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The importance of the transmission network for supplying electricity

demand is undeniable, and Transmission Expansion Planning (TEP) studies

is key for a reliable power system. Due to increasing sources of uncertainty

such as more intermittent energy resources, mobile and controllable demands,

and fast technology improvements for PVs and energy storage devices, the

need for using systematic ways for solving this complex problem is increased.

One of the main barriers for deploying optimization-based TEP studies is

computationally intractability, which is the main motivation for this research.

The aim of this work is to investigate the computational challenges as-

sociated with systematic TEP studies for large-scale problems, and develop

algorithms to improve computational performance. In the first step, we inves-

tigate the impact of adding security constraints (as NERC standard require-

ment) into TEP optimization problem, and develop the Variable Contingency
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List (VCL) algorithm to pre-screen security constraints to only add those that

may affect the feasible region. It significantly decreases the size of the prob-

lem compared to considering all security constraints. Then, we evaluate the

impact of the size of candidate lines list (number of binary variables) on TEP,

and developed a heuristic algorithm to decrease the size of this list.

In the next step, we integrate uncertainties into the TEP optimization

problem and formulate the problem as a two-stage stochastic program. Adding

uncertainties increases the size of the problem significantly. It leads us to

develop a three-level filter that introduces important scenario identification

index (ISII) and similar scenario elimination (SSE) technique to decrease

the number of security constraints in stochastic TEP in a systematic and

tractable way.

We then investigate the scalability of the stochastic TEP formulation.

We develop a configurable decomposition framework that allows us to decom-

pose the original problem into subproblems that can be solved independently

and in parallel. This framework can benefit from using both progressive hedg-

ing (PH) and Benders decomposition (BD) algorithms to decompose and par-

allelize a large-scale problem both vertically and horizontally. We have also

developed a bundling algorithm that improves the performance of PH algo-

rithm and the overall performance of the framework.

We have implemented our work on a reduced ERCOT network with

more than 3000 buses to demonstrate the practicality of the proposed method

in this work for large-scale problems.
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Chapter 1

Introduction

1.1 Overview

The transmission network is the backbone of the electric power system.

Increasing penetration of renewable resources, energy storage devices, mobile

and flexible demand, along with new public policies such as the “Clean Power

Plan” makes the future much more uncertain for Transmission Expansion

Planning (TEP). As the transmission network is a monopoly infrastructure,

and in jurisdictions such as Electric Reliability Council of Texas (ERCOT) its

investment and operation costs are distributed between all electricity users in

the region, it is critical to expand and operate this network at minimum cost

while keeping a high level of reliability. Transmission Expansion Planning is

the process of deciding which equipment should be selected, where it should

be installed, and when is the best time to install it. In dynamic TEP, planning

is done for multi-stages, in which a decision about the best time to install is

also made [103].

Villasana et al in [113] provides a hierarchy of three questions that

should be answered in transmission planning:

a) What new facilities should be installed so that future operation will not be
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limited by transmission capacity?

b) What new transmission facilities can be economically justified versus the

higher operation costs if new facilities were not installed?

c) What new Generation sites can be justified versus new transmission facili-

ties or higher operation costs?

These three questions specify main components of the objective function in

TEP. In question a), the objective function is to invest in the transmission

network as much as we need to supply all demand and the impact of power

system operation cost on TEP is ignored. It is sometimes called reliability

planning, in which the main concern is satisfying network reliability criteria.

Unit operation set points are mainly defined based on experience or least cost.

In the case of using lower operating cost units as much as possible, we will

have the least operation cost but we may need to invest highly in transmission

expansion, posing the question of whether the investment is cost-effective. In

the next hierarchy level (question b), the impact of operation cost on deci-

sion making for TEP is considered, which means it might be economical to

dispatch some expensive power plants to supply demand instead of building

some new transmission lines to dispatch all cheap power plants. The second

question provides a better modeling property compared to the first one as it

economically adjusts investment and operation costs, but it is computationally

more expensive. In question c), which has the highest rank in the hierarchy,

not only the impact of operation cost but also the impact of investment in
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generation sector on TEP is evaluated. In other words, it might be econom-

ical to invest on the generation side (for example building new power plants

close to demand) instead of the transmission side to supply the demand. It

provides a better expansion plan (from economical perspective); however it is

much more computationally expensive, and planners would need to have the

authority to make decisions about the location/capacity of new power plants.

Since generation expansion decisions are usually made by individual private

investors in vertically unbundled electricity industries, the consideration of

generation investment may be beyond the control of transmission planners.

In this dissertation, we try to answer the second question, and we assume we

know the location and capacity of future generation units (with uncertainties).

In principal, generation expansion could be added to the formulation.

1.2 Factors Affecting Transmission Expansion Planning

TEP studies are performed in different time-scales i.e near-term (for

less than or equal to five years) and long-term (for more than ten years),

and for each time-scale different parameters with different level of details are

considered. Main parameters that affect TEP are categorized into four main

groups namely environmental issues, legal issues, uncertainties, and network

modeling, and these are explained briefly in the following:

Environmental issues: Environmental concerns/limitations may directly af-

fect transmission planning especially for line routing in particular areas

such as:
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• Regions with wildlife and endangered species,

• Wetlands,

• National parks, historic areas, military areas etc.

Furthermore, there are some environmental concerns that indirectly af-

fect transmission planning such as:

• Limits on pollution generated by power plants in different areas,

• Access to water resources necessary for building and operating power

plants and etc.

These will directly affect the generation expansion and indirectly affect

transmission planning as there is a dependency between generation and

transmission expansion planning.

Legal issues: Policy makers can affect TEP in several different ways such as:

• Who should pay for new transmission lines? For example, all en-

tities that are connected to the network or just those who benefit

from the line?

• What should be the transmission usage tariffs?

• What are electricity market price caps?

Uncertainties: There are several uncertainties that affect TEP, and we should

try to address them during the planning stage. They mainly can be cat-

egorized as micro and macro uncertainties:
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• Macro uncertainties such as future changes in economic growth,

market rules, carbon emission issues, fuel price, generation mix/location

and capacity, technology revolutions etc.

• Micro uncertainties such as load and intermittent resource varia-

tions, availability of power plants and transmission lines in real

time, market price, behavior of market participants etc.

The macro uncertainty may be well represented by probability distribu-

tions, and an expected cost framework may be sufficient to capture main

issues. The macro uncertainties may not have well-defined probability

distributions, and risk may be much more important in this context, mo-

tivating approaches such as robust optimization [13, 105]. In this work,

we will primarily consider uncertainties that have well-defined probabil-

ity distributions. When the distribution, either the family or the mem-

ber, is not well-defined or known, other methods are required to address

the additional uncertainties (see [46, 38] for more detail).

Power system modeling: There are different models for different network

components and operation such as:

• Steady-state power flow formulation: It can be divided into three

main categories i.e. transportation model in which only the first

Kirchhoff’s law is satisfied, the DC model that satisfies both both

first and second Kirchhoff’s laws, ignoring network losses and re-

active power requirements, and the AC model which is the most

5



accurate model for power system steady-state modeling and con-

siders network losses and reactive power requirements as well as

the first and the second Kirchhoff’s laws. There are some hybrid

models that are mainly derived form one of these three main models

such as DC model with linear approximation of network losses or

linearized AC model with loss and reactive power modeling.

• Transmission network model: Transmission network can be mod-

eled as non-controllable or controllable. In the non-controllable

model, the topology of the network is fixed, and in controllable

model, it is possible to use switching, phase shifters, FACTS de-

vices, special protection schemes, etc to control and manage flow

directions in the gird.

• Generation model: There are several parameters that affect a power

plant operation i.e. its maximum and minimum capacity limits,

ramp rate capability, and some limits that are driven by specific gen-

eration technologies like total energy limit for hydro power plants

(based on their reservoir capacity), etc.

• Demand model: There are two different ways to model load i.e.

elastic or inelastic. In the elastic model, demand can be controlled

with different signals such as the market price, but in the inelas-

tic model, demand is modeled as a fixed quantity that should be

supplied, if possible, and only curtailed in case of scarcity.

• Operation states: Normal and under contingency are two different

6



types of operation states that can be evaluated in power system

analysis (for both steady-state and transient analysis).

• Market model: There are several different aspects in market mod-

eling like ideal versus real markets, day-ahead vs. real-time, etc.

that may affect system operation costs and TEP.

Selecting different models affects the accuracy of results and computa-

tional time required to solve the problem.

1.3 Systematic Transmission Expansion Planning

Based on above mentioned significant parameters, TEP is a multi-

dimensional and very complex problem. The question is how to model/formulate

all of these parameters, and a harder question will be how to solve that prob-

lem for large-scale networks. Making assumptions and simplifications seems

inevitable, and we seek to do so in a way that does not fundamentally inval-

idate the analysis. Environmental and legal issues mostly can be considered

in near-term TEP/line design stage, and can be partially addressed in de-

veloping candidate lines for long-term TEP. Therefore, we can model their

impacts outside of TEP optimization formulation and thereby significantly re-

duce TEP problem size. Uncertainties can be captured by developing different

possible scenarios and using either heuristic methods or stochastic programing

to solve or by developing uncertainty boundaries and using robust optimiza-

tion for problem formulation. How to model the power system and integrate

7



uncertainties is categorized by [113] into five different stages.

Stage I: considering all quantities deterministic (future load, generation, fuel

price and etc), static model (one planning horizon), single operation

condition (normal operation), all variables as continuous (continuous

line capacity for expansion);

Stage II: deterministic quantities, static model, single operation condition,

mixed-integer problem (MIP) statement (binary decision variables for

building transmission lines);

Stage III: deterministic quantities, static model, multi operation conditions

(normal and under contingency operation states), MIP statement;

Stage IV: deterministic quantities, dynamic model (multi-planning horizons),

multi operation conditions, MIP statement;

Stage V: stochastic quantities (uncertainties in load, generation, fuel price,

and etc), dynamic model, multi operation conditions, MIP statement.

By moving from stage I to stage V, the model will be more accurate and

close to reality, but much more complicated and challenging to solve. By using

DC model, stage I represents a continues optimization problem. Adding inte-

ger variables makes it a Mixed-Integer Programming (MIP) problem in stage

II. Stage III adds contingency analysis into TEP that significantly increases

problem size and can easily make TEP optimization problem intractable. TEP
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moves from static to dynamic in stage IV that increases the number of binary

variables in the optimization formulation, and TEP is modeled as stochastic

dynamic TEP in stage V. In this dissertation, we move from stage II toward

stage V (but not at the same order proposed by [113]) and try to develop al-

gorithms that make it possible to solve large-scale problems. For distribution

grid planning and investment decision making please see [79] and [78].

1.4 Layout of this dissertation

This dissertation is organized as follows:

In chapter 1, an introduction about transmission expansion planning

is provided and main factors that affect TEP are discussed. It is followed by

discussion of stages in systematic TEP for adding details in the modeling.

In chapter 2, literature on TEP along with NERC’s reliability standard

for transmission planning are briefly reviewed. Deterministic TEP for multiple

operation states with N − 1 contingency analysis is modeled. A constraint

screening algorithm is developed to screen reliability constraints and select

a subset of lines for contingency analysis such that their outage will cause

overload in other lines in the network.

In chapter 3, the impact of uncertainties on TEP is explicitly modeled

by developing a two-stage stochastic optimization formulation. The main focus

of this chapter is to develop an algorithm to reduce the number of candidate

lines when the initial candidate line list is very large. The developed heuristic
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method will decrease the number of binary decision variables and improve the

performance of MIP for TEP. Contingency analysis is not integrated in TEP

in this chapter.

In chapter 4, contingency analysis is added to stochastic TEP optimiza-

tion problem (compared to chapter 3) that significantly increases the size of

the problem. Therefore, a framework is designed that solves the problem iter-

atively to improve computational performance. A three level filter is designed

to select a subset of reliability constraints in each iteration and gradually in-

crease the size of the problem. The VCL algorithm developed in chapter 2 is

part of this filter. The result of this algorithm will be an upper bound for TEP

problem, and a lower bound can be found using branch and bound technique

to quantify the quality of results.

In chapter 5, a general decomposition framework is developed to solve

large-scale TEP problems as the developed method in chapter 4 became in-

tractable for large-scale problems. It can benefit from both Benders decompo-

sition and Progressive Hedging algorithms for the same problem. A bundling

algorithm is developed to improve the convergence of the progressive hedging

algorithm. The proposed method in chapters 2 and 4 can be used to solve

each subproblem.

In chapter 6, different factors affecting the performance of the proposed

framework in Chapter 5 are investigated, and two case studies are used to

demonstrate the capabilities of this framework.
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In chapter 7, a summary of main findings of this research is provided.

This chapter concludes with a discussion of different paths for future work in

this area.
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Chapter 2

Reliability constraint screening for the TEP

optimization problem
1

1Mohammad Majidi-Qadikolai and Ross Baldick. Integration of N-1 contingency anal-
ysis with systematic transmission capacity expansion planning: ERCOT case study. IEEE
Transactions on Power Systems, 31(3):2234-2245, May 2016. Authors had equal contribu-
tions.
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Nomenclature

Sets and Indices:

Nb: Set of buses with index i, k, n, r (for reference bus)

Ng: Set of all generators with index g

Nl: Set of all lines (existing and candidate) with index l, m

No: Set of all existing lines with index l, m

Nn: Set of all candidate lines with index l, m

Nu: Set of all existing lines and selected candidate lines with index l, m

CLLo: Original candidate lines list

CLLu: Set of updated candidate lines with index l, m

Lk: Set of lines connected to bus k

Gk: Set of all generators connected to bus k with index k

Wk: Set of wind generators connected to bus k with index k

Φl: Set of lines with violated post-contingency flows under outage of line l

N t
s: Set of system operation states in load block t with index c (c = 1 repre-

sents normal operating condition)

T : Set of load blocks with index t

Ω: Set of all scenarios with index ω

| |: Size of a set

t: Superscript for different load blocks

ω: Superscript for different scenarios

Parameters:

qi: Per MWh load curtailment penalty at bus i
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γi: Per MWh wind curtailment penalty at bus i

Cog: Per MWh operation cost for generator g

ζl: Annual cost of line l construction

η: Line loading threshold for monitoring purpose

di: Demand at bus i

P ω: Probability of scenario ω

B: Diagonal matrix of line admittance

Y : Reduced admittance matrix (column and row related to reference bus are

removed)

Ψ: Reduced bus-branch incidence matrix (row related to reference bus is re-

moved)

Pmax
g : Maximum capacity of generator g

Pmin
g : Minimum capacity of generator g

fmaxl : Maximum capacity of line l

fminl : Minimum capacity of line l

Ml: Big M is a large positive number for line l

C: Matrix of contingencies that specifies the status of lines under different

contingencies (1 for in service and 0 for out of service lines) with index c

PTDF : Power transfer distribution factor

LODF : Line outage distribution factor

LCDF : Line Closure Distribution Factor

Γm,l: Magnitude of violation in flow of line m when line l is on outage

CIIl: Contingency identification index for outage of line l
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α: Line capacity modification factor for short-term capacity limits

χ: Reduced Z-bus matrix (inverse of Y )

Flag: Is set to 1 if any load or generator is connected to an island bus in the

base case, and is set to 0 otherwise.

Variables:

xl: Binary decision variable for line l

ri,c: MW load curtailment at bus i under operation state c

CWi: Aggregated MW wind curtailment at bus i

pg: Output power of generator g

fl,c: Power flow in line l under operation state c

θi,c: Voltage angle at bus i under operation state c . ∆θl,c is voltage angle

difference across line l under operation state c, ∆θl,c= θk,c-θn,c for line l from

bus k to bus n.
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2.1 Introduction

From the optimization formulation perspective, TEP is a large scale,

non-convex and nonlinear optimization problem. Using linear approximation

of AC power flow equations is one of the most popular simplifications for

modeling non-linear power flow equations in high level TEP. The accuracy of

linear approximation of power flow equations (DC model) is evaluated in [37,

111, 9, 93]. In [37], authors defined “overload network” to model overloads

in different corridors in existing network and make decision about new line

requirements. The designed network with linear approximation is tested with

AC power flow equations, and if there is no occurrence of an overload in AC

analysis then this approximation passed the AC test successfully. In [111], the

authors compared the results of AC and DC power flow results for the IEEE

300-bus system, and showed the error between DC and AC results will be less

than 5% when the assumptions of DC power flow are satisfied. Authors in [9]

compared the sensitivity analysis in power systems with DC and AC models,

and demonstrated that it provides a relatively reliable approximation of the

behavior of the system. In [93], the authors showed that locational marginal

prices (LMPs) that drive the economic analysis of power system operation will

not be significantly affected when AC model is approximated with DC model.

In [113] and [37], transmission planing is formulated as a simple lin-

ear programming (LP) problem with continuous decision variables. In [113],

they proposed a LP method with continuous variables for optimal transmis-

sion planning by minimizing load curtailment. As transmission line capacity
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is lumpy, considering capacity to be a continuous variable is not accurate.

In [112], the author proposed a mixed integer programming (MIP) formula-

tion using binary decision variables for selecting new lines with DC power

flow approximation. This method is more accurate in representing new line

capacities, but their formulation is not computationally efficient.

Kirchoff’s second law can be represented with two inequalities in a

mixed integer disjunctive model, each related to one possible flow direction [8].

This technique increases the number of constraints and provides better con-

ditioning properties by tightening constraints. The authors of [8] also used

GRASP meta-heuristic method to provide an upper bound feasible solution.

In [2], power network losses are integrated into TEP optimization problem by

using piecewise linear loss functions for each line. It provides more accurate

power system model for planning purpose while preserving linearity, and may

affect the selected expansion plan for networks with relatively high losses such

as systems with long transmission lines. However, the simulation time for

this case is increased around five times compared to the case without losses.

This huge extra computational burden should be added to the model if it is

expected to have a significant impact on selected plans (based on average net-

work losses in the area of study). A detailed analysis on the impact of line

loss modeling on AC power flow approximation is given by [21].

Benders decomposition (BD) is used in several contexts as a power-

ful tool for decreasing simulation time for solving large scale optimization

problems. Mathematical formulation for implementing Benders decomposition
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for transmission and generation expansion planning is developed by EPRI in

1988 [43]. Gomory cuts are added to Benders cuts in [14] to improve the per-

formance of BD for large scale MIP problems. To overcome the non-convexity

of transmission planning problem, [103] and [102] proposed a three phase hier-

archical decomposition method to find the global optimal answer. They used

BD to solve each phase and transfered Benders cuts into the next phase to

integrate different phases. They used a transportation model, in which the

second law of Kirchoff is relaxed, and a hybrid model (transportation model

for new lines and DC model for existing lines) with continuous variables (LP

model) to get the global optimal results (for their approximate formulation)

in the first and second phases of their hierarchical model. In the third phase,

they used the DC model with discrete decision variables and Benders cuts from

the first and the second stages to solve MIP optimization problem. In [94],

authors considered load and wind as dependent and uncertain variables, and

used a two stage stochastic model and sequential approximation technique to

solve TEP optimization problems with BD. A dynamic transmission expan-

sion planning is formulated in [84] and authors compared the performance of

stochastic programming with deterministic and heuristic methods. In [86],

authors evaluated the impact of different approximations on TEP with renew-

able portfolio standards. Authors in [85] and [87] proposed a new approach for

multi-regional transmission and generation expansion planning with Benders

decomposition technique, which is enhanced by developing new lower bound-

ing constraints that increase convergence speed. They applied the model to
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large scale networks with a relatively large number of scenarios to capture un-

certainties, and evaluated the impact of optimality gap on simulation time. To

decrease computational efforts, all above mentioned references ignored N − 1

contingency analysis in their proposed methods for transmission planning. So,

there is no guarantee that selected optimal plans by these papers satisfy N−1

criterion.

2.1.1 Power System Adequacy and Reliability

The power system should be adequate and reliable. Based on North

American Electric Reliability Corporation (NERC) definition “Adequacy is

the ability of the electric system to supply the aggregate electric power and

energy requirements of the electricity consumers at all times, taking into ac-

count scheduled and reasonably expected unscheduled outages of system com-

ponents” and “Operating reliability is the ability of the electric system to

withstand sudden disturbances such as electric short circuits or unanticipated

loss of system components” [90]. In standard 51, NERC categorized system

adequacy and security into four levels A-D [89]. Level A refers to system per-

formance under normal conditions (no contingency), and in level B, system

performance following the loss of a single bulk system element is evaluated.

In Level C and D, system performance under loss of two or more bulk sys-

tem components and extreme events are evaluated, respectively. Categories

A-C should be evaluated for near-term planning (one to five years) and long-

term planning (more than ten years), and category D should be considered for
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near-term planning only.

The power system should be planned and be operated in a way to

be able to supply all loads in case of a single outage in system components

(level B), which is called N−1 criterion [89], [27]. To satisfy this standard, sys-

tem operators usually use security constrained optimal power flow (SCOPF)

or security-constrained unit commitment (SCUC) to dispatch/commit power

plants. Post-contingency re-dispatch [81], congestion management [63], trans-

mission switching [106, 118, 48, 67, 107], or using FACTS devices [62, 65,

124, 123, 125] are techniques used to add flexibility to transmission opera-

tion and subsequently reduce operation costs. In [81], a new algorithm for

security constrained optimal power flow (SCOPF) is proposed that considers

post-contingency corrective rescheduling to decrease dispatch costs. In [48],

authors applied a sensitivity analysis to the economic impact of transmission

switching that shows that incremental switching benefits will decrease when

the number of allowed switching operations increases. Authors in [67] added

some constraints to transmission switching optimization problem to make it

more practical by limiting the number of switching. They have also proposed

a heuristic method to reduce the switching lines list to decrease computation

time. To integrate transmission switching in system operation, authors in [107]

used flow cancellation technique to model switching. They showed that this

technique is faster than using binary variables to change the status of lines in

topology control when the number of switching lines in limited. In [114], trans-

mission switching is integrated with TEP, and they showed that switching can
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change transmission expansion plans by alleviating contingencies and decreas-

ing power system operation costs in systems with high wind penetration, but

they also ignored the impact of contingency analysis on planning.

Various researchers use eitherN−1 criterion or probabilistic approaches

such as Loss of Load Probability (LOLP) or Loss of Load Expectations (LOLE)

for power system adequacy and security evaluation. In [59], authors explained

drawbacks of each method and evaluated the impact of considering different

reliability criteria on TEP. They performed numerical analysis for the Garver

6-bus system [37] to compare the performance of these methods. The result

shows that TEP with N − 1 criterion requires more investment compared

to TEP with probabilistic approaches as it should supply the demand under

all single contingencies. Loss of Load Cost (LOLC) as a reliability index is

calculated for the selected plan for both cases, and LOLC for TEP with N −1

criterion is much less than LOLC for TEP with the probabilistic approach,

showing the impact of extra investment on improving system reliability. By

considering N − 1 criterion, the system quality and reliability indexes will be

less sensitive to load variations and components’ rate of outage compared to

probabilistic approaches.

O’Neill et al proposed a comprehensive mathematical formulation for

dynamic optimal power system planning and investment by integrating unit

commitment, transmission switching, and N − 1 contingency analysis into a

power system operation cost formulation in [92]. But as they mentioned in

their paper, it is a very complex and computationally expensive model even
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for a very small case study; so it is not practical for large scale networks at

this time. More practical formulations for TEP optimization with N − 1 con-

tingency analysis are formulated in [104, 54, 83, 122, 66, 70]. Rudkevich [104]

proposed a nodal capacity market framework for generation and transmission

expansion planning. He used the flow cancellation technique to represent a

fixed list of contingencies in a reliability dispatch formulation, in which all

resources are dispatched at zero costs and load shedding will be penalized

at value of lost load (VOLL) price. In [54], authors proposed a three stage

transmission and generation expansion planning optimization formulation with

Benders decomposition technique, and considered contingency analysis for all

existing and candidate lines and integrated transmission switching to alleviate

violations in line flows. In [83], authors developed a probabilistic method for

transmission investment by integrating security and corrective controls into

operation cost estimation. Generation reserves and special protection schemes

are considered as additional corrective actions that can help system stability

during contingencies and decrease operation costs by reducing load shedding.

This method is applied to the IEEE 24-RTS case study, and it takes more than

600 seconds to solve this case with 40 different operating conditions (which

is parallelized on a machine with 12 cores and 192 GB of RAM), and they

did not evaluate the performance of their proposed method for large scale

systems. In [122], an iterative method for multi-stage transmission planning

is proposed by integrating linear approximation of network losses into MIP

formulation. N − 1 contingency analysis is not integrated into the planning
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formulation, and it is checked separately in a security check sub-problem. To

decrease the problem size, they suggested to limit the set of monitored lines

during contingency analysis to the lines that are close to the expansion area.

Because transmission line loading depends on demand and generation

dispatch, there is no guarantee that TEP with a fixed contingency list (used

by [104]) will satisfy N − 1 criterion in all conditions, while including all lines

in the contingency list (used by [54] and [122]) is not necessary most of the

time in real networks, as usually a single outage of only a limited number of

lines will actually result in violation in flow limits on other lines. For example

in ERCOT, there were only about 700 contingency constraints (out of tens

of millions of possible constraints) which were binding at some time during

2013 [97]. Usually during midnight with very low load level, single outage of

any line will not cause overload on other lines in most power systems. In other

words, constraints related to those lines will remain passive in the optimiza-

tion problem, and will not affect the feasible region and the optimal answer.

Therefore, for this particular light load case we do not need to consider all or

part of lines for contingency analysis, and results of OPF will be feasible for

SCOPF as well. But this is not the case for all loading conditions, and impor-

tant lines for contingency analysis that will contribute to forming the feasible

region depend on the system loading condition and network configuration, so

the key question is how to find them. In this chapter, we propose a method to

screen reliability constraints and select effective lines for contingency analysis

based on system conditions.
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The rest of this chapter is organized as follows: in section 2.2, the

proposed reliability constraints screening framework is explained, and in sec-

tion 2.3 mathematical formulation of transmission expansion planning with

N − 1 contingency analysis with model performance are discussed. In sec-

tion 2.4, the proposed method is implemented on two different case studies,

and results are compared with the integrated model, in which all contingencies

are integrated into TEP optimization problem.

2.2 The Proposed Reliability Constraints Screening Frame-
work

2.2.1 Modeling Assumptions

As stated in chapter 1, there are several parameters that affect the

selected optimal plan in TEP. It is almost impossible to model/integrate all

those important parameters in TEP, and be able to solve the problem for large

scale systems in a reasonable time with current machines. Therefore, we need

to choose some parameters that have more significant impact on the long-

term TEP. In this work, we assume legal issues and environmental constraints

can be addressed outside of TEP optimization problem as they usually affect

transmission candidate lines. Voltage and reactive power requirements usually

have local impacts and the investment cost to address possible issues in this

area is much less than investment in new transmission lines, so we can ignore

them in the high-level TEP and address them in near-term planning (this as-

sumption is valid for most transmission systems but not all, so if the system

24



reliability is too sensitive to voltage and reactive power in a network it should

be integrated into TEP formulation). Network losses can be an issue for sys-

tems with relatively long transmission lines and high losses but otherwise their

impact is typically negligible. Transient stability is a critical issue in power

system operation and design, and to be analyzed accurately it needs detailed

network data that usually are not available during long-term planning. A less

accurate evaluation can be done using typical data to make sure there is no

significant reliability issue with the selected expansion plan; therefore it will

not add extra computational burden on TEP optimization problem. Other

assumptions in this chapter are as follows:

• Linearized power flow equations with the first and second Kirchhoff’s

lows (DC power flow),

• Considering a limited number of load blocks to represent load and wind

variations,

• Unit commitment (UC) is approximated with optimal power flow, as-

suming all generation is in-service,

• The market is competitive, so power plants offer at their marginal costs

and they do not exercise market power,

• Load and wind are modeled as deterministic in each load block with

multiple operation load blocks to capture load and wind variations.
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To satisfy “ERCOT Planning Guide, Section 4: Transmission Planning Crite-

ria” [27], NERC’s standard on transmission planning [91] and standard 51 [89],

we integrate N −1 contingency analysis into TEP (instead of probabilistic ap-

proaches).

In most restructured electricity industries, generation capacity expan-

sion planning (GCEP) is decentralized and private parties make their own

decisions regarding the location, capacity, and type of new power plants. In

this chapter, generation expansion planning is assumed deterministic and suf-

ficient to supply demand; therefore, TEP optimization problem is solved for

a given future load and generation growth. However, there are macro un-

certainties in future generation expansion, and a more realistic way to model

this uncertainty is to run TEP under different GCEP scenarios rather than

considering deterministic future generation expansion (as will be investigated

further in next chapters). Moreover, by moving from static TEP toward dy-

namic (multi-stage) TEP, it is possible to model uncertainties about GCEP in

the future (wait-and-see) for modifying TEP. Modeling dynamic TEP signif-

icantly increases computational time for large scale systems, so it should be

considered carefully.

For power system operation cost modeling, we consider preventive DC-

SCOPF, in which single outage of lines and transformers are considered as

contingencies for satisfying N − 1 criterion and power plants will have the

same dispatch during normal and under contingency operating states (see [6]

for more discussion about preventive DC-SCOPF in transmission planning).
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In long-term (10+ years) planning, corrective dispatch is usually considered

for single outage of generators during the planning process (G− 1) [54], [122].

However, in near-term transmission planning (less than 5 years), it is com-

mon to include different corrective actions for operation cost estimation to

mitigate the impact of an outage and develop corrective expansion plans [91].

Compared to corrective DC-SCOPF, preventive DC-SCOPF usually results in

higher operating costs as it has tighter constraints, and provides higher se-

curity margin for N − 1 − 1 security condition, in which the system should

withstand the second outage when the system is returned to the normal op-

eration condition after the first outage. The higher operating cost as a result

of preventive dispatch may affect the selected optimal transmission expansion

plan (usually increasing investment costs). The proposed algorithm in this sec-

tion can be applied to TEP with both corrective and preventive DC-SCOPF

formulations.

Considering single outage of all lines as operation states will increase

the size of the problem significantly and usually makes it unsolvable; therefore

different techniques are used for selecting some lines for contingency analysis.

Authors in [61] proposed a constraint screening method for security analysis in

which SCUC formulation is replaced with an equivalent reduced-order SCUC

problem to decrease computational time. In [32], contingencies are categorized

as more probable and less probable. This criterion will result in selecting lines

that have more possibility of outage. This will not guarantee satisfying N − 1

criterion, and is more suitable for probabilistic approaches. Other techniques
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for decreasing computational time for contingency analysis include removing

parallel lines from contingency list, decreasing the number of monitored lines,

and selecting important lines based on expert knowledge [117]. By omitting

the lines such that their outages do not cause overload on other lines, we can

decrease the number of lines for contingency analysis, and increase simulation

speed while still satisfying N − 1 criterion. We propose a systematic method

to automatically create contingency lists based on network configuration and

loading conditions, and integrate them into the TEP problem to find the op-

timal transmission capacity expansion plan that satisfies N − 1 criterion.

2.2.2 PTDF and LODF concepts and formulation

Power Transfer Distribution Factor (PTDF ) and Line Outage Distri-

bution Factor (LODF ) are two factors mainly used for sensitivity analysis of

flows on transmission lines. PTDF is defined as a measure for sensitivity of

line MW flow to a MW transfer. A MW transfer in this definition refers to

injecting 1MW at one bus and withdrawing 1MW at another bus. There are

different formulations for calculating PTDF . Some references define PTDF

as a MW transfer when the withdrawal bus is always the reference bus (r), so

the only important parameter for calculating PTDF based on this definition

will be the injection point. In [109], PTDF formulation is given based on this

definition as follows:

28



PTDFl,(ir) = (χni − χki)×Bl,l (2.1)

f̃l = fl + PTDFl,(ir) ×∆Pi (2.2)

where PTDFl,(ir) represent the sensitivity of flow on line l joining between bus

n and k to the injection of power at bus i and withdrawal at the reference bus

r. χni represents the element (n, i) of the reduced Z-bus matrix χ, and Bl,l is

the susceptance of lines l. f̃l is flow on line l after injecting ∆Pi at bus k. fl

shows flow on line l before injecting power at bus i.

The Line Outage Distribution Factor (LODF ) shows the sensitivity of

flow on lines in a network when there is a change in flow of a line in that

network. In other words, LODFm,l shows the percent of pre-outage flow on

line l that will show up on line m after the outage of line l.

LODFm,l =
∆fm,l
fl

(2.3)

where ∆fm,l shows change on flow on line m after the outage of line l, and fl

represents pre-outage flow on line l.

By using PTDF defined in (2.1), LODF can be calculated as fol-

lows [109]: Assume we inject ∆Pn at bus n and withdraw at reference bus.

Suppose we specify ∆Pn as follows:

∆Pn =
−fl

PTDF IN
l,(nr)

(2.4)
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Superscript IN represents the case that line l is connected to the network. By

injecting this power, flow on lines will change. Flow on line l and m can be

calculated by equation (2.2). For line l, as shown in (2.5), f̃l = 0.

f̃l = fl + PTDF IN
l,(nr) ×

−fl
PTDF IN

l,(nr)

(2.5)

= 0

Therefore, if we open line l after making the change ∆Pn to injection at bus

n then flows in the rest of network will not change. After opening this line,

PTDF coefficients will change because of changing network topology, and we

use superscript OUT to distinguish it from the case that line l was connected.

We successfully opened line l without changing flow on other lines in

the network at the cost of injecting ∆Pn. Now to remove this extra injection,

we inject −∆Pn at bus n (note that line l is opened now) so the net injection

at this bus will be zero. This new injection will change flow on lines in the

network again. The total change in flow on line m as a result of opening line

l can be calculated from the following equation:

∆fm,l = PTDF IN
m,(nr) ×∆Pn + PTDFOUT

m,(nr) ×−∆Pn (2.6)

By substituting (2.4) into (2.6), and reordering based on (2.3), we will have

the following equation:

LODFm,l =
PTDFOUT

m,(nr) − PTDF IN
m,(nr)

PTDF IN
l,(nr)

(2.7)

30



Using equation (2.7), we need to calculate PTDF both before (with super-

script IN) and after (with superscript OUT ) opening a line which is not

computationally efficient.

PTDF can be defined as sensitivity of injecting and withdrawing 1MW

power between two specific buses. This definition can be related to the previous

definition of PTDF (2.1) as follows:

PTDFl,(ni) = PTDFl,(nr) − PTDFl,(ir) (2.8)

where PTDFl,(ni) shows sensitivity of flow of line l to 1MW injection at bus

n and withdrawal at bus i. In this equation, n and i can be any buses in the

network.

NOTE: Indices m and l are exclusively used for transmission lines and

indices i, n, r and k are dedicated to buses. To distinguish between bus versus

line, we put the index in parenthesis if it refers to a bus. If bus n and i are

two ends of line m, then we use notation PTDFl,m instead of PTDFl,(ni) for

the left side of equation (2.8) for simplicity.

It is also possible to model LODF as a transfer [98]. The concept is

shown in Figure 2.1. A transfer ∆Pn = ∆Pk is created on two ends of line l i.e.

buses n and k. The magnitude of transfer is selected in way that ∆Pn = f̃l.

In this case, flow on switches n and k will be zero (based on the first law of

Kirchhoff), so opening those switches will not affect network dispatch. This is

known as the flow cancellation technique, which is used by [104]. This transfer
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will affect flow on other lines in the network as well that can be calculated

from the following equation, where we no longer use the superscripts “IN”

and “OUT”, and all PTDF s correspond to the “IN” case before opening the

line.

∆fm,l = PTDFm,l ×∆Pn = PTDFm,l × f̃l (2.9)

Based on (2.2), post transfer flow on line l is:

f̃l = fl + ∆fl,l = fl + PTDFl,l × f̃l (2.10)

∆Pn = f̃l =
fl

1− PTDFl,l
(2.11)

By substituting (4.21) and (2.11) in (2.3), we will have:

LODFm,l =
PTDFm,l

1− PTDFl,l
(2.12)

Equation (2.12) models LODF as a transfer. Direct method is another

method that can be used to calculate LODF. It is similar to the transfer

method, and is explained in subsection 2.3.2 with VCL algorithm.

2.2.3 The Proposed Framework

The number of new lines that should be selected and the number of

operation states (normal and/or under contingency) that should be integrated

into MIP have significant impacts on computational effort and simulation time.

The proposed method uses these facts to solve large scale TEP with N − 1
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Figure 2.1: Modeling LODF as a transfer [98]

contingency analysis faster. The proposed framework can be summarized in

the following steps:

Step 1: Load Input Data.

Input data includes load, generation, current and candidate transmission

components etc. The base case system that contains existing lines, load,

buses and generators is referred to as So.

Step 2: Check system islanding.

In this step, all candidate lines are tentatively modeled as being built. If

there are any island buses in this system, it means those buses will not

have any impact on making a decision about candidate lines so they can

be safely removed from data. The base case system So is modified by

removing these islands.

Step 3: Solve a relaxed version of TEP problem.
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In this step, we solve a relaxed version of the original integrated TEP,

in which all constraints related to contingency analysis are ignored (for

the base case So). This optimization problem is much easier to solve and

provides a lower bound for the original problem. The selected candidate

lines in this step together with the existing network (No) form Nu. The

updated system that contains the base case system (So) and newly added

lines is referred to as Su.

Step 4: Temporarily remove island buses from Su.

As it is still possible to have island buses in system Su and we need a

system without any island buses for the next step, these buses will be

removed from bus data in Su temporarily creating a reduced system that

is referred to as Sr. Island buses will not have any impact on creating

contingency lists because no line is connected to them. We use Sr in

step 5 to create VCL.

Step 5: Create variable contingency list (VCL).

Modified Line Outage Distribution Factor (LODF) matrix is calculated

for single outage of all lines in Sr. Based on these factors, we calcu-

late post-contingency flow in transmission lines (for DC power flow) and

Contingency Identification Index (CII) for each line on outage. VCL will

be created based on CII and other given parameters. If VCL is empty,

it means the current network configuration satisfies N − 1 criterion, go

to step 7. Otherwise, Contingency matrix (C) will be created based on
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VCL. It should be mentioned that if there are T load blocks to simulate

yearly operation period, CII t, V CLt, and Ct should be calculated for

all t ∈ T . Mathematical formulation is given in subsection 2.3.2.

Step 6: Solve TEP optimization problem.

In this step, two different options are considered for solving TEP opti-

mization problem as follows:

• Option (i): System Su, to which lines from step 3 are added, is used

as the base case system for solving TEP with contingencies for this

option. The TEP optimization problem is run by integrating Cts

from step 5. This optimization problem will be solved much faster

than the integrated TEP because it should select fewer new lines

when some of them are already selected by the relaxed problem

(step 3), and it considers fewer contingencies (size of VCL is much

less than the number of total branches Nl). The selected plan by

this option is typically near optimal although there is no guaran-

tee for optimality for this option in general, but we quantify the

quality of this result by calculating an upper bound for the possible

deviation from optimality (see section 2.3.3 for more detail).

• Option (ii): System So is considered as the base case system for

TEP optimization problem with contingencies. As the result of

step 3 are not used as a part of the base case here, this option

needs some more simulation time, but it is still much faster than
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the integrated model as we use a short list of contingencies. Based

on Theorem 1 in section 2.3.3, the result of option (ii) is optimal.

The performance of these two options is compared in section 2.4.

Step 7: Run DC-SCOPF with all contingencies for the selected plan in step 6.

If there is no violation, for option (i), we have near optimal expansion

plan that satisfies N − 1 contingency analysis and for option (ii) the

selected plan will be optimal. (See Theorem 1 in section 2.3.3 for con-

ditions for optimality). Otherwise, update Nu and Su based on results

of step 6, and go back to step 4 to add new possible important lines to

VCLs.

In the proposed method, Contingency Identification Index of line l

(CIIl) measures the average overload on transmission lines when line l is on

outage, and Variable Contingency List (VCL) represents a list of network lines

whose single outage causes high overload (more than a predefined threshold)

in other lines in the network. The mathematical derivation of CII and VCL

are given in section 2.3.2. The performance of the proposed method is also

discussed in more detail in section 2.3.3. The flowchart in Figure 2.2 shows

important stages of the proposed method (dashed boxes represent the 7 steps).

2.2.4 A Descriptive Example

A simple descriptive example is developed to clarify different steps of

the proposed algorithm. Figure 2.3 (a) represents input data for this case

36



Start

Load Input
Data, Create So

Step 1

Any island
after

adding
all lines?

Step 2

Solve a re-
laxed problem

Step 3

Permanently remove
islands, modify So

Create Nu and Su as
the updated system

Any island
in existing
network?

Step 4

Calculate CII
and VCL

Temporarily remove
islands and create Sr

VCL is
empty?

Step 5

Create contineg-
ncy matricies

Use updated system
Su as the base case

Solve TEP

Use existing system
So as the base case

Solve TEP

Step 6

Option (i) Option (ii)

Selected plan
is near optimal

Selected plan
is optimal

Stop

Step 7

yes

no

yes

no

yes

no

Figure 2.2: Flowchart of the proposed VCL algorithm
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study. It contains 6 buses, with 2 generators, 2 loads (load at bus 4 is a new

load center that is going to connect to the network), 2 existing (solid black)

lines and 5 candidate (dashed red) lines, and the base case So contains buses

1 to 6, lines 1-3 and 1-2, two generators and two load centers. It might be

argued that buses 5 and 6 can be considered as candidate buses, but as we

do not make decision about building/not building a new bus in our model,

we represent them as a part of existing network despite them not initially

being connected. In step 2, which is shown in Figure 2.3 (b), it is tentatively

assumed that all candidate lines are built (shown with solid red lines). In this

condition, bus number 6 is an island bus in the system. This may happen

because of missing data in the existing/candidate network, a typographical

error in the bus name etc., which can happen when working with large scale

data. As this bus will never be connected to the network, it is deleted from

base case (So), and the modified base case is a system with 5 buses, 2 existing

lines, 2 generators and 2 load centers. In step 3, as shown in Figure 2.3 (c),

the line between bus 2 and 4 is selected by the relaxed problem to be built to

supply demand at bus 4, and an updated system Su is created that includes

So together with line 2-4. In step 4, we check for islanding again, because for

step 5 we need a network without any island. As shown in Figure 2.3 (c), in

step 3, candidate lines connected to bus 5 are not selected to be built, so bus 5

is still an island in Su. It is temporarily removed from Su to form the reduced

system Sr. In step 5, Sr is used to create VCLs. In step 6, there are two

different options for solving TEP: option A that uses Su as the base case and
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solve TEP with selected contingencies. In this case, the selected line in step 3

(line 2-4) is considered as a part of the base case (Su) for optimization problem

in step 6, therefore there is no guarantee for optimality and the selected plan

is near optimal. Lines 1-5, 3-4, 4-5 are added to Su in this step (shown with

solid black lines in Figure 2.3 (d)). Option (ii) uses So as the base case for

solving TEP with contingency analysis and the selected line in step 3 (line 2-4)

is considered as a candidate line again (so the solver makes decision in step 6

to build this line or not). In this case based on Theorem 1, the result of step 6

is optimal. Compared to option (i), option (ii) needs more computational time

but still much less than the integrated model. Option (ii) adds lines 1-5, 2-4,

3-4 and 4-5 to So for this case (shown with solid black lines in Figure 2.3 (d)).

2.3 Mathematical Formulation and Model Performance
Discussion

2.3.1 MIP Formulation with Variable Contingency Matrix

The TEP optimization problem with contingency analysis is formu-

lated as a Mixed-Integer Programming (MIP) problem. The objective func-

tion (2.13) contains transmission investment cost plus system operation cost

that includes wind and load curtailment penalties and generation production

costs for different operation periods. For power system operation cost mod-

eling, security-constrained unit commitment (SCUC) is approximated with

individual SCOPF for each load block, because usually a limited number of

load blocks is considered to simulate system operation, and as selected load
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Figure 2.3: An example for explaining steps of the proposed method

blocks do not necessarily represent sequential operation hours in a day or a

week, it is not accurate to integrate them into a SCUC model. Moreover, mod-

eling power system operation using unit commitment adds new binary decision

variables that will significantly increase computational time. Recently, authors

in [50] developed a tight convex approximation for SCUC that is polynomially

solvable, which can be integrated into TEP to tractably represent unit com-

mitment in power system operation. The implicit assumption in our model is
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that the system has enough ramp rate capability to cope with hourly net load

(Load−Wind) variations. In this formulation we only integrate contingencies

from the VCL algorithm, but in the integrated model for TEP (that we used

to compare our results with), single outage of all lines is integrated into TEP

optimization problem formulation.

Z∗= min
x,p,θ,r,f ,CW

∑
Nn

ζlxl+
∑
T

[∑
Nt
s

(
∑
Nb

qir
t
i,c)
]

+
∑
T

[∑
Nb

γiCW
t
i +
∑
Ng

Cotgp
t
g

]
(2.13)

st. −
∑
Lk

f tl,c+
∑
Gk

ptg+r
t
k,c=d

t
k,∀t, k, c (2.14)

−Ml(1− Ct
l,cxl) ≤ f tl,c−Bl,l∆θ

t
l,c,∀t, l, c (2.15)

Ml(1− Ct
l,cxl) ≥ f tl,c−Bl,l∆θ

t
l,c,∀t, l, c (2.16)

CW t
i ≥

∑
Wk

(Pmax,t
g − ptg),∀t, i (2.17)

(Ct
l,cxl)f

min
l ≤ f tl,c ≤ fmaxl (Ct

l,cxl),∀t, l, c (2.18)

Pmin,t
g ≤ ptg ≤ Pmax,t

g ,∀t, g (2.19)

0 ≤ rti,c ≤ dti,∀t, i, c (2.20)

−π
2
≤ θti,c ≤

π

2
,∀t, i, c (2.21)

CW t
i ≥ 0,∀t, i (2.22)

xl=1,∀l ∈ No (2.23)

xl ∈ {0, 1},∀l ∈ Nl (2.24)
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In equation (2.13), N t
s includes normal and single contingency states of the

system for each load block t, so the size of N t
s is equal to |N t

s| = 1 + |V CLt|.

In the objective function, load shedding is penalized under normal and single

contingency operation states to prevent load shedding in all N t
s states in order

to satisfy N−1 criterion. For wind curtailment and generation dispatch costs,

only normal operation condition is considered. Equation (4.6) enforces power

balance at each bus. Equations (4.7) and (4.8) show DC representation of

flow in transmission lines, the second law of Kirchoff. In these equations,

Ct represents contingency matrix for load block t. This matrix contains 0

and 1 as the status of lines (1 for lines in service and 0 for lines on outage).

The first column of this matrix represents the normal operating condition,

in which no line is on outage, and one line will be on outage in each next

column of the matrix based on V CLt results. The size of this matrix is |Ct| =

|Nl| × (1 + |V CLt|).

Ct =


1 0 1 · · · 1

1 1 0
. . .

...
...

...
. . . . . . 1

1 1 · · · 1 0


Equation (4.9) measures the aggregated amount of curtailed wind at

each bus. Pmax,t
g is representing the maximum possible output of wind farm

g for each load block t, which is no larger than the nominal installed capacity

of that wind farm. Equation (4.10) shows flow in all lines should always be

between their capacity limits. Pre-contingency limits are based on continuous
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rating, so-called Rate A, whereas contingency limits are based on short-term

Rate B. We expect that RateB = RateA(1 + α), with α on the order of

several to many %. When a line is out or is not selected to be built, flow

for that line is forced to zero. Equation (4.11) enforces power plants to be

dispatched between their minimum and maximum limits. It also shows that

pre- and post-contingency dispatch of units are the same. As shown in this

equation, maximum and minimum capacity of power plants may change in

different load blocks based on their available capacity. It provides more flexi-

bility for applying deterministic changes in the capacity of power plants during

different time periods that may happen as a result of expansion, retirement, or

scheduled maintenance. Equation (4.12) enforces that load shedding at each

bus be greater than or equal to zero and less than or equal to the total load at

that bus. Equation (4.13) limits voltage angles at each bus to be between −π
2

and π
2
. Equation (4.14) enforces that wind curtailment cannot be negative.

Equation (4.15) sets binary decision variables for existing lines to 1. Equa-

tion (4.16) shows that each entry of x is defined as a binary variable to make

decision on building a new line (x = 1 when a line is built and x = 0 when a

line is not built).

2.3.2 Variable Contingency List (VCL)

To evaluate the impact of a line outage on post-contingency flows of

other lines, DC power flow equations can be used to calculate the sensitivity of

lines flow on outage of a line in the network. As mentioned in subsection 2.2.2,
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there are several different formulations to calculate Line Outage Distribution

Factors (LODF s) [117], [109] and [44]. In [9], authors showed PTDF is not

sensitive to loading conditions and for real networks DC-PTDFs are very close

to AC PTDF s. By using the direct calculation method proposed in [44], the

impact of outage of line l on post-contingency flow of line m i.e. LODFm,l for

l 6= m is calculated using the following equations:

PTDFl,l = Bl,lΨ
T
l [Y ]−1Ψl (2.25)

PTDFm,l = Bm,mΨT
m[Y ]−1Ψl (2.26)

LODFm,l = PTDFm,l(1− PTDFl,l)−1 (2.27)

fm,l = fm + LODFm,lfl (2.28)

where Y is the reduced admittance matrix, in which the column and the row

related to the reference bus is removed. Ψ is the reduced bus-branch incidence

matrix (the row related to the reference bus is removed), and Ψl represents the

lth column of this matrix that has values 1 and −1 for two ends of line l and

0 for other buses. For lines connected to the reference bus, Ψl has only one

non-zero element. Equations (2.25)-(2.27) show how to calculate LODF for

line m when line l is on outage. If we assume line l connects bus k to bus n,

then PTDFm,l shows the impact of injecting 1 MW at bus k and withdrawing

1 MW from bus n on flow in line m (on flow in line l for PTDFl,l). As

we are dealing with N − 1 contingency analysis in this chapter, the LODF

formulation represents the single contingency case. For multiple contingencies

see [44]. Equation (2.28) calculates post-contingency flow in line m. For line
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l, post-contingency flow will be zero as line l is out, so LODFm,l is equal to

−1 when m = l.

To calculate Contingency Identification Index (CII), we first should

find lines such that their post-contingency flows violate their capacity limits.

Define:

Γtm,l =
f tm,l − fmaxm

fmaxm

,∀m, l ∈ Nu,∀t ∈ T (2.29)

Φt
l = {m ∈ Nu |Γtm,l ≥ α} ,∀t ∈ T,∀l ∈ Nu (2.30)

CII tl =

{ ∑
m∈Φt

l
Γtm,l

|Φtl |
, if |Φt

l | 6= 0 ,∀t ∈ T,∀l ∈ Nu

0 , if |Φt
l | = 0 ,∀t ∈ T,∀l ∈ Nu

(2.31)

V CLt = {l ∈ Nu |CII tl ≥ α} ,∀t ∈ T (2.32)

where Γtm,l in (4.17) evaluates over/under loading in linem compared to Rate A

(fmaxm ) when line l is out. Equation (4.18) selects lines such that their overload

exceeds emergency capacity (lines with more than α% overload). If no overload

is accepted during contingencies then α = 0 and RateB = RateA. When line

l is on outage, equation (2.31) shows how to calculate CII tl for different load

blocks. Higher CII for a line means that its outage causes more violation in

the rest of the network, so it is a more important line for contingency analysis.

Equation (4.20) selects lines that should be included in the contingency matrix

and creates V CLt for each load block t.

By using the original LODF formulation (equations (2.25)–(2.27) pro-

posed by [44]), the proposed index would ignore single circuit radial lines from

the contingency list. This is because LODFm,l of these lines will be zero for
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m 6= l and LODFl,l = −1 so the value of CII tl is zero for these lines, and they

will not be included in V CLt. But outage of these lines will cause islanding

and may result in load shedding or generator outage, which violates the N −1

criterion. In some cases, this might be acceptable. However, to modify the

index in a way that captures these lines as well, LODFl,l related to these single

circuit radial lines is set to a large positive number. This causes large artificial

post-contingency flows on these lines and will not have any negative impact

on CIIs of other lines. So, these lines will be added to VCL as well, and VCL

contains all important lines for contingency analysis.

2.3.3 Model Performance Discussion

This method is developed to make it possible for transmission expan-

sion planners to integrate N−1 contingency analysis into systematic planning

for large scale power systems. During contingencies, system operators utilize

short-term ratings of transmission equipment for a limited time, which is two

hours in ERCOT, for example, to prevent possible load shedding and cascading

outages. Typical values for α are between 5% to 10% above continuous rating.

Networks with tighter capacity may set higher short-term rates, and it is pos-

sible for overload limits to vary by lines or even be based on pre-contingency

flows [25, 28].

Network loading and short-term rating are two main parameters that

affect the size of VCL. Based on network configuration, load level and gener-

ation dispatch, the number of lines in VCL may vary. For strong networks in
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light load condition, VCL might be empty, and for weak networks with high

load level the size of VCL will be large. Decreasing short-term rating (decreas-

ing the value of α) will result in increasing the size of VCL and computational

time. But this reduction makes the feasible region smaller and the dispatch

problem harder to solve, which significantly affects the performance of TEP

optimization problem with integrated MIP model as well.

Usually in real power systems, for most loading conditions overloads

only occur for outage of a small fraction of lines, and the VCL algorithm

finds these lines and include them in TEP instead of considering all lines for

contingency analysis or ignoring N − 1 criterion.

If the optimal answer of a relaxed version (with fewer constraints) of an

optimization problem is feasible for the original problem (with all constraints),

that answer will be optimal for the original problem based on the following

well-known theorem [10].

Theorem 1. Lets S ⊆ S ⊆ Rn, f : Rn → R and consider the problems:

min
χ∈S

f(χ), min
χ∈S

f(χ), and suppose they both have minima and minimizers. Then:

1. min
χ∈S

f(χ) ≥ min
χ∈S

f(χ),

2. if χ? ∈ arg minχ∈S f(χ) andχ? ∈ S then min
χ∈S

f(χ) = min
χ∈S

f(χ) and

arg minχ∈S f(χ) = (arg minχ∈S f(χ)) ∩ S. �

Constraints in an optimization problem form the feasible region, and

increasing the number of contingencies may result in a tighter feasible region.
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In applying Theorem 1, S and S represent the feasible region for TEP problem

with, respectively, all and only some of (step 6) the contingency constraints.

Based on this Theorem, if the optimal answer of TEP in step 6 is feasible for

the original problem with all contingencies, the it will in fact also be optimal

for the original problem. To check the feasibility, we run DC-SCOPF with

all contingencies with fixed binary decision variables (based on the result of

step 6), and if there is no violation, it means our answer is in the feasible

region of the original problem (S), and it is therefore optimal.

It should be mentioned that Theorem 1 is only applicable for option (ii)

in step 6 if the selected plan in this step is feasible for TEP with all contin-

gencies. For option (i) in step 6, the final plan is expected to be near optimal,

but we cannot guarantee optimality as some of the selected lines in step 3 may

not be selected by option (ii) in step 6. But it is faster than option (ii) as it

should select fewer new lines, and it is the planners’ choice to select option (i)

or B depending on their need. As the result of option (i) is considered an up-

per bound for the optimal TEP, we can quantify the quality of this result by

calculating a lower bound. With no extra computational effort, the maximum

error (sub-optimality) can be calculated by considering the result of step 3 as

a lower bound answer for TEP and using equation (4.1):

MaximumError =
UpperBound− LowerBound

LowerBound
(2.33)

It is also possible to use Branch and Bound (BB) algorithms [56] to get

48



a better lower bound and improve the gap between upper and lower answers.

Details of BB is not in the scope of this dissertation. In section 2.4, the impact

of using option (i) or (ii) in step 6 on both optimal plan and computational

time are evaluated.

The solver’s optimality gap is another parameter affecting computa-

tional time. Solvers use a predefined maximum optimality gap as a stopping

criteria when they solve MIP problems (the default value of this gap is 0.01%

in GUROBI and CPLEX). Adjusting this gap directly affects the simulation

time for both TEP in step 6 and the integrated model. As this impact is

not linear, the relative performance of the proposed method may change by

changing the solver’s optimality gap. Increasing the optimality gap will de-

crease simulation time, but it may affect the selected plan as well. This issue

is investigated in section 2.4.

2.4 Case study and Simulation results

All illustrated results in this section have been obtained from a per-

sonal computer with 2.0-GHz CPU using MATLAB R2014a [74] and YALMIP

R20140221 package [60] as a modeling software and GUROBI 5.6 [45] as the

solver. Two different case studies consisting of 13-bus system and reduced

ERCOT network with 317-buses are considered. The MATLAB built-in func-

tion tic toc is used to evaluate elapsed wall clock time (“Total Time”). For

each case study, we solve the TEP problem for both options (i) and (ii) and

the integrated model (in which all contingencies are integrated into TEP) to
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compare the quality of results and computational time.

2.4.1 13-Bus System

This 13-bus system is a simplified version of the ERCOT network that

is developed for educational purposes (see Figure 2.4). This case study has 13

buses, 33 branches, 16 power plants, and 9 load centers. Bus No.13 is a new

load center that is going to be connected to the network in the planning time

horizon, so it will be an island bus in our base case. Two different loading

and wind production blocks are considered to represent the whole year (50%

of year for each load block). The number of candidate lines is 36, which

represents potential expansion and reinforcement in the whole area. Load,

generation, existing and candidate lines data are given in Table 2.1–2.3. Two

load/wind blocks in Table 2.1 are considered for t = 1, 2. We considered

transmission investment as having on overnight cost of $1M/mile (16% of this

cost is considered as annual investment cost). Value Of Loss Load (VOLL) is

$9000/MWh (based on ERCOT market price cap [26]) and wind curtailment

penalty is set to $500/MWh, and solver’s optimality gap is set to 0.1%. A

high penalty cost for wind is assigned to force TEP to reinforce the network

to transfer all wind output from west Texas to central and east Texas.
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Figure 2.4: 13 bus network with existing lines, generators and loads.

Table 2.1: Load and Generation Data in [MW]

Bus Gen Load1 Load2 Wind1 Wind2

1 21374 22964 19519 0 0
2 2811 475 403 0 0
3 0 0 0 3000 3500
4 24292 24582 20895 0 0
5 8233 5960 5066 0 0
6 6216 5305 4509 4000 5500
7 1208 0 0 0 0
8 5881 4417 3755 1000 3200
9 4657 8383 7125 0 0
10 2750 0 0 0 0
11 3262 547 465 0 0
12 2503 3367 2862 0 0
13 0 1000 850 0 0
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Table 2.2: Existing Transmission Network Data
From To Susceptance [P.U.] Capacity [MW]

2 1 13.89 1000
1 4 8.20 625
1 4 8.20 625
1 6 8.85 812.5
6 1 8.85 912.5
1 9 11.11 875
1 9 11.11 937.5
1 11 15.87 1125
1 11 15.87 1125
1 11 15.87 1125
3 2 13.33 1062.5
2 6 12.35 1125
6 2 12.35 1125
3 6 9.26 875
4 10 27.78 1125
4 10 27.78 1125
4 10 27.78 1125
11 4 9.62 1000
6 5 8.55 937.5
8 5 15.87 812.5
9 5 25.00 1750
9 5 25.00 1750
5 9 25.00 1750
5 10 12.35 875
5 10 12.35 812.5
6 9 8.55 875
9 7 34.48 1250
9 7 34.48 1250
9 7 34.48 1250
7 10 22.22 1750
8 10 16.95 875
8 12 37.04 1312.5
8 12 37.04 1312.5
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Table 2.3: Candidate Lines
From To Susceptance [P.U.] Capacity [MW] Length [mile]

2 1 13.89 1000 144
2 1 13.89 1000 144
1 4 8.20 625 243
1 4 8.20 625 243
1 6 8.85 812.5 225
6 1 8.85 812.5 225
1 11 15.87 1125 126
3 2 13.33 1062.5 150
3 2 13.33 1062.5 150
2 6 12.35 1125 162
6 2 12.35 1125 162
3 6 9.26 875 216
3 6 9.26 875 216
4 10 27.78 1125 72
11 4 9.62 1000 207
6 5 8.55 937.5 234
6 5 8.55 937.5 234
8 5 15.87 812.5 126
9 5 25.00 1750 81
9 5 25.00 1750 81
6 9 8.55 875 234
6 9 8.55 875 234
7 10 22.22 1750 90
8 10 16.95 875 117
8 10 16.95 875 117
8 12 37.04 1312.5 108
8 12 37.04 1312.5 108
13 6 13.00 1125 173
13 5 20.05 1125 112.2
13 9 10.80 875 208.3
13 6 13.00 1125 173
13 5 20.05 1125 112.2
13 9 10.80 875 208.3
13 6 13.00 1125 173
13 5 20.05 1125 112.2
13 9 10.80 875 208.3
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For this case study, first we evaluate the impact of considering N − 1

contingency analysis on transmission planning compared to ignoring it. In

Table 2.4, results for two cases of TEP without and with contingency are

shown. In the case with contingency, it will turn out that we need to build three

extra lines. By enforcing N−1 criterion during operation for the network that

was built without considering contingencies (by running DC-SCOPF), there

are 938.4 MWh load shedding and 454.4 MWh wind curtailment on average

during normal operation conditions. It will result in $75973.73 M penalty

costs per year, which is 810 times more than the difference in investment

cost between the two cases of enforcing and not enforcing N − 1 security

in the planning of the network ($94 M). This example shows that ignoring

contingency analysis in planning stage may result in huge operation costs and

load shedding, which is against N − 1 criterion. It should be emphasized that

we did not consider demand response and other real-time corrective actions

that a system operator may take during an outage. We also considered only

two load/wind blocks to represent the whole year; therefore this ratio (810

times) may change with more accurate operation cost modeling.

To show how our proposed method works, we summarize all steps ex-

plained in section 2.2.3 for this case. Step 1: load input data: input data is

loaded and So is created; Step 2: check for islanding: no island; Step 3: solve

relaxed problem: Four selected lines in this step are shown in the second col-

umn of Table 2.4, Nu and Su are created; Step 4: islanding check: no island,

Sr is created; Step 5: create VCL: VCL is created for two load blocks. α is
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Table 2.4: Transmission Expansion Planning with and without considering
Contingencies, 13-Bus System

Without Contingency With Contingency

Selected Lines

3-2 3-2
3-6 3-6
7-10 3-6
13-6 6-9

- 7-10
- 13-6
- 13-5

Total Cost($ M) 6047.23 6137.83
Investment Cost($ M) 104.83 198.53
Operation Cost($ M) 5942.4 5939.3

set to 0.05, which means during a contingency the remaining lines can tolerate

5% above their continuous rating. VCLs for two load blocks are shown in

Table 2.5. The number of selected lines for contingency analysis is different

for these two blocks i.e 18 lines for the first load block and 17 for the second

one, and both are much less than the 69 lines (|Nl|) that should be considered

in the integrated TEP optimization problem. Moreover, Table 2.5 shows that

a fixed list of contingencies may not be sufficient for satisfying N − 1 criterion

for different operation conditions. As VCL is not empty, we should create

contingency matrices C1 and C2 for t = 1 and 2 respectively; Step 6: solve

TEP: TEP optimization problem is solved for C1 and C2 matrices for both

options (i) and (ii). Results of this step will be discussed later in this section.

Go to step 7. Run DC-SCOPF with all contingencies, no violation. So, the

selected plan is optimal/near-optimal and satisfies N − 1 criterion.
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Table 2.5: VCL for 13-Bus System

Selected Lines for Contingency Analysis

V CL1 2 - 1 , 1 - 9 , 1 - 9 , 3 - 2 , 2 - 6 , 6 - 2 , 3 - 6 , 11 - 4 , 6 - 5 ,
9 - 5 , 9 - 5 , 5 - 9 , 6 - 9 , 7 - 10 , 3 - 2 , 3 - 6 , 7 - 10 , 13 - 6

V CL2 2 - 1 , 1 - 6 , 6 - 1 , 1 - 9 , 1 - 9 , 3 - 2 , 3 - 6 , 6 - 5 , 5 - 10 ,
5 - 10 , 6 - 9 , 7 - 10 , 8 - 10 , 3 - 2 , 3 - 6 , 7 - 10 , 13 - 6

The integrated TEP with all contingencies is also solved to compare

its result and simulation run time with our proposed method. Final results

are shown in Table 2.6. The second row shows selected lines by option (i),

B, and the integrated model. For this case, all three methods select the same

(optimal) plan with the same costs. The last row of this Table shows the total

time for simulation. Option (i) is around 2 times faster than option (ii) and

more than 75 times faster than the integrated model (this ratio for option (ii)

is 33.73) because structural constraints of TEP problem are reduced more than

72% by using VCL algorithm. Based on equation (4.1), the maximum error

bound for option (i) is less than 1.5% and for this case the actual gap is 0%.

2.4.2 Reduced ERCOT System

A reduced model of the ERCOT system is provided in [94]. This net-

work contains 317 buses, 427 branches, 489 conventional power plants, 36 wind

farms and 182 load centers. The purpose of developing this case was to eval-

uate the impact of large penetration of wind in the Competitive Renewable

Energy Zone (CREZ) area of the ERCOT market and the transmission expan-
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Table 2.6: Transmission Expansion Planning for 13-Bus System

Option (i) Option (ii) Integrated model

Selected Lines

3-2 3-2 3-2
3-6 3-6 3-6
3-6 3-6 3-6
6-9 6-9 6-9
7-10 7-10 7-10
13-6 13-6 13-6
13-5 13-5 13-5

Total Cost($ M) 6137.83 6137.83 6137.83
Investment Cost($ M) 198.53 198.53 198.53
Operation Cost($ M) 5939.3 5939.3 5939.3

Total Time (sec) 3.91 8.2 276.6

sion requirements to transfer wind power to central and east Texas. For this

reason, west Texas is simulated in detail, and the rest of the ERCOT area is

aggregated to three zones as delivery points of CREZ. All costs and related

parameters are set the same as the 13-bus system.

It is assumed that all network lines can be reinforced, which means

the number of candidate lines (and corresponding binary variables) is 427

(compared to 5 and 17 candidate lines for IEEE-118 Bus system used by [54]

and [122] respectively). The number of binary variables in a MIP optimization

problem has a huge impact on computation time (because of the combinato-

rial nature of the problem), and the large number of binary decision variables

makes this case study a very challenging problem. Solving the relaxed version

of the problem (step 3) adds 4 new lines that will decrease computational time
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for option (i) in step 6. VCL for the reduced ERCOT system is shown in Ta-

ble 2.7. In this network with 433 existing lines (|Nu|) and 421 candidate lines,

only 7 lines are selected for contingency analysis for this loading condition.

Outage of these lines will activate reliability constraints in the TEP optimiza-

tion problem and will affect the feasible region and the optimal answer. As

observed earlier, most of the time in real networks, there are only a few lines

whose outage may cause overload on other lines, and we mostly do not need to

consider all lines in contingency analysis to get an optimal plan that satisfies

the N−1 criterion. This list of lines may vary by changing network conditions,

and CII t recognizes these important lines for each load block t.

The selected optimal expansion plan for this network is summarized

in Table 2.8. The second column shows the selected network when we ignore

contingency analysis in TEP, as obtained from step 3. Ignoring contingency

analysis, we need to build 4 new lines with $25.033 M investment cost. If we

also ignore N − 1 criterion in dispatching power plants in the operation stage

(running OPF), the operation costs will be $43618 M as stated in Table 2.8.

But if the system operator should satisfy N−1 criterion for operation (running

SCOPF instead of OPF), the operation costs of this network will be $104170 M

as a result of load shedding and wind curtailment penalty costs (during normal

operating condition), which is around 2.4 times the operation costs for the case

without contingency analysis (using OPF).

Considering contingency analysis in TEP added 5 new lines (columns 3

and 4 in Table 2.8 for options (i) and (ii) to the plan shown in column 2 that
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Table 2.7: VCL for Reduced ERCOT System

Selected Lines for Contingency Analysis

VCL 1065 - 1064 , 1066 - 1065 , 5905 - 5902 , 46220 - 7270 , 7670 - 7668
, 5905 - 5902 , 7670 - 7668

was selected without considering contingencies. Investment costs increased by

more than 100% compared to ignoring contingency analysi. This is $26.7 M

extra investment cost, which is 0.044% of the extra operation cost that would

result from ignoring contingency analysis during planning but enforcing it dur-

ing operation. This result clearly demonstrates the effectiveness of VCL algo-

rithm in selecting important lines for contingency analysis and their impact on

the final expansion plan. This plan satisfies N−1 criterion and its operational

cost is less than 42% of the previous case ($60530 M saving). Columns 3 and 4

show the same lines are selected by options (i) and (ii) in step 6, but option (i)

is around 5.7 times faster. As shown in column 5, results could not be obtained

(still more than 14% optimality gap) for the integrated model even after 10

days (compared to 407.8 seconds with the proposed method). To verify the

selected plan satisfies N − 1 criterion for all contingencies, a full DC-SCOPF

is run. No load shedding or wind curtailment shows the selected plan satisfies

N − 1 criterion, and it has been obtained more than 3500 times faster than

the integrated model.

As stated before, the solver’s optimality gap for MIP is set to 0.1%

for numerical analysis in this chapter. This value directly affects the compu-

tational time and decreasing this gap can be expected to increase simulation
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Table 2.8: Transmission Expansion Planning for Reduced ERCOT System

Step 3 Option (i) Option (ii) Integrated model

Selected Lines

5905 - 5902 1065 - 1064 1065 - 1064
7670 - 7668 1066 - 1065 1066 - 1065

90000 - 42500 5904 - 5902 5904 - 5902 No
90002 - 5915 5905 - 5902 5905 - 5902 feasible

- 7670 - 7668 7670 - 7668 solution
- 13430 - 3430 13430 - 3430 is found
- 90000 - 42500 90000 - 42500
- 90001 - 5905 90001 - 5905
- 90002 - 5915 90002 - 5915

Total Cost($ M) 43643 43696 43696 -
Investment Cost($ M) 25.033 56.725 56.725 -
Operation Cost($ M) 43618 43640 43640 -

Total Time (sec) 243.65 407.8 2325.27 10+ days

time exponentially. In Table 2.9, the case study is run for different optimality

gaps i.e 0.01%, 0.1% and 3% for option (i). The last row in this table shows

the computational time that the solver (GUROBI in this case) needs to solve

the MIP problem for different optimality gaps. Computational time for 0.01%

optimality gap is 155 times more than 0.1% gap, and this ratio is 1606 for 3%

gap that demonstrate the significant impact of optimality gap on simulation

time. The selected plans for different gaps are shown in the second row of

Table 2.9. By adjusting optimality gap to 3% for this case study, a different

plan is selected compared to 0.01% and 0.1% gaps. It shows that changing

optimality gap not only affects the simulation time but also may change the

selected plan; therefore there is a trade-off between computational time and

optimality gap selection. However, in practice and for large scale networks,

getting to tight optimality gaps like 0.1% or 0.01% is extremely computation-

60



ally expensive, and we usually should accept optimality gap between 1% to

5% to be able to get an answer in a reasonable time.

2.5 Summary

The impact of contingency analysis on transmission capacity expan-

sion planning is evaluated. Simulation results show that ignoring contingency

analysis in TEP may cause load shedding and huge extra operation costs when

system operators should satisfy N − 1 criterion. In most loading conditions,

it is not necessary to consider all lines in contingency analysis, because the

single outage of some lines will not cause overload on other lines. Since the

constraints related to these lines will remain passive in the optimization prob-

lem, we proposed a systematic and effective method to integrate necessary

contingencies into TEP such that the final plan satisfies the N − 1 criterion.

The proposed method is organized in 7 steps, by solving the relaxed version of

problem (TEP without contingency analysis) in step 3, and adding important

contingencies as additional constraints to the TCEP optimization problem in

step 6. Contingency identification index is developed and integrated to the

process to detect important lines for contingency analysis and creates vari-

able contingency lists (VCLs) for different network configuration and loading

conditions. Step 6 has two options for solving TCEP with contingencies i.e.

option (i) that provides an upper bound (with known optimality gap) for TEP

with less computational effort and option (ii) that provides the optimal an-

swer, and depending on the whole planning process option (i) or (ii) may be
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Table 2.9: Evaluating the impact of optimality gap on optimal answer and
simulation time

0.01% gap 0.1% gap 3% gap

Selected Lines

1065 - 1064 1065 - 1064 1066 - 1065
1066 - 1065 1066 - 1065 5904 - 5902
5905 - 5902 5905 - 5902 7670 - 7668
5904 - 5902 5904 - 5902 13430 - 3430
7670 - 7668 7670 - 7668 46220 - 7270
13430 - 3430 13430 - 3430 90000 - 42500
90000 - 42500 90000 - 42500 90000- 44000
90001 - 5905 90001 - 5905 90000 - 44500
90002 - 5915 90002 - 5915 90000 - 45972

- - 90000 - 46220
- - 90000 - 46500
- - 90001 - 1967
- - 90001 - 3390
- - 90001 - 3391
- - 90001 - 13430
- - 90001 - 40600
- - 90002 - 3430
- - 90002 - 5915
- - 90002 - 7270

Total Cost($ M) 43696 43696 44109

Solver Time (sec) 8435.3 54.28 5.25
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selected by planners. The method is implemented on a reduced ERCOT net-

work with 317 buses and 427 binary decision variables that makes this MIP

problem very hard to solve. The results show that using the relaxed problem

and effective selection of lines for contingency analysis will significantly reduce

computational time (more than 3500 times for this case study), and make

it practically possible to integrate contingency analysis into systematic TEP

optimization problem for large scale power systems with several load blocks.
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Chapter 3

Reducing Candidate Lines List for stochastic

TEP
1

3.1 Introduction

In recent years, building new transmission lines becomes more and more

difficult because of environmental concerns, and it can take several years to

plan and build new transmission lines, raising the need for long term transmis-

sion planning (10+ years). Increasing the planning time horizon will result in

more uncertainty in future generation and load capacity/locations that usually

are distributed over a wide geographical area, resulting in a large candidate

lines list (CLL) in early stages of transmission planning especially when trans-

mission routing is used to investigate different alternative paths to connect

two buses.

As stated before, TEP is a large scale, non-convex and nonlinear op-

timization problem, and the number of candidate lines (which is equal to the

number of binary variables in the optimization problem) significantly affects

1Mohammad Majidi-Qadikolai and Ross Baldick. Reducing the number of candidate
lines for high level transmission capacity expansion planning under uncertainties. In North
American Power Symposium (NAPS), 2015, pages 1-6, Oct 2015. Authors had equal con-
tributions.
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the computational time for TEP. A shorter CLL decreases the problem size

(combinatorial nature of integer programming) and makes it possible to solve

larger scale network with more accurate modeling (for example developing

more scenarios to capture uncertainties). In practice, usually expert knowledge

is used to remove some candidate lines from CLL. But in long-term planning

with uncertainties in future generation and load locations and intermittent re-

sources (solving stochastic TEP instead of deterministic TEP, which is solved

in Chapter 2), it will be much harder to detect unimportant candidate lines

based on expert knowledge. In this chapter, a heuristic method is developed

that removes some lines from CLL in a systematic way by considering their

impact on alleviating existing congestion in the base case.

3.1.1 The Basic Idea

In contingency analysis in power systems, it is common to limit moni-

tored lines list based on geographical location and loading condition, and there

are several heuristic methods for this purpose [117]. Authors in [120] suggested

that limiting monitored lines for contingency analysis to the lines close to the

line on outage will reduce simulation time for TEP. They divided the IEEE-

118 bus system into three zones (see Figure 3.1), and argued that, for a line

outage in zone 1, it is sufficient to monitor lines in this zone, instead of all

lines in the network.

It can be observed that LODFs will be close to zero for lines far away

from the line on outage. Therefore, flow on those lines will not be affected
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strongly as a result of an outage far away from them. So, their flow would

not typically increase above emergency limits subsequent to a far away con-

tingency.

Figure 3.1: IEEE 118-bus system

This is also true for closing a line. Building a new line can be interpreted

as closing an opened line. It is expected that building a new line will have

more impact on lines on its nearby rather than on lines far away from it. Line

Closure Distribution Factor (LCDF) can be used for such sensitivity analysis.

The detail related to LCDF is given in subsection 3.3.2. It is also possible

to limit monitored lines to those that are heavily loaded (in the base case)

because we are expecting to add new lines that decrease overload/congestion

in the base network. We aggregated these two heuristics into our model to
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reduce computational time in an automated and tractable way. The model

performance is discussed in subsection 3.3.3.

The proposed method is useful for large scale problems in which re-

ducing computational burden is critical. It is applied to a reduced ERCOT

network with 317 buses and 427 candidate lines for different number of sce-

narios, and the result shows 77%-89% reduction in CLL size depending on

the number of scenarios, and we get the results several hundred times faster

compared to the case that there is no reduction in CLL.

The rest of this chapter is organized as follows: in section 3.2 the pro-

posed method is explained, and it is followed by the mathematical formulation

of stochastic transmission expansion planning and a discussion of model per-

formance in section 3.3. In section 3.4, the proposed method is implemented

on our ERCOT case study, and results are compared with the original method.

A summary is given in section 3.5.

3.2 The Proposed Candidate Line Reduction Method

In the early stage of long-term planning, planners develop a relatively

large number of possible candidate lines to cover all areas in the network that

may need expansion, and different techniques such as expert knowledge, envi-

ronmental, and technical analysis are used to reduce this list in the next steps

of planning. Using expert knowledge for complicated systems is not usually

tractable and depends on individuals’ expertise. Evaluating environmental

concerns is costly and takes time. The proposed method in this section can be
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used to reduce the number of candidate lines in the early stage of planning and

makes the future steps easier from both the computational perspective and the

process costs. The proposed method can be summarized in the following steps:

Step 1: Load Input Data.

Load, Generation, current and candidate transmission components etc

are included in input data. The base case system that contains existing

lines, load, buses and generators is referred to as So. The initial candidate

lines list in this step is referred as CLLo.

Step 2: Temporarily remove island buses from So.

In this step, if there is any island bus in the base case it will be temporar-

ily removed from the So to form a new reduced system which is referred

to as Sr because we need a system without any island in the next steps.

It should be noted that candidate lines connected to these island buses

also will be removed from CLLo temporarily to create CLLr. If a load

or generator is connected to any of island buses, set Flag = 1, otherwise,

set Flag = 0.

Step 3: Solve a relaxed version of OPF problem.

In this step, a relaxed version of OPF is run for Sr, in which constraints

related to line capacity limits are ignored. By solving this OPF, we can

find the lines in the base case system that will be overloaded for the

target planning year. If there is no overload in lines, no load shedding

or wind curtailment and Flag = 0, it means our current network can
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supply the load and we do not need to add any new lines, so go to step 7,

otherwise go to step 4.

Step 4: Create monitored lines list (MLL).

In this step, lines with flows more than η% (50%, for example) of their

nominal capacity will be added to Monitored Lines List (MLL). The

OPF result from step 3 is used to calculate flow violations in existing

lines. MLL will be used in the next step for evaluating the impact of

adding candidate lines.

Step 5: Update candidate lines list (CLLu).

Line Closure Distribution Factor (LCDF) is calculated for candidate lines

in CLLr to evaluate the impact of closing each candidate line on the lines

in MLL. Candidate lines such that their closure will not decrease flow

in at least one line in MLL will be added to Extra Candidate Lines List

(CLLE). Connecting these lines may decrease flow in other lines, but

it will not alleviate any congestion in the network as affected lines are

already lightly loaded (less than η%). Lines in CLLE will be removed

from CLLo to create an updated candidate lines list, which is referred

as CLLu (CLLu = CLLo \CLLE). It should be mentioned that as lines

in CLLE are removed from CLLo (not CLLr), all temporarily removed

lines in step 2 are included in CLLu. Mathematical formulation and

more discussion about the model are given in sections 3.3.2 and 3.3.3

respectively.
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Step 6: Solve TEP optimization problem.

System So is used as the base case system and CLLu as the candidate

lines list for this step. TEP optimization problem is run. This opti-

mization problem can be expected to solve faster than TEP with CLLo

because it has less candidate lines (binary variables). Compared to Chap-

ter 2 TEP formulation, operation cost is extended to expected operation

cost that integrates uncertainties in future power system operation using

different scenarios.

Step 7: The selected expansion plan is expected to be near optimal.

The flowchart in Figure 3.2 shows important stages of the proposed

method (dashed boxes represent 7 steps). The performance of the proposed

method is discussed in more detail in subsection 3.3.3.

3.3 Mathematical Formulation and Discussion

3.3.1 MIP Formulation for stochastic TEP optimization

Stochastic TEP is a two-stage recourse allocation problem that can

be represented in extensive form by approximating the expected operation

costs with weighted sum of operation cost for different scenarios. By using DC

representation of power flow equations, stochastic TEP is formulated as a MIP

problem. The objective function (3.1) contains transmission investment cost

and expected operation cost that includes the weighted sum of wind and load

curtailment penalties along with generation production costs. Scenarios can be
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Figure 3.2: Flowchart of the proposed CLL reduction method
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generated to model different uncertainties, and in this chapter they represent

wind and load uncertainties. The following formulation is very similar to

(2.13)–(4.16) in section 2.3.1, except that in (2.13)–(4.16) deterministic TEP

with contingency analysis is formulated whereas in (3.1)–(3.12), stochastic

TEP with updated candidate lines list and without reliability constraints is

formulated.

Z∗= min
x,p,θ,r,f ,CW

∑
CLLu

ζlxl+
∑

Ω

P ω
[∑
Nb

(γiCW
ω
i + qir

ω
i )+

∑
Ng

Coωg p
ω
g

]
(3.1)

st. −
∑
Lk

fωl +
∑
Gk

pωg+rωk=dωk ,∀ω, k (3.2)

−Ml(1− xl) ≤ fωl −Bl,l∆θ
ω
l ,∀ω, l (3.3)

Ml(1− xl) ≥ fωl −Bl,l∆θ
ω
l ,∀ω, l (3.4)

CW ω
i ≥

∑
Wk

(Pmax,ω
g − pωg ),∀ω, i (3.5)

xl f
min
l ≤ fωl ≤ fmaxl xl,∀ω, l (3.6)

Pmin,ω
g ≤ pωg ≤ Pmax,ω

g , ∀ω, g (3.7)

0 ≤ rωi ≤ dωi ,∀ω, i (3.8)

−π
2
≤ θωi ≤

π

2
,∀ω, i (3.9)

CW ω
i ≥ 0,∀ω, i (3.10)

xl=1,∀l ∈ No (3.11)

xl ∈ {0, 1}, ∀l ∈ Nl (3.12)

Equation (3.2) enforces power balance at each bus under each scenario.
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Equations (3.3) and (3.4) show power flow in transmission lines, the second

law of Kirchoff for all existing and candidate lines under different scenarios.

Equation (3.5) measures the amount of curtailed wind at each bus. Pmax,ω
Wi

is

representing the maximum possible output of wind farm for scenario ω, which

is no larger than the nominal installed capacity of wind farm. Equation (3.6)

shows flow in all lines should always be between their capacity limits. When

a line is not selected to be built, flow for that line is forced to zero. Equa-

tion (3.7) enforces power plants to be dispatched between their minimum and

maximum limits. Equation (3.8) enforces that load shedding at each bus be

greater than or equal to zero and less than or equal to the total load at that

bus. Equation (3.9) limits voltage angles at each bus to be between −π
2

and

π
2
. Equation (3.10) enforces that wind curtailment cannot be negative. Equa-

tion (3.11) sets binary decision variables for existing lines to 1. Equation (3.12)

shows the x is defined as a binary variable to make decision on building a new

line (x = 1 when a line is built and x = 0 when a line is not built).

3.3.2 Updating Candidate Lines List (CLLu)

Supplying demand and increasing the reliability of the system in an

economic way are two main reasons for TEP. To find unimportant candidate

lines for expansion so that they can be removed from consideration in order

to reduce computational effort, we need to know the impact of building new

lines on the flows on congested lines in the network. First we need to find

lines that may be congested in the existing network. By running an OPF in
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which constraints related to line capacities (equation (3.6)) are relaxed, flows

in existing lines are calculated and monitored lines list (MLL) is formed from

the following equations:

Devωl = fωl − η × fmaxl ,∀l, ω (3.13)

MLL = {l ∈ No |Devωl > 0,∀ω} (3.14)

where (3.13) calculates over/under flow in lines compared to η% of their nom-

inal capacities, and (3.14) adds lines with over flow (more than η% loading)

into MLL. fωl represents the magnitude of flow in line l under scenario ω

(calculated in step 3.)

Line Closure Distribution Factor (LCDF) is used to evaluate the impact

of a line closure on lines in MLL.

PTDFl,(nr) = (χni − χki)Bl,l (3.15)

LCDFm,l =
PTDF IN

m,(nr) − PTDFOUT
m,(nr)

PTDFOUT
l,(nr)

(3.16)

CLLE = {l ∈ CLLr |LCDFm,l ≥ β, ∀m ∈MLL} (3.17)

CLLu = CLLo \ CLLE (3.18)

− 1 ≤ β ≤ 0 (3.19)

Equations (3.15)-(3.16) show how to calculate LCDF for line m when line l is

closed based on [109]. Line l is between bus n and k. χni represents element ni

of the reduced Z-bus matrix χ. Superscript IN refers to the case that line l is

closed, andOUT refers to the base case without line l. Equation (3.17) extracts

unimportant lines from reduced candidate lines list CLLr. β is a parameter
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that is set by the planner based on required relaxation. Values closer to −1

result in more relaxation and a smaller CLLu list. Equation (3.18) creates

updated candidate lines list (CLLu) by removing selected lines in (3.17) from

original candidate lines list (CLLo). The original candidate lines list (CLLo)

is an input in our model, and it can be created by planning experts manually

or in an automated way.

3.3.3 Model Performance Discussion

This method is developed to reduce the size of candidate lines list (CLL)

in the early stages of TEP for large scale power systems with a large CLLo.

As mentioned in 3.1.1, adding a new line mostly affects the lines close to it

rather than those that are far away from it in large scale networks, and this

characteristic makes the proposed method more effective for large networks

(compared to small networks). For small scale networks, running this algo-

rithm will not significantly reduce the size of CLLo and may negatively affect

the selected plan, so it will not be effective. By selecting highly loaded lines

for monitoring (MLL), we limit evaluating the impact of adding a new line to

the lines with more than η% loading (this loading percent can be set by the

planner). The reason for ignoring lines with less than η% loading is that these

lines are already lightly loaded and there is no reason to build a new line to

further decrease flow on these lines. By setting β close to zero, candidate lines

that will not have positive impact on flow (reducing congestion) on monitored

lines close to them will be removed from the CLL. If building a line increases
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flow on all monitored lines close to it, it means this line will have a large neg-

ative impact on those lines, so it will not be an appropriate candidate line to

be built.

In equation (3.13), multiplying the nominal capacity of lines by η means

that if flow in a line is more than η% of its nominal capacity it will be consid-

ered as an important line for monitoring in our model. Increasing this value

decreases the size of MLL, and limits the number of monitored lines that may

reduce the size of CLLu. Planners can control the size of CLLu by changing

this value.

In equation (3.17), lines are selected that have LCDFm,l greater than

or equal to β. Moving the value of β toward −1 will increase the number of

lines in CLLE (decrease |CLLu| and increase simulation speedup); however it

may affect the TEP result as some effective candidate lines may be removed

form the candidate line list. These tools provide more flexibility and control

for planners to choose a fraction of CLL. Depending on the whole optimization

process, one may prefer to get a sub-optimal answer but faster in this step,

and modify it in the next steps. In this chapter, we keep β close to zero.

The proposed method is heuristic so we cannot guarantee the optimality

of results when CLLu is used instead of CLLo. However, in most real cases

this sub-optimality is acceptable as it helps to get the answer in a reasonable

time.
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3.4 Case study and Simulation results

All results in this section have been obtained from a personal computer

with 2.0-GHZ CPU using MATLAB R2014a [74] and YALMIP R20140221

package [60] as a modeling software and GUROBI 5.6 [45] as the solver.

The ERCOT model introduced in section 2.4.2 is used for simula-

tion. We considered transmission investment as having an overnight cost of

$1M/mile (16% of this cost is considered as annual investment cost). Value

Of Loss Load (VOLL) is $9000/MWh and wind curtailment penalty is set to

$500/MWh. It is also assumed that all scenarios have the same probability,

β = −0.05 and η = 50%. Scenarios are created to capture uncertainties in

wind and load [94].

Three case studies i.e case A with one scenario, case B with 5 sce-

narios, and case C with 10 scenarios are analyzed to evaluate the impact of

uncertainties in wind and load on both TEP and CLLu. Based on [94], it is

assumed that all network lines can be reinforced, which means |CLLo| = 427,

and it covers the whole geographical area of the existing network. It is only

for demonstration purpose, and in real cases different criteria may be used to

create CLLo for a planning horizon. Solving TEP with this large number of

binary variables is hard, and computational time increases significantly with

increasing number of scenarios.

The steps of the proposed method are: after loading input data, is-

landing is checked, and no island is found. Relaxed OPF is solved for all

77



three cases, and MLL is created for each case based on load and wind avail-

ability in each case. Size of CLLE and CLLu for three cases are given in

Table 3.1. For case A, the size of CLLu is 89.4% less than the size of CLLo

(1− |CLLu||CLLo| = 0.894), and 78.9% for case B and 77.75% for case C. This reduc-

tion will significantly reduce the computational time for solving TEP. From the

second row in Table 3.1, the number of candidate lines is still large compared

to previous literature. It is still possible to reduce this list more by considering

environmental constraints, but this is not in the scope of this dissertation.

After creating CLLu for all three cases, TEP is solved for each case.

The selected lines and computational time are shown in Table 3.2. For case

A, we need to build 2 new lines and 4 new lines for case B and C based

on the second row in Table 3.2. Based on these results, considering more

scenarios may affect the selected expansion plan. So, decreasing computational

time by reducing the size of CLL provides the opportunity for more accurate

uncertainty modeling.

To evaluate the performance of the proposed method (that uses CLLu

as its candidate line list), the original TEP problem with all initially proposed

candidate lines (CLLo) is also solved. Both methods select the same optimal

expansion plan for all these three cases (selected lines are shown in Table 2.8).

For three cases A, B and C, the ratio of simulation run time for the original

and the proposed method is shown in Figure 3.3. For case A, the simulation

time for the original method is 10.3 times more than the proposed method, and

this ratio is 134.1 for case B and 1153 for case C. These results show that the
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Table 3.1: Size of CLL for Different Cases

Case A Case B Case C

Size of CLLE 382 337 332
Size of CLLu 45 90 95
CLL size reduction 89.4% 78.9% 77.75%

Table 3.2: Transmission Expansion Planning for Reduced ERCOT System

Case A Case B Case C

Selected Lines

7670 - 7668 1131 - 1064 1131 - 1064
90002 - 5915 1067 - 1315 60042 - 60040

- 60042 - 60040 60044 - 60040
- 90002 - 6009 90002 - 6009

Total Time (sec) 0.78 4.8 11.2

relative performance of the proposed method increases with increasing number

of scenarios (increasing the problem size). Lower values of β (close to −1) will

result in a shorter candidate lines list that reduces computational time, but it

may affect the selected plan. Therefore, there is a trade-off between speedup

and the accuracy of results.

3.5 Summary

In this chapter, a trackable heuristic method is proposed to decrease the

size of candidate lines list (CLL) in high level transmission capacity expansion

planning for large scale networks. By running a relaxed OPF, lines with viola-

tions are detected and are added to monitored lines list (MLL). Line Closure

Distribution Factor (LCDF) is calculated for each candidate line to evaluate

79



Case A Case B Case C
0

200

400

600

800

1000

1200

R
a

ti
o

Figure 3.3: The simulation run time ratio

the impact of its closure on flow on lines in MLL. Lines that their closure

will increase flow in all monitored lines are removed from CLL, because those

lines will have negative impact on congestion mitigation in the base network.

TCEP is solved with updated CLL. The simulation results show the effective-

ness of the proposed method on reducing the computational time (more than

1100 times faster for reduced ERCOT case with 317 buses, 427 candidate lines

and 10 scenarios). It allows planners to consider more accurate models for

transmission planning like adding more scenarios for better representation of

uncertainties as it may affect the optimal plan.
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Chapter 4

Special Scenario Selection for Stochastic TEP

with Contingency Analysis
1

1M. Majidi-Qadikolai and R. Baldick. Stochastic transmission capacity expansion plan-
ning with special scenario selection for integrating n-1 contingency analysis. IEEE Trans-
actions on Power Systems, 31(6):4901-4912, Nov 2016. Authors had equal contributions.
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Nomenclature

Sets and Indices:

Nb: Set of buses; index i, k, n

Ng: Set of all generators; index g

No: Set of all existing lines; index l, m

Nn: Set of all candidate lines; index l, m

Nυ
u : Set of all existing lines and selected candidate lines; index l, m

Lk: Set of lines connected to bus k

Gk: Set of all generators connected to bus k

Wk: Set of wind generators connected to bus k

Φω,υ
l : Set of lines with violated post-contingency flows under outage of line l

in scenario ω

Ω: Set of scenarios; index ω

Nω,υ
s : Set of system operation states under scenario ω; index c (c = 1 repre-

sents the normal operation condition)

ICLω,υ: Set of important lines for contingency analysis in scenario ω

υ: Superscript/index for iteration number

| |: Size of a set

Parameters :

qi: Per MWh load shedding penalty at bus i

γi: Per MWh wind curtailment penalty at bus i

Cog: Per MWh generation cost for generator g

ζl: Annual cost of line l construction
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dωi : Demand at bus i in scenario ω

Pmax
g : Maximum capacity of generator g

Pmin
g : Minimum capacity of generator g

fmaxl : Maximum capacity of line l

fminl : Minimum capacity of line l

Ml: Big M is a large positive number for line l

Cω,υ: Matrix of contingencies (operation states) that specifies the status of

lines under different contingencies (1 for in service and 0 for out of service

lines) for scenario ω; indexc

Γω,υm,l: Magnitude of violation in flow of line m when line l is on outage in

scenario ω

CIIω,υl : Contingency identification index for outage of line l in scenario ω

δ: Relaxation factor for CIIω,υl

α: Line capacity modification factor for contingency conditions (Emergency capacity Rating =

(1 + α)×Normal capacity Rating)

Random Variables :

ξ̃1: load in MW

ξ̃2: Available wind output in MW

Decision Variables :

xl: Binary decision variable for line l

ri,c: Load curtailment at bus i under operating state c

CWi: Aggregated wind curtailment at bus i

pg: Output power of generator g
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fl,c: Power flow in line l under operation state c

θi,c: Voltage angle at bus i under operating state c. ∆θl,c is voltage angle

difference across line l under operating state c. ∆θl,c= θk,c-θn,c for line l from

bus k to bus n.

84



4.1 Introduction

As discussed in Chapter 3, with increasing penetration of intermittent

renewable resources, uncertainty in both power system operation and plan-

ning increases. Ignoring these uncertainties in transmission capacity expansion

planning (TEP) can result in over or under investment, and will affect system

reliability and operation costs. However, integrating uncertainties into TEP

makes this large-scale non-convex optimization problem even larger and more

complex. To make it a solvable optimization problem, different simplifications

are applied. In this chapter, we formulate TEP for one planning horizon (static

planning), which is a subproblem of dynamic planning that considers multiple

planning horizons (for example planning for next three horizons 10, 20, and

30 years).

Integrating uncertainties and reliability studies into the TEP optimiza-

tion problem makes it very large and almost unsolvable for large-scale power

systems. Authors in [84, 87, 18] evaluated the impact of ignoring uncertainties

on transmission planning by comparing the results of deterministic, heuristic,

and stochastic TEP for different case studies. Their result shows that stochas-

tic TEP may select some lines that will not be selected by either deterministic

or heuristic methods. In [5], authors integrated uncertainties and risks in load,

availability of generation and transmission lines into a stochastic generation

and transmission capacity expansion planning, and formulated the problem

as a non-linear mixed-integer optimization problem. A probabilistic method

for capturing uncertainties in TEP is proposed in [16]. They developed prob-
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abilistic locational marginal pricing (LMP) index, and suggested value-based

criteria i.e. decreasing congestion cost and reducing weighted deviation of

mean of LMPs for selecting new transmission lines. In [121], Benders decom-

position with aggregated multi-cuts is used to solve TEP under uncertainties.

Authors in [99] used Least-Square Monte Carlo dynamic programming to solve

stochastic TEP. They deployed sensitivity analysis to determine decision re-

gions to execute, postpone, or reject transmission investment candidates.

Contingency analysis is also added to TEP optimization problem as

an important aspect to meet reliability standard requirements. In [120], the

network model is improved by adding linear approximation of reactive power,

off-nominal bus voltage magnitudes and network losses. They also integrated

N − 1 contingency analysis into TEP as a sub-problem. Authors in [1] inte-

grated Available Transmission Capacity (ATC) constraints into a multi-stage

stochastic TEP problem. They used GAMS/SCENRED as a tool to reduce

randomly generated scenarios (very large number of scenarios) and solved TEP

with all contingencies for IEEE-24 bus system. The impact of adding ATC

constraint on TEP is evaluated; however, the performance of the model for

large-scale systems is not discussed. Authors in [35] modeled stochastic TEP

as a bi-level optimization problem, in which in the upper-level investment for

transmission expansion is minimized and, in the lower-level, social-welfare is

maximized given the expansion decisions from the upper-level problem. They

used the dual of the lower-level problem to convert the problem into a sin-

gle level optimization problem. They modeled outage of a pre-defined list of
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lines as different scenarios in the optimization problem. In [17], transmission

expansion and reinforcement is formulated as a stochastic optimization prob-

lem to reduce vulnerability of the system in case of deliberate attacks. They

developed a set of scenarios to model different plans for destroying a set of

transmission lines. Authors in [55] proposed stochastic flexible transmission

planning by considering adding phase shifter or non-network options such as

energy storage devices and demand response. They used Benders decomposi-

tion to solve this problem. They applied the proposed model on the IEEE-RTS

case with 24 buses, and the performance of the method for large-scale networks

is not evaluated. In [57] and [49], the authors provided a comprehensive review

of different methods for transmission expansion planning.

As discussed in Chapter 2, it is not necessary to explicitly integrate

a single outage of all lines into TEP to satisfy the N − 1 criterion, and an

algorithm was developed in Chapter 2 to decrease the list of important contin-

gencies that should be modeled explicitly, and thereby reduce computational

time for a deterministic TEP optimization problem. In Chapter 3, stochastic

TEP was formulated as a mixed-integer linear optimization problem, and a

heuristic method was developed to reduce the number of candidate lines (the

number of binary variables) to decrease the computational time for large-scale

problems. Although using algorithms developed in chapters 2 and 3 reduce

computational time, adding N − 1 contingency analysis into stochastic TEP

can easily result in another unsolvable problem. In this chapter, we propose a

new framework that adds reliability constraints gradually to solve stochastic
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TEP optimization problem with N − 1 contingency analysis for larger-scale

systems.

The rest of this chapter is organized as follows: in section 4.2, the

main concepts and the proposed optimization framework are explained. The

mathematical formulation of stochastic TEP, updated VCL formulation and

the three-level filtering algorithm are presented in section 4.3. In section 4.4,

the proposed method is applied to different case studies. Section 4.5 has a

summary of the chapter.

4.2 Proposed Optimization Process

4.2.1 Integrating Expert Knowledge with TEP

Using expert knowledge (EK) for solving large-scale TEP optimization

problem is inevitable with current existing machines and software. But there

are different points of view on how EK should be integrated into the transmis-

sion planning decision making process. In one approach, decisions are mainly

made by experts based on their expertise instead of using an optimization

based method. A second approach integrates EK into the TEP decision mak-

ing process as input data for an optimization problem such as the worst case

scenario for planning, list of possible contingencies, a reduced list of candi-

date lines and so on. A third approach converts EK to some criteria (where

applicable), and tries to integrate them into the TEP optimization problem.

Compared to the second approach, this method is systematic and tractable

on the one hand, and more challenging from the modeling perspective on the
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other hand. The fourth approach tries to use EK as little as possible, and solve

the problem through pure mathematical formulation. These purely mathemat-

ically driven methods are usually computationally very expensive, and are not

practical for large-scale problems. Authors in [88] explained that the current

practices for TEP in the United States mostly follow approaches one and two.

In this chapter, we tried to move TEP decision making process from

approach two to three by developing a new framework that makes it possible

to integrate EK into the TEP optimization problem in a tractable way.

4.2.2 Main Concepts Description

In this subsection, concepts that mainly affect our TEP modeling and

the proposed method are explained. These concepts include long vs. near-term

planning, how uncertainties are modeled, and the purpose and main tasks of

the filter along with different components that are involved in the design of

the filter i.e. the VCL algorithm, important scenario identification index and

similar scenario elimination technique.

4.2.2.1 Long-term vs. near-term TEP

By introducing new technologies, developing smart grids, flexible trans-

mission operation and wide area monitoring systems, system operators will

have more flexibility in real-time operation, and can take several corrective

actions to operate power systems reliably. Decisions regarding adding these

components to the transmission network are usually made in near-term TEP,
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in which “corrective expansion plans” such as installing special protection

schemes, phase shifters, FACTS devices, PMUs and expansion of existing sub-

station (by increasing transformer and/or circuit breaker capacity and so on)

and existing transmission lines (by reconductoring or double circuiting cur-

rently single circuit lines) are proposed to improve power system reliability.

These near-term expansion plans usually can be implemented in less than 5

years.

On the other hand, in long-term TEP (which is the main focus of this

chapter), decisions regarding building new EHV transmission lines, substa-

tions, or increasing the highest voltage level of the network (for example an

increase from 345kV to 765kV) are made. Implementing long-term expan-

sion plans usually takes more than 5 years. For system operation modeling

in the long-term TEP, day-ahead unit commitment/dispatch is used without

integrating corrective actions mainly because most of these tools have settings

that are sensitive to the current network configuration (for example special

protection system), and need to be revised/validated after expanding the net-

work and changing network configuration. Moreover, these extra flexibilities

are usually considered as transmission network reserve for real-time operation,

in which system should be reliable for N − 1− 1.

4.2.2.2 Uncertainties and scenarios

Due to increasing environmental concerns, permitting and building

transmission lines takes longer, and it raises the need for longer-term TEP

90



that increases uncertainties [68]. Uncertainties can be categorized as micro

uncertainties, which are mostly related to variations in load and wind (mod-

eled in [94], [1], [54]) and macro uncertainties, which are mostly related to

uncertainties in long-term generation expansion, environmental and market

regulation changes (considered by [84], [85]) and smart grids. From the statis-

tical modeling perspective, uncertainties are also categorized as random and

nonrandom as explained in [16] in detail.

To capture all these uncertainties, usually a large number of scenar-

ios are generated in the early stages of planning (there are different methods

to generate scenarios to represent uncertainties such as Monte Carlo method

(used by [1]) and using historical data with statistical modeling (used by [94])),

and different clustering techniques are developed to reduce the number of sce-

narios [87], [94]. There are also some commercial packages such as SCENRED

(by GAMS group) that can be used for this purpose (used by [1]). In this

paper, we consider wind availability and load variations as uncertain parame-

ters, and historical data with statistical modeling is used to generate scenarios

to capture uncertainties in wind and load for stochastic TEP. It is assumed

all scenario reduction techniques are already applied, and we have a set of

scenarios (Ω) that should be integrated into TEP to capture uncertainties in

the future. The type of uncertainty and how it is modeled will affect the se-

lected expansion plan in TEP. However, we are not here concerned about the

origin of scenarios because the proposed iterative framework with the designed

filtering algorithm for integrating contingency analysis into stochastic TEP is
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applicable for different scenario generation techniques.

4.2.2.3 The Filter

As stated in section 4.2.1, using expert knowledge can be very help-

ful for reducing computational time for large-scale problem solving, but when

uncertainty increases it will be much harder (and less tractable) to directly

use expert knowledge in the decision making process. For integrating con-

tingency analysis into the TEP problem, we developed a filtering mechanism

to select a subset of important lines for contingency analysis to be integrated

into stochastic TEP in each iteration instead of asking experts to manually

choose some lines for these analysis. The filter uses an updated version of

the VCL algorithm (proposed firstly in Chapter 2) and two new indices de-

veloped (explained in the following subsections) to select a subset of scenarios

and lines for contingency analysis. The advantage of this filter is that it pro-

vides a systematic and tractable way for integrating contingency analysis into

TEP optimization problem gradually. More detail about the filter is given in

sections 4.2.3 (step 7) and 4.3.3.

4.2.2.4 Updated VCL algorithm

The developed VCL algorithm in Chapter 2 finds all important lines for

contingency analysis (ICLωs), and integrates them into the TEP at once. But

for large-scale stochastic TEP problems, the size of contingency list (|CL| =∑
Ω |ICLω|) will increase rapidly and makes the TEP optimization problem
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unsolvable or extremely computationally expensive. In this chapter we add

two new features to the VCL algorithm that will let us select a subset of

important lines for contingency analysis. The first one is the relaxation factor

δ that selects a subset of lines with high contingency identification index (see

section 4.3.2 for more detail), and the second one is the ability to select a fixed

fraction of lines that adds more flexibility to managing the size of contingency

list.

4.2.2.5 Important Scenario Identification Index (ISII)

Different scenarios affect power system operation differently under nor-

mal operation condition (for example, more power plants will be commit-

ted/dispatched when demand is high compared to low load condition at mid-

night). Under contingency operation states, the VCL algorithm will select dif-

ferent lines under different scenarios, and the size of ICLω may significantly

change from one scenario to another.

We define a set of scenarios “normal” for contingency analysis if its

contingency statistics vector (referred as CS), which contains the number of

important lines for contingency analysis in each scenario (|ICLω|s), has a nor-

mal distribution (there are different tests to check normality of a distribution

such as Kolmogorov-Smirnov, Lilliefors, and Jarque-Bera [110]). Based on this

definition, we set ISII = 0 for a scenario set with CS having a normal distri-

bution with a small standard deviation. It means |ICLω|s are mostly close to

the mean of the set with a few far from it that show a normal behavior of the
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scenario set from contingency analysis perspective; therefore there is no special

scenario in this set to be evaluated separately. Otherwise, ISII is set to one

(ISII = 1) that shows there are some scenarios that have significantly differ-

ent behavior compared to the average in the set from the contingency analysis

perspective; so we would like to separate them from the rest and analyze them

separately.

To find important scenarios for the case with ISII = 1, a normal

distribution is fitted to CS vector, and scenarios with |ICLω| larger than

mean plus one standard deviation of the fitted normal distribution are tagged

as important scenarios, and are stored in Important Scenarios List (ISL). If

the ISL is not empty, lines for contingency analysis will be selected from lines

in ICLs of the scenarios in ISL. It will result in a short list of more effective

lines for contingency analysis in the first iteration.

4.2.2.6 Similar Scenario Elimination (SSE) technique

By using ISII, we separated specific scenarios from the rest. What can

we say about scenarios such that their ICLωs have relatively the same size?

Can we assume they are all the same? We cannot answer this question only

based on the size of their important contingency lists, because there might be

totally different lines in each ICLω. For example in a high-wind/low-load sce-

nario different lines might be selected by the VCL algorithm compared to a low-

wind/high-load scenario; therefore, we need to look at lines in ICLω of each

scenario ω to be able to compare them. When two scenarios have relatively
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similar lines in their ICLs, we can eliminate one of them from contingency

analysis as their impact on contingency analysis will not be significantly dif-

ferent. The Similar Scenario Elimination (SSE) technique is developed based

on this concept. ICLω is a list that contains important lines for contingency

analysis for scenario ω. In ISII, a vector of |ICLω|s (called CS) is used to

make decision about scenarios, and in SSE we look inside these lists to make

a decision. SSE checks the similarity of lines in ICLs of a scenario set/subset

to find scenarios with more than a specific percent of similarity in their lists.

Then, among similar scenarios, one with a greater number of important lines

will be selected to create contingency list (CL) vector based on its ICLωs, and

ICLs of other similar scenarios will be eliminated from contingency analysis

in that iteration. SSE can be applied to scenario sets with both ISII = 0

and ISII = 1 to decrease the number of lines for contingency analysis.

It should be emphasized that we do not remove any scenario from

stochastic TEP, and the size of operation states set for scenario ω in itera-

tion υ, which is represented by Nω,υ
s , is always greater than or equal to 1

(|Nω,υ
s | ≥ 1 ∀ω, ∀υ). In other words, in each iteration that TEP optimization

is solved (in step 9 of the proposed framework) all scenarios are included in the

optimization problem at least for their normal operation state. We create CL

from ICLs of a subset of scenarios by using the designed three-level filter to

reduce computational time in early iterations. However, the iterative frame-

work is terminated if and only if all important lines for contingency analysis

are integrated into the TEP optimization problem; therefore the contingency

95



list (CL) will contain all ICLs of all scenarios in the last iteration.

4.2.3 The Proposed Framework

In this chapter, a framework is designed to iteratively solve stochastic

TEP with N−1 contingency analysis. The proposed three-level filter is used to

select a subset of important reliability constraints for the optimization problem

in each iteration to increase the problem size gradually and thereby reduce

overall computational time compared to considering all constraints explicitly

from the start. The proposed framework is summarized in the following 10

steps:

Step 1: Load input data, set υ = 1.

Step 2: Check system islanding

In this step, an algorithm checks for island buses in a network in which

all candidate lines are tentatively built. If any island buses are found in

this step, they will be deleted from data permanently as they will never

be connected to the network.

Step 3: Solve a relaxed version of TEP

In this step, all constraints related to contingency analysis are ignored,

and a relaxed version of the original integrated TEP is solved. This

optimization problem is much easier to solve and provides a lower bound

for the original problem. The existing network (No) is updated by adding
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the selected candidate lines to create updated network Nυ
u . The new

system is referred to as Sυu .

Step 4: Temporarily remove island buses

If there is any island bus in the updated system (Sυu), it will be removed

temporarily from data as it will not have any impact on ICL and filter-

ing. The new reduced system is called Sυr .

Step 5: Create ICL for all scenarios

For Sυr , ICLω,υ will be created for all scenarios with relaxation factor

value δ = 1. Mathematical formulation and full definition of relation

factor are given in section 4.3.2.

Step 6: Create Contingency Statistics (CSυo ) and Contingency Lines (CLυo)

vectors

For this step, the contingency statistics vector that contains the size of

ICLω,υs for each scenario (|ICLω,υ|s) is created and labeled CSυo , and

all important lines for contingency analysis are added to the contingency

list (CLυo) vector.

Step 7: Three-Level Filtering for contingency analysis

A three-level filter is designed to further decrease the total number of

lines for contingency analysis in TEP based on network and scenario

set characteristics. In each iteration only one level of the filter will be

selected to modify CSυo and CLυo to form vectors CSυ and CLυ to be

integrated into TEp optimization problem in step 9.
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• High-Level Filter : The algorithm gets into this level if ISII = 1

and υ = 1. After running ISII and creating ISL, if |ISL| = 1,

the updated VCL algorithm is run with a δ value close to 1. If

|ISL| > 1, SSE algorithm is run to eliminate similar scenarios in

ISL if there are any. Therefore, a relatively small subset of lines in

CLυo are selected at the end of this level of filtering, and CSυ and

CLυ are created.

• Medium-Level Filter : The algorithm gets into this level in an iter-

ation if it did not get into the previous level and the mean of CSυo

is large enough. In this level, SSE is used to find and eliminate

similar scenarios. If the number of remaining lines for contingency

is still large, the updated VCL algorithm with δ � 1 is run to select

a fraction of lines to reduce the size of contingency lines list. At the

end of this level CSυ and CLυ are created.

• Low-Level Filter : If the algorithm did not get into the first or the

second levels in an iteration, it will get into this level. In this step

only the updated VCL algorithm with δ ≥ 1 will be run to reduce

the size of contingency lines list and create CSυ and CLυ.

The filter is designed in a way to ensure that sum of CSυ elements in

iteration υ is greater than or equal to iteration υ− 1. Otherwise CSυ =

CSυo and CLυ = CLυo , which means all important lines will be selected for

contingency analysis (all scenarios are included in contingency analysis).
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Contingency matrices Cω,υ are created based on CSυ and CLυ in each

iteration. See section 4.3.3 for more detail.

Step 8: Check Stopping Criteria

The iterative process will stop when CSυ = CSυo in an iteration. In this

case, the variable Flag is set to 1.

Step 9: Solve TEP optimization problem

In this step, Sυu is used as the base case for TEP. After solving TEP

optimization problem, set υ = υ + 1, and update Nυ
u and Sυu based on

the selected plan in this step. If Flag = 1 go to step 10, otherwise return

to step 4.

Step 10: We have the optimal/near-optimal expansion plan that satisfies N−

1 criterion.

We can confirm that the selected plan satisfies the N − 1 criterion by

running a DC-SCOPF with all contingencies for the selected expansion plan to

make sure there is no violation in constraints, and if there is any, the algorithm

will return to step 4 to update CS and CL. As selected lines in each iteration

are considered as the built lines for the next iteration (by updating Nυ
u and

Sυu at each iteration), in general we cannot guarantee global optimality of the

final result. To quantify the quality of the final result, we need to calculate the

optimality gap by finding a lower bound answer (discussed in section 4.2.4).

The proposed framework is summarized in a flowchart in Figure 4.1.
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Figure 4.1: Flowchart of the proposed iterative framework
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4.2.4 Sub-Optimality Bound

Branch and Bound (BB) is one of the most common methods for solving

combinatorial optimization problems. It was proposed by A. H. Land and A.

G. Doig [56] and improved by several references since 1960 [20]. To quantify

the quality of the obtained result by the proposed method, we use BB to find a

lower bound (LB) for TEP by exploring some levels of branches for improving

the lower bound. Details of BB algorithm is not in the scope of this paper.

The result of step 10 is considered as the upper bound (UB) for calculating

the error from the following equation:

ε =
UB − LB

LB
× 100 (4.1)

The value of ε in (4.1) depends on the number of applied branch and bound

steps for calculating the lower bound answer, and it shows the maximum

possible error between the answer in step 10 and the globally optimal answer

(also called ε−suboptimal). As the proposed iterative method always selects

a subset of the most important reliability constrains for solving TEP in each

iteration, we expect the optimal answer to be close to the upper bound.

4.3 Mathematical Formulation

4.3.1 Two-Stage Stochastic TEP Formulation with Dynamic Con-
tingency Matrix

In our formulation, we assumed wind and load as uncertain parameters,

but as explained in section 4.2.2 the proposed method is independent of the
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nature of uncertainty and the origin of scenarios (as long as uncertainties can

be represented by scenarios with known probabilities). When probabilities

are unknown, their values can be estimated using Bayesian approaches, where

non-informative prior probabilities are established in correspondence with the

objective variable of the problem (see [39, 40] for more detail) .Compared to

Chapter 2, in this formulation, the deterministic operation cost is replaced with

the expected operation cost that captures the impact of future uncertainties

on system operation. Compared to Chapter 3, contingency analysis is added

to stochastic TEP to guarantee the selected plan meets N − 1 criterion. The

two-stage stochastic TEP is formulated as follows:

Z∗= min
∑
Nn

ζlxl+E[Q(x, ξ̃)] (4.2)

st. xl ∈ {0, 1} ∀xl ∈ Nn, (4.3)

where ξ̃ is a random variable vector that represents load and wind uncertainties

(ξ̃ = (ξ̃1, ˜ξ2)). E[Q(x, ξ̃)] represents the expected value of operation costs that

contains load shedding and wind curtailment penalty and generation costs.

This expected value is approximated with a weighted sum of a limited number

of scenarios as follows [31]:

E[Q(x, ξ̃)] ≈
∑

Ω

P ωQ(x, ξω) (4.4)
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where Q(x, ξ) is the optimal value of power system operation for a given load

and wind represented by ξ.

Q(x, ξ)= min
∑
Ns

(
∑
Nb

qiri,c)+
∑
Nb

γiCWi+
∑
Ng

Cogpg (4.5)

st. −
∑
Lk

fl,c+
∑
Gk

pg+rk,c=dk (4.6)

−Ml(1− Cl,cxl) ≤ fl,c−Bl,l∆θl,c (4.7)

Ml(1− Cl,cxl) ≥ fl,c−Bl,l∆θl,c (4.8)

CWk ≥
∑
Wk

(Pmax
g − pg) (4.9)

(Cl,cxl)f
min
l ≤ fl,c ≤ fmaxl (Cl,cxl) (4.10)

Pmin
g ≤ pg ≤ Pmax

g (4.11)

0 ≤ rk,c ≤ dk (4.12)

−π
2
≤ θk,c ≤

π

2
(4.13)

CWk ≥ 0 (4.14)

xl=1, ∀l ∈ No (4.15)

xl ∈ {0, 1}, ∀l ∈ Nl (4.16)

This optimization problem is solved in step 9 for every iteration. In

equation (4.5), load shedding is penalized over all operating states (Ns) to sat-

isfy the N − 1 criterion (no load shedding is accepted during both normal and

under single contingency states). Equation (4.6) enforces power balance at

each bus. Equations (4.7) and (4.8) show DC representation of flow in trans-
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mission lines with big M technique. Equation (4.9) measures wind curtailment

at each bus. Equation (4.10) shows flow in all lines should always be between

their maximum and minimum capacity limits. These limits will be modified

based on the given value for α for emergency conditions (contingency in the

network). Equations (4.11)-(4.13) enforce power plants’ dispatch, load shed-

ding and voltage angles to be between their minimum and maximum limits.

Equation (4.14) enforces non-negativity of wind curtailment. Equation (4.15)

sets decision variables for existing lines to 1. Equation (4.16) enforces that x

is a binary decision variable for transmission lines (x = 1 when a line is built

and x = 0 when a line is not built).

4.3.2 Updated Variable Contingency List (VCL) Algorithm

Modified Line Outage Distribution Factor (LODF) is used to calculate

post-contingency flow in transmission lines when one line is on outage. The

following equations are used to create important contingency lists for different

scenarios.

Γω,υm,l =
fω,υm,l − fmaxm

fmaxm

,∀m, l ∈ Nυ
u , ∀ω ∈ Ω (4.17)

Φω,υ
l = {m ∈ Nυ

u |Γ
ω,υ
m,l ≥ α} ,∀l ∈ Nυ

u , ∀ω ∈ Ω (4.18)

CIIω,υl =

{ ∑
Φ
ω,υ
l

Γω,υm,l

|Φω,υl | , if |Φω,υ
l | 6= 0

0, if |Φω,υ
l | = 0

(4.19)

ICLω,υ = {l ∈ Nυ
u |CII

ω,υ
l ≥ αδ} ,∀ω ∈ Ω (4.20)

δ ≥ 1, (4.21)
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where (4.17) calculates over/under loading on line m when line l is out. In

this equation, fω,υm,l represents the magnitude of post-contingency flow in line

m when line l is on outage. Equations (4.18)-(4.19) are used to calculate

Contingency Identification Index (CII) for each scenario with α as the line

capacity modification factor during contingencies (see [69] for more details).

Equation (4.20) creates important contingency list (ICL) based on CII. To

be able to select a fraction of lines in ICLs, a relaxation factor δ is included

in (4.20). This new capability is useful for managing the size of CL in different

iterations.

4.3.3 Three-Level Filtering Algorithm

Algorithm 1 explains the proposed three-level filter in step 7 in sec-

tion 4.2.3 in more detail. To develop this algorithm, concepts explained in

section 4.2.2 are used.

As shown in Algorithm 1, after checking the normality of CSυo distri-

bution in iteration υ (H), mean (µ) and standard deviation (σ) of the fitted

normal distribution is calculated. Then the status of ISII will be set (based

on H, µ, σ). In the next step, conditions for selecting a filter level is checked.

For the high-level filter, first the ISL is created, then based on the number

of important scenarios (|ISL|), the filter goes through SSE or the updated

VCL algorithms. For the medium-level filter, SSE and the updated VCL al-

gorithms (if applicable) are run to reduce contingency lines list. The low-level

filter applies the updated VCL algorithm to create CLυ and CSυ. In each it-
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Algorithm 1 Three-Level Filtering

Require: CSυo , CL
υ
o and υ

H ← 0 (if CSυo is not Normal)
µ← mean of CSυo
σ ← standard deviation of CSυo
ISII ← 1 (if H = 0 OR σ ≥ µ/2)
if υ = 1 AND ISII = 1 (High-Level) then

ISL← Scenarios with |ICL| ≥ (µ+ σ)
if |ISL| > 1 then

CSυ, CLυ ← Run SSE for ISL
else

CSυ, CLυ ← Run updated V CL for ISL
end if

else if υ ≤ 3 AND µ is large (Medium-Level) then
CSυ, CLυ ← Run SSE
if sum(CSυ) is still large then

CSυ, CLυ ← Run updated V CL with δ � 1
end if

else (Low-Level)
CSυ, CLυ ← Run updated V CL with δ ≥ 1

end if
Ensure: Sum(CSυ) ≥ Sum(CSυ−1) OR CSυ = CSυo
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eration to guarantee the algorithm’s eventual termination, it is always checked

that the number of selected lines increases or that all lines will be selected. It

is critical to design the filter in a way that effectively creates CLυ and CSυ

based on the size of the network and the number of scenarios. In section 4.4.1,

the detail of applying all filtering steps for a numerical case study is given.

4.4 Case study and Simulation results

In this section, we run numerical analysis for five case studies on a

13-bus system (three of the cases) and a reduced ERCOT system (two of

the cases). All simulations are done with a personal computer with 2.4-GHz

CPU and 16 GB of RAM. The proposed method is implemented in MATLAB

R2014a [74] by using YALMIP R20140221 package [60] as a modeling software

and GUROBI 5.6 [45] as a solver. To calculate “Total Time”, MATLAB

built-in function tic toc is used to evaluate elapsed wall clock time, and

“Solver Time” is calculated by YALMIP. The case studies are solved for three

methods i.e. the proposed method in this paper, the VCL algorithm [69] and

the integrated model (in which N − 1 contingency analysis is modeled for all

lines) and their performance are evaluated.

4.4.1 13-Bus System

This system has 13 buses, 33 existing lines, 16 power plants, 9 load

centers, and 36 candidate lines. It is developed for educational purposes and

represents a simplified version of the ERCOT network (see Figure 4.2). Bus
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Figure 4.2: 13 bus network with existing lines, generators and loads.

No. 13 represents a new demand center that submitted a request to connect

to the network. High wind expansion in west (buses 3 and 6) also introduces

needs for network reinforcements in west and central parts of Texas. This

system is run for three cases i.e. A, B and C with 20, 50 and 100 scenarios,

respectively, to evaluate the capabilities of the proposed method. It is assumed

that all scenarios have the same probability. Transmission investment cost is

$1M/mile that is converted to an annual base (16% of this cost is considered

as annual investment cost). Value Of Loss Load (VOLL) is set to $9000/MWh

and wind curtailment penalty is $500/MWh.

108



To show the performance of the proposed method when it deals with

different cases, the results of these three cases are compared for all steps of the

proposed method. Step 1: Input data is loaded, υ = 1. Step 2: check islanding:

No island. Step 3: Solve relaxed problem: for case A, 7 new lines are added,

and for cases B and C, 9 new lines are added, which will significantly affect

the computational time in step 9. S1
u and N1

u are created for each case. Step 4:

Temporary island removing: No island, so S1
r is the same as S1

u. Step 5: Create

ICL for all scenarios: by setting α = 0.05 and δ = 1, ICLω,1s are created for

all scenarios. Step 6: Create CSυo and CLυo : CL
1
o is created from ICLs. |CL1

o|

for cases A, B and C are 219, 538, and 1041, respectively. These numbers

show how fast the problem size will increase for a large number of scenarios

even after applying the VCL algorithm. For each case, the total number of

lines in CL1
o is equal to the sum of elements of CS1

o .

Step 7 applies the three-level filtering. It is evaluated step-by-step and

in more detail to make its impact clear. We used the MATLAB built-in func-

tion jbtest, which is developed based on Jarque-Bera test, to check whether a

data set has a normal distribution. CS1
o for case A has a normal distribution,

and for cases B and C, CS1
o does not have a normal distribution. The value

of ISII is set for three cases as ISIIA = 0, ISIIB = 1, ISIIC = 1. The his-

togram and fitted normal distribution on CS1
o vector are shown in Figure 4.3

for each case in the first iteration. Gray bars show the frequency of |ICLω,1|s,

and the red bell shape curve represents the normal distribution fitted to CS1
o .

Green dashed line indicates mean (µ) of the fitted normal distribution and blue
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solid line represents mean+std (µ + σ). If ISII is equal to 1, then scenarios

on the right side of the blue line will be tagged as important scenarios. Impor-

tant Scenarios List (ISL) for each case is given in the second row of Table 4.1.

Case A has no important scenario, as its CS1
o distribution is normal and its

standard deviation is less than half of its mean (see Figure 4.3(a)). For case

B and C (see Figure 4.3(b),(c)) ISII = 1, and there are 5 and 10 important

scenarios for these two cases. For the first iteration, the filter selects 108 lines

for contingency analysis for case A (
∑

Ω |N
ω,1
sA | = 128 operation states), 70

lines for case B (
∑

Ω |N
ω,1
sB | = 120) and 153 lines for case C (

∑
Ω |N

ω,1
sC | = 253).

To evaluate the impact of the proposed filter on the problem size, the total

number of operation states (
∑

Ω |Nω,1
s |) that should be considered by different

methods is given in Table 4.2. With only using the VCL algorithm from [69]

(without using the filter introduced in this paper), TEP with 239, 588 and

1141 operation states should be solved for these three cases, which are much

harder to solve and need significantly more computational time. Based on

the last row of the table, for the integrated model that considers all lines

for contingency analysis, the problem size will be so large as to easily make

medium and large-scale problems unsolvable. Figure 4.4 shows the impact of

the filter on reducing the size of CLυ in different iterations. Blue, red, and

green colors represent case A, B and C respectively. Dashed lines show the

original number of important lines (|CLυo |), and solid lines show selected lines

by the filter (|CLυ|) in each iteration. The difference between dashed and

solid lines in each iteration shows the impact of the filter on reducing |CL|
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Table 4.1: ISLs and Selected Filter Levels for 13-bus System

Case A Case B Case C

ISL −− 17, 32, 41, 42,
50

17, 32, 41, 42, 50, 57, 78, 94, 96,
97

Filter Medium High High
Levels Low Medium Medium

– Medium Medium
– Low Low
– Low Low

for each case. Reducing |CLυo | from one iteration to another is because of the

developed framework that iteratively solves TEP and updates Nu and Su. As

cases B and C have important scenarios, lines in CL1 are selected among ICLs

of scenarios in their ISLs compared to case A, in which CL1 is created from

ICLs of all scenarios in the first iteration. CLυo and CLυ are getting closer

and closer to each other from iteration υ to iteration υ + 1, and this guaran-

tees the algorithm’s termination. The third row of Table 4.1 shows how the

algorithm moves between the filter’s levels during iterations for different cases.

During two iterations for case A, the algorithm selects medium and low levels

respectively. For cases B and C, it selects High, Medium, Medium, Low and

Low levels. The number of iterations and filtering levels are selected based on

problem characteristics that demonstrates the dynamic behavior of the filter.

In step 8, stopping criteria is checked. As shown in Figure 4.4, at

iterations 2, 5 and 5, respectively, CSυ = CSυo and Flag is set to 1 for cases

A, B and C, respectively. In step 9, TEP optimization problem with selected
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Table 4.2: Total number of operating states in the first iteration for different
case studies

Case A Case B Case C

Proposed method 128 120 253

VCL algorithm 239 588 1141

Integrated model 1400 3500 7000

contingencies is solved, υ = υ+1, and Nυ
u and Sυu are updated in each iteration.

The algorithm gets to step 10 after the stopping criteria is met. Selected lines

and total costs are given in the second and third rows in Table 4.3. Case A adds

11 new lines, and case B and C add 16 lines to the network. The simulation

time for the proposed method is given in the fourth row in Table 4.3. The

difference between total time and solver time in the fourth row of this table

represents the time that the filter and the modeling language need in the

process of solving the TEP optimization problem. The design of the filter will

affect both solver and total time. To make sure that these results satisfy N−1

criterion, DC-SCOPF is run for all contingencies, and no violation occurs.

To calculate ε to quantify the quality of results in step 10, a lower

bound is calculated by applying a few steps in a BB algorithm. It is possible

to apply more steps to get a better lower bound answer. The error bounds for

three cases are given in the last row in Table 4.3. It shows 1.3%, 2.25% and

2.9% as the upper bound error for cases A, B and C respectively. However,

these are not the actual error between optimal answer and our results.

To compare the actual error with ε and show the impact of the proposed
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Table 4.3: Transmission Expansion Planning for 13-bus System

Case A Case B Case C

Selected
Lines

2-1, 2-1, 3-2,
3-2, 3-6, 6-9,
7-10, 8-12,
13-5, 13-6,
13-6

2-1, 2-1, 1-6, 1-6,
3-2, 3-2, 3-6, 4-10,
4-11, 7-10, 8-10,
8-10, 8-12, 13-5,
13-5, 13-6

2-1, 2-1, 1-6, 1-6,
3-2, 3-2, 3-6, 4-10,
4-11, 7-10, 8-10,
8-10, 8-12, 13-5,
13-5, 13-6

Total Cost
($ M)

4889 4986.4 4945.9

Solver (sec) 27.2 177.8 1252
Total (sec) 33.15 243.6 1443

ε 1.3% 2.25% 2.9%
Actual Err 0% 0% 0%

Table 4.4: Total simulation time for different methods [minutes]

Case A Case B Case C

Proposed method 0.55 4.06 24.05

VCL algorithm 19.9 1714 15659

Integrated model 8768 (6+ days) NA NA

method on reducing computational time, we run these three cases with the

proposed algorithm in chapter 2 and the integrated model. The actual error

is shown in the last row in Table 4.3. It shows that for all three cases the

actual error is zero, which means the proposed method found the optimal plan

for these cases. It should be mentioned that as in real cases we do not know

the optimal answer, the quality of results is quantified by the calculated ε.

In other words, our answer is ε−suboptimal. The performance of these three
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different methods is compared in Table 4.4. Each row in this table shows the

simulation time each method needs to solve these case studies. The ratio of the

third row to the second row in this table shows how much the proposed method

in this paper performs better compared to [69] for stochastic TEP. This ratio

is more than 35, 420 and 650 for cases A, B and C respectively and shows

the relative performance of the proposed method increases with increasing the

problem size. Compared to the integrated model, the proposed method found

the answer more than 15657 times faster for case A, and we could not get any

answer even after 12 days for cases B and C. This great performance is achieved

because of huge problem size reduction using the designed filter through the

developed iterative framework. For example for case C, in the first iteration,

the proposed method decreases the number of structural constraints by 85%

compared to [69] and by 98% compared to the integrated model.

4.4.2 Reduced ERCOT System

A reduced model of the ERCOT system is provided in [94]. This model

is developed for evaluating the impact of high penetration of wind power on

west Texas network. Therefore, the west part of ERCOT network in modeled

in detail, and the rest of ERCOT is simplified into three zones. This network

contains 317 buses, 427 branches, 489 conventional power plants, 36 wind

farms and 182 load centers. The number of candidate lines is equal to the

number of existing lines. In this TEP optimization problem, there are 427

binary variables, which makes it a challenging problem to solve. All costs are
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set the same as the 13-bus system. We consider two cases for the ERCOT

system i.e. case A with 5 scenarios and case B with 10 scenarios. Scenarios

are generated using historical load and wind data [94]. For case A, scenario 5 is

selected as the important scenario, and scenarios 5 and 6 are in ISL for case B.

The original number of important lines (|CL1
o|) is 23 and 52 respectively, and

the three-level filter selects 10 and 19 lines for the first iteration in case A and

B. Both cases take two iterations to converge, and go through High and Low

level filters.

The selected plan, total costs, solver and total time with ε and actual

error are shown in Table 4.5. The number of selected lines is 9 and 11 for

case A and B respectively. ε is around 1% for the reduced ERCOT system

(the answer is 1%−suboptimal). Both cases are also solved with the developed

algorithm in chapter 2 and the integrated model to compare the results with

the proposed method in this chapter. As shown in the last row in Table 4.5,

actual errors for both cases are zero, which means the proposed method found

the optimal expansion plan for this system. The solver and total time are

shown in the fourth row. For case A, the proposed method in [69] needs

181 minutes to solve the problem (compared to 10.5 minutes required with the

proposed method in this paper), and for case B, [69] needs 12 days and 6 hours

and 56 minutes to solve the problem (compared to 19.3 minutes required by

the proposed method in this chapter). We did not get the answer from the

integrated model after 34 days (still more than 75% optimality gap). Although

the number of scenarios are not large for this system (compared to the 13-Bus
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Table 4.5: Transmission Expansion Planning for Reduced ERCOT System

Case A Case B

Selected
Lines

1311-1064, 1310-1309,
1312-1310, 1313-1312,
1315-1313, 1067-1315,
1065-1064, 1066-1065,
5905-5902

1311-1064, 1310-1309,
1312-1310, 1313-1312,
1315-1313, 1067-1315,
1065-1064, 1066-1065,
5905-5902, 60042-6216,
60042-60040

Total Cost
($ M)

16298 16857

Solver(sec) 358 871
Total (sec) 630 1160

ε 0.96% 1.01%
Actual Err 0% 0%

system), the proposed method gets the answer more than 910 times faster

than [69], and the relative performance improves more when the number of

scenarios increases. Moreover, the relative performance improvement of the

proposed method grows faster for larger networks, as the ratio for the ERCOT

case B with 10 scenarios is more than 27 times larger than the ratio for the

13-bus case A with 20 scenarios.

4.5 Summary

In this chapter, N−1 contingency analysis is integrated into stochastic

transmission capacity expansion planning through an iterative framework. By

developing important scenario identification index, more beneficial scenarios

for contingency analysis are distinguished, and important scenarios list (ISL) is

116



created. In the next step, the proposed three-level filtering algorithm provides

a systematic, automated and tractable way to select a subset of important lines

for contingency analysis. It uses ISL, developed similar scenario elimination

(SSE) technique and updated variable contingency lists (VCL) algorithm to

reduce the number of reliability constraints in TEP in each iteration. As an

example, for the ERCOT system with 10 scenarios, the number of structural

constraints decreased by 99.78% in the first iteration. The proposed method

allows solution of large-scale stochastic TEP optimization problems faster by

integrating contingency analysis into TEP gradually through an iterative pro-

cess that decreases computational time significantly. The quality of results

is quantified by calculating maximum error bound (ε optimality gap). The

numerical results show that the effectiveness of the proposed method will in-

crease by increasing the number of scenarios and size of the network. ISOs can

use this algorithm as an automated tool for operation, reliability, and planning

purposes.
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Figure 4.3: ISII index results for three different cases
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Chapter 5

Decomposition Framework: Concepts and

Formulation
1

1Mohammad Majidi-Qadikolai and Ross Baldick. A generalized decomposition frame-
work for large-scale transmission expansion planning. IEEE Transactions on Power Systems,
PP(99):1-1, 2017. Authors had equal contributions.
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Nomenclature

Sets and Indices:

Nb: Set of buses; index k, n

Ng: Set of all generators; index g

Nwg: Set of all wind generators; index g

Nl: Set of all lines (existing and candidate); index l, m

No: Set of all existing lines; index l, m

Nn: Set of all candidate lines; index l, m

Lk: Set of lines connected to bus k

Gk: Set of all generators connected to bus k

Φω
l : Set of lines with violated post-contingency flows under outage of line l in

scenario ω

Nω
s : Set of system operation states under scenario ω; index c (c = 1 represents

the normal operation condition)

ICLω: Set of important lines for contingency analysis in scenario ω

υ: Superscript/index for iteration number

Ω: Set of scenarios; index ω

I: Set of classes

Ii: Set of scenarios in class i

S i: Set of clusters for class i

S ij: Set of scenarios in cluster j for class i

B: Set of bundles

Bi: Set of scenarios in bundle i
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| |: Size of a set

Parameters :

qi: Per MWh load shedding penalty at bus i

γg: Per MWh wind curtailment penalty for wind farm g

Cog: Per MWh generation cost for generator g

ζl: Annual cost of line l construction

dk: Demand at bus k

B: Diagonal matrix of line suseptance

Pmax
g /Pmin

g : Maximum/Minimum capacity of generator g

fmaxl /fminl : Maximum/Minimum capacity of line l

Cω: Matrix of contingencies (operation states) that specifies the status of lines

under different contingencies (1 for in service and 0 for out of service lines) for

scenario ω; index c

Γωm,l: Magnitude of violation in flow of line m when line l is on outage in sce-

nario ω

CIIωl : Contingency identification index for outage of line l in scenario ω

α: Line capacity modification factor for contingency conditions (Emergency capacity Rating =

(1 + α)×Normal capacity Rating)

ϑ: Variable freezing parameter

ρl: Penalty factor for line l in PH algorithm

κ: Size of each bundle

A: Clustering attributes matrix

d: Size of a TEP optimization problem
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SC: Number of structural constraints for a TEP problem

CV : Number of continues variables for a TEP problem

BV : Number of binary variables for a TEP problem

Random Variables :

ξ̃1: load in MW

ξ̃2: Available wind output in MW

Decision Variables :

rk,c: Load curtailment at bus k under operating state c

CWg: Wind curtailment for wind farm g

pg: Output power of generator g

fl,c: Power flow in line l under operation state c

θi,c: Voltage angle at bus i under operating state c. ∆θl,c is voltage angle

difference across line l under operating state c. ∆θl,c= θk,c-θn,c for line l from

bus k to bus n.

xl: Binary decision variable for line l

xω: Binary decision variables vector for scenario ω

xBi : Binary decision variables vector for bundle Bi

W Bi : Multiplier vector for bundle Bi in PH algorithm

Z: Binary variables matrix for clustering

H: Binary variables matrix for bundling
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5.1 Introduction

With increasing interest in building large-scale solar parks and wind

farms and the implementation of new environmental regulations such as the

“clean power plan” that will result in retirement of some conventional power

plants, the need for building new transmission network is inevitable even in

places in which the demand growth is not significant [96]. Planning of such

network expansion is therefore increasingly important, particularly because

the cost of new transmission is typically higher in real terms than historical

costs.

5.1.1 A Brief Overview

The Transmission Expansion Planning (TEP) optimization problem

has a long history that we briefly overview in this section. For a comprehensive

overview of literature in this area, please read [57] and [49].

5.1.1.1 Solution Methods

Transmission planning methods can be divided into two main categories

i.e. optimization-based, and heuristic models.

In optimization-based methods, which is the main focus of this disser-

tation, a mathematical formulation for TEP is developed and the problem is

solved using classical optimization programming techniques. Several methods

are proposed to formulate TEP problem. In [113] and [37], transmission plan-

ning is formulated as a linear optimization problem with continuous variables.
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Mixed integer programming is another model that is widely used for TEP

modeling ([8, 104, 84, 69] for example). A nonlinear model for TEP is de-

veloped in [119]. A complex mathematical model for centralized transmission

planning and decentralized generation expansion planning is developed in [52].

Decomposition techniques like Benders decomposition [43, 94, 19, 121, 1, 54, 4],

cutting-plane method [105], and Progressive Hedging [87] are also used to solve

the TEP optimization problem.

In heuristic models, the TEP problem is solved through several steps

of generating, evaluating, and selecting expansion plans, with or without the

user’s help [57]. One of the common heuristic methods is to use sensitivity

analysis to select additional circuits [95, 58, 68, 82]. MISO [75], ERCOT [30],

and CAISO [73] are three examples of independent system operators in the US

that use different heuristic methods for TEP. As discussed in [57] and [88], ex-

isting optimization-based methods are computationally very expensive making

them mainly impractical for large-scale TEP problems.

5.1.1.2 Power System Modeling

To model power flow analysis, either DC or AC models are used. Al-

though AC models [42, 3, 100] are more accurate for power flow analysis,

their nonlinear nature makes them less popular for long-term TEP problems

compared to DC models [113, 8, 104, 54, 69]. Moreover, many of the pa-

rameters needed for AC analysis, such as reactive support, are not known at

the time of planning the thermal transmission capacity Linear approximation
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of network losses, reactive power and voltage magnitude are also integrated

into the DC model to improve its performance for TEP analysis [2, 120, 12].

N − 1 contingency analysis required by NERC for power system planning and

operation [91] is integrated into TEP in [104, 120, 69, 64]. Authors in [126] co-

optimized transmission expansion planning with TCSC to capture the impact

of FACTS devices on TEP.

5.1.1.3 Uncertainties

Fast technology changes, new policies, increasing the penetration of

mobile/flexible demand along with intermittent nature of renewable resources

make it hard to accurately predict future generation mix/location and de-

mand; therefore, these uncertainties should be explicitly modeled/evaluated

in TEP process by system planners. Developing a single expansion plan that

considers these uncertainties using methods that heavily depend on engineer-

ing judgment can be costly and inefficient. Authors in [84], [18] evaluated the

impact of ignoring uncertainties on transmission planning.

The TEP optimization problem can be formulated as a two-stage stochas-

tic resource allocation problem (a class of mixed-integer stochastic program-

ming) to explicitly model uncertainties using a finite set of scenarios [53]. In

this formulation, in the first stage, a decision about building a new transmis-

sion line is made, and the impact of this decision on power system operation

under different scenarios is evaluated in the second stage. Although formu-

lating TEP as a two-stage stochastic optimization problem provides a strong
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modeling capability [94, 19, 87, 64], solving the extensive form (EF) of this

problem is not tractable even for medium size problems specially when N − 1

contingency analysis is added to the problem. Therefore, decomposition and

heuristic techniques should be used for solving TEP for medium to large-scale

systems.

Robust optimization is another method to integrate uncertainties into

the TEP formulation. In robust optimization, uncertainties are represented

using a range for each uncertain parameter instead of developing scenarios (as

used by stochastic optimization), and it finds a plan that is robust for the

worst case scenario. In this case, the final result is usually too conservative,

which motivates an Adaptive Robust Optimization [13] formulation with bud-

get constraint limits to mitigate the level of robustness (conservativeness of

results). Authors in [105, 36, 76] formulated the TEP problem as an adaptive

robust optimization. Authors in [77] applied robust optimization at distri-

bution level decision making process. In this dissertation, we use stochastic

optimization formulation to model uncertainties in TEP, corresponding to un-

certainties with well-defined probability distributions.

5.1.2 Decomposition Techniques

Horizontal or Vertical decomposition techniques can be used to de-

compose a two-stage stochastic TEP optimization problem for large systems.

Benders decomposition (BD) [11] is one of the widely used horizontal decom-

position technique for solving two-stage stochastic TEP. It divides the original
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problem into two parts i.e master and subproblem and uses “cuts” from dual

of the subproblem to model its constraints in the master problem [43]. Ref-

erences [43, 94, 19, 121, 1, 85, 54] applied BD to solve TEP optimization

problem.

Although in several papers it is claimed that BD is easily scalable (for

TEP) and can be used for real-size problems, authors in [85] showed that even

for medium size networks when the number of scenarios is large (50 or more),

an optimality gap between 3% to 6% would need to be accepted in the BD

algorithm to get the result in a reasonable time. For large-scale problems,

the subproblem itself will be hard to solve, and a large number of iterations

between master and subproblem is required to meet optimality gap require-

ments. This problem worsens when reliability constraints are added to the

TEP problem, in which subproblems should be solved for normal and un-

der contingency operation states for all scenarios. The column-and-constraint

generation method (also called cutting-plane method) is another horizontal

decomposition technique that can be used to decompose a two-stage problem.

In this method, primal “cuts” are used to represent the subproblem constraints

in the master problem instead of dual cuts used by BD. Convergence guaran-

tees and other properties of this method are explained in [51] and [7]. Authors

in [105] deployed this decomposition technique for solving robust TEP.

Progressive Hedging (PH) [101] is aimed at decomposing a two-stage

stochastic resource allocation problem vertically by solving the problem for

each scenario separately, and adding non-anticipativity constraints to couple

128



the first stage decision variables (standard PH). The PH method for mixed-

integer problems is a heuristic method that finds an upper bound answer for

the non-convex optimization problem; however, authors in [34] developed a

method to calculate a lower bound for results of the PH algorithm in order

to quantify the quality of results. One drawback of standard PH algorithm is

that for problems with a large number of scenarios and integer variables, it

may need a large number of iterations to satisfy non-anticipativity constraints

(and sometimes it may never converge if no heuristic action is taken inside the

algorithm). Stochastic unit commitment [108], and transmission planning [87]

are examples in power system in which standard PH is applied. Authors in [24]

used PH for commodity network design, and in [33], PH algorithm is used for

solving multi-stage stochastic mixed integer problems.

A decision regarding the type of decomposition technique i.e Hori-

zontal versus Vertical is usually made in advance (before problem formula-

tion/modeling). However, depending on the size of the problem (either the

network size or the number of scenarios) and the machine that is used to run

the simulation, different decomposition techniques might be appropriate. For

example, if the size of the network is large and a personal computer (PC) is

used for simulation, probably using PH algorithm will not be a good choice

because solving this problem for a single scenario by itself will be challeng-

ing, but moving from a PC to a workstation may change the situation. The

same can be correct for BD when the model is developed for a problem with

a small number of scenarios, and later a large number of scenarios is used to
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capture uncertainties. It can easily convert an efficient BD to an inefficient

decomposition technique. Therefore a configurable framework is desirable.

The proposed algorithm in Chapters 2–4 significantly decreased the

computational time for solving optimization-based TEP problems, but moving

toward real-size problems (a reduced ERCOT case study with 3179 buses,

which is 50% of the actual ERCOT network) shows that they are not scalable,

and will become intractable when the size of the network significantly increases

(the new case study is 10 times larger than the one used in Chapters 2–

4). In this and the next chapter, a scalable and configurable decomposition

framework is developed that not only provides this opportunity to use either

BD or HP methods to decompose a problem but also makes it possible to use

both decomposition techniques (hybrid), and takes advantages of both BD

and PH for solving the same problem. Decomposing the problem by bundles

of scenarios instead of each individual scenario will decrease the number of

iterations in PH. But for large-scale problems, solving the extensive form (EF)

of the bundled PH can be computationally expensive and even intractable.

Instead of EF, we can use BD (as an efficient algorithm for problems with

small-medium number of scenarios) to solve these bundled subproblems. In

this way, a large-scale problem can be decomposed/parallelized both vertically

and horizontally, and we can benefit from advantages of both decomposition

techniques.

The rest of this chapter is organized as follows: in section 5.2, the main

concept of the proposed framework explained. In subsection 5.2.1, different
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phases and steps of the proposed framework is explained. It is followed by a

scenario bundling algorithm in subsection 5.2.2 that can be used to efficiently

bundle scenarios for bundled PH algorithm. This section ends with a descrip-

tive example that explains the developed bundling algorithms for a simple

case study. In section 5.3, mathematical formulation related to different parts

of the developed framework is provided. In subsection 5.3.1, the stochastic

TEP formulation with security constraints (similar to Chapter 4) is provided.

It is followed by bundled PH algorithm and formulation in subsection 5.3.2.

The integer programming formulation for clustering is explained in subsec-

tion 5.3.3. This chapter is finalized with a review of the VCL algorithm from

Chapter 2 that is used for creating bundling attributes. The performance of

the proposed framework and numerical results are given in Chapter 6.

5.2 The Proposed Framework

5.2.1 Framework Overview

The proposed framework is designed to be flexible and configurable for

different problem sizes on different machines. It can be configured to solve

a problem in extensive form (EF), or using PH, BD, and Hybrid techniques

that provides more flexibility from the modeling perspective. The proposed

framework can be summarized as follows:

Phase 0: Data preparation

Step 1: Input data and set parameters
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Input data includes base network, scenarios, and candidate lines

list. In this step, the planner configures the framework by setting

parameters; i.e. the number of scenarios in each bundle (κ) and the

type of decomposition technique that should be used (PH, BD or

Hybrid) for phases I and II. Settings for phase II can be modified

later in step 4 if it is necessary.

Phase I: TEP without contingency analysis

Step 2: Scenario bundling

In this step, OPF for the base (existing) network is solved, and cal-

culated load shedding and wind curtailment will be used to develop

an attribute for scenario bundling. After developing appropriate

criteria, scenarios are distributed between groups using the devel-

oped scenario bundling method (see subsection 5.2.2).

Step 3: Solving TEP

In this step, based on inputs from step 1 and bundles from step 2,

TEP for normal operation states is solved. This step can be par-

allelized. The proposed method in Chapter 3 can be used to solve

TEP in this step faster.

Phase II: TEP with contingency analysis

This phase is run if contingency analysis should be integrated in TEP

process.
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Step 4: Scenario Bundling

Based on parameter settings, the scenario bundling method (see

subsection 5.2.2 for more detail) is used to bundle scenarios. The

VCL algorithm developed in Chapter 2 is used to develop bundling

criteria for this step.

Step 5: Solving TEP with contingency analysis

In this step, TEP with contingency analysis is solved. Based on

framework’s setting, either PH, BD, or hybrid may be used for

solving this large-scale optimization problem. This step can be

parallelized if PH and/or BD are selected as the solving algorithm.

The developed algorithm in Chapter 4 can be used for solving TEP

for each subproblem in this step.

Phase III: Quantifying the quality of results

Step 6: Calculating a lower bound answer

If PH or hybrid is selected for phase I and/or II, then finding a

lower bound answer is necessary to quantify the quality of results.

In this step, the proposed lower bound formulation for PH in [34]

is used to calculate a lower bound.

Step 7: Calculate optimality gap

The optimality gap (ε) can be calculated using the upper bound

from step 5 (or step 3 in case of TEP without contingency anal-

ysis) and the lower bound from step 6. The selected plan is ε −
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suboptimal.

The proposed framework is summarized in the flowchart in Figure 5.1.

5.2.2 Developed Scenario Bundling Method

In this chapter, a heuristic method is developed to bundle scenarios.

The main purpose of this method is to create heterogeneous groups of sce-

narios with minimum dissimilarity between the groups collectively (based on

selected attributes/criteria) and with relatively the same computational bur-

den. Having similar bundles will improve the performance of PH algorithm by

facilitating convergence of non-anticipativity constraints, as for a set of iden-

tical groups of scenarios, PH only needs one iteration to converge (although

the choice of bundling does not necessarily reduce computational time). In

contrast with clustering in which the objective is to minimize dissimilarity

within groups (by forming homogeneous groups), scenario bundling tries to

minimize dissimilarity between groups (mathematical formulation is provided

in section 5.3.4). Developed groups partition the scenarios, and their size (κ)

is constant for each phase. The proposed method bundles scenarios through

three steps i.e. classification, clustering, and grouping. These steps are ex-

plained in the following subsections. It should be noted that scenario bundling

is required only if 1 < κ < |Ω|, where Ω is the set of all scenarios and |Ω| rep-

resents the size of this set.
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Figure 5.1: Flowchart of the proposed generalized framework
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5.2.2.1 Classification

In classification, a model or classifier is constructed to predict class la-

bels such as “safe” or “risky” for bank loan application, or “light” and “heavy”

loading conditions for electric networks. There are different classification meth-

ods such as Decision Tree Induction, Bayes Classification methods, and Rule-

Based classification [47]. We use the Rule-Based method, because its structure

allows us to easily integrate expert knowledge into the bundling process. It

has the following structure:

IF Condition THEN Conclusion (5.1)

For our banking example, it can be written as

IF age ≤ 25 AND student THEN Safe

For electric network example, we can have

IF average line loading ≥ 50% THEN Heavily loaded

Rule-based classification will partition the original scenario set Ω into

a finite number of non-empty classes I = {I1, . . . , Iq}.

Different classification rules can be defined depending on the purpose

of a study. For numerical analysis in section 6.3, we will use the number of

important lines for contingency analysis (ICLs) as a classifier in step 4. By

using this classifier we may need to adjust the number of scenarios in classes

(those that are close to boundaries) for feasibility of clustering. Classification
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is an optional part of the bundling process, and if there is no classifier, then

there will be only one class that includes all scenarios (I = {I1}).

5.2.2.2 Clustering

Clustering is the process of grouping a set of objects in a way that ob-

jects within a cluster have the highest similarity. In this step, similar scenarios

in each class (Ii) are clustered based on selected attribute/developed criteria,

and form the set S i = {S i1, . . . ,S ic}. Without loss of generality, scenarios are

clustered in groups with the same size in this chapter, and the size of each

cluster (Cs) can be calculated from the following equation.

Cs =
|Ω|
κ

(5.2)

where, we assume that |Ω| is dividable by κ.

It is important to choose an attribute/criteria that is appropriate for

the purpose of the study and provides insight for grouping phase. For ex-

ample, bundles from step 2 of the proposed framework are used for solving

TEP in step 3. Load shedding and wind curtailment (under normal operation

condition) are highly penalized (compared to generation operation cost) in the

TEP objective function (4.5); therefore, load (and wind) will be curtailed only

if there is not enough transmission capacity to supply them (and transfer their

output), which is a signal for a need for transmission expansion. Therefore,

we used these two components in the objective function to form a clustering

attribute for phase I. A weighted sum of load shedding and wind curtailment
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(LW ) is defined as a clustering attribute for this step. For step 4 of the frame-

work, selected lines for contingency analysis for each scenario (ICLωs) is used

as an attribute for scenario clustering because TEP with contingency analysis

is solved in step 5, and ICLωs can significantly affect the selected expansion

plan [69].

Partitioning method is used to create clusters by minimizing distance

between different attributes of objects (scenarios here). For step 2, scenarios

with closest LW values are clustered together, and for step 4, the objective of

clustering optimization problem is to maximize similarity of ICLωs within each

cluster. It creates a good “base” for grouping phase. An integer programming

problem is solved to cluster scenarios in steps 2 and 4 (see section 5.3.3 for

mathematical formulation).

5.2.2.3 Grouping into Bundles

In the last phase of the proposed scenario bundling method, members

of each cluster are distributed between groups (bundles) with the objective of

minimizing dissimilarity between groups (by forming heterogeneous bundles).

For the scenario set Ω, a bundle set B = {B1, . . . ,Bb} of non-empty and

mutually exclusive subsets (∀i 6= j, Bi
⋂
Bj = ∅ and

⋃
j Bj = Ω) is formed.

As scenarios in each cluster share some similar characteristics, one way is

to distribute members of each cluster randomly between groups. It is also

possible to define new criteria for grouping in this step. For developing new

criteria, two main points should be noticed: first, the criteria should be at the
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group level rather than the scenario level because increasing similarity between

groups is the purpose of this step. Second, the new criteria should not be

significantly different compared to classification/clustering criteria, because

the implicit assumption in this step is that scenarios in each cluster share

similar attributes, and this assumption is mainly valid for the attributes used

in classification and clustering phases. Ignoring these points may decrease

similarity between formed groups.

For step 2, scenarios are distributed between groups so that groups have

relatively the same aggregated LW value (LWBi) because of its major contri-

bution in the objective function in TEP optimization problem in step 3. For

step 4, total number of ICLs in each group is used as a criteria for distribut-

ing scenarios between bundling groups. This attribute will result in forming

groups with relatively the same number of operation states, which will have

a huge impact on computational time. Combining this criteria with the one

used for clustering will result in creating groups that have relatively the same

impact on optimal result (because of similar lines for contingency analysis)

and requires relatively the same computational burden (number of operation

states).

As a separate stochastic TEP is solved for each bundle in PH algorithm,

the probability of each scenario should be updated based on equations (5.3)
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and (5.4):

PBi =
∑
ω∈Bi

P ω ∀Bi ∈ B (5.3)

Puω =
P ω

PBi
∀ω ∈ Bi,∀Bi ∈ B (5.4)

|Ω| =
∑
Bi∈B

|Bi| (5.5)∑
Bi∈B

PBi = 1 (5.6)

where, P ω is the original probability of scenario ω, PBi is probability of bundle

Bi in set of bundles B, and Puω is updated probability of scenario ω as a

member of bundle Bi. Equations (5.5) and (5.6) enforce scenario bundling to

be mutually exclusive.

Authors in [108] suggested that forming bundles with two scenarios

may improve the performance of the PH algorithm for stochastic unit com-

mitment problem, but they did not discuss how bundles should be formed.

In [24], authors proposed a scenario grouping method for commodity trans-

portation network planning, in which the objective of grouping is to maximize

dissimilarity within groups (replacing minimization in equation (5.28) with

maximization). Compared to [24], the proposed method in this paper mini-

mizes dissimilarity between groups (using the objective function (5.37)), take

into account the existing hardware infrastructure to control the size of each

bundle, and forms bundles with relatively the same size to improve the per-

formance of parallelizing (see section 6.2.7 for more details).
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5.2.3 A Descriptive Example

In this section, a descriptive example is used to explain implementation

of all steps of the developed scenario bundling method (from section 5.2.2).

Figure 5.2(a) shows a set of 16 scenarios (|Ω| = 16) that are developed to

capture uncertainties in wind, load, and future marker regulation on CO2

emission for planning purposes. The target is to bundle scenarios into groups

of 4 (κ = 4) with the objective function of minimizing the dissimilarity between

groups. Shape (rectangular for high load and circle for high wind uncertain-

ties), design (dashed lines represent the future market with CO2 penalty, and

solid lines for a future without CO2 penalty), number of dots (shows the num-

ber of overloaded lines in the base case), and colors (the level of overload in

lines) are used to visualize different attributes of scenarios. In the first step,

scenarios are classified based on the number overloaded lines in the scenarios

using the following rule:

IF number of overloaded lines ≥ 5

THEN Heavly loaded network

In Figure 5.2(b), the vertical brown line separates scenarios into two

classes (I = {I1, I2}) based on their impact on network loading.

In the next step, scenarios in each class I1 and I2 are clustered based on

similarity in uncertainties that they represent (their shapes). Based on (5.2),

the size of clusters is equal to 4 (Cs = 4). As the number of scenarios in each

class is 8 (|I1| = |I2| = 8) and clustering with Cs = 4 is feasible for each class,
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we do not need to modify the size of classes for this case. In Figure 5.2(c),

clusters are separated with blue lines (S1 = {S1
1 ,S1

2},S2 = {S2
1 ,S2

2}). In

the last step, scenarios in clusters are distributed between our 4 target groups

(|B| = 4) with the criteria that the number of overloaded lines and their level of

overload (color here) have the most similarity (shown in Figure 5.2(d)), forming

B = {B1,B2,B3,B4}. Now we have 4 groups of scenarios, each including 2 high

load related scenarios and 2 high wind related scenarios with 16 overloaded

lines in each (7 at white level, 7 at red level, and 2 at green level).

It should be noted that similarity between these groups is only valid

for attributes used in the bundling process. For example, the impact of having

or not having CO2 penalty (dashed versus solid lines) is considered as an

attribute in neither of three bundling steps, and results (Figure 5.2(d)) show

that there is no similarity between groups for this attribute. These bundles of

scenarios may not improve the performance of bundled PH algorithm if CO2

penalty significantly affects the selected lines for transmission expansion (for

example in systems with high penetration of cheap coal power plants).
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(a) A set of scenarios

(b) Classification

(c) Clustering

(d) Grouping

Figure 5.2: An example for explaining different steps of the bundling method
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5.3 Problem Formulation

5.3.1 Two-Stage stochastic TEP Formulation

As discused in Chapter 4, stochastic programming is one of the widely

used methods to model uncertainties (by developing different scenarios) in

decision making process for resource allocation problems. Uncertainties in

long-term transmission expansion can be categorized as macro uncertainties

such as changes in market rules, environmental constraints or new technologies,

and micro uncertainties such as hourly wind/solar and load variations [64]. To

capture these uncertainties, different scenario generation/reduction methods

might be used. The quality of scenarios is critical and can significantly affect

the selected expansion plan. For example, in ERCOT, historical data along

with workshops with stakeholders are used to develop scenarios for long-term

TEP [29]. For a given scenario set, we develop a framework to efficiently solve

this optimization problem; therefore, the nature of uncertainty and the origin

of scenarios is not our concern in this work. It should be mentioned that

minimizing the expected value is a better criterion for micro uncertainties.

The two-stage stochastic TEP is formulated as follows:

Z∗= min ζᵀx+E[Q(x, ξ̃)] (5.7)

st. x ∈ {0, 1}|Nl| (5.8)

E[Q(x, ξ̃)] represents the expected value of operation costs including load shed-

ding and wind curtailment penalty and generation costs for TEP problem

formulation. This expected value is approximated with a weighted sum of a
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limited number of scenarios as follows [31]:

E[Q(x, ξ̃)] ≈
∑

Ω

P ωQ(x, ξω) (5.9)

where Q(x, ξ) is the optimal value of power system operation for a given

scenario ω [64].

Q(x, ξ)= min
∑
Ns

(
∑
Nb

qkrk,c)+
∑
Nwg

γgCWg+
∑
Ng

Cogpg (5.10)

st. −
∑
Lk

fl,c+
∑
Gk

pg+rk,c=dk (5.11)

−Ml(1− Cl,cxl) ≤ fl,c−Bl,l∆θl,c (5.12)

Ml(1− Cl,cxl) ≥ fl,c−Bl,l∆θl,c (5.13)

CWg ≥ (Pmax
g − pg) (5.14)

(Cl,cxl)f
min
l ≤ fl,c ≤ fmaxl (Cl,cxl) (5.15)

Pmin
g ≤ pg ≤ Pmax

g (5.16)

0 ≤ rk,c ≤ dk (5.17)

−π
2
≤ θk,c ≤

π

2
(5.18)

CWg ≥ 0 (5.19)

xl=1, ∀l ∈ No (5.20)

xl ∈ {0, 1}, ∀l ∈ Nl (5.21)

In equation (5.10), load shedding is penalized over all operating states

(Ns) to satisfy the N − 1 criterion (no load shedding is accepted during both

normal and under single contingency states). Equation (5.11) enforces power
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balance at each bus. Equations (5.12) and (5.13) show DC representation of

flow in transmission lines with big-M technique. Equation (5.14) measures

wind curtailment at each bus. Equation (5.15) shows flow in all lines should

always be between their maximum and minimum capacity limits. These lim-

its will be modified based on the given value for α for emergency conditions

(contingency in the network). Equations (5.16)-(5.18) enforce power plants’

dispatch, load shedding and voltage angles, respectively, to be between their

minimum and maximum limits. Equation (5.19) enforces non-negativity of

wind curtailment. Equation (5.20) sets decision variables for existing lines to

1. Equation (5.21) enforces that xl is a binary decision variable for transmis-

sion lines (xl = 1 when line l is built and xl = 0 when line l is not built).

Constraints (5.11)–(5.19) represents lossless DC power flow model. Au-

thors in [37] and [9] showed that DC model is accurate enough for long-term

planning purpose because of the large level of simplifications in other aspects,

but network losses, reactive power and voltage magnitude might be critical in

some networks. Authors in [12, 120, 2, 21, 22] provide models to improve the

performance of DC model by adding linear approximation of reactive power,

network losses, and voltage magnitudes. As these models all preserve linearity

of power flow model, they can be added to the model in this chapter.

Depending on the size of the network and the number of scenarios, solv-

ing the extensive form of problem (5.7) can be extremely computationally ex-

pensive. Therefore, decomposition techniques are used to find a near-optimal

answer for large-scale problems. In the next section, PH with bundled sce-
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narios is explained as the base for steps 3 and 5 in our proposed framework.

Details on BD technique is not in the scope of this chapter and can be found

in [23].

5.3.2 Progressive Hedging Algorithm with Bundled Scenarios

Progressive Hedging [101] is one of the decomposition techniques that

can be used for solving two-stage (or multi-stage) stochastic mixed integer

optimization problems. The standard PH algorithm separates the problem

vertically, and solves it for each scenario individually. The TEP problem (5.7)

can be rewritten as the following so-called scenario formulation:

Z∗= min
∑

Ω

P ω[ζᵀxω+Q(xω, ξω)] (5.22)

st. x ∈ {0, 1}|Nl| (5.23)

x1 = · · · = xs (5.24)

A copy of decision variable vector xω is created for each scenario ω in Ω that

allows solution of the TEP problem for each scenario independently, and non-

anticipativity constraints (5.24) are added to couple first stage solutions and

guarantee that the final expansion plan does not depend on scenarios.

Instead of decomposing the problem for each individual scenario, it is

possible to use bundles of scenarios (B = {B1, . . . ,Bb}) for decomposition as

discussed in sections5.2.2 and 5.2.3. Equations (5.22)–(5.24) can be rewritten
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for bundled PH as follows:

Z∗= min
∑
B

[PBi(ζ
ᵀxBi)+

∑
Bi

PuωQ(xBi , ξω)] (5.25)

st. x ∈ {0, 1}|Nl| (5.26)

xB1 = · · · = xBb (5.27)

In this case, a copy of decision variable vector xBi is created for all Bis in

B. Non-anticipativity constraints (5.27) are explicitly modeled for scenario

bundles, and they are implicitly modeled for scenarios within each bundle (κ

scenarios in each bundle already have the same first stage decision variable

xBi) that usually reduces the number of iterations compared to standard PH.

1: Initialization: υ ← 1,W υ
Bi ← 0 ∀Bi ∈ B

2: for ∀Bi ∈ B do
3: xBi,υ ← argmin ζᵀxBi +

∑
ω∈Bi

PuωQ(xBi , ξω)

4: end for
5: Aggregation: x̂υ ←

∑
B PBix

Bi,υ

6: Err ←
∑
PBi‖xBi,υ − x̂υ‖

7: while Err ≥ ε do
8: υ ← υ + 1
9: W υ

Bi ←W υ−1
Bi + ρᵀ(xBi,υ−1 − x̂υ−1)

10: for ∀Bi ∈ B do
11: xBi,υ ← argmin ζᵀxBi +

∑
ω∈Bi

PuωQ(xBi , ξω) +W υ
Bi
ᵀxBi + ρᵀ

2
(xBi −

x̂υ−1)2

12: end for
13: Aggregation: x̂υ ←

∑
B PBix

Bi,υ

14: Err ←
∑
PBi‖xBi,υ − x̂υ‖

15: end while

Figure 5.3: Progressive Hedging Algorithm with bundled scenarios
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Through an iterative process, PH will converge to a unique answer for

the first stage decision variables by penalizing deviations of non-anticipative

variables from their mean values. The PH algorithm with bundled scenarios is

shown in Figure 5.3. In the first line, the initial value of the iteration counter

(υ), and multiplier vector (W υ
Bi) is set. From line 2–4, the TEP optimiza-

tion problem for each bundle is solved separately (and can be parallelized).

The proposed algorithm in Chapter 3 can be used for this step. In line 5,

the weighted sum of individual expansion plans (xBi,υs) is calculated. Line

6 calculates the deviation (Err) from averaged expansion plan (x̂υ). Lines

7–15 cover the main iterative part of the bundled PH algorithm. In line 8, the

value of counter is updated. Line 9 updates the value of multiplier vector by

using penalty vector ρ. Lines 10–12 solve an updated TEP formulation with

multiplier and penalizing deviation from average value of first stage decision

variables. This optimization problem is solved for each bundle independently,

so they can be solved in parallel. As each subproblem will be less computa-

tionally expensive, we can benefit from the proposed algorithm in Chapter 4

for this purpose. Lines 13 and 14 update the calculated average value for x

and Err, respectively.

5.3.3 Clustering Algorithm

As defined in [47], “cluster analysis or clustering is the process of par-

titioning a set of data objects (or observations) into subsets. Each subset is a

cluster such that objects in a cluster are similar to one another, yet dissimilar
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to objects in other clusters.” Major fundamental clustering methods can be

classified into four categories i.e. Partitioning methods, Hierarchical methods,

Density-based methods, and Grid-based methods. A detailed discussion on

each category can be found in [47].

A partitioning method can be used to find mutually exclusive clus-

ters based on distances between its elements. For a finite set (for example,

I1), a set S1 = {S1
1 , . . . ,S1

c } of non-empty subsets of S1
i is a partition if

∀k 6= j, S1
k

⋂
S1
j = ∅ and

⋃
j S1

j = I1. Partitioning can be formulated as

an integer programming problem in which the objective is to minimize the

distance (Euclidean distance here) between members of each cluster based on

selected attribute(s).

IP = min
na∑
m=1

nc∑
k=1

ns∑
i=1

ns∑
j=1

‖Ai,mZi,k −Aj,mZj,k‖2 (5.28)

st.
nc∑
k=1

Zi,k = 1, ∀i ∈ I1 (5.29)

ns∑
i=1

Zi,k = Cs ∀k ∈ S1 (5.30)

where A is clustering attribute matrix ([ns×na]) for set I1 , nc is the number

of clusters (nc = |S1|), ns is the number of scenarios in set I1 (ns = |I1|),

na is the number of attributes, Cs is the number of scenarios in each cluster

(Cs = ns
nc

, equivalent to (5.2)), and Z is the binary decision variables matrix
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([ns × nc]) that assigns scenarios to clusters.

Z =

Z1,1 · · · Z1,nc
...

. . .
...

Zns,1 · · · Zns,nc


Equation (5.29) enforces that each scenario can only be a member of one clus-

ter. Equation (5.30) enforces that all scenarios should be assigned to clusters

and the size of all clusters is equal to Cs. This is designed based on the as-

sumption that we made in this chapter. However, to have a flexible cluster

size, equation (5.30) can be replaced with (5.31) and (5.32):

nc∑
k=1

ns∑
i=1

Zi,k = ns (5.31)

ns∑
i=1

Zi,k ≥ 1 ∀k ∈ S1 (5.32)

Equation (5.32) guarantees that there will be no empty cluster.

The objective function (5.28) is nonlinear. As Z is a matrix of binary

decision variables, for all i = j the nonlinear term Zi,kZj,k can be replaced

with Zi,k. For i 6= j, the nonlinear term Zi,kZj,k can be replaced with a new

binary variable Yr, and constraints (5.33)-(5.35) should be added to the IP

problem:

Yr ≤ Zi,k (5.33)

Yr ≤ Zj,k (5.34)

Yr ≥ Zi,k + Zj,k − 1 (5.35)
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The size of matrix Y ([nr × nc]) for a scenario set of ns scenarios is

equal to:

nr =
ns × (ns − 1)

2
(5.36)

It should be mentioned that for cases in which a very large number of

scenarios should be clustered, solving IP can be computationally expensive.

There are heuristics such as k-means methods that can be used for partitioning.

Details of these methods are not in the scope of this paper and can be found

in [47].

5.3.4 Scenario Bundling Algorithm

As stated in section 5.2.2, the main goal of scenario bundling is to

maximize similarity (minimizing dissimilarity) between bundles to improve the

performance of bundled PH algorithm. This problem can be formulated as an

integer programming problem. The mathematical formulation for scenario

bundling is as follows.

min
na∑
m=1

nb∑
b,b′=1

‖Qb,m −Qb′,m‖2 (5.37)

st.Qb,m = mean(
ns∑
i=1

Ai,mHi,b), ∀b ∈ B,∀m ∈ A (5.38)

nb∑
b=1

Hi,b = 1, ∀i ∈ Ω (5.39)

ns∑
i=1

Hi,b = κ ∀b ∈ B (5.40)
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Where Qb,m is the average value of attribute m in bundle b that can

be calculated from (5.38), and H is the binary decision variable matrix for

bundling. The objective function (5.37) maximizes the similarity between

bundles by minimizing the distance between mean value of attributes of bun-

dles. Equation (5.39) enforces each scenario should be assigned to a bundle,

and equation (5.40) enforces the size of each bundle.

Solving this problem for a large set of scenarios can be computationally

expensive; therefore, a heuristic method is developed in section 5.2.2 to solve

this problem faster.

5.3.5 Variable Contingency List (VCL) Algorithm

Based on Chapter 2, modified Line Outage Distribution Factors (LODFs)

are used to estimate post-contingency flow in transmission lines when one line

is on outage. The following equations are used to create important contingency

lists for different scenarios:

Γωm,l =
fωm,l − fmaxm

fmaxm

,∀m, l ∈ No,∀ω ∈ Ω (5.41)

Φω
l = {m ∈ No |Γωm,l ≥ α} ,∀l ∈ No,∀ω ∈ Ω (5.42)

CIIωl =

{ ∑
Φω
l

Γωm,l

|Φωl |
, if |Φω

l | 6= 0

0, if |Φω
l | = 0

(5.43)

ICLω = {l ∈ No |CIIωl ≥ α} ,∀ω ∈ Ω, (5.44)

where (5.41) calculates over/under loading on line m when line l is out. In

this equation, fωm,l represents the magnitude of post-contingency flow in line
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m when line l is on outage. Equations (5.42)-(5.43) are used to calculate

Contingency Identification Index (CII) for each scenario with α as the line

capacity modification factor during contingencies that accounts for emergency

or short-term rating of lines. Equation (5.44) creates important contingency

list (ICL) based on CII (see Chapters 2 and 4 for more details).

A discussion on the performance of the proposed framework and nu-

merical results are provided in the next chapter.
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Chapter 6

Decomposition Framework: Model

Performance and Numerical Results
1

6.1 Introduction

In Chapter 5, a configurable framework is proposed to solve different

problems. In this chapter, we investigate its performance from several per-

spectives i.e. parameter setting, choice of a decomposition algorithm, linking

PH and BD, PH performance improvement, optimality gap, parallelizing, scal-

ability and maintainability in section 6.2. In section 6.3, the proposed method

is applied to two case studies i.e. a 13-bus system with 100 scenarios and

a reduced ERCOT system with 3179 buses, 4458 branches and 10 scenarios.

For each case study, the results are compared with standard PH, randomly

bundled PH, and developed method in Chapter 4 to evaluate different aspects

of the proposed framework.

1Mohammad Majidi-Qadikolai and Ross Baldick. A generalized decomposition frame-
work for large-scale transmission expansion planning. IEEE Transactions on Power Systems,
PP(99):1-1, 2017. Authors had equal contributions.
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Table 6.1: Framework performance under different settings

PH BD Hybrid

κ = 1 PH Heuristic Hybrid

1 < κ < |Ω| PH Heuristic Hybrid

κ = |Ω| EF BD BD

6.2 Model Performance Discussion

6.2.1 Parameter settings for the framework

The size of each bundle (κ) and the choice of a decomposition method

are set in step 1 in the framework (see section 5.2.1). Table 6.1 shows different

possible combinations for setting these two parameters. For the PH algorithm,

by setting κ = 1 a standard PH is solved, 1 < κ < |Ω| will result in a

bundled PH, and κ = |Ω| is equivalent to solving the extensive form (EF)

of the optimization problem. If BD is selected as the solving method, then

for 1 ≤ κ < |Ω|, the problem is solved separately for each bundle, and a

heuristic method should be used to select a unique first stage answer. For

κ = |Ω|, a standard BD is solved. When Hybrid method is selected, for

1 ≤ κ < |Ω|, both PH and BD are used for solving the problem in steps 3

and/or 5 in the framework. This is discussed more in section 6.2.3. For κ = |Ω|,

hybrid method will be the same as BD method. It should be mentioned that

these parameters can be set independently for phases I and II providing more

flexibility, potentially improving the effectiveness of the proposed framework.
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6.2.2 Factors affecting the choice of parameters

The size of the problem, the design of decomposition algorithms, ex-

isting hardware infrastructure, and solvers are critical for making a decision

about setting parameters for the proposed framework. We briefly overview

these factors in the following.

6.2.2.1 The size of the problem (d)

The number of structural constraints (SC), equations (4.6)-(4.9), con-

tinuous (CV ) and binary (BV ) decision variables are main factors for the size

of the TEP optimization problem. For the extensive form of this TEP formu-

lation from section ?? (depending on the choice and design of decomposition

algorithms, new variables and constraints may be added), these values can be

calculated from the following equations:

d = {SC,CV,BV } (6.1)

SC = (2× (|Nb|+ |Nl|)× |Nω
s |+ |Nwg|)× |Ω| (6.2)

CV = ((2× |Nb|+ |Nl|)× |Nω
s |+ |Ng|+ |Nwg|)× |Ω| (6.3)

BV = |Nn| (6.4)

If no contingency reduction technique is used, then |Nω
s | = |Nl| + 1 to model

outage of each line. If the VCL algorithm is used for contingency reduction,

then |Nω
s | = |ICLω|+ 1.
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6.2.2.2 Design of decomposition algorithms

PH and BD are not black-box software packages with input and output

vectors. These algorithms are designed based on specific needs and conditions.

For BD, there are several different designs such as standard BD [11], multi-cuts

BD [15], and nested BD [41], and each design can be configured differently.

For PH, either the standard form [101] or the bundled form [116] might be

used. Similar to BD, there are several internal settings for PH that can affect

the performance of this algorithm.

6.2.2.3 Existing hardware infrastructure

The machine that is used to solve the TEP problem has an undeniable

impact on the choice of a decomposition algorithm and the size of each bun-

dle (κ). Machines with high computing power are usually capable of solving

larger problems that make it possible to choose bundled PH with a large bun-

dle size (κ). In the case of using multiple machines (or virtual machines for

Cloud based workstations), implemented parallel computation structure will

be another key factor.

6.2.2.4 Solvers

The main feature of a solver that affects the choice of parameters for

the framework is its capability to distribute computation over multiple cores

of a CPU and use all computing power of the machine. GUROBI and CPLEX

are examples of commercial solvers with this capability.
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As discussed above, there are several factors that can affect hardware

and software design of this framework. For a designed framework, running a

few individual simulations can provide a relatively good understanding about

the performance of each module, and help on setting parameters for the frame-

work.

6.2.3 Linking PH and BD

Usually steps 3 and 5 are the most time consuming steps of the proposed

framework in section 5.2.1 for large-scale problems. These steps can be solved

by either HP, BD or both (Hybrid). The algorithm explained in Figure 5.3 is

used as the main structure for solving TEP in steps 3 and 5. In the following, it

is explained how this algorithm is appropriate for all combinations in Table 6.1.

For PH (the second column of the table), the whole algorithm is run and the

extensive form of stochastic TEP is solved in lines 3 and 11 in Figure 5.3. For

BD (the third column of the table), BD is used to solve TEP in line 3, and

the algorithm is terminated in line 4. For the hybrid case (the fourth column

of the table), the whole algorithm in Figure 5.3 is run, and BD can be used to

solve TEP in lines 3 and/or 11. If the BD is not used, the EF of TEP is solved.

For κ = |Ω|, Err in line 6 will be zero and the algorithm will be terminated

in line 6.
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6.2.4 PH performance improvement

Several heuristics such as finding appropriate values for ρ, variable

freezing, cyclic behavior detection, and terminating PH when the number of

remaining unconverged variables is small can be used to improve the perfor-

mance of the PH algorithm [115]. In the following we will discuss some of

these heuristic methods that are used in this chapter.

6.2.4.1 Choice of ρ

A good approximation for ρ is important for the PH algorithm to per-

form well. As shown in Figure 5.3, the value of multiplier vector (W υ
Bi) is

updated using penalty vector ρ, and an appropriate multiplier vector can af-

fect the number of required iterations for PH convergence, and the quality of

the lower bound answer [34]. In [115], different heuristic methods for calcu-

lating effective values for ρ are proposed. Our experience with those methods

shows that for the TEP problem using the following equation from [115] results

in a better convergence rate.

ρl =
ζl

xmaxl − xminl + 1
(6.5)

where ρl is the lth element of vector ρ, and

xmaxl = max
Bi∈B

xBil (6.6)

xminl = min
Bi∈B

xBil (6.7)

For values of ρl close to the unit cost of its associated variable, the PH al-

gorithm should have a better performance both from convergence speed and
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quality of results. Selecting higher values for ρl will increase convergence rate

but may negatively affect the quality of results. On the other hand, very small

values for ρl can improve the quality of results (by decreasing optimality gap),

but can significantly increase the number of iterations.

6.2.4.2 Variable Freezing

To improve the convergence of PH algorithm, the variable freezing tech-

nique can be used. Based on this technique, first stage decision variables with

values that did not change over the past ϑ iterations are frozen for future it-

erations. For example, for a case with 5 bundles and ϑ = 4, the value of the

decision variable xl is frozen if for all 5 bundles during all 4 successive iterations

υ+1, υ+2, υ+3, υ+ϑ = υ+4, its value did not change (xυ+1,1
l = · · · = xυ+4,5

l ).

The impact of freezing variables can be investigated from two perspec-

tives; i.e. its impact on simulation time and its impact on the selected plan.

• Impact on simulation time

By freezing binary variables, the total number of binary variables is

decreased as frozen variables have fixed values and no decision about

them will be made in subsequent iterations. It improves the performance

of the algorithm by decreasing computational time for each iteration (as

a TEP optimization problem with fewer binary variables will typically

solve faster) and reducing the number of iterations (as a Ph problem

with fewer non-anticipativity constraints will typically converge faster).
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• Impact on the selected plan

When a decision variable is frozen, the implicit assumption is that its

value will not change during subsequent iterations, but this assumption

may not always be valid. Therefore, the selected plan might be negatively

affected when variable freezing technique is used, especially for small

values of ϑ like 1 or 2. By using more conservative values for ϑ, this

effect can be mitigated.

The selected plan will be more sensitive to a small value for ϑ when there

are several relatively similar candidate lines (in terms of cost and/or electric

parameters) in a geographically limited area. For a large-scale network in

which candidate lines are widely spread, a smaller value for ϑ can be selected.

Using the variable freezing technique may result in situations with only

a very few unfrozen decision variables. Then PH can be terminated (to de-

crease the number of iterations), and the TEP with remaining binary variables

solved in extensive form or using the BD algorithm.

6.2.4.3 Identical Parallel Candidate Lines

We have also noticed that having two (or more) identical parallel candi-

date lines can result in an unnecessary non-zero values of Err on lines 6 and/or

14 in PH algorithm (Figure 5.3) when only one of those lines is selected as a

part of expansion plan. We recommend to slightly modify the investment cost

for otherwise identical lines to break the symmetry.
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6.2.4.4 Summary

The above mentioned heuristic techniques can be used to improve con-

vergence of PH algorithm, but it may result in a higher optimality gap in

step 7. In many practical cases, it is critical to get the result in a reasonable

time; therefore a faster answer with a slightly higher optimality gap is usually

acceptable.

6.2.5 Optimality gap

The optimality gap is used as a measure for quantifying the quality of

results in an optimization-based TEP. Based on Table 6.1, the TEP problem

is solved using one of these five methods i.e. heuristic, Extensive Form (EF),

PH, BD, and hybrid. For parameter settings that will result in a heuristic

method, we cannot calculate the optimality gap to quantify the quality of re-

sults. For the EF method, the optimality gap of the final result will be less

than or equal to the solver’s setting for maximum optimality gap. For BD,

achieving the optimality gap is set as the stopping criterion; therefore, for EF

and BD methods, it is possible to guarantee a pre-defined optimality gap (as-

suming that the algorithm successfully terminates). On the other hand, for

PH and hybrid methods, the optimality gap is calculated after the algorithm

is terminated to quantify the quality of final results, and there is no guarantee

that the final optimality gap will be less than or equal to a pre-defined thresh-

old. As discussed in section 6.2.4, using appropriate values for ρ and setting a

conservative value for ϑ can improve the optimality gap of the PH algorithm.
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6.2.6 Scalability and Maintainability

Scalability is one of the main features of the proposed framework. We

use Figure 6.1 to discuss different aspects of this feature. Figure 6.1(a) shows

the size of the EF of a stochastic TEP problem with security constraints. In

this Fig., dω represents the size of the TEP problem for scenario ω (dω =

{SCω, CV ω, BV ω}), and s is the number of scenarios (s = |Ω|).

SCω = 2× (|Nb|+ |Nl|)× |Nω
s |+ |Nwg| (6.8)

CV ω = (2× |Nb|+ |Nl|)× |Nω
s |+ |Ng|+ |Nwg| (6.9)

BV ω = |Nn| (6.10)

For a case system with 6000 buses, 8000 existing lines and transformers,

500 conventional power plants, 100 wind farms, 100 candidate lines and 10

scenarios, dω = {228.5M, 162.8M, 100} when |Nω
s | = 8101 and s = 10. Total

size of the problem in Figure 6.1(a) will be d = {2285M, 1628M, 100}. This

problem is practically impossible to solve in the EF. There are constraint

reduction techniques [61, 64, 6] that can be used to decrease the size of this

problem. Let’s assume the VCL algorithm (see section 4.3.2) is used, and the

size of Nω
s is decreased form 8101 to 50. The size of the EF of this problem will

be d = {14M, 10M, 100}. Even after a massive problem size reduction, solving

the EF of the problem still remains computationally extremely expensive.

The BD algorithm (shown in Figure 6.1(b)) moves binary decision vari-

ables to the master problem, and keeps all continuous variables in the subprob-

lem. As the subproblem is a linear program, it is expected to be solved very
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fast; however, for the network in this example, the size of the subproblem will

be {14M, 10M, 0} which is not easy to solve especially if it is solved in every

iteration.

Figure 6.1(c) shows how bundled PH algorithm will decompose the

problem. By creating bundles of two scenarios, the size of each subproblem

for bundled PH will be {2.8M, 2.0M, 100} (or {1.4M, 1.0M, 100} for standard

PH). Solving the extensive form of these subproblems might still be hard

because of the large number of binary variables. In Figure 6.1(d), the hybrid

methods is used to decompose the problem both vertically and horizontally.

By using this method, the size of each problem that needs to be solved in EF

can be decreased up to {1.4M, 1.0M, 0}, which is a significant size reduction

compared to {14M, 10M, 100} for Figure 6.1(a).

The size of this case study can be increased either by increasing the

number of candidate lines or the number of scenarios. The BD feature of the

hybrid method will keep us away from exponentially increasing computational

time as a result of adding new binary variables, and the bundled PH feature

will keep the size of each subproblem relatively unchanged even if the total

number of scenarios is increased significantly (by increasing the number of

bundles instead of increasing the size of each bundle). Therefore the problem

remains tractable, demonstrating the scalability of the proposed framework.

Another important feature of this framework (from practicality per-

spective) is its maintainability. Because it is module based (BD algorithm,

PH algorithm, bundling algorithm), each module can easily and (relatively)
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(b) BD
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Figure 6.1: The impact of different decomposition techniques, dω: size of the
problem for scenario ω, s: the number of scenarios (6 for this example)

independently upgraded as technology improves.
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6.2.7 Parallelizing

With proper hardware, parallelizing decreases computational time for

solving a series of independent simulations, and it improves scalability of the

framework. Simulations in steps 3 and 5 in the proposed framework can be

parallelized, if PH, BD (with special configurations), or hybrid is selected

to reduce elapsed time for solving TEP optimization problem by starting all

simulations at the same time.

6.2.7.1 PH algorithm

Based on PH algorithm for bundled scenarios shown in Figure 5.3,

lines 3 and 11 are run for each bundle (or each scenario in case of standard

PH) independently. Therefore, we can parallelize both for loops (lines 2-4

and 10-12) in this algorithm, and start all simulations in each loop at the

same time to decrease computational time. It should be noted that lines

10-12 should be solved for each iteration of the PH algorithm, and decreasing

computational time here can be rewarding from the performance improvement

perspective. As shown in lines 5 and 13 in Figure 5.3, the algorithm can

proceed to the next step when all parallelized simulations are completed. In

the bundling process, it should be considered to develop bundles that need

relatively similar computational time, so that the framework can benefit the

most from parallelizing.
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6.2.7.2 BD algorithm

For standard BD, in which one cut is sent to master problem in each

iteration, the subproblem should be solved in extensive form. For multi-cuts

BD [15] and nested BD [41], [1] and [54], it is possible to solve subproblems in

parallel that will decrease computational time.

6.2.7.3 Hybrid method

As hybrid algorithm uses both PH and BD to solve a problem, it can

benefit from both vertical and horizontal decomposition techniques and paral-

lelize the problem solving with both algorithms (if applicable). For example,

by using bundled PH, the problem will be vertically parallelized for each bun-

dle Bi. A nested BD can be used to solve each bundle, in which feasibility cuts

for contingency operation states can be created in parallel.

6.3 Case Study and Numerical Results

In this section, we run numerical analysis for two case studies i.e. a

13-bus system with 100 scenarios and a reduced ERCOT system with 10 sce-

narios. All simulations are done with a personal computer with 2.0-GHz

CPU and 32 GB of RAM. The proposed method is implemented in MAT-

LAB R2014a [74] by using YALMIP R20150626 package [60] as a modeling

software and GUROBI 5.6 [45] as a solver. To calculate the elapsed “Simu-

lation Time,” MATLAB built-in function tic toc is used. Steps 3 and 5 are

parallelized using MATLAB built-in function parfor.
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6.3.1 13-bus test system

This case study contains 13 buses, 33 existing lines, 16 power plants, 9

load centers, and 36 candidate lines with 100 scenarios to capture uncertainties

in wind and load (from Chapter 4). This small case study with a large number

of scenarios is used to demonstrate different steps of the proposed framework.

The proposed method in Chapter 4 is used for solving TEP subproblems in

lines 3 and 11 of the PH algorithm. To evaluate the performance of the

proposed method, this test system is solved with four different methods that

are explained in the following:

6.3.1.1 Case A

In case A, a standard PH (without bundling) is used to solve TEP

problem. This method is used by [87] to solve TEP without contingency anal-

ysis. As stated before, MATLAB built-in function parfor is used to parallelize

solving TEP for each scenario.

6.3.1.2 Case B

For case B, scenarios are bundled randomly using randperm function in

MATLAB (instead of using the proposed method in section 5.2.2) to show the

impact of bundling on performance of PH algorithm for TEP problem. The size

of bundles is selected based on the problem size and machine’s configuration

(κ = 20).
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6.3.1.3 Case C

This case solves the problem using the proposed framework in Chap-

ter 5. To show the implementation of the proposed framework, all steps are

explained in detail.

Step 1: for phase I, κ is set to 50 as TEP without contingency analysis

is solved, so a larger number of scenarios can be bundled compared to TEP

with contingency analysis. For phase II, κ is set to 20 to fairly compare the

result of cases B and C. Step 2: An OPF is solved for the base case to calculate

LW s for bundling. Load shedding and wind curtailment penalties are set to

$9000/MWh and $500/MWh respectively. It will result in the weight factor

of 18 for load shedding (and 1 for wind curtailment), and LW for each scenario

is calculated as the weighed sum of normalized wind and load curtailment in

that scenario. Based on (5.2), Cs = 2 and scenarios are clustered with the

objective of minimizing the distance between LW ω values in each cluster. In

the last step, members of each cluster are distributed between bundling groups

to minimize the distance between aggregated LW values (LWBis). Step 3:

bundled PH is used to solve TEP without contingency analysis in this step.

The final target is to solve TEP with contingency analysis, and results of

this step are used as inputs for step 4 (to calculate a bundling attribute);

therefore this step does not need to be solved until optimality. If TEP without

contingency analysis is the final target, this step should be solved iteratively

until the stopping criteria is met.

Phase II, step 4: the VCL algorithm (developed in Chapter 2) is used to
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find important lines for contingency analysis (ICLωs) using results from step 3.

Scenarios are classified into 4 classes based on the size of ICLωs (|ICLω|).

Then, scenarios in each class are clustered based on similarity/dissimilarity of

their ICL lists. It will result in clusters having members with relatively similar

ICLs. In the last step of bundling, scenarios in each cluster are distributed

between target bundles to create groups with relatively the same number of

ICLs. This criterion tries to balance computational burden between groups.

The size of ICLs in each group affects the number of operation states and

consequently computational time. In step 5, bundled PH is solved iteratively

until stopping criteria is met.

Phase III, Step 6: A lower bound is calculated (based on the proposed

method by [34]) to quantify the quality of the result from step 5. In step 7,

optimality gap is calculated based on upper and lower bounds from steps 5

and 6 respectively.

6.3.1.4 Case D

For this case, the proposed method in Chapter 4 is used to solve the

stochastic TEP problem with contingency analysis.

6.3.1.5 PH algorithm settings

The values of ρ are calculated based on (6.5). Freezing variables is

one of the techniques that is used to improve convergence of PH algorithm.

Variables that do not change over the most recent 4 iterations will be frozen
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at their values (ϑ = 4). Moreover, if the number of remaining binary variables

is less than or equal to 3, the PH algorithm is terminated, and the extensive

form of the problem is solved for remaining decision variables. These settings

are applied to three cases A-C.

6.3.1.6 Model performance discussion

The simulation result for these four cases is summarized in Table 6.2.

Standard PH in case A needs more than 2 hours to solve this problem and the

final result is 29.5%-suboptimal. It shows that standard PH will not have a

good performance when the number of scenarios is large. For Case B, bundling

reduced computational time by 50% and optimality gap is dropped to 1.65%.

For case D, the TEP optimization problem is solved in 25 minutes with 2.7%

optimality gap. The proposed method in case C reduced computational time

to 15 minutes, and significantly improved the quality of results by decreasing

optimality gap to 0.24%. Figure 6.2 shows how computational time (left axis-

solid blue line) and optimality gap (right axis-dashed orange line) are changed

from case A–D. Computational time is normalized based on total time for

case C. The proposed framework solves this problem more than 8 times faster

than standard PH and 5 times faster than randomly bundled PH. It also finds

results with higher quality (0.24% compared to 1.65% and 29.4% for randomly

bundled PH and standard PH respectively). From computational time per-

spective, cases C and D are relatively similar, but the quantified quality of

results is significantly different, and case C provides a better optimality gap
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Table 6.2: Summary of results for 13-Bus system

Case A Case B Case C Case D

No. of added lines 21 17 16 16

Objective Function ($b) 5.58 4.94 4.89 4.89

Simulation Time (hrs) 2.05 1.28 0.25 0.42

Optimality Gap 29.5% 1.65% 0.24% 2.7%

in somewhat less time.

To investigate the impact of parallelizing and variable freezing on com-

putational time, we compared the performance of the framework under the

following three alternatives:

• Alter. 1 : With variable freezing and without parallelizing

• Alter. 2 : Without variable freezing and with parallelizing

• Alter. 3 : With variable freezing and with parallelizing

Table 6.3 summarizes the impact of these two factors on optimality gap

and computational time for cases A-C under these three alternatives.

The result from the second row shows that variable freezing may neg-

atively affect the quality of results and increases the optimality gap (Alter.

2, in which variable freezing is ignored, has the lowest optimality gap). As

expected, parallelizing will not affect the quality of results (similar optimality

gaps for Alter. 1 and Alter. 3 ) The third row in Table 6.3 shows the com-

putational time for three alternatives. For Alter. 1, standard PH (Case A)
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Figure 6.2: Optimality gap and the ratio of simulation time
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Table 6.3: Impact of parallelizing and variable freezing on performance

Alter. 1 Alter. 2 Alter. 3

Case A 29.5% 0.85% 29.5%
Optimality Gap Case B 1.65% 0.13% 1.65%

Case C 0.24% 0.12% 0.24%

Case A 93.92 185.23 2.05
Simulation Time Case B 7.38 132.97 1.28
(hrs) Case C 7.16 82.7 0.25

is affected the most (compared to cases B and C) when parallelizing is not

used because each iteration includes running TEP for all individual scenarios

(simulation time increased from 2.05 to 92.38 hours). For bundled PH, both

cases B and C could solve the problem in relatively the same time showing that

when simulations are run sequentially (instead of in parallel), the impact of

balancing computational burden between bundles (that will result in an earlier

termination for a parallelized for loop) will be less effective. Variable freez-

ing has a significant impact on computational time as it will decrease both the

number of iterations and computational time for each iteration. Comparing

the computational time and optimality gap for Alter. 2 and Alter. 3 shows

the trade-off between quality of results and computational time. For example,

for case C, the optimality gap is slightly increased from 0.12% to 0.24%; how-

ever the computational time is decreased from 82.7 hours to 0.25 hours that

demonstrates the effectiveness of the proposed framework.

175



6.3.2 ERCOT Case Study

A reduced ERCOT network is developed with 3179 buses, 474 genera-

tion units, 3598 load centers, 123 wind farms and 4458 branches. All non-radial

138kV and 345kV lines in the ERCOT network are explicitly modeled. Gen-

erators and loads that were connected to lower voltage levels or radial network

are moved to nearby modeled buses. Ten different scenarios are developed to

model load and wind uncertainties (using historical data) with 46 new lines

as candidates for transmission expansion. Similar to the 13-bus system, four

cases A–D are simulated to compare the results. For phase I in case C, κ = 5

and for case B and phase II in case C, κ = 2. The proposed method in Chap-

ter 4 is used to solve TEP in lines 3 and 11 of the bundled PH algorithm

(Figure 5.3). The parameter ϑ is set to 3. All other parameters are set the

same as the 13-bus system. Numerical result is given in Table 6.4. As the

number of scenarios is not large for this system, standard PH (case A) has a

reasonable performance; however, the elapsed time of over a week may not be

acceptable. For case B (randomly bundled scenarios), simulation is terminated

manually after 14.9 days and a lower bound is calculated. The fourth column

(case C) demonstrates the impact of the proposed framework on improving

quality of results (decreasing optimality gap from 6.24% to 0.97%) and reduc-

ing computational time (by more than 5.3 times) for solving this large-scale

problem. We could not get a feasible solution for case D after 15 days, demon-

strating the need for decomposition-based methods for large-scale problems.

Results for this case demonstrates that bundling by itself may not necessar-
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Table 6.4: Summary of results for ERCOT system

Case A Case B Case C Case D

No. of added lines 6 9 4 –

Objective Function ($b) 8.102 8.230 8.007 –

Simulation Time (days) 9.2 14.9 2.78 15

Optimality Gap 3.1% 6.24% 0.97% –

ily improve the performance of PH without careful consideration of choice of

bundles, because as explained in section 5.3.2, each iteration for the PH algo-

rithm is finished when TEP for all bundles are completely solved (lines 5 and

13 in Figure 5.3). Because of this, randomly grouping scenarios may result

in forming TEP subproblems with significantly different sizes (based on (6.2)

and (6.3)) although the size of bundles (κ) is similar. This comparison also

highlights the importance of grouping step in the proposed bundling method.

6.4 Summary

In Chapters 5 and 6, a generalized decomposition framework is devel-

oped for solving large-scale TEP problems. This framework is easily scalable,

and its flexible structure makes it possible to configure it for problems with

different sizes. It allows decomposition of a problem both vertically and hor-

izontally, using bundled PH and BD algorithms respectively. The designed

steps in the framework makes it possible to parallelize simulation and keep

TEP for large-scale systems tractable. A heuristic method is also developed
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to effectively bundle scenarios for PH algorithm. Its objective is to maximize

similarity between bundles to improve the performance of the PH algorithm

by speeding convergence of non-anticipativity constraints. Using this bundling

heuristic decreased computational time by a factor of more than 8 and im-

proved quality of results by reducing optimality gap from 29.5% to 0.24% for

a 13-bus system with 100 scenarios. For a reduced ERCOT case study with

3179 buses and 10 scenarios, it provided a high quality result (0.97% optimality

gap) in a reasonable time (2.8 days). The proposed framework makes solving

TEP optimization problem for real-size networks tractable. This framework

can be used by ISOs and transmission system owners for TEP.
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Chapter 7

Conclusion

7.1 Conclusion

On the one hand, the electric transmission network is a critical infras-

tructure, and on the other hand it functions as an open access infrastructure

for market participants. Investment costs for transmission expansion are even-

tually paid by rate payers; therefore, it is important to develop the network

with the least cost or greatest welfare improvement, while keeping high reliabil-

ity. Using optimization-based approaches for modeling transmission expansion

planning (TEP) can guarantee optimality of results (or quantify the quality

of results) while maximizing social welfare and satisfying security criterion.

A drawback of optimization-based approaches for TEP optimization prob-

lem is their intractability that make them impractical for real-size networks.

It motivates this research to investigate computational challenges related to

optimization-based TEP formulations for large-scale problems.

First, we investigate the impact of contingency analysis on transmission

expansion planning, and preliminary results show that ignoring contingency

analysis in TEP may cause load shedding and huge extra operation costs.

However, adding security constrains to the TEP optimization problem makes
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even medium size systems intractable in the absence of computational im-

provements.

We have developed the Variable Contingency List (VCL) algorithm to

decrease the size of the problem by selecting a subset of lines for contingency

analysis. This algorithm uses modified line outage distribution factors to ap-

proximate post contingency flow on lines. The lines for which outage does

not cause any overload in the network can simply be removed from our con-

tingency analysis list. Two options are designed for solving the TEP with

security constraints i.e. option (i) that provides an upper bound (with known

optimality gap) for TEP with less computational effort and option (ii) that

provides the optimal answer. Depending on the whole planning process either

option (i) or (ii) may be selected by the planning team.

Then, we moved toward stochastic TEP to explicitly integrate uncer-

tainties in transmission planning decision making process, and proposed a

heuristic method to decrease the size of candidate lines list (CLL) for high-

level transmission expansion planning. The proposed method uses Line Clo-

sure Distribution Factors (LCDFs) to investigate the impact of adding each

new candidate line. In this phase, the impact of contingency analysis on

stochastic TEP is ignored.

Next, we have added security constraints (contingency analysis) into

stochastic TEP. To be able to solve this large-scale optimization problem, we

proposed an iterative framework that uses a three level filter to gradually add

security constraints into the TEP optimization formulation. The three-level fil-
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tering algorithm uses developed important scenario identification index (ISII)

and similar scenario elimination (SSE) technique to decrease the number of

security constraints in stochastic TEP in a systematic and tractable way. This

filter decreases structural constraints in our TEP mixed-integer programming

formulation in each iteration (up to 99.8% in the first iteration), and the it-

erative framework adds reliability constraints into the optimization problem

gradually in order to decrease the total simulation time. A lower bound is

calculated to quantify the quality of results.

Finally, we propose a scalable and configurable decomposition frame-

work for solving large-scale transmission capacity expansion planning with

security constraints under uncertainties. This framework is capable of using

both progressive hedging (PH) and Benders decomposition (BD) algorithms to

decompose and parallelize a large-scale problem both vertically and horizon-

tally. A scenario bundling method is also developed to create bundles through

three steps i.e. classification, clustering, and grouping with the objective of

maximizing similarity between bundles. This bundling method can improve

both quality of results (decreasing optimality gap) and performance (reducing

computational time) of the proposed framework. To verify capabilities of the

proposed method, it is applied to a reduced ERCOT system with 3179 buses,

4458 branches and 10 scenarios. The numerical result for this case study shows

that the proposed framework can make solving large-scale problems tractable,

and provides high quality results (with less than 1% optimality gap) in a rea-

sonable time (around 2.8 days) (see [71, 72]).
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7.2 Future Work

The work presented in this dissertation can be extended in multiple di-

rections. We have modeled uncertainties as a set of finite scenarios with known

probabilities associated with them. Although for the majority of shorter-term

“micro” uncertainties it is possible to use statistical methods to approximate

probabilities related to each scenario, for macro uncertainties such as tech-

nology evolution, costs related to them, future generation mix/capacity, etc.

usually expert knowledge is used to assign those probabilities. But in this

case, there is typically a range of probabilities rather than a single probability

that everybody agrees with. To handle this drawback, it is possible to use

robust stochastic optimization formulation in which probabilities assigned to

each scenario can be uncertain and change in a range. It finds the probabili-

ties for each scenario in a way that the expected operation cost represents the

worst case scenario. We are working on this subject and we have formulated

the problem and developed some initial models.

Recently, authors in [36, 76, 105] used adaptive robust optimization [13]

to model uncertainties for TEP to find an expansion plan that satisfies the

worst case scenario. The work in this dissertation can be directed toward

robust optimization to integrate a range of uncertainties that need to be con-

sidered for their worst case scenarios.

We believe the proposed decomposition framework and scenario bundling

in Chapter 5 can be studied further in the future. We used expert knowledge

to define and model attributes for the bundling process; however, it is possible
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to develop theoretical models to find appropriate attributes for bundling pur-

pose. This is a problem we are already working on as one immediate direction

for extending this thesis. The results of this extension can then be used to

solve other problems with the same structure.

Another important direction for extension of this work is to move to-

ward multi-stage TEP. It is in particular very important as TEP studies are

done for near-term and long-term separately now that can affect both planning

studies. In practice, the most critical decisions are those relating to nearest

term construction, and long-term decisions will be revised in subsequent plan-

ning studies. Consequently, maintaining feasibility in the face of long-term

uncertainties is the most critical characteristic of the solutions for far future

decisions. By modeling multi-stage TEP, it will be possible to integrate near-

and long-term TEP studies, in which we can investigate the impact of long-

term uncertainties on near-term TEP results. It also provides more flexibility

as we can modify plans that are made for the second or third stages later when

more information is revealed.

Finally, we would like to mention that, in cooperation with LCRA, as a

large transmission owner company, we have implemented the proposed method

in this dissertation on an actual TEP project. The next step toward solving

real-size networks will be collaborating with ERCOT to add more details to

the model (based on an ISO’s requirements) and evaluate the results and

performance of the method.
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