmark global solvers may not solve the ACPF

problem in two hours. The experimental time limit is extended to enable the benchmark methods

to fully realize their potentials. The maximum allowed solution wall clock time is set to be 6 hours

for each experiment while overhead time for data loading and software compilation are omitted in

the results comparison.
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4.6.2 Results

The results for the four test systems in Table 4.3 are shown in Figure 4.5a to Figure 4.7.

The experiment for each test system is conducted by gradually increasing the thermal limits capacity

percentage. It is important to note that increasing the congestion percentage strictly tightens the

ACPF problem, i.e., an ACPF problem on a test system is infeasible with 55% thermal limit capacity

if it is proven infeasible with 60% thermal limit capacity. However, the choice of congestion level is

not trivially known a prior. Therefore, we compare each step in the test range independently across

different methods in our study. In Figures 4.5a to Figure 4.7, each step of the congestion percentage

spreads horizontally into several blocks, where each block contains the results of all tested methods.

In comparing the competing methods, we first focus on proving an ACPF problem infeasible,

which is reflected through two aspects: 1) whether the method is able to prove an infeasible ACPF

problem is infeasible, and 2) the time required took to complete the proof. In each Figure in this

Section, the top half of the Figure indicates such a comparison. When an algorithm is able to prove

the system infeasible under a specific congestion percentage, the bars in the top half of a Figure

indicate the time required to complete the proof. Otherwise, no bar is shown in the Figure’s top

half. The lower the bar, the faster the method is. The time required to complete the infeasible proof

drastically reduces when the proof is completed through detected variable bounds conflicts. Hence,

we show the solution time bars on a logarithmic scale.

When a method neither proves a problem infeasible nor finds a feasible solution within the

allowed six-hour time limit, a best lower bound is returned that measures the minimum objective

value if the ACPF problem ever becomes feasible. Before a problem is proven infeasible, a higher

lower bound is preferred because it indicates the effectiveness of the global algorithm. We show this

measurement in the lower half of each bar chart. The deeper the bar, the better the method is.

Similar to the top half of each Figure, a logarithmic scale is applied to this side of the bar chart.

When infeasibility is proven, there will be no bar shown in the lower half of the Figure with that

method. To differentiate the performance of detecting a lower bound more clearly, we mark the best

lower bound (lowest bars) with the symbol
∧

whenever a comparison is necessary.

For the two small 6-bus test systems nesta case6 c and nesta case6 ww in Figure 4.5, we

observe that the entire thermal limit capacity test range is proven to be infeasible. In both cases,

we observe that infeasibility detection can be trivial for the tested global solvers as seen in the short
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time required for the proof.

AMP is the worst method because extensive time can be required for proving infeasibility.

With system nesta case6 ww at its 94% thermal limit, AMP is unsuccessful in concluding the known

infeasibility within six hours. From the detailed results, it is clear that AMP iterates eight times

before the time limited is reached. Further, the last two iterations need ∼ 20, 000 seconds to solve

the PMR. As an adapted algorithm of AMP, ACPF-IP is able to shorten. AMP’s time by nearly 50%

for each test case. For this particular example with 94% thermal limit capacity, ACPF-IP used just

426 seconds with 20 iterations in total. The improvements are due to the joint effect of the PCR-

ACPF formulation, dynamic partitioning variable selection, and automatic partition construction.

These results suggest that improvement can be obtained with dedicated attention to improve the

general framework of AMP. However, the time required it is still not acceptable when compared to

the global solvers.

As we scale the size of the test systems, the performance of the two global solvers gives little

to no conclusion on the problem feasibility. For the 14-bus system nesta case14 ieee (Figure 4.6),

ACPF-IP is the only method that concludes the entire tested range of congestion percentage infea-

sible. The performance of ACPF-IP is followed by COUENNE, which is able to prove infeasibility

from the 44% thermal limit capacity level and below, but with much more time being required.

AMP is the third best method for 40% thermal limit capacity and below as it has comparable com-

putation time to COUENNE. BARON, the least favored method, provides little to no conclusion on

infeasibility. In the region where only ACPF-IP is able to address the ACPF problem (thermal limit

capacity range from 54% to 46%), AMP is not able to detect higher lower bounds when compared

to BARON or COUENNE.

Finally, for the 24-bus system nesta case24 ieee rts (Figure 4.7), ACPF-IP again shows

its ability to prove infeasibility with 66% thermal limit capacity and below, while the other methods

are only able to capture the tail at 52% and below. We also note that the time required for

concluding infeasibility by ACPF-IP is often less than three hours, which is one-half of the time

limit. In cases where ACPF-IP is not able to prove infeasibility, it detect the best lower bound with

regular frequency (Figure 4.7).
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4.7 Conclusions and Future Research

In this chapter, we propose an algorithm to analyze nonlinear, nonconvex rectangular ACPF

problems where problem feasibility is not trivially revealed. A key idea to address ACPF problems

is to prove the problem infeasible by tightening relaxations iteratively rather than exhaustively ex-

plore the solution space like most SB&B methods do. ACPF-IP applies a tight PCR method with

dedicated valid inequalities to construct the PCR-ACPF that is dependent on discretized variable

domains. Algorithm ACPF-IP also incorporates several novel schemes to construct discretized vari-

able domains. The convergence of ACPF-IP is asserted as it will either find a feasible solution or

terminate with a statement of ACPF infeasibility in finite number of iterations. Numerical exper-

iments are conducted on test systems from the literature to compare the proposed ACPF-IP with

state-of-the-art global solvers and AMP. Our results demonstrate the strength of ACPF-IP for an-

alyzing challenging ACPF problems by showing ACPF-IP is able to prove the problem infeasible in

a timely manner.

Although ACPF-IP is shown to outperform other methods as problem size scales, we rec-

ognize several interesting directions for future research. First, it is important to explore alternative

formulations for ACPF problems, such as polar and current-voltage. This will involve a wider inves-

tigation on applying PCR for formulations that have general transcendental functions and making

proper adjustments to ACPF-IP to fit different formulations appropriately. Second, we should inves-

tigate techniques to strengthen the PCR. Future direction is to incorporate semi-definite program-

ming (SDP) techniques to improve algorithm tractability on large networks, given the promising

results of Bai et al. [2008] and Gopalakrishnan et al. [2012]. Based on preliminary experiments,

an effective SDP relaxation can help eliminate the red region in Section 4.3. However, as in this

case with the 24-bus system nesta case24 ieee rts, SDP relaxations are still inconclusive for a

6%-wide test ranges. Finally, future research can expand the types of influences enforced on the

system under study. Our experiments only considered congestion of the entire system, while in the

real world, a variety of influences such as regional imbalances, network topology changes, tighter

angle difference limitations, can and do exist.
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Chapter 5

Conclusions and Future Research

Scientific evidence suggests there are evolving and uncertain risks to the electrical grid under

a changing climate. Recognition of these emerging impacts can provide valuable insights in building

a resilient system for the future. Climate adaptations can be made ahead of time to better prepare

electrical grids for uncertain, extreme events. Developing effective climate adaptations is challenging

due to how nature evolves, how uncertainty is modeled and represented, and how electrical grids

respond to exogenous impacts. These underlying complications suggest that it is inadequate to in-

dividually consider either climate studies or intuition-based decision-making methods for actionable

adaptations. In this dissertation, we developed a novel decision framework for climate adaptation

to achieve a more resilient future.

5.1 Dissertation Summary

In the first phase of this dissertation, we focus on developing a stochastic optimization

decision framework that links state-of-the-art climate simulation models with optimization models

to plan climate adaptations that are resilient for an uncertain future. The decision framework is

validated through extensive numerical experiments that show the proposed decision framework is

capable of providing high-quality solutions when compared to a number of deterministic or heuristic

approaches that are commonly considered in practice. Furthermore, we explore the flexibility of our

decision framework to provide trade-off analyses between costs and uncertain risks.

In the second phase, we focus on addressing our decision framework’s tractability through
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an algorithmic approach. Our decision framework is essentially a class of discrete stochastic op-

timization models where the incorporated uncertainty is represented through a finite support set

and risk is managed via a joint chance constraint that provides flexibility in the feasibility of the

incorporated scenarios. The general form of the problem is decomposed into an anticipative and a

recourse stage where the recourse stage is a pure feasibility problem; discrete decision variables exist

in both stages. A scenario-based decomposition algorithm is proposed to solve this particular class

of challenging optimization problems. The global convergence of the algorithm is ensured by lever-

aging relaxations and upper bounds of the generated configurations. Numerical experimental show

that the algorithm can outperform CPLEX on two representative problems, including the climate

adaptation problem in Chapter 2.

In the third phase of this dissertation, we focus on addressing the feasibility of an electrical

transmission system under the influence of thermal limit congestion by proposing an algorithmic

approach for nonlinear, nonconvex feasibility problems. These problems are frequently encountered

if the proposed decision framework incorporates realistic modeling of system operations. As the

challenge of the feasibility problem is well recognized, our main idea is to use tightening piece-

wise convex relaxations for an infeasibility proof, rather than pursuing an exhaustive search on

solution space. Our proposed algorithm adaptively performs variable domain discretization and

constructs tighter relaxations at every iteration. In addition, several novel algorithmic schemes are

considered in the algorithm design that make further improvements. We assert the convergence of

the algorithm as it either finds a feasible solution or terminates with the problem being proven as

infeasible. Experimental results suggest the proposed algorithm is superior to two state-of-the-art

global solvers, as well as a recently proposed global algorithm.

5.2 Future Research

A critical next research step is to explore more models for the climate adaptation problem.

This incorporates three future research directions: 1) consider dedicated models to strengthen the

existing problem formulation (see Song and Luedtke [2013], Song et al. [2014] as examples); 2)

investigate analytical formulations that incorporate uncertainties and represent the concept of risk in

a different manner; and 3) incorporate AC power flow in the climate adaptation problem in Chapter

2 for more realistic system operation modeling and investigate the applicability of the proposed
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algorithm in Chapter 3 in combination with the infeasibility proof algorithm in Chapter 4. These

three future research directions will help to address real-world problems and provide decision-makers

with more actionable advice.

Additional experiments should be conducted to further investigate the role of uncertainty

in the decision-making process. For example, it is curious to learn how adaptations respond when

uncertain coastal basin erosion speed is considered in the simulation model. Moreover, it is important

to understand how a long-term adaptation will form a closed-loop with the environment, which can

further impact the decision process under a changing climate.

Finally, future research should pursue improvements in the proposed methodologies, which

includes: 1) enlarging the scope of the algorithm in Chapter 3 by testing more problems with

improved heuristics for high-quality configuration generation, or to develop specialized, problem-

specific configuration generation schemes; 2) investigating the use of semi-definite programming

techniques for ACPF-IP discussed in Chapter 4 for better tractability; and 3) performing experiments

with a wider scope of system influences, such as regional imbalances, network topology changes,

tighter angle difference limitations, etc., to find more interesting AC power flow problems to improve

the overall applicability of algorithm in Chapter 4.
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Appendix A Comparison of Piece-wise Relaxation Formula-

tions

In Chapter 4 Section 4.4.3, we compare the formulations of PCR, PCR-C, and PMR for

the ACPF problem by conducting numerical experiments. The numerical performance of these

formulations on general mixed-integer, nonlinear programs is evaluated in the experiments. The

reader is referred to Nagarajan et al. [2017] for more details of the test instances under study. For

each instance, we uniformly discretize the domains of a subset of variables into 20 partitions and

construct the relaxation problem based on these formulations. The constructed problem is then

solved using Gurobi solver with a one hour time limit.
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Figure A.1: Graph for constructing new partitions
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The experimental setup is the same as described in Chapter 4 Section 4.6. The results are

summarized in Figure A.1. From top to bottom, each block is associated with an instance while the

experimental comparison is reflected through three bars representing the three formulations. The

right side of the Figure A.1 measures the time required to solve the relaxation problem to optimality

(a shorter bar is preferred). Given the time limit, it is possible for a problem to terminate without

achieving optimality. In this case, we record the best optimality gap on the left side of Figure

A.1 (shorter bar is preferred). Results show that PCR outperforms PCR-C and PMR in 16 of 18

instances, which leads to our decision to select PCR for ACPF problems.
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A. Wächter and L. T. Biegler. On the implementation of an interior-point filter line-search algorithm
for large-scale nonlinear programming. Mathematical programming, 106(1):25–57, 2006.

W. E. Walker, M. Haasnoot, and J. H. Kwakkel. Adapt or perish: a review of planning approaches
for adaptation under deep uncertainty. Sustainability, 5(3):955–979, 2013.

S. W. Wallace and S.-E. Fleten. Stochastic programming models in energy. Handbooks in operations
research and management science, 10:637–677, 2003.

S. Wang et al. Energy infrastructure adaptation framework toward storm surges under rising sea
level. Work in progress, 2017, submitted.

P. J. Webster, G. J. Holland, J. A. Curry, and H.-R. Chang. Changes in tropical cyclone number,
duration, and intensity in a warming environment. Science, 309(5742):1844–1846, 2005.

A. J. Wood and B. F. Wollenberg. Power generation, operation, and control. John Wiley & Sons,
2012.

J. D. Woodruff, J. L. Irish, and S. J. Camargo. Coastal flooding by tropical cyclones and sea-level
rise. Nature, 504(7478):44–52, 2013.

E. Yamangil, R. Bent, and S. Backhaus. Designing resilient electrical distribution grids. arXiv
preprint arXiv:1409.4477, 2014.

E. Yamangil, R. Bent, and S. Backhaus. Resilient upgrade of electrical distribution grids. In AAAI,
pages 1233–1240, 2015.

D. Yates, B. Q. Luna, R. Rasmussen, D. Bratcher, L. Garre, F. Chen, M. Tewari, and P. Friis-
Hansen. Stormy weather: Assessing climate change hazards to electric power infrastructure: A
sandy case study. IEEE Power and Energy Magazine, 12(5):66–75, 2014.

H. Yu, C. Chung, K. Wong, and J. Zhang. A chance constrained transmission network expansion
planning method with consideration of load and wind farm uncertainties. IEEE Transactions on
Power Systems, 24(3):1568–1576, 2009.

110



Y. Yuan, Z. Li, and B. Huang. Robust optimization approximation for joint chance constrained
optimization problem. Journal of Global Optimization, pages 1–23, 2015.

H. Zhang, G. T. Heydt, V. Vittal, and H. D. Mittelmann. Transmission expansion planning using an
ac model: formulations and possible relaxations. In Power and Energy Society General Meeting,
2012 IEEE, pages 1–8. IEEE, 2012a.

H. Zhang, V. Vittal, G. T. Heydt, and J. Quintero. A mixed-integer linear programming approach for
multi-stage security-constrained transmission expansion planning. IEEE Transactions on Power
Systems, 27(2):1125–1133, 2012b.

H. Zhang, G. T. Heydt, V. Vittal, and J. Quintero. An improved network model for transmission
expansion planning considering reactive power and network losses. IEEE Transactions on Power
Systems, 28(3):3471–3479, 2013.
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