203 research outputs found

    Composite learning adaptive backstepping control using neural networks with compact supports

    Get PDF
    © 2019 John Wiley & Sons, Ltd. The ability to learn is crucial for neural network (NN) control as it is able to enhance the overall stability and robustness of control systems. In this study, a composite learning control strategy is proposed for a class of strict-feedback nonlinear systems with mismatched uncertainties, where raised-cosine radial basis function NNs with compact supports are applied to approximate system uncertainties. Both online historical data and instantaneous data are utilized to update NN weights. Practical exponential stability of the closed-loop system is established under a weak excitation condition termed interval excitation. The proposed approach ensures fast parameter convergence, implying an exact estimation of plant uncertainties, without the trajectory of NN inputs being recurrent and the time derivation of plant states. The raised-cosine radial basis function NNs applied not only reduces computational cost but also facilitates the exact determination of a subregressor activated along any trajectory of NN inputs so that the interval excitation condition is verifiable. Numerical results have verified validity and superiority of the proposed approach

    Control strategies for inverted pendulum: A comparative analysis of linear, nonlinear, and artificial intelligence approaches

    Get PDF
    An inverted pendulum is a challenging underactuated system characterized by nonlinear behavior. Defining an effective control strategy for such a system is challenging. This paper presents an overview of the IP control system augmented by a comparative analysis of multiple control strategies. Linear techniques such as linear quadratic regulators (LQR) and progressing to nonlinear methods such as Sliding Mode Control (SMC) and back-stepping (BS), as well as artificial intelligence (AI) methods such as Fuzzy Logic Controllers (FLC) and SMC based Neural Networks (SMCNN). These strategies are studied and analyzed based on multiple parameters. Nonlinear techniques and AI-based approaches play key roles in mitigating IP nonlinearity and stabilizing its unbalanced form. The aforementioned algorithms are simulated and compared by conducting a comprehensive literature study. The results demonstrate that the SMCNN controller outperforms the LQR, SMC, FLC, and BS in terms of settling time, overshoot, and steady-state error. Furthermore, SMCNN exhibit superior performance for IP systems, albeit with a complexity trade-off compared to other techniques. This comparative analysis sheds light on the complexity involved in controlling the IP while also providing insights into the optimal performance achieved by the SMCNN controller and the potential of neural network for inverted pendulum stabilization

    Fault tolerant control for nonlinear systems using sliding mode and adaptive neural network estimator

    Get PDF
    This paper proposes a new fault tolerant control scheme for a class of nonlinear systems including robotic systems and aeronautical systems. In this method, a sliding mode control is applied to maintain system stability under the post-fault dynamics. A neural network is used as on-line estimator to reconstruct the change rate of the fault and compensate for the impact of the fault on the system performance. The control law and the neural network learning algorithms are derived using the Lyapunov method, so that the neural estimator is guaranteed to converge to the fault change rate, while the entire closed-loop system stability and tracking control is guaranteed. Compared with the existing methods, the proposed method achieved fault tolerant control for time-varying fault, rather than just constant fault. This greatly expands the industrial applications of the developed method to enhance system reliability. The main contribution and novelty of the developed method is that the system stability is guaranteed and the fault estimation is also guaranteed for convergence when the system subject to a time-varying fault. A simulation example is used to demonstrate the design procedure and the effectiveness of the method. The simulation results demonstrated that the post-fault is stable and the performance is maintained

    Robust adaptive control of uncertain nonlinear systems

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    A brief review of neural networks based learning and control and their applications for robots

    Get PDF
    As an imitation of the biological nervous systems, neural networks (NN), which are characterized with powerful learning ability, have been employed in a wide range of applications, such as control of complex nonlinear systems, optimization, system identification and patterns recognition etc. This article aims to bring a brief review of the state-of-art NN for the complex nonlinear systems. Recent progresses of NNs in both theoretical developments and practical applications are investigated and surveyed. Specifically, NN based robot learning and control applications were further reviewed, including NN based robot manipulator control, NN based human robot interaction and NN based behavior recognition and generation

    Modeling and Robust Control of Flying Robots Using Intelligent Approaches Modélisation et commande robuste des robots volants en utilisant des approches intelligentes

    Get PDF
    This thesis aims to modeling and robust controlling of a flying robot of quadrotor type. Where we focused in this thesis on quadrotor unmanned Aerial Vehicle (QUAV). Intelligent nonlinear controllers and intelligent fractional-order nonlinear controllers are designed to control. The QUAV system is considered as MIMO large-scale system that can be divided on six interconnected single-input–single-output (SISO) subsystems, which define one DOF, i.e., three-angle subsystems with three position subsystems. In addition, nonlinear models is considered and assumed to suffer from the incidence of parameter uncertainty. Every parameters such as mass, inertia of the system are assumed completely unknown and change over time without prior information. Next, basing on nonlinear, Fractional-Order nonlinear and the intelligent adaptive approximate techniques a control law is established for all subsystems. The stability is performed by Lyapunov method and getting the desired output with respect to the desired input. The modeling and control is done using MATLAB/Simulink. At the end, the simulation tests are performed to that, the designed controller is able to maintain best performance of the QUAV even in the presence of unknown dynamics, parametric uncertainties and external disturbance
    corecore