36 research outputs found

    Adaptive Road Crack Detection System by Pavement Classification

    Get PDF
    This paper presents a road distress detection system involving the phases needed to properly deal with fully automatic road distress assessment. A vehicle equipped with line scan cameras, laser illumination and acquisition HW-SW is used to storage the digital images that will be further processed to identify road cracks. Pre-processing is firstly carried out to both smooth the texture and enhance the linear features. Non-crack features detection is then applied to mask areas of the images with joints, sealed cracks and white painting, that usually generate false positive cracking. A seed-based approach is proposed to deal with road crack detection, combining Multiple Directional Non-Minimum Suppression (MDNMS) with a symmetry check. Seeds are linked by computing the paths with the lowest cost that meet the symmetry restrictions. The whole detection process involves the use of several parameters. A correct setting becomes essential to get optimal results without manual intervention. A fully automatic approach by means of a linear SVM-based classifier ensemble able to distinguish between up to 10 different types of pavement that appear in the Spanish roads is proposed. The optimal feature vector includes different texture-based features. The parameters are then tuned depending on the output provided by the classifier. Regarding non-crack features detection, results show that the introduction of such module reduces the impact of false positives due to non-crack features up to a factor of 2. In addition, the observed performance of the crack detection system is significantly boosted by adapting the parameters to the type of pavement

    Road Crack Detection Using Deep Convolutional Neural Network and Adaptive Thresholding

    Full text link
    Crack is one of the most common road distresses which may pose road safety hazards. Generally, crack detection is performed by either certified inspectors or structural engineers. This task is, however, time-consuming, subjective and labor-intensive. In this paper, we propose a novel road crack detection algorithm based on deep learning and adaptive image segmentation. Firstly, a deep convolutional neural network is trained to determine whether an image contains cracks or not. The images containing cracks are then smoothed using bilateral filtering, which greatly minimizes the number of noisy pixels. Finally, we utilize an adaptive thresholding method to extract the cracks from road surface. The experimental results illustrate that our network can classify images with an accuracy of 99.92%, and the cracks can be successfully extracted from the images using our proposed thresholding algorithm.Comment: 6 pages, 8 figures, 2019 IEEE Intelligent Vehicles Symposiu

    A deep learning approach to crack detection on road surfaces

    Get PDF
    Currently, modern achievements in the field of deep learning are increasingly being applied in practice. One of the practical uses of deep learning is to detect cracks on the surface of the roadway. The destruction of the roadway is the result of various factors: for example, the use of low-quality material, non-compliance with the standards of laying asphalt, external physical impact, etc. Detection of these damages in automatic mode with high speed and accuracy is an important and complex task. An effective solution to this problem can reduce the time of services that carry out the detection of damage and also increase the safety of road users. The main challenge for automatically detecting such damage, in most cases, is the complex structure of the roadway. To accurately detect this damage, we use U-Net. After that we improve the binary map with localized cracks from the U-Net neural network, using the morphological filtering. This solution allows localizing cracks with higher accuracy in comparison with traditional methods crack detection, as well as modern methods of deep learning. All experiments were performed using the publicly available CRACK500 dataset with examples of cracks and their binary maps

    Road crack detection using adaptive multi resolution thresholding techniques

    Get PDF
    Machine vision is very important for ensuring the success of intelligent transportation systems, particularly in the area of road maintenance. For this reason, many studies had been focusing on automatic image-based crack detection as a replacement for manual inspection that had depended on the specialist’s knowledge and expertise. In the image processing technique, the pre-processing and edge detection stages are important for filtering out noises and in enhancing the quality of the edges in the image. Since threshold is one of the powerful methods used in the edge detection of an image, we have therefore proposed a modified Otsu-Canny Edge Detection Algorithm in the selection of the two threshold values as well as implemented a multi-resolution level fixed partitioning method in the analysis of the global and local threshold values of the image. This is then followed by a statistical measure in selecting the edge image with the best global threshold. This study had utilized the road crack image dataset that were obtained from Crackforest. The results had revealed the proposed method to not only perform better than the conventional Canny edge detection method but had also shown the maximum value derived from the local threshold of 5x5 partitioned image outperforming the other partitioned scales

    Road Deterioration detection A Machine Learning-Based System for Automated Pavement Crack Identification and Analysis

    Get PDF
    Road surfaces may deteriorate over time because of a number of external factors such as heavy traffic, unfavourable weather, and poor design. These flaws, which may include potholes, fissures, and uneven surfaces, can pose significant safety threats to both vehicles and pedestrians. This research aims to develop and evaluate an automated system for detecting and analyzing cracks in pavements based on machine learning. The research explores the utilisation of object detection techniques to identify and categorize different types of pavement cracks. Additionally, the proposed work investigates several approaches to integrate the outcome system with existing pavement management systems to enhance road maintenance and sustainability. The research focuses on identifying reliable data sources, creating accurate and effective object detection algorithms for pavement crack detection, classifying various types of cracks, and assessing their severity and extent. The research objectives include gathering reliable datasets, developing a precise and effective object detection algorithm, classifying different types of pavement cracks, and determining the severity and extent of the cracks. The study collected pavement crack images from various sources, including publicly available databases and images captured using mobile devices. Multiple object detection models, such as YOLOv5, YOLOv8, and CenterNet were trained and tested using the collected dataset. The proposed approaches were evaluated using different performance metrics, The achieved results indicated that the YOLOv5 model outperformed CenterNet by a significant margin

    Utilising Convolutional Neural Networks for Pavement Distress Classification and Detection

    Get PDF
    This paper examines deep learning models for accurate and efficient identification and classification of pavement distresses. In it, a variety of related studies conducted on the topic as well as the various identification and classification methods proposed, such as edge detection, machine learning classification informed by statistical feature extraction, artificial neural networks, and real-time object detection systems, are discussed. The study investigates the effect of image processing techniques such as grayscaling, background subtraction, and image resizing on the performance and generalizability of the models. Using convolutional neural networks (CNN) architectures, this paper proposes a model that correctly classifies images into five pavement distress categories, namely fatigue (or alligator), longitudinal, transverse, patches, and craters, with an accuracy rate of 90.4% and a recall rate of 90.1%. The model is contrasted to a current state-of-the-art model based on the You Only Look Once framework as well as a baseline CNN model to demonstrate the impact of the image processing and architecture building techniques discussed on performance. The findings of this paper contribute to the fields of computer vision and infrastructure monitoring by demonstrating the efficacy of convolutional neural networks (CNNs) in image classification and the viability of using CNNbased models to automate pavement condition monitoring

    Automatic Road Crack Segmentation Using Thresholding Methods

    Get PDF
    Maintenance of good condition of roads are very essential to the economy and everyday life of people in a every country. Road cracks are one of the important indicators that show degradations of road surfaces. Inspection of roads that have been done manually took a very long time and tedious. Hence, an automatic road crack segmentation using thresholding methods have been proposed in this study. In this study, ten road crack images have been pre-processed as an initial step. Then, normalization techniques, L1-Sqrt norm have been applied onto images to reduce the variation of intensities that skewed to the right. Then, thresholding methods, Otsu and Sauvola methods have been used to binarize the images.  From the experiment of ten road crack images that have been done, normalization technique, L1-Sqrt norm can help to increase performance of road crack segmentation for Otsu and Sauvola methods. The results also show that Sauvola method outperform Otsu method in detecting road cracks

    Fast Segmentation of Industrial Quality Pavement Images using Laws Texture Energy Measures and k-Means Clustering

    Get PDF
    Thousands of pavement images are collected by road authorities daily for condition monitoring surveys. These images typically have intensity variations and texture non-uniformities making their segmentation challenging. The automated segmentation of such pavement images is crucial for accurate, thorough and expedited health monitoring of roads. In the pavement monitoring area, well known texture descriptors such as gray-level co-occurrence matrices and local binary patterns are often used for surface segmentation and identification. These, despite being the established methods for texture discrimination, are inherently slow. This work evaluates Laws texture energy measures as a viable alternative for pavement images for the first time. k-means clustering is used to partition the feature space, limiting the human subjectivity in the process. Data classification, hence image segmentation, is performed by the k-nearest neighbor method. Laws texture energy masks are shown to perform well with resulting accuracy and precision values of more than 80%. The implementations of the algorithm, in both MATLAB and OpenCV/C++, are extensively compared against the state of the art for execution speed, clearly showing the advantages of the proposed method. Furthermore, the OpenCV based segmentation shows a 100% increase in processing speed when compared to the fastest algorithm available in literature
    corecore