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ABSTRACT 

Pavement condition monitoring is mainly performed manually. Inspectors are 
driving or walking the road network bare eyed to look for irregularities. Moreover, 
processing the collected data for understanding the road condition is also a manual 
task. In this paper a framework that automates the process is presented. Video data 
collected from the car’s parking camera is utilized to detect defects in frames. 
Simultaneously, elevation signals collected from accelerometers attached to the car 
are processed to reconstruct the profile of the road and detect defects associated with 
its z-axis, such as bumps. A GPS device is synchronized with the other sensors to 
acquire the data’s geolocation. Detected defects are then classified according to their 
type and their severity is assessed. All information is then transferred via 4G network 
to a central server, where the Road Condition Index of road segments necessary to 
classify roads is calculated. Finally, everything is saved in a Pavement Management 
System. Preliminary results on the processing of video data demonstrate the 
frameworks’ promising application. The initial identification of frames including 
defects produces an accuracy of 96% and approximately 97% precision. Further 
experiments on such frames, aiming at the detection of potholes, patches and three 
different types of cracks result in over 84% overall accuracy and over 85% precision. 
 
INTRODUCTION 
 Road networks are very important since besides assisting mobility, they 
enable growth and contribute to prosperity, productivity and well-being (Cook 2011). 
Hence, effective road management is critical. Several countries identify the bad 
condition of the road network indicating the significance of road maintenance 
programs. The American Society of Civil Engineers have given a grade D to the US 
roads (ASCE 2013), with A being the best.  
 It is necessary that pavement condition data is accurate in order to design, 
plan and assist the decision-making of pavement maintenance programs in an 
efficient manner. The goal is to identify defective highway assets’ and assess their 
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severity. Highway assets include the actual pavement but also the infrastructure 
around it, such as lamp and sign post, traffic lights etc. Specifically, the current 
process consists of the following steps: 1) data collection, 2) defects’ detection and 3) 
defect’s severity assessment.  
 There are two ways of performing data collection. Those are either 
automatically with the use of dedicated vehicles, or manually with visual surveys. 
Then, inspectors are required to digitize their findings and upload them in a central 
database. Such data include images of the defects along with descriptions regarding 
the defects’ condition, the action that was made in order to fix it if that was possible 
or the level of urgency that the defect needs to be taken care of. It is inevitable for 
subjectivity to be introduced due to the level of the inspector’s experience (Bianchini 
et al. 2010). 

Dedicated vehicles are equipped with a variety of sensors, such as high 
definition cameras and laser scanners. The limitation with these vehicles is their high 
purchase (~$800,000) and operational (~$50/mile) costs (Werro 2013). Hence, many 
US states own just a few or none and operate them only once a year (MnDOT 2009), 
leading to the extended use of manual visual surveys (SDDOT 2009).  
 In this paper a framework for automating the process of pavement condition 
monitoring is presented. The initial motivation is to create a method that is cheap and 
simple. Hence, the sensors used for collecting data are a parking camera and 
accelerometers. The camera feed is processed to initially detect frames that 
potentially include highway asset related defects. The defective frame candidates are 
then further processed to detect specific defects. At the same time, accelerometer 
signals are collected to produce the road profile and detect defects related to the 
road’s z-axis. A GPS device is synchronized with the other sensors for geo-tagging 
all captured data. After classifying the detected defects based on their type, their 
severity level is assessed. A report with all the derived information regarding the 
condition of the road is produced and saved in a database. This information is then 
used to calculate the Road Condition Index (RCI) of road segments in order to 
classify them based on an international standard rating system. Finally, everything is 
saved in a Pavement Management System (PMS).  
 
STATE OF RESEARCH 
 
Automating pavement condition assessment  
 Several research efforts have attempted to automate pavement defect 
detection, assessment and repair. The main focus has been on algorithmic accuracy, 
which in most cases has led to expensive solutions requiring the use of specialized 
vehicles. However, it is infeasible to maintain a whole road network in such a way.   

Most of the proposed methods are based on computer vision techniques that 
are applied on 2D images as it has been proven that such techniques can assist the 
automation of pavement assessment (Tsai et al. 2009). Multiple methods have 
focused on the defects of cracks. Those are focusing on detecting cracks (Ghanta et 
al. 2012;), analyzing them in real-time (Sy et al. 2008), classifying them (Moghadas 
Nejad and Zakeri 2011), estimating their depth (Amarasiri et al. 2009) and 
automatically sealing them (Kim et al. 2009). Other efforts have addressed the 
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detection of different pavement defects such as potholes (Jog et al. 2012; Koch et al. 
2012;) or patches (Battiato et al. 2006; Radopoulou and Brilakis 2015).  

The limitation of the aforementioned methods is twofold. On one hand, they 
don’t approach the process holistically since they are restricted in the detection of one 
defect at a time. This isn’t useful, since in order to efficiently design a maintenance 
plan information about all different highway asset related defects is mandatory. 
Additionally, since they are vision based, they are unable to capture information in 
relation to the z-axis of the pavement. 
 In order to address the limitation of vision techniques, methods that 
reconstruct the pavement in 3D have also been proposed. Those are capable of 
detecting defects such as rutting, depressions and elevations. A real-time laser 
scanning system has been proposed (Li et al. 2010) for that purpose, and although it is 
not expensive, it is manual. Stereo vision has also been used for reconstructing the 
pavement surface (Hou et al. 2007). However, all above methods require the use of 
specialized vehicles. In addition, methods that require laser scanners for data 
collection are restricted to elevation defects and can’t detect surface defects.  

Finally, the use of dynamic sensors such as accelerometers has also been 
tested for understanding the pavement conditions (Yu and Yu 2006). The advantage 
of using accelerometers is their small size, their low cost and the possibility of 
processing the collected data in real-time. 

 
Sensor fusion approaches related to pavement monitoring 

 Currently available single sensor approaches for infrastructure monitoring 
cannot provide sufficiently accurate data for localizing and determining the severity 
of the detected defects (Attoh-Okine and Mensah 2009). For this reason, fusing data 
captured by a multi-sensor network in order to associate, correlate, estimate and 
combine information has evolved (Farrar et al. 2006).  

Different sensor-fusion systems have been studied. A couple aiming at 
Vehicle to Vehicle and Vehicle to Infrastructure communications (Sauerwein and 
Smith 2011) have been proposed. Other sensor-fusion methods aim at the 
synchronization of pavement defect detection and geographical positioning. Such 
examples are the BusNet (De Zoysa et al. 2007) and Pothole Patrol (Eriksson et al. 
2008) projects, both of which are combining dynamic sensors, GPS devices and 
mobile nodes to detect potholes. CarTel is another sensor fusion method (Hull et al. 
2006) for collecting, processing, delivering and visualizing data and it isn’t based on 
any particular application. Its main advantage is its ability to sense the environment 
with much finer fidelity than static sensor networks, especially in large areas. 

The methods presented above show that distributed vehicle networks are in 
general ideal for monitoring and assessing infrastructure. Moreover, they are 
environmentally friendly if we consider the additional emissions that dedicated 
inspection vehicles produce. However, these approaches are mainly limited to 
detecting and localizing elevation defects without being capable of detecting surface 
defects. When considering comprehensive condition assessment, all types of defects 
need to be identified. Otherwise, the results aren’t enough to efficiently decide on 
maintenance actions. 
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Based on the limitations of specialized vehicles, the current process of 
pavement condition monitoring and the proposed methods in the literature, the 
objective of this paper is to propose an automated and efficient pavement condition 
monitoring framework.  
 
PROPOSED FRAMEWORK 
 For addressing this paper’s objective we are proposing to use the parking 
camera that is already installed in many vehicles. Using only one camera restrict us 
into acquiring only 2D information. Therefore and in order to capture all relevant 
information in relation to the z-axis of the road we are also proposing the use of 
accelerometer data. A flowchart of the proposed framework is provided in figure 1.  
 

 
Figure 1. Proposed framework for automated pavement condition monitoring. 

Validated steps are highlighted. 
  

Starting from the video feed, rough visible defect detection is initially 
performed using the wavelet transform to isolate frames that potentially depict 
defects. These are called candidate defective frames. Only these frames are then 
passed to the next stage of the framework, during which the supervised learning 
algorithm of Semantic Texton Forest (STF) (Shotton et al. 2008) is applied for 
detecting defects within the candidate defective frames.  

Simultaneously accelerometer signals are analyzed to reconstruct the road 
profile which is used for the rough elevation defect detection. At this stage, signals 
that potentially represent defects are isolated from the rest of the profile. For the 
classification of these defects, a “library” of z-axis defects is used. The “library” is 
formed by the “signatures” of typical defects, such as depressions, sags and rutting. A 
“signature” is a depiction of the defect on the road profile. The candidate defects are 
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compared and matched with one of the “signatures” in the “library”. A GPS device 
that is synchronized with the other sensors provides the additional information of 
geographical location of the collected data. 
 Then follows the severity assessment of classified defects. Each type of defect 
has different attributes for understanding its severity level. The severity levels are 
low, medium and high. Each level is defined with a different range of attribute values. 
For example, a medium level longitudinal crack has a width between ¼ inch and ¾ 
inch. In addition to that, its length is also necessary for categorizing it. At this stage, 
each defect’s attribute(s) is measured and saved in a report.  
 Established wireless protocols are used to transfer this information through 
the 4G capability of the driver’s cellular phones to a central server. The final step of 
the framework is to calculate the Road Condition Index of each road segment in order 
to classify them based on international rating standards. Last, all information is saved 
in a Pavement Management System.  
 
PRELIMINARY RESULTS 
 
Rough visible defect detection 

In order to validate the capability of the framework to roughly detect defects, 
pavement images were captured in Bochum, Germany. A high-speed Basler 
acA2040-180kc camera was used. The acquired images with a resolution of 
1000x1000 pixels were analyzed using the wavelet transform method proposed by 
Zhou (Zhou et al. 2006). In order to allow for real-time defect detection, the wavelet 
transform and corresponding feature calculations were implemented on Graphics 
Processing Units (Georgieva et al. 2015). 

A dataset consisting of 477 images was generated, whereby 305 images 
contained defects and the other 172 images were of a good pavement surface. 
Examples of the images are shown in figure 2. As proposed by Zhou (Zhou et al. 
2006), the wavelet transform was applied on the images and a statistical feature was 
calculated, namely high-amplitude wavelet coefficient percentage (HAWCP). Based 
on this feature, a machine learning framework which provides implementations of 
multiple classification algorithms was utilized in order to classify the images into two 
categories, namely candidate defective frames and frames without defects. In 
particular, the Rotation Forest algorithm was used and tested on the sample of the 477 
images. To train the algorithm and create a classification model, randomly chosen 
30% of the images were manually labeled and submitted to the machine learning 
framework. The remaining 70% of the images were used to test the performance of 
the generated classification model. 

The Rotation Forest algorithm classified correctly 96% of the test images and 
achieved a precision and recall of 97%. The time required to execute the wavelet 
transform on an image and calculate the HAWCP value was 0.17 milliseconds, which 
enables real-time pavement defect detection. 

 
Defect type classification  

For this part of the framework, data was collected from the local streets of 
Cambridge, UK. Two different cameras were used for that reason; an HP Elite 
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Webcam (colored videos) and a Point Grey (PG) Blackfly (monochrome videos). The 
first one provides an image of 640x480 and has a lens with 50o horizontal angle of 
view. Data was collected with such a low resolution camera to test its applicability to 
the specific problem. The second camera has a resolution of 0.5MP and a 133o 
horizontal angle of view. This was chosen based on the characteristics of parking 
cameras currently available in the market. The camera was positioned at the rear of 
the vehicle on the 

 

   

   
Figure 2. Examples of pavement images 

 
same spot that parking cameras are found. This is approximately in the middle of the 
car; just below or above the license plate. 
 Assuming that the rough visible defect detection was performed, the defective 
frames were manually isolated from the healthy ones and were used for training and 
validating the algorithm. Two datasets were created; one using the colored video 
collected with the HP camera consisting of 211 images and another one using the 
video collected with the PG camera consisting of 517 images. In both datasets, half of 
the images were used for training and the rest for testing. 

Six categories were used for preparing the ground truth, necessary to train the 
algorithm, each of which was marked with a different color. The first dataset, 
included images that contained all six categories. The second one included images 
that contained only four of them. The colors used to mark each category were red for 
longitudinal cracks, blue for traverse cracks, green for alligator cracks, yellow for 
patches, pink for potholes and grey for healthy pavement (examples can be seen in 
column b of fig.2).  
  Additionally, the images of the second database were cropped in order to 
isolate the application of STF to the part of the image that is useful to do so. This 
corresponds to the area that depicts the road lane only, while considering the size of 
defects that inspectors are looking for. The calculation was made using the principles 
of inverse perspective mapping that correlate the World Coordinate system with the 
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Image Coordinate system (Tapia-Espinoza and Torres-Torriti 2013), along with the 
fact that the minimum width of a crack that has to be detected is ¼ inch. The result 
was that the upper 193 rows of the images weren’t useful (examples can be seen in 
the 3rd and 4th rows of fig.3). 
 Several are the parameters that affect the performance of STF. Two of those 
are the box size and the maximum tree depth. The former refers to the number of 
pixels that surround the pixel in question (meaning the pixel that is being categorized 
during the testing phase) and the latter refers to how deep a tree can grow (how many 
levels it can include) during the training phase. Different combinations of these two 
parameters were tested, the details of which can be found in table 1. There, the 
overall and average accuracies of each combination can also be seen. Table 2 shows 
the average precision and area under curve (the one formed when precision vs recall 
is plotted) of each defect separately. Visual results are depicted in column c of 
figure3. 
 

 
  Figure 3. Examples of ground truth data (b) along with the original video 

frame (a) and the STF result (c). 
 
CONCLUSIONS 
 The current process of pavement condition assessment is predominantly 
performed manually which is laborious, time-consuming, subjective and not frequent 
enough. Therefore, poor road condition still remains a problem for every day 
commuters. Research efforts have attempted automating the detection, assessment or 
repair of pavement related defects. However, none of these methods approaches the 
problem holistically. All proposed methods are focusing on one or a couple of defects 
and this isn’t enough to acquire a complete report of information for the road 
condition. Additionally, since most are aiming at algorithmic accuracy, the solutions 

(a) (b) (c)
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they provide are quite expensive and aren’t appropriate for being applied to a national 
scale. Some studies have shown that sensor fusion approaches would be ideal for 
monitoring infrastructure. 
 

 Table 1. Tested parameter combinations and general results  
 

Colored video frames 
Test # 1 2 3 4 5 6 

Box Size 9 11 13 13 13 15 
Max tree depth 10&14 10&14 10&14 11&13 12&16 10&14 

Overall accuracy 0.87 0.87 0.89 0.89 0.86 0.84 
Average accuracy 0.6 0.65 0.56 0.6 0.58 0.64 

Monochrome video frames 
Box Size 9 9 11 13 15 15 

Max tree depth 10&14 11&13 10&14 10&14 10&14 11&13 
Overall accuracy 0.88 0.86 0.87 0.87 0.88 0.86 
Average accuracy 0.85 0.83 0.82 0.84 0.86 0.86 

 
Table 2. Validation results per defect 

 
Colored video frames 

Test #  1 2 3 4 5 6 
Alligator crack Av. Pr. 0.89 0.93 0.84 0.94 1 1 

 AuC 0.99 0.99 0.99 0.99 1 1 
Longitudinal 

crack  
Av. Pr. 0.86 0.94 0.96 0.98 0.94 0.96 
AuC 0.56 0.76 0.85 0.85 0.75 0.83 

Traverse crack Av. Pr. 0.53 0.77 0.77 0.78 0.04 1 
 AuC 0.96 0.97 0.97 0.98 0.69 1 

Patch Av. Pr. 0.75 0.86 0.81 0.79 0.72 0.75 
 AuC 0.82 0.93 0.89 0.89 0.83 0.85 

Pothole Av. Pr. 0.96 0.76 0.98 0.99 1 1 
 AuC 0.99 0.94 0.99 0.99 1 1 

Healthy 
pavement 

Av. Pr. 0.98 0.99 0.98 0.98 0.96 0.97 
AuC 0.19 0.6 0.21 0.43 0.1 0.07 

Monochrome video frames 
Longitudinal 

crack 
Av. Pr. 0.97 0.92 0.93 0.91 0.97 0.93 
AuC 0.9 0.97 0.98 0.97 0.99 0.95 

Patch Av. Pr. 0.95 0.99 0.95 0.94 0.96 0.97 
 AuC 0.87 0.96 0.86 0.91 0.89 0.91 

Pothole Av. Pr. 0.84 0.84 0.89 0.91 0.93 0.82 
 AuC 0.98 0.98 0.98 0.99 0.99 0.97 

Healthy 
pavement 

Av. Pr. 0.94 0.95 0.94 0.97 0.95 0.96 
AuC 0.52 0.53 0.5 0.67 0.63 0.65 
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Thus, this paper proposed a framework that automated the process of 
pavement condition monitoring while keeping the cost low for doing that. It is a 
solution that could potentially transform every day road users to ubiquitous pavement 
monitoring reporters. The sensors used are the parking camera, accelerometers, a 
GPS device and the driver’s mobile phone. The parking camera feed is processed to 
detect candidate defective frames, which are then processed to detect surface defects. 
The accelerometer signal helps in detecting defects related to the z-axis of the 
pavement. After assessing the severity of the defects, the RCI of road segments is 
calculated to classify roads based on international rating standards. Finally, all 
information is saved in a PMS, which is used for designing maintenance actions. 

To validate the rough detection of defects, the wavelet transform was applied 
on images with a resolution of 1000x1000 elements. Based on the high-amplitude 
wavelet coefficient percentage of the frames, the frames were classified by the 
Rotation Forest algorithm as candidate defective frames or good surface frames with 
a precision of 97%. An HP Elite Webcam and a Point Grey Blackfly camera were 
used for collecting data to validate the step of detecting defects in candidate defective 
frames. Several combinations of two parameters that affect the performance of the 
utilized machine learning algorithm were tested. All tests resulted in overall 
accuracies above 84%. The best average accuracy was produced in the colored video 
frames and it was 89%. Regarding the performance of detecting each defect 
individually, the algorithm performed better in the second database where the results 
were always above 85%. 
 The experiments described in this paper helped us derive preliminary results 
for validating part of the framework. Hence, in our future work, we are interested into 
performing more experiments using the same equipment and data for both steps of 
rough visible defect detection and classification. Such a validation will demonstrate 
the reliability of the proposed framework and algorithms. Additionally, we aim at 
creating the “library” of elevation defects by studying their “signatures” in road 
profiles. Once this task is ready, data will be collected for validating and testing the 
performance of detecting elevation defects.  
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