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Abstract 

 
 

This thesis aims to modeling and robust controlling of a flying robot of quadrotor type. Where 

we focused in this thesis on quadrotor unmanned Aerial Vehicle (QUAV). Intelligent 

nonlinear controllers and intelligent fractional-order nonlinear controllers are designed to 

control. The QUAV system is considered as MIMO large-scale system that can be divided on 

six interconnected single-input–single-output (SISO) subsystems, which define one DOF, i.e., 

three-angle subsystems with three position subsystems. In addition, nonlinear models is 

considered and assumed to suffer from the incidence of parameter uncertainty. Every 

parameters such as mass, inertia of the system are assumed completely unknown and change 

over time without prior information. Next, basing on nonlinear, Fractional-Order nonlinear 

and the intelligent adaptive approximate techniques a control law is established for all 

subsystems. The stability is performed by Lyapunov method and getting the desired output 

with respect to the desired input. The modeling and control is done using 

MATLAB/Simulink. At the end, the simulation tests are performed to that, the designed 

controller is able to maintain best performance of the QUAV even in the presence of unknown 

dynamics, parametric uncertainties and external disturbance.  

Keywords: Quadrotor, UAV, nonlinear control ,fractional-order calculus, adaptive intelligent 
approaches, lyapunov method. 
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 ملخص
 
 

حيث ركزنا في هذه الأطروحة  . الرباعي النوع من طائر روبوتتهدف هذه الأطروحة إلى النمذجة والتحكم القوي في 

تم تصميم أجهزة التحكم الذكية غير الخطية وأجهزة التحكم .  ( QUAV)مركبة جوية بدون طيار رباعية المحركات على 

واسع النطاق يمكن تقسيمه  MIMO بمثابة نظام  QUAV يعتبر نظام  .الذكية غير الخطية ذات الترتيب الجزئي للتحكم

واحداً ، أي أنظمة فرعية  DOF ، والتي تحدد  (SISO)على ستة أنظمة فرعية مترابطة ذات مدخل واحد ومخرج واحد 

عتبار ويعتبر يعاني بالإضافة إلى ذلك ، يتم أخذ النموذج غير الخطي في الا .ثلاثية الزوايا مع ثلاثة أنظمة فرعية للمواضع

المعلمات ، مثل الكتلة والقصور الذاتي للنظام ، غير معروفة تمامًا وتتغير تعتبر جميع  .من وجود عدم اليقين في المعلمة

بعد ذلك ، استناداً إلى تقنيات غير الخطية ، غير الخطية ذات الترتيب الجزئي ،  .بمرور الوقت دون أي معلومات مسبقة

يتم تنفيذ الاستقرار بواسطة طريقة  .يتم وضع قانون تحكم لجميع الأنظمة الفرعيةوتقنيات المقارب الذكي التكيفي ، 

Lyapunov ة والتحكم يتم باستخدام النمذج .والحصول على الإخراج المطلوب فيما يتعلق بالمدخلات المطلوبة

MATLAB / Simulink درة على في النهاية ، يتم إجراء اختبارات المحاكاة لذلك ، تكون وحدة التحكم المصممة قا

 .حتى في وجود ديناميكيات غير معروفة ، وشكوك معلمية واضطراب خارجي QUAV الحفاظ على أفضل أداء لـ

، حساب الأساليب الذكية التكيفية   ، التحكم غير الخطي ، الطائرات بدون طيار ، المحرك رباعية المفتاح الكلمات 
  .Lyapunov التفاضل والتكامل الجزئي ، طريقة
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Résumé 
 

Cette thèse a pour objectif la modélisation et le contrôle robuste d'un robot volant de type 

quadrotor. Où nous nous sommes concentrés dans cette thèse sur le véhicule aérien sans pilote 

quadrotor (QUAV).  Les contrôleurs non linéaires intelligents et les contrôleurs non linéaires 

intelligents d'ordre fractionnaire sont conçus pour contrôler. Le système QUAV est considéré 

comme un système MIMO à grande échelle qui peut être divisé en six sous-systèmes 

interconnectés à entrée unique et sortie unique (SISO), qui définissent un DOF, c'est-à-dire 

des sous-systèmes à trois angles avec des sous-systèmes à trois positions. De plus, un modèle 

non linéaire est pris en compte et considéré comme souffrant de la présence d'incertitude sur 

les paramètres. Tous les paramètres, tels que la masse, l'inertie du système, sont considérés 

comme totalement inconnus et variant dans le temps sans aucune information préalable. 

Ensuite, en se basant sur les techniques non linéaires, non linéaires d'ordre fractionnaire et les 

approximateurs adaptatifs intelligents, une loi de commande est établie pour tous les sous-

systèmes. La stabilité est effectuée par la méthode Lyapunov et l'obtention de la sortie 

souhaitée par rapport à l'entrée souhaitée. La modélisation et le contrôle se font sous 

MATLAB/Simulink. À la fin, les tests de simulation sont effectués pour que le contrôleur 

conçu soit capable de maintenir les meilleures performances du QUAV même en présence de 

dynamique inconnue, d'incertitudes paramétriques et de perturbations externes. 

  

Mots clés: Quadrotor, UAV, contrôle non linéaire, calcul d'ordre fractionnaire, approches 

intelligentes adaptatives, méthode Lyapunov. 
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General Introduction 

 

This thesis aims to model and develop robust control of flying robots where we have 

focused on quadrotor is a flying robot it belongs to the multirotors family. This thesis aims to 

propose and design various adaptive robust nonlinear control techniques for of a quadrotor 

unmanned aerial vehicles (QUAVs) type flying robot against external disturbances,  system 

uncertainties and unknown dynamics. Despite various works, this challenge has not yet been 

sufficiently studied and resolved due to the complexity of offering significant precision flight 

path tracking on the existence of these disturbances. This work developed robust control 

approaches to reach sufficient set-point tracking of diverse complex of QUAV trajectories. 

Noting that despite the complexity of QUAV trajectories, we succeeded in proposing robust 

control techniques to achieve sufficient tracking of the setpoint with smoother control action. 

Using sliding mode control (SMC) hypothesis, backstepping approach, fractional-order 

calculus, artificial neural networks (NNs) and/or fuzzy logic system as universal 

approximators to solve the control problem of nonlinear uncertain systems and adaptive laws, 

are offered for the QUAV system control.  

1.  Motivation and problems 

The central motivations of this thesis are specified as follows: 

1. Developing a control approaches for QUAV to satisfy specific requirements 

(precision, minimum energy consumption……) produce more challenge. In 

addition, designing a flight controllers for these multi-rotor drones gives three 

significant challenges: (i) the vehicle dynamics are multi-input, multi-output 

(MIMO) and highly nonlinear coupled; (ii) the QUAV dynamics include diverse 

sources of uncertainties, as well as parametric uncertainties, unmodeled 

uncertainties, and external disturbances. So, this thesis suggests robust QUAV 

control schemes over the mentioned perturbations. 

2. Design a second order sliding mode (SOSMC), backstepping controllers (BC) based 

on adaptive neural networks and/or fuzzy. The main objective is control of  QUAV 
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system against uncertainties and disturbances. The neural networks and/or fuzzy 

logic  with adaptive parameters is exploited to approximate the unkown nonlinear 

functions and improve the robustness against parametric uncertainties and external 

disturbances.   

3. The development of robust nonlinear controls by using the fractional-order calculs, 

the path tracking of the QUAV is performed and enhanced robustness can be 

achieved over parametric uncertainties and perturbations. These control techniques 

are very significant once the QUAV is concerned by unknown complex disturbances 

throughout flights. The control using fractional-order controllers could lead to a 

good performance than integer controllers. Consequently, it is essential to 

investigate these control designs. The control performance as well as the transient 

and stable states of the tracking errors must be improved against disturbances for the 

QUAV. The study considers robust nonlinear controllers as well as fractional calculs 

of these actions where the performance can be enhanced against disturbances 

effects.  

2.  Main contributions 

We can outline the essential contributions obtained in this thesis as follows: 

 At first, studied the attitude control problem for a quadrotor system in the presence of 

unknown dynamics, parametric uncertainties and external disturbances. The designed 

controller for quadrotor system is divided firstly into three controllers: yaw angle 

controller, pitch angle controller, and roll angle controller. Second, the control law of 

each controller is approximated indirectly by using a combination of  approximation 

function of the fuzzy system and the neural network. Then, based on the Lyapunov 

stability theorem, the proposed controller scheme can guarantee the stability of the 

closed loop system and achieve a good tracking performance. Finally, simulation 

results are presented to demonstrate the effectiveness of the proposed structure. The 

contributions are various and significant as, the problems of singularity and the need 

of a robust additional term in BC methodology are avoided.  In addition, the prior 

knowledge of uncertainty limits is not necessary and ideal dynamics of the 

mathematical system are not needed. 
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 Secondly, study the attitude control problem of quadrotor system in the presence of 

unknown dynamics, parametric uncertainties, and external perturbations. Here, the 

model quadrotor is considered as large-scale system which is divided into three 

subsystems. Thus, the control of multiple-input multiple-output(MIMO) system is 

achieved through decentralized control of three single-input single-output 

(SISO)subsystems. Firstly, the adaptive Fuzzy-Chebyshev network (FCN) is used to 

approximate unknown dynamic function for each subsystem. Then, second order 

sliding mode (SOSMC) control is applied to deal with the approximation error and , 

parameters uncertainties and external disturbances  and eliminating the chattering 

effect. Finally, simulation results are presented to demonstrate the effectiveness of the 

proposed controller. The main contribution is to demonstrate that prior knowledge of 

the limits of uncertainties is not necessary and the perfect mathematical system 

dynamics is not required. 

 Thirdly, a new tracking control approach named NNFOBC based fractional order (FO) 

control technique, backstepping controller and neural networks for QUAV is 

proposed. The NNFOBC will lead to a strong robustness and high tracking accuracy. 

The FO backstepping controller is employed to decrease uncertainties and 

disturbances effect. The adaptive RBFNN approximator of unknown dynamics and a 

local robust control term are incorporated to ensure a robust tracking convergence of 

the closed-loop quadrotor. an efficient fractional-order virtual stabilizing function was 

designed, such that the proposed NNFOBC rule includes more FO differential and 

integral terms of the tracking error. By the augmented degrees of freedom for the 

control parameters and proper choice of fractional orders, the designed NNFOBC be 

able to successfully improve the control performance of the classical BC. 

3.  Structure of the thesis 

In this thesis, the QUAV dynamics model, the second order continuous sliding mode 

control(SOSMC), backstepping controller (BC), the adaptive neural network, the adaptive 

Fuzzy-Chebyshev network (FCN) ,fractional-order backstepping controller (FOBC), external 

disturbances, parametric uncertainties, the unknown dynamic functions, will be study and 

investigated  . The relations between chapters are illustrated in figure1. 
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Figure 1. Block diagram of this thesis.  
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I.1 Introduction  

In current years, we found a very growth with rapidity in the development of autonomous 

unmanned aircraft equipped with autonomous control devices named unmanned aerial vehicles 

(UAV). Hence, the use of such vehicles is extensively wide. It can be divided depending to 

their applications for military or civilian field. Thus we have a amazing growth of UAVs 

especially for military fiels. UAV give main advantages while operated for in surveillances, 

reconnaissance and inspections in difficult and challenging conditions. In reality, UAVs are 

better suitable to boring, unclean or complex as well as dangerous missions than manned 

aircraft to keep pilots alive. Low risk of loss and greater confidence in operation success are 

two important parameters for the continued growth of the employ of unmanned aircraft system. 

In addition, numerous other technological and economic elements have supported the 

improvement and use of UAVs. This chapter will talk about a short introduction in relation to 

Unmanned Aerial Vehicles (UAVs) on terms of their histories, types and utilization and the 

complexity of UAVs system that lead to a complexity in control.  In the literature there are 

various types of UAVs however in the thesis we have focused on Quadrotor Unmanned Aerial 

Vehicles (QUAV), hence we discuss their concept, system control and architecture.  

I.2 Unmanned aerial vehicles (UAV) 

The description of drones varies across literature. In our case, UAVs are small unmanned 

aircraft. They can whichever be remote-controlled by a person or stand alone; UAVs to be 

controlled by an on-board computer which could be pre-programmed to achieve a definite task 

or a wide range of tasks. Whilst, in further literatures, UAV could refers to powered or 

unpowered, tethered or untethered aerial [1]. Our adopted description which taken in this work 

supports the same as the American Institute of Aeronautic and Astronautic [1]: an aircraft that 

is developed or modified to not take an individual aviator and that is functioned throughout 

electronic input initiated by the flight controller or by an autonomous flight command control 

system that does not require the intervention from the flight controller. Although, UAV were 

mostly  employed  in  armed  purpose  except  lately  they used in  civilian field  too [2]. 

I.2.1 Histories of UAVs  

UAV was initially produced by Lawrence and Sperry in the United States of America 1916 

as it shown in Figure I.1. They call it the Aviation Torpedo and capable to hover it for about 30 
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miles. Furthermore, the use of gyroscope by Lawrence and Sperry is to balance the body of 

UAVs [2]. 

 

Figure I.1: (UAV) Lawrence and Sperry [2]. 

I.2.1.1 Military history  

A The United States showed great interest in developing UAV for use in the First World 

War and two schemes were financed. The initial was by Elmer Sperry to design the "Flying 

Bomb" UAVs and the next development is the "Kettering Bug" done by General Motors. Both 

projects were blocked with the cancellation of all funds due to failure. Owing of the absence of 

the mandatory technical advances in the field of supervision system and engine [3].  The 

purpose of UAV in progress hugely by years of 1950 until 1960, the Unites states of America 

used  them throughout the Vietnam conflict to reduce the victims in pilots against enemy lands. 

Following the efficiency of UAVs, the uninvited states and other countries determined to spend 

further to make slighter and not expensive UAV, they utilized tiny engine similar to those used 

in motorcycles to obtain UAVs light small. Furthermore, cameras were used on the UAVs for 

transmitting images to operators in the land. But in 1991, the United states employed UAV 

usually in the conflict with Iraq, where the popular well-known model was the Predator 

illustrated in Figure I.2 . UAVs were strongly adopted in various clashes and conflict in the 

1990’s and the years of 2000 by USA. Unmanned aerial vehicles were widely utilized various  

with more development especially among the war of Iraq in 2003 [4]. 
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Figure I.2: (UAV) Predator Military [2] 

I.2.1.2 Civil History  

Using drones were not just limited to military employ; in 1969, The National Aeronautics 

and Space Administration proposed the worry to control an airplane in automatic, the first tests 

were the PA-30 program. The plan was booming, except the mission requires a person on board 

to take control of the plane in case something leads to mistake. An additional investigate plan 

go behind the achievement of the PA-30 plan such as: the Drones for Aerodynamic and 

Structural Testing (DAST) and Highly Maneuverable Aircraft Technology (HiMAT) program 

[5]. After that time, in the years of 1990, The National Aeronautics and Space Administration 

joined with manufacturing corporations to advance a nine-year study projects named the 

Environmental Research Aircraft and Sensor Technology research (ERAST), where they have 

designed a variety of representation of drones capable of flying at altitudes of until 30 km and 

supporting the flights until 6 months. Follow-on UAVs models incorporated: Pathfinder, 

Helios, Atlus and Perseus B. The proposed drones approved multiple sensors to perform 

environmental dimensions; the on-board sensors comprises cameras, a digital scanning 

interferometers (DASI) and an active detections, vision and prevention (DSA) systems [5].  

I.2.2 Applications of UAVs  

Otherwise, UAVs can be employed in various fields such as civilian or commercial 

application that are too tedious, very polluted, or excessively unsafe for manned airplane. These 

employments comprise, but are not restricted to: 

Earth Sciences remarks using unmanned aerial vehicles could be exploited side-to-side with 

that gained from satellite. As missions comprise [5]: 
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(a) Measure of deformations in the crust of the Earth which might be indications to natural 

disaster similar to earthquake, landslide or volcanos [5].  

(b) Measurement of Cloud and Aerosol [5].  

(c) Tropospheric pollutions with air qualities measurement to decide pollutions sources and 

how plume of contamination to be moved from place to a new places [5, 6].  

(d) Ice sheet size and surface deformations for study overall warming [5].  

(e) Measurement of the accelerations of Gravity, because the accelerations of Gravity is 

different close to Earth, UAV to be utilized perfectly measure gravitational accelerations at 

numerous spaces to describe accurate inputs [5]. 

 (f) River discharges to be calculated from the water of flowing in a river with various 

positions. This will assist in general and local water stability investigations [5].  

Searches and save drones advanced with camera to be employed to look for persons 

following disasters such as earthquake and hurricane or survivors due to shipwrecks and 

airplane crash [6, 7].  

Wild fire removal drones prepared by infrared sensor to be forwarded to hover above forest 

down to discover any fires and make the suitable reaction by transmitting information to the 

responsible by indicating the precise area of the fire earlier than it extends [5–7].  

Law enforcement drones to be employed as a cost-effective replacement for manned police 

helicopter [7]. 

Border surveillance: drones to be exploited to guard borders searching for intruder, 

illegitimate immigrant and arms trafficking [2, 5, 7]. 

Research: drones are too adopted by researchers carried out at laboratories to prove a 

theory. Moreover, drones prepared with suitable sensors to be utilized by environmental 

research institution to monitor different environmental phenomena as well as pollutions in 

major states [7]. 

Applications in manufacturing: drones employed in different manufacturing purpose such 

as pipeline inspections or surveillances and nuclear plant monitoring [6, 7]. 

Agriculture development, in addition, drones to be adopted agriculture field such as crops 

spraying [2, 6, 7]. 

I.2.3 Drones classification (UAVs) 

 

It is easy to discover, there are various methods to categorize UAVs, either depending to 

their actions, their aerodynamics configurations, their sizes, and their payload, or according to 
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their capability of autonomies [8]. UAV can be classified depending to their highest altitude 

and survival as illustrated in figure I.3: 

 

(a) 

 

(b) 

              

                                 (c)                                                                            (d) 

            

                                  (e)                                                                          (f)  

Figure I.3 : Classification of UAVs: (a) UAVs HALE, (b) UAVs MALE, (c) UAVs TUAV, 

(d) Short Range UAVs,(e) Mini UAVs, (f) Micro UAVs [8,9]. 
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– High-Altitude Long Endurance (HALE): this kind of UAV able to hover more than 15.000 

m with an autonomous of about 24 hours. The main use of this type is the large surveillance 

missions. 

– Medium-Altitude Long-Endurance (MALE): this kind of UAV able to hover between 

5.000 and 15.000 m altitude with an autonomous of 24 hours. These UAV are suitable for 

surveillance missions. 

– Tactical Unmanned Air Vehicle (TUAV): this kind of UAV are minor and maneuver with 

simple systems than the mentioned types that are described above: HALE and MALE. They be 

able to hover in an altitude in the range of 100 to 300 km. 

–UAVs with small Range: the kind are mostly utilized in civil purposes as well as pipe line 

inspections, harvest spraying, traffic check, home securities in the range of 100 km. 

– Mini UAV (MUAV): with a weigh of 20 kg with hovering of 30 km. 

– Micro UAV (MAV): their greatest wingspan is about 150 mm. They are largely adopted in 

indoors, where they must hover gradually and continue flying. 

 

Furthermore, the aerodynamics configurations play a significant role in the next 

classification: 

– Fixed-wing UAVs: this group necessitates a landing strip to fly and land. They can hover 

lengthy with elevated-velocity cruising. They are largely adopted in scientific filed as well as 

climatic investigations and environment monitoring. 

– Rotary Wing UAVs: this type of drones can fly, land vertically and hovering with large 

maneuverability. As shown in Figure I.4, this kind of UAVs is categorized by: 

(a) Monorotors: these types of drones cauterized by the central rotor at the summit and an 

additional rotor at the rear for stability, as in the quadrotor configurations. 

(b) Coaxial: they have two rotors turning in reverse directions installed on the same tree. 

(c) Quadrotor: these kinds of drones have four rotors positioned in a cross. 

(d) Multirotor: drones mounted by six or eight rotors. These kind of drones are nimble and 

hover even with in case of engine stoppage, because of the numerous rotors that are mounted 

with  the redundancy. 
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(a) (b) 

 

(c) (d) 

Figure I.4: (a) Monorotor drone, (b) Coaxial rotary-wing drone, (c) Quadrotor drone, (d) 

Multirotor drone [8,1]. 

I.3 Quadrotors 

A quadrotor consisting of four rotors, each attached to one end of a cross-shaped 

composition shown in figure I.5. Each rotor consists of a propeller attached to an independently 

powered DC motor. Propellers 1 and 3 spin the same while propellers 2 and 4 spin in the 

opposite direction, balancing the entire system torque and eliminating gyroscopic and 

aerodynamic torque in hover aviation [10, 11]. 

 

Figure I.5 Quadrotor configuration[11]. 
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To produce perpendicular upwards movement, the velocity of the four propellers is 

augmented collectively while the velocity is reduced to produce perpendicular downwards 

action. To generate roll rotation coupled with movement along the y-axis, the velocities of the 

second and fourth helices are changed while for pitch rotation coupled with movement along 

the x-axis, the velocities of the first and third propellers that need to be tainted. Additionally, 

there is a difficulty with quadcopter configurations, which is that to generate yaw rotation, there 

must be a difference in the reverse torque generated by each pair of propellers. For example, for 

positive yaw rotation, the velocities of both clockwise rotating rotors require amplification 

while the velocities of both counterclockwise rotating rotors require reduction [11, 12]. Figure 

I.6 illustrates how various movements can be generated; note that a thicker arrow means a large 

propeller speed.  

 

Figure I.6 Different movements of quadrotor UAV [13]. 

I.3.1 Quadrotors advantages and drawbacks  

A number of advantages of the quadrotor over helicopters is that the rotor mechanics are 

basic as it is linked to four fixed-pitch rotors different from the variable-pitch rotor that 

characterizes the helicopter, which facilitates mechanization and maintenance . In addition, due 

to the symmetry of the configuration, the gyroscopic effects are diminished by a simple control. 

Stability flight can be more stable in quadrotor than in helicopters due to the appearance of four 

propellers providing four thrust forces displaced at a fixed distance from the center of gravity 

rather than a single mid-mounted propeller as in the construction of helicopters [10]. Other 

advantages are perpendicular flight and landing capabilities, improved maneuverability, and 

less dimension due to the non-existence of a tail [14], these capabilities keep quadcopters 
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practical in surveying small areas and l building review [15]. Additionally, quadcopters contain 

higher payload capacities due to the existence of four motors thus providing superior thrust 

[10]. In the other side, quadrotors use a huge power owing to the existence of four propellers 

[15]. In addition, they contain a big dimension and heavier than a number of their counterpart 

again to the fact that there is four distinct propellers [15, 16].  

Whereas advances in technologies and the ability to build miniature sensors and controllers 

by the Micro-Electo-Mechanical Systems (MEMS) technologies, so that we obtain several 

advance in the UAVs areas. In the literature we find various works focusing on the quadrotor 

owing to its significant advantages such as that quadrotors are easy to be manufactured, 

assembled, compactness and maneuverability compared to others. A number of literatures 

studying just on advancing control algorithms that will be used in simulation. In this we explore 

several control methods that usually adopted in the most work.  

I.4 Quadrotors control approaches 

    In the literature we found numerous control approaches which can be adopted to control a 

quadrotor differentiating from the traditional linear Proportional-Integral-Derivative (PID) or 

Proportional Derivative (PD) controller until the further complex nonlinear designs such as 

backstepping and sliding-mode controllers. It is noticed that we can classify the flight control 

into five  major groups that are: linear control approaches, non-linear control approaches, 

adaptive approaches, Robust approaches and artificial intelligence techniques. It is concluded 

that the mainly familiar control approach that are adopted are the PID and PD controller.  

I.4.1 Linear Control approaches 

      This control technique represents the mainly universal and the usual flight control systems, 

classically used PID, Linear Quadratic (LQ) or H∞ algorithms. It is important to note that in the 

late 1960s, a large-scale helicopter achieved autonomous waypoint navigation by a 

conventional linear control method [17].In [11], the authors proposed the use of PID and LQ 

control methods to be adopted with micro quadrotor in indoor area, the result that these types of 

controllers provided a remarkable aptitude to make the quadrotor more stable in terms of its 

attitude around its fly location over  little disturbances. Otherwise, in [14] a traditional PID is 

utilized to control the quadrotor situation and orientation and it was capable to stabilize in a 

little velocity wind environment. In [18], the authors employs a self tuning PID controller by 

taking into account an adaptive pole position to control the attitude and heading of a quadrotor. 
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Simulations illustrated that the developed controller behave good in the case of online tuning of 

parameters. In [19], the authors used H∞ controller to maintain stabilization of the rotational 

angles simultaneously with a Model Predictive Controller (MPC) to follow the preferred 

situation. The wind and model uncertainties effects were taken into account with the simulated 

model and it demonstrated robustness with a zero steady-state error. H∞ is a robust linear 

controller; robust controllers are those that take into account parametric uncertainty and 

unmodeled dynamics. In the literature, H∞ it is utilized for controlling of complete-scaled 

helicopters [17].  

I.4.2 Nonlinear Control approaches 

Since QUAV dynamics is a nonlinear character, the development of nonlinear control 

methods for use as flight controllers is necessary.  In the literature there are different nonlinear 

control approaches used with quadrotors as well as: feedback linearization, backstepping and 

sliding-mode.  

A) Backstepping and Sliding-mode: Backstepping defined as a recursive control 

technique that can be applied to both linear and nonlinear systems [17]. From the 

literature, we found that the most current work used this kind of controllers. In [15] the 

authors developed the use of backstepping and sliding-mode nonlinear control 

techniques to control the quadrotor, where it is concluded the effectiveness of such 

controller against the existence of disturbances. In addition the authors in [20], have 

developed controllers that can maintain stabilization of the quadrotor in an outdoors 

conditions, the assessment of the integral sliding-mode controller was performed by a 

comparison with an a reinforcement learning controller. It is concluded that both 

controllers were able to stabilize the quadcopter outdoors with improved performance 

over traditional control methods [20]. From [21], the authors used a backstepping 

controller with the use of  Lyapunov stability theory to follow preferred values for 

QUAV position and orientation. The authors decomposed the model of QUAV into 

three subsystems: underactuated, fully-actuated and propeller subsystems. The 

developed technique was efficient to stabilize the system without disturbances. 

Otherwise, in [22], a technique is proposed by merging a backstepping controller with 

an adaptive controller to surmount the model uncertainties and external disturbances 

problems. The evaluation of the developed adaptive integral backstepping algorithm 

leads to conclude that the system is capable to decrease the overshoot and response time 
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and get rid of steady state error. Furthermore, in [23] a backstepping controller is 

adopted to control the QUAV position and attitude, where the investigation leads to 

conclude the efficiency despite the presence of a noisy conditions [23]. Furthermore in 

[24], the authors combination of a backstepping controller with an adaptive algorithm to 

control QUAV attitude. Wherever, a robust adaptive function is utilized to approximate 

the external disturbances and errors in system modeling. Simulation results illustrated 

the accomplishment of the developed controller by surmounting uncertainties and 

disturbances. Besides in [25], the authors suggested the use of a chattering free sliding 

mode controller for  the QUAV altitude control. The developed technique demonstrated 

a remarkable performance by simulation results and also in a real environment with 

disturbances and in noisy environment. 

B) Feedback Linearization:  feedback linearization defined as a control method which 

adopted nonlinear transformation between nonlinear states of system variables into 

linear states. Linear algorithms can then be used to stabilize the linear transformed 

system which will then be oppositely transformed back into the original state variables. 

Dans ce contexte, les auteurs de [10, 26] ont proposé un contrôleur capable de contrôler 

un QUAV dans de nombreuses expériences de vol stationnaire en considérant les 

théories du concept de linéarisation par rétroaction [10].  

I.4.3 Adaptive control techniques 

      The quadrotors have various parameters which can be parametric uncertainties such as mass 

variance, inertia and aerodynamic coefficients, in which case the usage of adaptive 

approximation methods is necessary. In [26], an adaptive integral backstepping approach has 

been developed to deal through external perturbations. The referential adaptive control 

approach is widely used to adaptive control [27]. 

I.4.4 Robust methods 

     Although quadcopters are obedient to uncertainty and external disturbances such as wind. 

Thus, the quadcopter system requires powerful robust control features to cope with these 

effects. By the use of different powerful approaches. For example, in [28] an efficient terminal 

sliding mode control was developed to achieve finite time convergence and guarantee 
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asymptotic convergence of the sliding mode, besides this developed approach suffered from 

interruption in the switching signal generating in chattering occurrence.  

I.4.5 Intelligence control methods 

       Numerous works have studied the integration of artificial intelligence approaches with 

process control to improve performance by the use of data reached throughout the flight 

procedure. These methods assume non-parametric effects and non-modelled effects, that 

becomes superior to adaptive approach, and numerous methods related to these approaches can 

be approved, the most well-known are fuzzy approach, neural network  and learning control 

approach. 

I.4.5.1 Neural networks with radial basis functions (RBF)  

Radial basis function networks are relatively recent classes of adaptive neural networks 

(ANN). they comprise of an input, a hidden layer and an output layer. The general input/ output 

structure of an RBF network is shown in Figure I.7, where  𝑥𝑖 = [𝑥1,𝑖 𝑥2,𝑖]𝑇 represent the 

reference vector, Π = ℱ̂𝑖, �̂�𝑖 the output vector [29]. 

 

 

 

 

 

 

 

 

 

Figure I.7 The input/output structure of an radial basis function neural network (RBFNN).  
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I.4.5.2 Universal approximation theorem 

     The work of proved the possibility to approach continuous functions by neural networks. 

The networks considered are of the network type with a layer of hidden neurons with a 

nonlinear activation function, and with linear output neurons [29]. 

I.5  Stable neural adaptive control 

In this control strategy, neural networks are introduced, taking advantage of their universal 

approximation property, to develop adaptive control systems according to two approaches. In 

the first approach, [29], called indirect adaptive, whose algorithm scheme is given in Figure I.8, 

generally two neural networks to be utilized to approximate the nonlinearities of the nonlinear 

system to be controlled. A control law is then deduced from these approximations by following 

the input-output linearization technique. This approach suffers from the singularity problem in 

the case where the control gain approximation is zero. Precautionary measures must then be 

taken to remedy this problem. Generally, projection algorithm is used in adaptation laws to 

force them to stay in admissible sets, while other algorithms use variable structure additive 

control law to avoid singularity problem [29]. 

 

Figure I.8 Indirect neural adaptive control.  

  In the second approach for example in [29], called direct adaptive, a single neural network 

is used to directly approach an ideal control law under certain constraints on the control gain 

and/or on its derivative. The approximate control law is always Given by the input-output 

linearization technique whose diagram is given in Figure I.9. 
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           In the two approaches cited in various studies, the direct Lyapunov method is used to 

analyze the control system stability. Based on this method, a Lyapunov function is constructed 

from the tracking error and its derivatives as well as the adaptation error of the weights of the 

neural networks. Consequently, the network adaptation laws are directly drawn from this 

analysis to fulfill Lyapunov's stability conditions. 

I.6 Control techniques using fractional-order control 

Fractional-order (FO) control approaches wre acknowledged as an efficient instrument to get 

better constitution to design control scheme for nonlinear system, in present years. The 

mentioned controllers will be very useful in different difficult systems [30].  

I.7 Conclusion 

In this chapter, we have discussed quadrotor in terms on, their control and their applications, 

which has allowed to note that in the field of mini drones, in particular quadrotor, there has 

been an interest growing by either researchers or engineers. What is with the evolutions of the 

instruments of control, communication and sensors. However, quadrotor involve challenges in 

due to the characteristics of their dynamic system; unstable, coupled, non-linear, complex, 

sensitive, and under-actuated. Since, the main factor to study any UAV is to offer proper 

mathematical models to plan and assess the control system to retain UAV stability thus, the 

next chapter is devoted to provide a QUAV modeling. 

Figure I.9 Direct neural adaptive control.  
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II.1 Introduction  

The quadrotor UAV (QUAV) type is perhaps the mostly general type for civilian 

purposes, as it does not require complex remote control skills to work with. This 

reputation, needs more investigations, to perceive the mathematical modeling, design, and 

analysis where quadrotor control methods are model based, it is essential to realize an 

accurate dynamical model. Since, the main objective is to achieve an appropriate 

mathematical model to develop and assess the control system in order to preserve the 

stability. This chapter expresses a mathematical modeling process of a quadrotor to be 

used in this work. It is significant to note, the most common modeling technique is based 

on Newton-Euler equations. which will be recalled hereafter. 

II.2 QUAV concepts 

A quadrotor is a flying robot with four rotors fixed uniformly over its center as it is 

shown in figure II.1. The displacement the QUAV is the consequences according to the 

rise or the reduce of the rotational rapidity of all the rotors. Two motors installed on the 

identical arm turn around in a dissimilar direction from the two other motors installed on 

the second arm, that withdraws the aerodynamic effect and gyro moments in the floating 

[31, 32]. Prior to deriving the QUAV model, it is essential to explicate the mechanism of 

the quadrotor. 

 

 

                                               Figure II.1: Motion of QUAV [33]. 
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QUAV represented by 6 Degree of Freedom, thus we have 6 variables (𝑥, 𝑦, 𝑧, 𝜙, 𝜃and 𝜓) which are considered to describe the orientation in space 𝜙, 𝜃 and 𝜓 are also identified 

as Euler’s angles as depicted in Figure II.2. More details of every variable are expressed as 

[33]: 

 𝑥 and 𝑦: are used to characterize the QUAV location in space.  

 𝑧: represents the QUAV altitude.  

 𝜙: represents the Roll angle which describes angle around the x-axis.  

 𝜃 : named Pitch angle that expresses the angle around the y-axis.  

  𝜓: named Yaw angle which expresses the angle around the z-axis. 

 

Figure II.2: Euler angles representation [33] 

Even though the fact that the QUAV has 6 degrees of freedom, it is furnished presently 

by four propellers, as a result, it is not practical to attain the preferred set-point for every 

DOF, yet at most extreme four. In opposition, considering the structure, it is extremely 

easy to pick the four best controllable factors and that are 𝑧, Roll, Pitch and Yaw.  

II.3 System modeling 

It is noticed that in this work, Newton-Euler formalism to be utilized to get the QUAV 

dynamics. Below are all assumptions that are adopted for the design [31]: 

a) The Structure considered rigid and symmetrical  

b) The propellers are rigid  
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c) Thrust and drag are relative to the square of propellers. 

II.3.1 Dynamics modeling  

The QUAV movement to be composed of two subsystems; rotational subsystem (roll, 

pitch and yaw) with translational subsystem (altitude and x and y position).  

The rotational subsystem is entirely actuated as the translational subsystem is under 

actuated [34] 

II.3.1.1 Rotational equations of motion 

Rotational equations of motion are derived at the body frame according to the Newton-

Euler method in general formulae described by: 

Jω̇ + ω × Jω + M = M  (II.1) 

Where:  J  ∶  diagonal inertia Matrix of QUAV ω ∶  angular body rates. M ∶ Gyroscopic moments produced by inertia of rotors.  M :  moments affecting the QUAV of the body frame. 

 

The first two terms Jω̇ andω × Jω, in equation (II.1) correspond to the rate of change of 

angular momentum in the body's coordinate system. M  specifies the gyroscopic moment 

correponding to rotor inertia  J . 

The Gyroscopic moments are determined to be ω × [0 0 J Ω ]  , therefore the 

rotational equation of the QUAV movement to be represented by [34], 

Jω̇ + ω × Jω + ω × [0 0 J Ω ] = M  (II.2) 

Wherever:  J   : inertia of rotors. Ω  : relative speed of rotors:  Ω = −Ω + Ω − Ω + Ω   . 

The reason for deriving the motion-rotational equations in the body coordinate system 

instead of the inertial coordinate system is to obtain a time-independent inertial matrix. 
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Inertia matrix 

The quadrotor inertia matrix is a diagonal matrix and due to the symmetry of the 

quadrotor the off-diagonal elements representing the inertia results are zero. 

 

J = 𝐼 0 00 𝐼 00 0 𝐼  

 

(II.3) 

𝐼 , 𝐼  with 𝐼  represent moments inertia of area around the principle axes of the frame of 

body. 

Moment of gyroscopic 

The moment of the gyroscopic witch characterize the rotor represents the physical 

outcome in which gyroscopic torques or moments try to bring into line the spin axis of the 

rotor alongside the inertial z-axis [35].  

Moments acting on the quadrotor (𝐌𝑩)   

It is noticed that the last term of equation (II.2) needs defining two physical effects that are 

the forces of aerodynamic with moments created by the rotor. Under the effect of rotation, 

it is produced a force named aerodynamic or the lift force furthermore, there is a produced 

moment named the aerodynamic moment. Equations (II.4) and (II.5) illustrate the 

aerodynamic force 𝐹  with a moment 𝑀  which generated through the 𝑖𝑡ℎ rotor [34]. 

𝐹 = 1𝜌𝐴𝐶2 𝑟 Ω  (II.4) 

𝑀 = 1𝜌𝐴𝐶2 𝑟 Ω  

 
(II.5) 

Where 

 𝜌 : air density of the blade area. 

 𝐶 , 𝐶  : represent the coefficient of the aerodynamic 

 𝑟 : blade radius . 

 Ω  : velocity of the angular that describes the rotor 𝑖 . 
 Noticeably, the force of the aerodynamic and moments related to the propeller geometry 

and the density of the air. In view of the fact that for quadrotor, the altitude maximum is 
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generally considered limited, therefore the density of the air can be adopted as constant, 

Equations (II.4) and (II.5) can be simplified to [34]. 𝐹 = 𝑘 Ω  (II.6) 𝑀 = 𝑘 Ω  (II.7) 𝑘  with 𝑘  represent the aerodynamic force with moment constants correspondingly and Ω  defines the angular velocity that characterizes the rotor 𝑖. The moment constants and 

the force of aerodynamic can be obtained experimentally for every propeller type.  

Through determining moments and the forces that are produced by the propellers, it is 

easy to investigate the moments M  take action on the QUAV. Figure II.3 illustrates the 

forces and moments affecting the QUAV system. Every rotor leads to an upwards thrust 

force 𝐹  and produces a moment 𝑀  with way opposite to the direction of rotation of the 

related rotor 𝑖.  Beginning with moments around the body frame’s x-axis, by the use of the 

right-hand rule in relationship with the axes of the frame of body, 𝐹  multiplied by the 

moment arm 𝑙 produces a negative moment around the y-axis, whereas in the same way, 𝐹  produces a positive moment. Therefore the whole moment around the x-y-z-axis can be 

given as:  

𝑀 = 𝑙𝑘 (−Ω + Ω )𝑙𝑘 (Ω − Ω )𝑙𝑘 (Ω − Ω )   (II.8) 

𝑙 : represents the moment arm representing the space between each rotor's axis of Rotation 

about the origin of the body frame. This should coincide with the center of the QUAV. 

 

Figure II.3: Moments and forces affecting QUAV [33]. 
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II.3.1.2 Translational equations of motion 

The QUAV translational equations of motion use Newton's second law and are derived 

in the Earth's inertial frame of reference [34]: 

𝑚�̈� = 00𝑚𝑔 + 𝑅𝐹  

 

(II.9) 

𝑟 = [𝑥, 𝑦, 𝑧] : characterizes the distance of the QUAV from the inertial frame. 

 𝑚 : the mass of QUAV. 𝑔 : acceleration of gravity 𝑔 = 9.81𝑚/𝑠  . 𝐹  :Forces of non-gravitational that affect the QUAV in the chassis. 

II.4 Model of the state space  

Formulating the mathematical model obtained for QUAV by a state-space model 

formulates the control problem very simply. 

II.4.1 State vector X  

Expressing the state vector of the QUAV by: 𝜒 = [𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥 ]  (II.10) 

That is mapped to the DOF of the QUAV by:  

𝜒 = 𝑥, �̇�, 𝑦, �̇�, 𝑧, �̇�, 𝜙, �̇�, 𝜃, �̇�, 𝜓, �̇�  (II.11) 

The vector of state determines the QUAV position in space with its angular and linear 

speeds. 

II.4.2 Control input vector 𝒰   

A control input vector 𝒰 , consists of four inputs; 𝒰 , through 𝒰  to be expressed by:   𝒰 = 𝒰 ,𝒰 , 𝒰 , 𝒰  (II.12) 
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Where :  

 

 

 

 

Equation (II.13) to be given in a matrix as follows: 

𝒰  denotes the outgoing upward force of the four rotors which is the main cause of the 
QUAV altitude and its rate of change (𝑧, �̇�). 𝒰  represents the difference in force between 

rotors two and four that is accountable for the roll rotation with its rate of change (𝜙, �̇�). 𝒰  otherwise denotes the variation in thrust between rotors one and three therefore 
producing the pitch rotation with its rate of change (𝜃, �̇�). Lastly 𝒰  represent the 

difference in torque among the two clockwise rotating rotors with the two 

counterclockwise rotating rotors producing the yaw rotation with ultimately its rate of 

change (𝜓, �̇�). This option of the control vector  𝒰  decouples the rotational system, 
wherever 𝒰 will cause the preferred altitude of the QUAV, 𝒰  produces the preferred roll 

angle, the preferred pitch angle to be produced by 𝒰  while 𝒰  will produce the preferred 

heading. 

When calculating the rotor rapidity from the control input, we need an inverse 

relationship between the control input and the rotor speed. This is obtained by inverting 

the matrix in Eq. (II.14) as follows: 

                 𝒰 = 𝑘 (Ω + Ω + Ω + Ω )             𝒰 = 𝑘 (−Ω + Ω )                 𝒰 = (Ω − Ω ) 

                𝒰 = 𝑘 (Ω − Ω + Ω − Ω ) 

 
 
 

(II.13) 

⎣⎢⎢
⎡𝒰𝒰𝒰𝒰 ⎦⎥⎥

⎤ = ⎣⎢⎢⎢
⎡ 𝑘 𝑘 𝑘          𝑘0 −𝑘     0        𝑘−𝑘   0   𝑘        0    𝑘    −𝑘    𝑘       −𝑘 ⎦⎥⎥⎥

⎤
⎣⎢⎢⎢
⎡ΩΩΩΩ ⎦⎥⎥⎥

⎤
 

(II.14) 

⎣⎢⎢⎢
⎡ΩΩΩΩ ⎦⎥⎥⎥

⎤ =
⎣⎢⎢
⎢⎢⎢
⎢⎡ 0         0 −     0       −  0  −                0    −  ⎦⎥⎥

⎥⎥⎥
⎥⎤

⎣⎢⎢
⎡𝒰𝒰𝒰𝒰 ⎦⎥⎥

⎤
                                                   (II.15) 
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If we take the square root of that, the control inputs leads to conclude rotors speeds as: 

 

II.4.3 Motion rotational equation  

 If we substitute the equation (II.13) in equation (II.8), we obtain the whole moments 

that affecting the QUAV as: 

𝑀 = 𝑙𝒰𝑙𝒰𝒰  (II.17) 

Substituting (II.17) into the rotational equation of motion (II.2) and expanding terms 

related to their previous definition from Chapter II, we can derive the relation by: 

𝐼 0 00 𝐼 00 0 𝐼 �̈��̈��̈� + �̇��̇��̇� × 𝐼 0 00 𝐼 00 0 𝐼 �̇��̇��̇� + �̇��̇��̇� × 00J𝑟Ω = 𝑙𝒰𝜙𝑙𝒰𝜃𝒰𝜓  (II.18) 

Expanding that, leads to 

𝐼 �̈�𝐼 �̈�𝐼 �̈� + (−1) × �̇��̇��̇� 𝐼 0 00 𝐼 00 0 𝐼 �̇��̇��̇�  + �̇�J𝑟Ω−�̇�J𝑟Ω0 = 𝑙𝒰𝜙𝑙𝒰𝜃𝒰𝜓   
(II.19) 

Expressing again the equation II.19 to obtain the angular accelerations regarding to further 

variables 

    Ω = 14𝑘 𝒰 + 12𝑘 𝒰 + 14𝑘 𝒰  

Ω = 𝒰 − 𝒰 − 𝒰                                                                  (II.16) 

    Ω = 14𝑘 𝒰 − 12𝑘 𝒰 + 14𝑘 𝒰  

   Ω = 14𝑘 𝒰 + 12𝑘 𝒰 − 14𝑘 𝒰  
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Choosing of the control reference vector 𝒰 , we can realize that the rotational subsystem 

will be totally-actuated, which is just related to the rotational state variables 𝑥 → 𝑥  

corresponding to 𝜙, �̇�, 𝜃, �̇�, 𝜓, �̇� respectively. 

II.4.4 Motion of translational equation  

The forces of no gravitational that affecting the QUAV  to be expressed by: 

𝐹 = 00𝑘 (Ω − Ω + Ω − Ω )  (II.21) 

Substituting equation (II.13) into equation (II.21), the equation for the total moment 

affecting QUAV is: 

𝐹 = 00−𝒰  

 

(II.22) 

Inserting this into the translational equation (II.9) and expanding the terms yields the state 

space: 

𝑚 �̈��̈��̈� = 00𝑚𝑔 + 𝑐𝜃𝑐𝜓 𝑐𝜓𝑠𝜙𝑠𝜃 − 𝑠𝜓𝑐𝜙 𝑐𝜓𝑐𝜙𝑠𝜃 + 𝑠𝜓𝑠𝜙𝑐𝜃𝑠𝜓 𝑠𝜓𝑠𝜙𝑠𝜃 + 𝑐𝜓𝑐𝜙 𝑠𝜓𝑐𝜙𝑠𝜃 − 𝑐𝜓𝑠𝜙−𝑠𝜃 𝑐𝜃𝑠𝜙 𝑐𝜃𝑐𝜙 00−𝒰  

 

(II.23) 

Rewriting equation (II.18) to obtain the accelerations in depending on the other 

variables, the expression below is obtained: �̈� = 𝑚 𝒰 (𝑐𝜓𝑠𝜃𝑐𝜙 + 𝑠𝜓𝑠𝜙)  �̈� = 𝑚 (𝒰 (𝑐𝜓𝑠𝜃𝑠𝜙 − 𝑐𝜓𝑠𝜙)) �̈� = 𝑚 𝒰 (𝑐𝜃𝑠𝜙) − 𝑔 + 𝑚  

 
 

(II.24) 

�̈� = 𝐼 𝑙𝒰 + 𝐼 − 𝐼 �̇��̇� – 𝐼  𝛺  �̇�  �̈� = 𝐼 𝑙𝒰 + 𝐼 − 𝐼 𝜙 �̇̇� − 𝐼  𝛺 �̇�  �̈� = 𝐼 𝑙𝒰 + 𝐼 − 𝐼  �̇��̇�  

 
(II.20) 
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II.4.5 Representation of the state space  

Generally, the dynamic equations (II.20) and (II.24) are a second-order underactuated 

nonlinear system that can be rewritten as: χ̇ = ℱ (𝜒) + 𝒢 (𝜒)𝒰  (II.25) 

Where : ℱ (𝜒) and 𝒢 (χ) are unknown smooth nonlinear functions of the 𝑖𝑡ℎ subsystem, 

respectively.  

⎩⎪⎪⎨
⎪⎪⎧ ℱ (𝜒) = 0    , 𝒢 (𝜒) = 1 𝑚⁄ℱ (𝜒) = 0    , 𝒢 (𝜒) = 1 𝑚⁄ℱ (𝜒) = −ℊ,ℱ (𝜒) = (𝐼 − 𝐼 ) 𝐼 𝑥 , 𝑥 , − 𝐼  𝐼 𝑥 ,⁄⁄ ,ℱ (𝜒) = (𝐼 − 𝐼 ) 𝐼 𝑥 , 𝑥 , + 𝐼  𝐼 𝑥 ,  ,⁄⁄ℱ (𝜒) = (𝐼 − 𝐼 ) 𝐼 𝑥 , 𝑥 , + 𝐼  𝐼 𝑥 , ,⁄⁄

𝒢 (𝜒) = 𝑐𝑥 , 𝑐𝑥 , 𝑚⁄𝒢 (𝜒) = 𝑙 𝐼⁄𝒢 (𝜒) = 𝑙 𝐼⁄𝒢 (𝜒) = 1 𝐼⁄
 

 
 

(II.26) 

 

Based on Eq.(10), we reformulate the state space of the system model by: �̇� , = 𝑥 ,�̇� , = ℱ (𝜒) + 𝒢 (𝜒)𝒰𝑦 = 𝑥 , , 𝑖 ∈ {𝑥, 𝑦, 𝑧, 𝜙, 𝜃, 𝜓} 
 

(II.27) 

𝑥 ∈ 𝑥 , , 𝑥 ,  is the vector of the local state of every subsystem where, 𝑦 = 𝑥 ,  and 𝑥 , , 

its derivative. From equation ( II.20), (II.24), the system has six outputs including the 

position outputs (𝑥, 𝑦, 𝑧) and the orientation outputs (𝜙, 𝜃, 𝜓) with only four independent 

inputs. Thus, it is not easy to control the six subsystems individually. To defeat this 

problem, two virtual control inputs 𝜇  and 𝜇  to be generated to drive the Cartesian 

position subsystems 𝑥 and 𝑦, respectively [36]. From equation ( II.20), (II.24)and (II.26) 𝜇  and 𝜇  are chosen as: 𝜇𝜇 = 𝜇 (𝑐𝜙𝑠𝜃𝑐𝜓 + 𝑠𝜓𝑠𝜙)𝜇 (𝑐𝜙𝑠𝜃𝑐𝜓 − 𝑠𝜓𝑠𝜙)                                              (II.28) 

 
The control inputs 𝜇 , 𝜇  update the desired values of roll 𝜙  and pitch 𝜃  angles. 

Therefore, (𝜙 , 𝜃 ) angles are obtained as solutions of the system described by equation. (II.28) 

and can be gvien by: 

 𝜙𝜃 = 𝑎𝑟𝑐𝑠𝑖𝑛 (𝜇 𝑠𝜓 − 𝜇 𝑐𝜓)𝑎𝑟𝑐𝑠𝑖𝑛  (𝒰 𝒰 )                                          (II.29) 
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II.5 Conclusion 

In this chapter, we have discussed the dynamic modeling of multi-rotors. Where a 6 

degrees of freedom rigid body model were advanced by the Newton-Euler theories. After 

that, the forces that characterize the most important moments that affecting the QUAV 

were considered. The oncoming results described by equations are nonlinear and for that 

reason the direct application of such parameters to synthesizing of control with estimation 

algorithms remain complex. To surmount this dilemma, many simplifications have been 

made to design reasonably simple control laws for applications. In general, QUAV 

systems are represented as state-space to show control and wind effects. In the next 

chapters that are related to the main contributions of this thesis we use the developed 

representation of the state space with the control laws. 
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III.1 Introduction  

      The control of quadrotor is difficult because of the highly coupled nonlinear dynamics, 

unstable and multi-variable nature, under-actuation characteristic, as well as presence of 

unknown dynamics, parameter uncertainties and external disturbances. So far, many 

efforts have been made for altitude and attitude control of the quadrotor. Some strategies 

ranging from classical to advanced and intelligent techniques have been proposed in the 

literature [37-39]. Among the most advance non-linear feedback control techniques 

applied recently to the quadrotor to overwhelm the undesirable effects of uncertainties and 

disturbances those that combine, the adaptive control (AC), the backstepping control (BC) 

and sliding mode control (SMC) [39-42]. From the literature survey, these methods 

provide a good transient performance, easy tuning and implementation, and strong 

robustness against system uncertainties and external disturbances. However, the BC needs 

the knowledge of the precise mathematical model and the physical parameters of 

quadrotor model, which decreases the control performance in the case of uncertainties and 

disturbances. Also, the SMC has the inherent problem of the undesired large control 

chattering phenomenon, caused by the large switching gain of the discontinuous switching 

control term. To tackle these disadvantages, many researchers have used artificial neural 

networks (NN) and / or fuzzy logic system (FLS) to approximate universal systems to 

solve the problem of controlling uncertain nonlinear systems, such as quadrotor. 

In this chapter, two plans of nonlinear control schemes to propose and study for a 

quadrotor system. Backstepping controller based on an adaptive fuzzy neural 

network(FNN) .Also, an adaptive fuzzy-chebyshev network-based continuous sliding 

mode controller is developed are proposed for the quadrotor under uncertainties , external 

disturbance and  the unknown dynamics. 

III.2 Adaptive fuzzy-neural network based decentralized backstepping controller 

This section (1) studies and design a backstepping controller based on an adaptive 

fuzzy neural network (FNN). The FNN with adaptive parameters is exploited to 

approximate the nonlinear functions and improve the robustness against parametric 

uncertainties and external disturbances. FNN is included in classical backstepping control 

(BC) to solve the unknown dynamics problem. Otherwise, a robust control term is added 
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to improve performance in tracking a reference signal when parametric uncertainties and 

disturbances exist. The stability of the quadrotor attitude control system is proven by the 

Lyapunov method.  

In this section(1) is to a combination of the nonlinear approximation function of the 

fuzzy system and the neural network with backstepping controller was done to design a 

robust adaptive control scheme. The main of this section are diverse and important as, the 

problems of singularity and the need of a robust additional term in BC methodology are 

avoided. In addition, the prior knowledge of uncertainty limits is not necessary and ideal 

dynamics of the mathematical system are not needed 

Mathematical model and problem statement 

In section (1), the quadrotor model can be specified in the state-space form shown 

below. 

 χ̇ = 𝐹(𝜒) + 𝐺 𝒰  (III.1) 

where χ denotes the global state variable, F (χ) and G  are the nonlinear functions matrix 

and input gains, written as follows: χ = 𝑥 ,  𝑥 , 𝑥  , 𝑥  , 𝑥  , 𝑥  = [𝜙, �̇�, 𝜃, �̇�, 𝜓, �̇�]  
 

F(𝑥) =
⎝⎜
⎜⎜⎜⎜
⎛ 𝑥 ,𝑎 𝑥 , 𝑥 , − 𝐽 𝐼 𝑥 ,𝑥 ,𝑎 𝑥 , 𝑥 , + 𝐽 𝐼 𝑥 ,𝑥 ,𝑎 𝑥 , 𝑥 , ⎠⎟

⎟⎟⎟⎟
⎞

 

        
 
 

     (III.2) 
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 G =
⎝⎜
⎜⎜⎜⎜
⎛ 𝑙𝐼 0 00 0 00 𝑙𝐼 00 0 00 0 1𝐼 ⎠⎟

⎟⎟⎟⎟
⎞

 

   
 
 

                     (III.3) 

 

From (III.1) to (III.3), the quadrotor model can be considered as a complex large-scale 

system, which is composed of three Single-Input Single-Output (SISO) interconnected 

nonlinear subsystems. Let us redefine the variables for simplicity as 𝑥 = [𝑥 , 𝑥 , ]  for 𝑖 ∈ {𝜙, 𝜃,}. Then, the model of quadrotor can be described by a generalized state 

equation as follows: �̇� , = 𝑥 ,  �̇� , = ℱ (𝜒) + 𝒢 𝑢 +   𝑝 , 𝑖 ϵ {𝜙, 𝜃, 𝜓} y = 𝑥 ,  

      
(III.4) 

In which ℱ (𝑥) and 𝒢  are the nonlinear dynamic and input control functions of the i th 

subsystem, respectively and  𝑝  represents the total uncertainty, the external disturbances 

and the interactions with other subsystems, with: 

ℱ (𝑥) = 𝐼 − 𝐼 𝑥 𝑥 𝐼⁄ − 𝐽  𝑥 𝐼⁄  ℱ (𝑥) = (𝐼 − 𝐼 )𝑥 𝑥 𝐼⁄ − 𝐽  𝑥 𝐼⁄  ℱ (𝑥) = 𝐼 − 𝐼 𝑥 𝑥 𝐼⁄ ,  𝒢 (𝑥) = 𝑙 𝐼⁄ ,𝒢 (𝑥) = 𝑙 𝐼⁄ , 𝒢 (𝑥) = 1 𝐼⁄  

 

(III.5) 

For quadrotor system (III.4), the objective of the AFNN-DBC is to force the system 

output y , to follow successfully a given bounded reference signal 𝑦 in the presence of 

uncertainties such as parametric variations and external disturbances. In order to achieve 

this control objective, the following assumptions are made: 

Assumption.1: The desired quadrotor path, 𝑦 and its time derivatives, �̇�    , �̈�  are 

assumed to be well known, smooth and bounded. Besides, all the closed-loop system states 

are assessable and accessible. There is a problem encountered by the users of the 
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backstepping method in the trajectory tracking. As see in [43,44], this assumption is 

habitually adopted. 

Assumption.2:  The 𝑝 (𝑡) term represents the disturbances that are included in the QUAV 

model for characterizing impacts of unmodeled dynamics, parameters uncertainties and 

wind effort where, exist unknown positive constants ℒ∗ that satisfy the inequality: 

|𝑝 (𝑡)| ≤ ℒ∗ (III.6) 

Assumption 3: The roll, the pitch and the yaw angles (𝜙, 𝜃, 𝜓) are enclosed as: Roll 

angle 𝑏𝑦  −𝜋 2 < 𝜙 < 𝜋 2 , pitch angle by  −𝜋 2 < 𝜃 < 𝜋 2 and yaw angle by  −𝜋 <𝜓 < 𝜋 

III.2.1 Classical backstepping controller 

In this subsection, we will apply the classical BC design methodology. This designed BC 

obliged ensuring the attitude control, stability and desired position tracking. The control 

system method is separated on three steps one for every subsystem  

Step 1.  We define the tracking error variables for the reference signals 𝑦  as: 𝔢 , = 𝑦 − 𝑦 𝔢 , = 𝑦 − 𝑥 ,  
(III.7) 

Their first derivative is expressed by: 

�̇� , = �̇� − �̇� , = �̇� − 𝑥 ,  (III.8) 

To confirm the stability and the convergence of the first tracking errors we use the 

Lyapunov function candidate as 𝒱 , =  𝔢 ,  [45]: 

                                                 𝒱 = ∑ 𝒱 ,{ , , } =  ∑ 𝔢 ,{ , , }  (III.9) 

The time derivative of  𝒱  and substituting equation.(III.7) we found: 
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                        �̇� = 𝔢 , �̇� ,{ , , }   

                                        = ∑ 𝔢 , ({ , , }  �̇� − 𝑥 , ) (III.10) 

To stabilize the errors dynamic equation (III.7), we construct the virtual control law 𝒬   as  𝑥 ,  which can be defined as: 

𝒞 > 0 is a design parameter selected by the user through the simulation experiments. 

Substituting the virtual control by its chosen value, the time derivative of �̇� equation(III.10) can be expressed again by: 

Thus, 𝒱 is semi-define negative, 𝔢 ,  is stable and converges to zero. 

Step2. We describe the second local tracking error of i th subsystem: 𝔢 , =   �̇� − 𝒬 =  𝑥 , − 𝒬  , 𝑖 ∈ {𝜙, 𝜃, 𝜓} (III.13) 

Differentiating 𝔢 ,  and using equation.(III.1), we achieve: �̇� , =  �̈� − �̇� =  ℱ (𝜒) + 𝒢 𝒰 + 𝑝 (𝑡) − �̈� − 𝒞 �̇� ,   , 𝑖 ∈ {𝜙, 𝜃, 𝜓} (III.14) 

Then, choose the augmented Lyapunov function candidate 𝒱ℬ = 𝒱 +  ∑ 𝔢 ,{ , , }  for 

the stability analysis of position/attitude:            

Then, the time derivative of  𝒱ℬ  can be given by: 

    �̇�ℬ =  ∑ �̇� , + �̇� ,{ , , } =  ∑ �̇� , 𝔢 , + �̇� , 𝔢 ,{ , , }       (III.16) 

   �̇�ℬ = ∑ ( �̇� − 𝑥 , )𝔢 , + ( �̈� − �̇� )𝔢 ,{ , , }  (III.17) 

    �̇�ℬ = ∑ −𝒞 𝔢 , + ∑ −𝔢 , 𝔢 ,{ , , } + ( ℱ (𝜒) + 𝒢 𝒰 + 𝑝 (𝑡) −{ , , } (III.18) 

𝒬 = �̇� + 𝒞 𝔢 ,  (III.11) 

�̇� = − 𝒞 𝔢 ,{ , , } ≤ 0 (III.12) 

𝒱ℬ =  ∑ 𝔢 , + 𝔢 ,{ , , }        (III.15) 
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�̈� − 𝒞 �̇� , )𝔢 ,  

Step 3. We assume that ℱ (𝜒) and 𝒢  are known and 𝑝 (𝑡) = 0. The BC law can be gotten 

by the feedback linearization methodology by: 

𝒞 > 0 is a new design parameter. Subsisting (III.19)in (III.18),we obtain: 

Since �̇�ℬ  is semi-negative definite, the BC controlled system stability will be ensured. As 

gotten in equation (III.20), the control parameters 𝒞  and 𝒞  describe the dynamic behavior 

of the quadrotor tracking responses [46–47]. 

III.2.2  Fuzzy-neural network approximator  

In this section (1) we propose an adaptive fuzzy-neural network in order to address the 

problem of the classical BC law outlined in the previous section. This can be done by 

eliminating its dependence model functions and parameters, i.e.  ℱ (𝑥) and 𝒢 (see (III.19). 

The combination of the fuzzy and neural networks with the continuous BC leads to the 

development of the proposed AFNN-DBC methodology. The main advantage of this 

method is that the robust behaviour of the quadrotor attitude is guaranteed. In the 

developed control design procedure, the used hybrid network is a parallel network 

topology composed of the radial basis function neural network (RBFNN) and the Takaji-

Seguino (TS) fuzzy logic system (FLS). This approach allows  to combine the power of 

the approximation capability of RBFNN and the robustness of FLS to deal with the erreur 

approximation and disturbances. Following from [48], for local continuous function ℎ (𝑍 ) defined in compact set Θ , the FNN is applied according to the following equation:       ℎ (𝑍 ) = 𝑊 Φ (𝑍 ) (III.21)= 𝑊 , Φ ,ℱ(𝑍 ) + 𝑊 , Φ , (𝑍 ) (III.22)

where 𝑍 = 𝑥 , 𝑦 , , �̇� , , �̈� , and 𝑊 = 𝑊 ,ℱ, 𝑊 ,  denote the estimate vector of 

network parameters which includes the fuzzy weight vector 𝑊 ,ℱ = 𝑤 ,ℱ, … , 𝑤 ,ℱ and the 

neural weight vector 𝑊 , = 𝑤 , , … , 𝑤 , for 𝑙 and 𝑟 are the number of fuzzy rules and 

𝒰ℬ , = 𝒢 −ℱ (𝜒) − 𝒞 𝔢 , + 𝔢 , + 𝒞 �̇� , + �̈�  (III.19) 

�̇�ℬ = −𝒞 𝔢 , − 𝒞 𝔢 , ≤ 0{ , , }  (III.20) 
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the RBFNN nodes, respectively. Φ (𝑍 ) = Φ ,ℱ, Φ , represents the basis function 

vector that as contains the fuzzy basis functions Φ ,ℱ(𝑍 ) = [𝜗 ,ℱ(𝑍 ), … , 𝜗 ,ℱ(𝑍 )]  and the 

RBFNN activate functions Φ , (𝑍 ) = [𝜉 , (𝑍 ), … , 𝜉 , (𝑍 )]  designed according to 

[43,49]. The FLS is constructed using a singleton fuzzifier, product inference engine and 

centroid defuzzifier leads to calculate 𝜗 ,ℱ(𝑍 ) as: 

 

𝜗 ,ℱ(𝑍 ) = ∏ 𝒜 , ,∑ ∏ 𝒜 , , , 𝑗 = 1, … , 𝑙  (III.23)

where 𝜇𝒜 , 𝑧 ,  are membership functions of the linguistic variables 𝑧 , ∈𝑥 , 𝑦 , , �̇� , , �̈� ,  having the fuzzy sets 𝒜 , . The RBFNN activate functions are 

selected generally as the Gaussian-like function: for 𝑖 ∈ {𝜙, 𝜃, 𝜓} 

𝜉 , (𝑍 ) = 𝑒𝑥𝑝 − ,, , 𝑗 = 1, … , 𝑟 (III.24)

with 𝜐 , ∈ 𝜐 , , … , 𝜐 ,  and 𝜚 ,  are the center of the receptive domain, the width of the 

Gaussian functions, respectively. By universal approximate theorem [43], there exist 

optimal approximation parameters 𝑊  which are defined for the functions ℎ (𝑍) by:  
 

knowing that these nonlinear functions ℎ (𝑍 ) can be expressed as: 

 

where 𝛿 (𝑍 ) are the minimum approximation errors that satisfy the following assumption. 
Assumption 4. Based on the universal approximation ability, the approximation errors 𝛿 (𝑍 ) are assumed to be small and bounded: 

 
where 𝜀  are postive constants. For the development of our controller, it should be 

mentioned that the lemma 4 in [50] can be extended to the used FNN. For that, let 𝑋 =

𝑊 = argmin sup ∈ ℎ (𝑍 ) − ℎ 𝑍 𝑊   (III.25) 

ℎ (𝑍 ) = 𝑊 Φ (𝑍 ) + 𝛿 (𝑍 )                                          (III.26)

|𝛿 (𝑍 )| ≤ 𝜀 , 𝑍 ∈ Θ  (III.27) 
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𝑥 , 𝑦 , , �̇� , , �̈� ,  be the augmented local state vector which the following inequality 

holds:  

 
 

On the basis of the above approximations, the control of the attitude quadrotor system 

is carried out via a decentralized scheme, where the local adaptive control law is obtained 

by backstepping technique and Lyapunov method to stabilize the attitude quadrotor and to 

cope with parameters uncertainties, external disturbances and approximation errors. The 

proposed adaptive control signal is defined as [50]:  

with 𝜋  are the adaptation parameters governed by the following law: 

where 𝜆 , > 0,𝜏 > 0, 𝛼 > 0and 𝜎 > 0 are positive designing constants. 
Theorem. Consider the altitude model (III.4) of quadrotor system which meets the 

assumptions (1) into (4), the proposed AFNN-DBC law (III.29), associated with the 

virtual controller (III.11) and the updating law (III.30) for 𝑖 ∈  {𝜙, 𝜃, 𝜓} ensures the 

attitude stability of quadrotor, the tracking errors 𝑒 , and 𝑒 ,  converge to a small 

neighborhood of the origin and all the signals of the closed-loop system are bounded.  

III.2.3 Stability analysis 

In this section, we consider the next improved Lyapunov's candidate function: 

 �̇� = �̇� − 1𝛾 𝜋 �̇�∈{ , , }  (III.32) 

 

‖Φ (𝑍 )‖ ≤ ‖Φ (𝑋 )‖  (III.28) 

𝑢 = −𝜆 , 𝑒 , − 12𝜏 𝑒 , 𝜋 Φ (𝑋 )Φ (𝑋 )      
(III.29) 

�̇� = 𝛾2𝜏 𝑒 , Φ (𝑋 )Φ (𝑋 ) − 𝛾 𝜎 𝜋                
(III.30) 

  

𝑉 = 𝑉 + 𝒢2𝛾 𝜋∈{ , , }        
(III.31) 
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Substituting ( III.18) into ( III.32), results in: 

 

 

Where ℎ (𝑍 ) = ℱ (𝑥) − 𝑒 , − 𝜆 , �̇� , − �̈� , + (1/2)𝑒 , and 𝑍 = 𝑥, 𝑦 , , �̇� , , �̈� , . 

According to (31), it is known that 

ℎ (𝑍 ) = 𝑊 Φ (𝑍 ) + 𝛿 (𝑍 ), ‖𝛿 (𝑍 )‖ ≤ 𝜀                                                             (III.34) 
 
By using the Young’s inequality, we can get: 

 

where 𝜋 = (‖𝑊 ‖ /𝒢 )are unknown constants to be estimated, and 𝜏 > 0 are design 

constants. Thereafter, using the result (III.33) in (III.35) gives 

Introducing (III.29) and (III.30) into (III.36) and then after some mathematical 

manipulation yield: 

�̇� = ∑ −𝜆 , 𝑒 , + 𝑒 , ℱ (𝑥) + 𝒢 𝑢 + 𝑝 − �̈� , − 𝑒 , − 𝜆 , �̇� ,∈{ , , } −∑ 𝒢 𝜋 �̇�∈{ , , }         

     = ∑ −𝜆 , 𝑒 , + 𝑒 , (ℎ (𝑍 ) + 𝒢 𝑢 + 𝑝 )∈{ , , } − 𝑒 , − ∑ 𝒢 𝜋 �̇�∈{ , , }  

(III.33) 

𝑒 , (ℏ (𝑍 ) + 𝑝 ) = 𝑒 , (𝑊 Φ (𝑍 ) + 𝛿 (𝑍 ) + 𝑝 )  

           ≤ 𝑒 , (‖𝑊 ‖‖Φ (𝑍 )‖ + 𝜀 + ℒ∗)  

           ≤ 𝑒 , (‖𝑊 ‖‖Φ (𝑋 )‖ + 𝜀 + ℒ∗)  

           ≤ 𝑒 , 𝒢 𝜋 Φ (𝑋 )Φ (𝑋 ) + + , + + ℒ∗
  

 (III.35)

�̇� ≤ −𝜆 , 𝑒 , + 𝑒 , 12𝜏 𝑒 , 𝒢 𝜋 Φ (𝑋 )Φ (𝑋 ) + 𝒢 𝑢∈{ , , } + 𝜏2 + 𝜀2+ ℒ∗2 − 𝒢𝛾 𝜋 �̇�∈{ , , }  

 
(III.36) 

�̇� ≤ − 𝜆 , 𝑒 , + 𝜆 , 𝑒 ,∈{ , , } + 𝜏2 + 𝜀2 + ℒ∗2∈{ , , }− 𝒢𝛾 𝜎 𝜋 𝜋∈{ , , }  

 
 

(III.37) 
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Considering the expression of  𝜋 , it follows that: 

𝜋 𝜋 ≤ −                                                                                                               (III.38) 

Substituting (III.38) into (III.37) gives: 

We define 𝑐 = 𝑚𝑖𝑛 2𝜆 , , 2𝜆 , , 𝒢 𝜎 /𝛾  and 𝜌 = 𝒢 𝜎 𝜋 𝛼⁄ + 𝜏 + 𝜀 + ℒ∗ /2, 

results in: 

�̇� ≤ −c𝑉 + 𝜌 (III.40) 

where c=∑ 𝑐∈{ , , } and 𝜌 =∑ 𝜌∈{ , , } . Integrating (III.40)  over [0, 𝑡], one can obtain: 

0 ≤ 𝑉 (𝑡) ≤ 𝑉 (0)e + 𝜌c       (III.41) 

From (III.41), it can be shown that the signals 𝑥 , 𝜋  and 𝑢  for 𝑖ϵ {𝜙, 𝜃, 𝜓} are bounded. 

Furthermore, the tracking errors  𝑒 = 𝑒 , , 𝑒 ,  satisfy that ‖ 𝑒 ‖ ≤ 2(𝑉 (0)e + 𝜌 c⁄ ) 

where their values can be reduced as close to zero as possible by choosing appropriately 

the design parameters 𝜆 , , 𝜆 , ,𝜏 , 𝛾 and 𝜎 . Especially, we have ‖ 𝑒 ‖ → 2𝜌 c⁄  for 𝑡 → ∞. 

III.2.4 Simulation Results 

 In this section (1), several simulations will be given to illustrate the efficiency of the 

proposed method (AFNN-DBC) for the attitude dynamic model of the quadrotor. The 

proposed control scheme is tested for two different reference signals (Two cases), in 

which the external disturbance forces of about 6(N) and the parameter uncertainties ∆𝐼𝓍𝓍 = 0.3𝐼 , ∆𝐼 = 0.3𝐼 and ∆𝐼 = 0.3𝐼  are applied at 20 < 𝑡 < 40 sec. The 

reference signals employed in case 1 are selected as 𝑦 , = 1rad, 𝑦 , = 1𝑟𝑎𝑑 and 𝑦 , =1rad, and a square wave reference signals for all subsystems in case 2, as shown in 

figures( III.1) and ( III.3). The physical parameters of quadrotor system are selected as 

�̇� ≤ − ∑ 𝜆 , 𝑒 ,∈{ , , } + 𝜆 , 𝑒 , − ∑ 𝒢∈{ , , }  + ∑ 𝒢 + +∈{ , , }+ ℒ∗
 

   
(III.39) 
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given in Tables III.1 [39]. The design parameters of the proposed controller are selected as 𝜆 , = 1, 𝜆 , = 0.9, 𝜆 , = 0.6, 𝜆 , = 0.3, 𝜆 , = 0.6, 𝜆 , = 0.5, 𝛾 = 𝛾 =𝛾 1,  𝜏 = 𝜏 = 𝜏 = 0.0017,𝜎 = 𝜎 = 𝜎 = 1. 
The hybrid control networks of the three attitude subsystems are composed of identical 

RBFNNs and FLS's. The input variables of the hybrid networks are chosen as 𝑋 =[𝑥 , 𝑦 , , �̇� , , �̈� , ] for 𝑖ϵ{𝜙, 𝜃, 𝜓}. The used RBFNN include three hidden layers with five 

Gaussian membership functions definded as (III.24) having centers 𝜐 selected linearly 

spaced in [−3 ,3] and standard deviations 𝜚  chosen equal to 0.03. For both test cases, the 

FLS controller is constructed of twenty five fuzzy rules when the membership functions of 

each component 𝜒 ,  of 𝑋  are defined as: 

𝜇𝒜 𝜒 , = 1(1 + exp (3𝑝𝑖/2(𝜒 , + 2𝑝𝑖/3)))𝜇𝒜 , 𝜒 , = exp − 𝜒 , + 𝑝𝑖/6𝑝𝑖/3𝜇𝒜 𝜒 , = exp − 𝜒 ,𝑝𝑖/3𝜇𝒜 𝜒 , = exp − 𝜒 , − 𝑝𝑖/6𝑝𝑖/3𝜇𝒜 𝜒 , = 1(1 + exp (−3𝑝𝑖/2(𝜒 , − 2𝑝𝑖/3)))
 

The closed-loop attitude controller performance in test cases 1 an 2 are presented in 

figure ( III.1) and ( III.3), respectively. The corresponding control efforts required to 

achieve desired results are shown in figure ( III.2) and and figure ( III.4)It is clear that the 

quadrotor is closely following reference trajectory in regulation and tracking tests even in 

the presence of parameter uncertainties and external disturbance. Thus, the proposed 

controller is robust and reveals good match in comparison with the classical BC. 
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Table III.1 Prameters of the Quadrotor 

Parameters Value 𝑚 0.65 [kg] 𝑔 9.81[𝑚/𝑠2] 𝐼  7.5×10 [kg.𝑚 ] 𝐼  7.5×10 [kg.𝑚 ] 𝐼  1.3×10 [kg.𝑚 ] 𝐽  6.5×10 [kg.𝑚 ] 
l 0.23[m] 𝑏 3.1×10 [N.𝑠 ] 𝑑 7.5×10 [N.m.𝑠 ] 

 
Figure III.1. Attitude responses of quadrotor, roll angle (𝜙), pitch angle (𝜃) and yaw 

angle (𝜓), (case1). 
 

Figure III.2 Control input signals 𝑢 (d), 𝑢 (e) and 𝑢 (f) of AFNN-DBC, (case1). 
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Figure III.3 The attitude responses of quadrotor : roll angle (𝜙), pitch angle (𝜃) and yaw 

angle (𝜓), (case2). 

 

Figure III.4.Control input signals 𝑢 (d), 𝑢 (e) and 𝑢 (f) of AFNN-DBC, (case2) 

III.3 Adaptive fuzzy- network-based sliding mode controller 

The purpose of this section (2), is to design a controller for quadrotor attitude system. 

The designed control law combines a continuous second-order sliding mode control 

(CSOSMC), the Fuzzy-Chebyshev network (FCN) and the adaptive control methodology. 

The FCN with adaptive parameters is exploited to approximate the nonlinear functions and 

improve the robustness against parametric uncertainties and external disturbances. 

Otherwise, the continuous sliding mode aims to completely eliminate the chattering 

phenomenon. The stability of the quadrotor attitude control system is proven by the 

Lyapunov stability approach. The simulation results demonstrate the capability and 
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efficiency of the proposed technique in the presence of uncertainties and external 

disturbances.  

The quadrotor model is considered in this section (2) Same as the section(1). Their 

dynamics can be described by the following generalized state space equation : �̇� , = 𝑥 ,  �̇� , = ℱ (𝜒) + 𝒢 𝑢 +   𝑝 , 𝑖 ϵ {𝜙, 𝜃, 𝜓} y = 𝑥 ,  

                           
           (III.42) 

where 𝒙𝒊 = [𝒙𝟏,𝒊 𝒙𝟐,𝒊]𝑻, 𝒊 ∈ {𝒛, 𝝓, 𝜽, 𝝍}  with 

For the quadrotor system (III.42), the objective of the AFCN-CSOSMC is to force the 

output of the system 𝐲𝒊, to successfully follow a given reference signal 𝒚𝒊𝒅 in the presence 

of uncertainties such as parametric variations and external disturbances. 

III.3.1 Second order sliding mode controllers 

In this section, the traditional second order sliding mode (SOSMC) is introduced to 

control the attitude of quadrotor that is inspired by the sliding mode control (SMC) 

approach [51]. This technique has been introduced in the literature to solve the chattering 

problem of classical SMC. One of SOSMC discussed for controlling nonlinear systems 

those that use a proportional-integral-derivative (PID) sliding surface 𝜎  as  𝜎 = �̇� + 𝛽𝑠  

        = 𝑘 �̇� (𝑡) + 𝑘 𝑒 (𝑡) + 𝑘 ∫ 𝑒 (𝜈) 𝑑𝜈 

 

(III.44) 

where 𝑒 = y − y  is defined as the tracking error, 𝑘 , 𝑘  and 𝑘  are the proportional, 

integral and derivative positive gains respectively, 𝛽 is a strict positive constant that 

defines the slope of the sliding line 𝜎 = 0. For this purpose, the SOSMC law, extensively 

used in the literatures, is proposed for attitude control which takes for each subsystem the 

form [51] : 

ℱ (𝑥) = 𝐼 − 𝐼 𝑥 𝑥  − 𝐽  𝑥 𝐼⁄  ℱ (𝑥) = (𝐼 − 𝐼 )𝑥 𝑥  + 𝐽  𝑥 𝐼  ℱ (𝑥) = 𝐼 − 𝐼 𝑥 𝑥 𝐼⁄   𝒢 (𝑥) = 𝑙 𝐼⁄ ,𝒢 (𝑥) = 𝑙 𝐼⁄ , 𝒢 (𝑥) = 1 𝐼⁄  

 
(III.43) 
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             𝑢 = 𝑢 + 𝑢    (III.45) 

The above control law is a summation of an equivalent control term 𝑢  introduced to 

compensate the nonlinearities of quadrotor system. The second term 𝑢  is a robust 

switching control term introduced to deal with disturbances and parameters variations. The 

two components will subsequently be determined using the Lyapunov method. 

Step 1: The derivative of sliding surface 𝜎  in (III.44) is  �̇� = �̈� + 𝛽 �̇�̇  

                   = 𝑘 �̈� + 𝑘 �̇� + 𝑘 𝑒    

 

(III.46) 

From (III.46), yields 

�̈� = − 𝛽 �̇� + 𝑘 �̈� + 𝑘 �̇� + 𝑘 𝑒    (III.47) 

Substituting (III.42) into (III.47), it follows that: 

�̈� = − 𝛽 �̇� + 𝑘 �̇� + 𝑘 𝑒 + 𝑘 ÿ − ℱ − 𝒢 𝑢 − 𝑝    (III.48) 

In the case where the the system dynamics are well known, and the quadrotor system is 

not subject at any uncertainties and external disturbances, i.e. 𝑝 = 0 and by setting  �̈� =0 in (III.48),  𝑢  for each subsystem is obtained as  

 𝑢 = 1𝑘 𝒢 −𝛽 �̇� − 𝑘 ℱ + 𝑘 ÿ + 𝑘 �̇� + 𝑘 𝑒  
  

(III.49) 

To ensure the convergence of sliding variable and guarantee the stability of the closed-

loop system when the parametric uncertainties and external disturbances occur, the 

additional switching control term 𝑢  can be designed using Lyapunov method.  

Step 2: Let be the following positive function 𝑉 = ∑ 𝑉∈{ , ,} , with:    

𝑉 = 12 �̇� + 𝑘2 𝑠  
(III.50) 

where 𝑘  is a strict positive constant.  
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Using (III.48), (III.45) and (III.49) the time derivative of 𝑉 is given as:  �̇� = �̇� �̈� + 𝑘 𝑠  �̇�  

 = − 𝛽 �̇� + 𝑘 �̇� + 𝑘 𝑒 + 𝑘 ÿ − ℱ − 𝒢 𝑢 − 𝑝 �̇� + 𝑘 𝑠  �̇�  = 𝑘 [−𝒢 𝑢 − 𝒟 ]�̇� + 𝑘 𝑠  �̇�  

 

(III.51) 

To satisfy the reaching condition, the switching control term designed on the SOSMC 

algorithm takes the following form 𝑢 = 𝒢 [𝑘 𝑠 + 𝑘 𝑠𝑔𝑛(�̇� )]   (III.52) 

where 𝑘 > 0 is the control gain. Substituting (III.52) into (III.51) �̇� can be upper 

bounded as follows : �̇� = 𝑘 |�̇� | − 𝑘 𝑝 𝑠  ̇  
          ≤ −|�̇� |{𝑘 − 𝑘 |𝑝 |} 

       ≤ −|�̇� |{𝑘 − 𝑘 ℒ∗} 

 

 

(III.53) 

So, the quadrotor control system is globally stable according to Lyapunov's method with 𝑘  must be selected as 𝑘 > 𝑘 ℒ∗.  

III.3.2 Fuzzy-chebyshev network approximator 

In order to eliminate the dependence of SOSMC control law at dynamic functions and 

uncertainties of system, an adaptive fuzzy-Chebyshev network is used to estimate the 

nonlinear functions ℱ (𝑥) in classical controllers. Combining the hybrid network with the 

continuous SOSMC in equation (III.49) results in developing the proposed AFCN-

CSOSMC methodology. The main advantage of this method is that the robust behavior of 

the quadrotor attitude is guaranteed. The second advantage of the proposed scheme is that 

the performance of the system in the sense of removing chattering is improved in 

comparison without using the approximator network. 
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The output of the Fuzzy-Chebyshev network to be calculated by: ℱ (𝑥, 𝜋 ) = 𝜋 𝜉 (𝑥) (III.54) 

where 𝜋 = 𝜋 , , … , 𝜋 , is the estimate vector of network parameters and 𝜉 (𝑥) is the 

regressor vector of the  proposed hybrid network given as follows (see Fig III.5): 𝜉 (𝑥) = [Φ , (𝑥), … . , Φ , (𝑥), Γ , (𝑥) … . Γ , (𝑥)]  (III.55) 

where Φ , (𝑥) and Γ , (𝑥) for 𝑗 = 1, … , 𝐻 and 𝑙 = 1, … , 𝐿 are the fuzzy basis functions and 

Chebyshev polynomial functions, respectively calculated according [42]: 

Φ , (𝑥) = 𝒜 , , 𝒜 , ,∑ 𝒜 , , , , , 𝑗 = 1, … , 𝐻 
(III.56) 

Γ , (𝑥) = Γ , 𝑥 , , Γ , 𝑥 , , 𝑙 = 1, … , 𝐿 (III.57) 

where  𝜇 (𝑥 , )are the membership functions which are selected generally as Gaussian 

membership functions and  Γ , 𝑥 ,  denotes the Chebyshev polynomials which is 

produced by the next recursive expression [51]:  

Γ , 𝑥 , = 2𝑥 , Γ , 𝑥 , − Γ , (𝑥),   Γ , (𝑥) = 1, 𝑘 = 1,2;  𝑙 = 0, … , 𝐿. (III.58) 

According to the universal approximation property, the fuzzy approximations error of 

(III.54) take the form: 

Φ ,  

Φ ,  

Γ ,  

Γ ,  

𝑥 ,  

𝑥 ,  

𝑥 ,  

𝑥 ,  

Σ 

ℱ  

𝜋 ,  

𝜋 ,  

𝜋 ,  

𝜋 ,  

 
Figure III.5. The structure of the Fuzzy-Chebyshev network (FCN) to estimate ℱ .for 𝑖 ∈  {𝜙, 𝜃, 𝜓}. 
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ℱ (𝑥) − ℱ (𝑥, 𝜋 ) = 𝜋 𝜉 (𝑥)+𝜀 (𝑥) (III.59) 

where 𝜋 = 𝜋∗ − 𝜋  denotes the parameter estimation error, 𝜋∗ = [𝜋 ,∗ , … , 𝜋 ,∗ ] is the 

optimal parameters minimizing the approximation error 𝜀 (𝑥) that satisfy 𝜋∗ =argmin sup ∈Θ ℱ (𝑥|𝜋 ) − ℱ (𝑥)  over a compact set Θ . 

Based on the above approximations, the control of attitude quadrotor is realized through a 

decentralized scheme, as shown in figure(III.6), where the local control law (III.45) 

becomes using (III.49), (III.52) and (III.54) as follows:  𝑢 = 1𝑘 𝒢 −𝛽 �̇� − 𝑘 ℱ + 𝑘 ÿ + 𝑘 �̇� + 𝑘 𝑒 + −𝑘 𝑠 + 𝑘 𝑠𝑔𝑛(�̇� )  
 

 (III.60) 

Where 𝑘 is the estimate of 𝑘  must be positive. 

        
Figure  III.6. Constructed of AFCN-CSOSMC for attitude quadrotor. 

Theorem: Consider the attitude model of quadrotor system (III.42) with satisfied 

assumptions (1-4), The proposed (AFCN-CSOSMC) law (III.60) guarantees the 

boundedness of all signals in the closed-loop system and the asymptotic convergence of 

the sliding surface 𝜎 , and the tracking error 𝑒 to zero for 𝑖 ∈ {𝜙, 𝜃,}, if the following 

adaptation laws hold. 

�̇� = 𝛼 𝑘 �̇� 𝜉 (𝑥) (III.61) 

𝑘 = 𝛿 |�̇� (𝜄)|𝑑𝜄 (III.62) 
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Where 𝛼 > 0 and 𝛿 > 0 are design parameters. 

Proof. Choose a positive definite function in the form of  𝑉 = ∑ 𝑉∈{ , ,} , with 

𝑉 = 12 �̇� + 𝑘2 𝑠 + 12𝛼 𝜋 𝜋 + 12𝛿 𝑘  
(III.63) 

where 𝑘 = 𝑘 − 𝑘  are the estimate errors of 𝜀̅  for 𝑖 ∈ {𝜙, 𝜃,}. 

Taking the time derivative of 𝑉 which is �̇� = ∑ �̇�∈{ , ,} , with 

�̇� = �̇� �̈� + 𝑘 𝑠  �̇� − 1𝛼 𝜋 �̇� − 1𝛿 𝑘 𝑘 ̇  (III.64) 

Substituting (III.58) into (32) one obtains 

 𝑢 = 1𝑘 𝒢 −𝛽 �̇� − 𝑘 ℱ + 𝑘 ÿ + 𝑘 �̇� + 𝑘 𝑒 + −𝑘 𝑠 + 𝑘 𝑠𝑔𝑛(�̇� )     (III.65) 

Where 𝑘 is the estimate of 𝑘  must be positive �̇� = − 𝛽 �̇� + 𝑘 �̇� + 𝑘 𝑒 + 𝑘 ÿ − ℱ − 𝒢 𝑢 − 𝑝 �̇� + 𝑘 𝑠  �̇�− 1𝛼 𝜋 �̇� − 1𝛿 𝑘 𝑘 ̇  

= 𝑘 ℱ − ℱ − 𝑘 𝑝 − 𝑘 𝑠𝑔𝑛(�̇� ) �̇� − 1𝛼 𝜋 �̇� − 1𝛿 𝑘 𝑘 ̇  

 

 

   (III.66) 

Using (III.59), (III.66) can be expressed as �̇� = 𝑘 �̇� 𝜋 𝜉 (𝑥) − 𝜋 �̇� + 𝑘 |�̇� | − 𝑘 𝑘 ̇ − [𝜀 (𝑥) + 𝑘 𝑝 +𝑘 𝑠𝑔𝑛(�̇� )]�̇�   

 

(III.67) 

From (III.66), (III.67), assumption 2,3, the time derivative of Lyapunov equation can be 

upper bounded as follows:  �̇� = −𝑘 |�̇� | − 𝑘 (𝑝 + 𝜀 (𝑥))𝑠  ̇  
          ≤ −|�̇� |{−𝑘 − 𝑘 (|𝑝 | + |𝜀 |)} 

       ≤ −|�̇� |{𝑘 + 𝑘 (ℒ∗ + 𝜀̅ )} 

 

 (III.68) 
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Hence  𝑉 = ∑ 𝑉∈{ , ,} 𝜖𝐿∞, which implies that the signals 𝑒 , �̇� , 𝑠 , �̇� , 𝜎 , �̇� , 𝜋 and 𝑘 are bounded. Moreover, by using Barbalat's lemma, we conclude that the tracking 

errors and its derivatives converge asymptotically to zero. 

III.3.3 Simulation results 

To validate the feasibility and effectiveness of the presented control algorithm, the 

AFCN-CSOSMC methodology applied to quadrotor attitude model is tested for two 

different scenarios in tracking problem. Firstly, the quadrotor system is exposed to the 

disturbance forces 𝑝 (𝑡) = 3sin (6𝑡) newton at 20 sec. In the second scenario, the 

quadrotor system is simulated with parameter uncertainties ∆𝐼𝓍 = 0.3𝐼 , ∆𝐼 = 0.3𝐼 and ∆𝐼 = 0.3𝐼  applied at 30 sec. The reference signals employed in all the simulations 

consists of a sine waveform with magnitude equal to 1 meter and a frequency of 

0.0955Hz. The design parameters of the proposed controllers are set as  𝛽 = 0.1, 𝑘 =0.1,  𝑘 = 0.1, 𝑘 = 3, , 𝑘 = 2, 𝛿 = 2, 𝛼 = 2 for 𝑖ϵ{φ, 𝜃, 𝜓}. 

The input variables of the hybrid network (III.54) are chosen as 𝑥 = [𝑥 𝑥 ] for 

angles system 𝑖ϵ{𝜙, 𝜃, 𝜓}. For every variable five Gaussian membership functions are 

described by:       

               𝜇 (𝑥 ) = 𝑒𝑥𝑝 ( ℂð ) , 𝑖ϵ{𝜙, 𝜃, 𝜓}, 𝜄 = 1: 5 

where the centers ℂ  were selected in [−3 ,3] and the standard deviations ð were chosen 

equal to 0.034. The results obtained of the proposed control scheme for controlling 

attitude quadrotor are presented in figures ( III.7) and (III.8). It can be seen that the 

proposed controller presents a good and faster response for reference tracking control in 

the presence of parameter uncertainties and external disturbance. Figures (III.9) and 

(III.10)  show the control signals obtained from AFCN-CSOSMC.  From thoses Figures, it 

can be observed the substantial chattering reduction in the control signals in comparison 

with the control signals obtained from the Classical SMC depicted in [53, 54]. 
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Figure III.7.  The attitude responses of quadrotor, roll angle (𝜙), pitch angle (𝜃), yaw angle 
(𝜓), (first scenario). 
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Figure III.8. Control input signals 𝑢 (d), 𝑢 (e), 𝑢 (f) of AFCN-CSOSMC (first 
scenario). 
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Figure III.9. The attitude responses of quadrotor, roll angle (𝜙), pitch angle (𝜃), yaw 
angle (𝜓), (second scenario). 
 



Chapter III: Stabilization of QUAV Under Unknown Dynamics, 
Parameter uncertainties and External disturbances Using 
intelligent techniques Based non-linear control 
  

 56 

 

Figure III.10. Control input signals 𝑢 (d), 𝑢 (e), 𝑢 (f) of AFCN-CSOSMC (second 
scenario). 

III.4 Conclusion 

In this chapter, two flight control approachs have been developed and studied in two 

parts : 

 In section (1) the application of an adaptive fuzzy neural network (FNN) based 

backstepping controller for path tracking and stabilization of a quadrotor UAV 

has been proposed. The attitude quadrotor model is considered as complex 
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system composed of three simple subsystems, roll, pitch and yaw subsystem, in 

which the AFNN-DBC is applied within decentralized control scheme. Fuzzy 

logic system and neural network approach are used to develop a control law to 

deal with unknown nonlinear dynamics, approximation errors and external 

disturbances. The stability is guaranteed through the Lyapunov method and the 

effectiveness of the proposed controller are justified via simulation tests. From 

the results, the proposed AFNN-DBC improves response tracking and deals with 

the problems of uncertainties and approximation  errors compared to the 

classical BC. 

 In the section (2) the development of a continuous second order sliding mode 

controller based on an adaptive fuzzy-Chebyshev network estimator (AFCN-

CSOSMC) for quadrotor attitude control. In this section, the attitude quadrotor 

model is considered as a complex system composed of three subsystems, roll, 

pitch and yaw subsystem, in which the AFCN-CSOSMC is applied within 

decentralized control scheme. Fuzzy logic systems(FLS's), Chebyshev neural 

network and second order sliding mode control approach are used to develop a 

two-term control law to deal with unknown systems dynamics, approximation 

errors and external disturbances. The stability and robustness of the designed 

controller are demonstrated using Lyapunov method, and the effectiveness of the 

proposed control scheme are also justified via simulation tests. From simulation 

results, the proposed AFCN-CSOSMC improves response tracking and reduces 

chattering and deals with the problems of uncertainties and approximation 

errors. 

 

Moreover, the developped controllers able to rapidly and precisely folow the quadrotor 

path, the asymptotic stability of the closed-loop system is garanteed. The designed control 

strategy has been shown to assure at least asymptotic stability. Additionally, robustness 

over disturbances was ensured through the selection of appropriate control parameters. 

Simulation results obtained in comparison with a number of recent methods illustrate the 

effectiveness of the developed controllers. 
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IV.1 Introduction  

The application of fractional order (FO) calculus in control has developed significantly in 

current years, particularly in robust control. FO control is commonly considered to advance 

closed-loop system performance by enhancing trajectory following and transient steady-state 

response, guaranteeing well control performance in integer-order (IO) and FO systems. In this 

context, a quadrotor is a highly maneuverable unmanned aerial vehicle (UAV) that is 

sensitive to uncertainties in parameters such as mass, drag coefficient and moment of inertia. 

The nonlinearities, aerodynamic disturbances, and strong coupling between rotational and 

translational dynamics of these vehicles make challenges that require robust control systems.  

The application of BC on the UAV system has proven the out performances compared to 

other techniques due to its flexibility and the recursive use of Lyapunov functions [55]. The 

BC main challenge is the “explosion of terms” by reason of the repetitive derivations of 

virtual control inputs and the acknowledged of the system dynamics is mandatory. While each 

variation occurred in the internal system parameters or disturbances could lead to system 

instability. Hence, in recent years, adaptive and intelligent backstepping control with 

unknown dynamics, parameter uncertainties and external disturbances has received more 

consideration [56]. Using a fractional order controller (FO) increases additional degrees of 

freedom and allows higher performance and improved robustness regarding to integer-order 

(IO) controllers [57]. The combination of FO with BC results in another approach named 

FOBC that provides a significant robustness. The major difficulty of the FOBC lies in the 

requirement to know the mathematical model and the physical parameters of the QUAV. 

Otherwise, adaptive control strategies using Lyapunov hypothesis have been designed to 

overcome unknown nonlinear dynamics problem [58], but remain inadequate. Again, to 

overcome this problem, numerous investigators have employed artificial neural networks 

(NN) to approximate universal systems but few works for QUAV system [59,60,61]. On the 

basis of radical basis function adaptive neural networks (RBFNN), by using a neural network, 

in [59] an adaptive approximation-based tracking control for a family of switched stochastic 

nonlinear pure-feedback systems is designed without lower triangular structure. The authors 

in [60], developed a neural network-based adaptive sliding mode controller for QUAV 

altitude control. On the other hand, in [61] an approach based on the backstepping method and 
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BFNN was developed to overcome the problem of uncertainty and optimize the design 

parameters. 
In this chapter, we propose a novel neural network-based fractional-order backstepping 

controller (NNFOBC) for QUAV that comprises the NN and FO design concepts into BC. 

The aim of this control strategy is to follow a desired path of a 6DOF QUAV position and 

attitude with unknown nonlinear dynamics, parametric uncertainties and disturbances. It is 

noted, the QUAV is envisaged as MIMO large-scale system that can be divided into six 

interconnected single-input–single-output (SISO) subsystems, which define one DOF, i.e., 

three-angle subsystems with three position subsystems. Next, basing on FOBC and the 

adaptive RBFNN approximator techniques, a control law is established for all subsystems. 

Thus, the planned FO control approach offers considerable improvement compared to current 

works. In comparison with classical backstepping methods [61,62], the proposed FOBC 

provides further degrees of freedom and having significant effect on decreasing the 

uncertainties impact on the system and maintains certain features of classical control 

approaches including simplicity and continuous control signals. Furthermore, the difficulty of 

controlling MIMO nonlinear systems is solved by modifying it to the simple SISO control 

synthesis.  The authors in [63, 64], developed various control approaches for driving UAVs 

where the out coming results confirm a remarkable trajectory tracking performance. 

Nevertheless, the reliability of the controller is not guaranteed because the stability of the 

system is simply validated locally, which means that the results obtained so far are not 

enough. Furthermore, in the developed work, the stability analysis and tracking error 

convergence of the QUAV subsystems as well as the complete closed-loop system are assured 

using the arguments of the Lyapunov technique in the whole space of working. In contrast in 

some references as in [65, 66] where, an FO controller is developed by assuming the 

quadrotor can be modeled by a known local or partial model which considerably limits the 

range of their applicability in real time. Besides, a successful development of a novel tracking 

FO control method where any prior knowledge of the dynamic model is not required in this 

chapter. In [56,57], authors propose intelligent FO backstepping controller (IFOBC) based on 

intelligent networks to control permanent magnet linear synchronous motor (PMLSM). In 

order to approximate the uncertainties of PMLSM model induced by unmodeled dynamics, 

parameters variations and external disturbances, the controllers based on neural networks 
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and/or fuzzy systems are developed. Whilst, in the present chapter , a simply adaptive 

estimator to be investigated to deal with the wholly unknown nonlinear functions of QUAV 

model and the backstepping control technique to design a robust controller and fewer 

restrictive because it doesn’t require mathematical system dynamics information.  

In this chapter, we developed an FO controller to allow more flexible control of complex 

trajectories against parametric uncertainties and disturbances. A modified (NNFOBC) control 

is designed for quadrotor systems that are based on fractional operators. The improved 

NNFOBC offers more degrees of freedom (DOF), is more effective at reducing the effects of 

uncertainty on the system, and retains some properties of traditional control techniques such 

as backstepping. 

IV.2 Preliminaries of FO calculus 

In this section, the habitually adopted definitions for general fractional order operator are: 

Riemann-Liouville (RL) and Caputo [67,68]. 

Definition 1 The Riemann–Liouville (𝑅𝐿) fractional derivative and integral of 𝓆 th-order of  

function ℌ(𝑡) respectively, are given by: 

𝒟𝓆ℌ(𝑡) = 𝑑𝓆ℌ(𝑡)𝑑𝑡𝓆 = 1Γ(ℏ − 𝓆) 𝑑ℏ𝑑𝑡ℏ   ℌ(𝜏)(𝑡 − 𝜏)𝓆 ℏ 𝑑𝜏 
 

(IV.1) 

and: 𝒟 𝓆ℌ(𝑡) = 𝐼𝓇ℌ(𝑡) = 1Γ(𝜈)   ℌ(𝜏)(𝑡 − 𝜏) 𝓇 𝑑𝜏 

where 1 − ℏ < 𝑞 < ℏ, 𝐷𝓆 and 𝐼𝓆 indicate the fractional derivative and integral, respectively, 

and t0 is the initial time, Γ(. ) indicates the Gamma function which given by [69-70]: 

Γ(𝓆) = 𝑒 𝑡𝓆 𝑑𝑡 
(IV.2) 

Definition 2  The Caputo fractional derivative of a function ℌ(𝑡) is described as: 

 𝒟𝓆ℌ(𝑡) = (ℏ 𝓆) ∫   ℌℏ( )( )𝓆 ℏ 𝑑𝜏, (ℏ − 1) < 𝓆 < ℏ (IV.3) 

with 𝜈 ∈ ℝ  ,and ℏ ∈ ℕ∗ . 
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Property 1  We can use equation. (IV.3) for the Caputo derivative 

𝒟𝓆 𝓇ℌ(𝑡)  =    𝒟𝓆( 𝒟 𝓇ℌ(𝑡))              (IV.4) 

Where  𝓆 ≥ 𝓇 ≥ 0. It is noted that the FO operator a 𝒟𝓆  as 𝒟 to simplify the notation. 

IV.3 Adaptive RBFNN fractional-order backstepping control  

IV.3.1 Fractional-order backstepping control  (FOBC)  

To enhance the classical BC law described in the chapter III section III.2.1, we have 

developed a FOBC based on a new FO virtual stabilization function. The FOBC have some 

advantages such as faster tracking performance and higher control accuracy [71]. FOBC and 

BC design methodologies are similar. First, we describe the FO virtual stabilization function 

by: 

The design methodology of FOBC is the same as that of the BC 

 

Where 𝓆 and 𝓇 are the FO derivative and integral orders, respectively 𝜂 , ,, 𝒞ℱ ,  and 𝜂 , are 

any positive constants. Next, we identify the 𝔢ℱ , virtual tracking error as: 

As seen equation ( IV.6), the virtual tracking error 𝔢ℱ , is a lineara sum of the proportional 

IO derivative, FO derivative, and FO integral of the real tracking error  𝔢 ,  . Through equation 

(III.1) and (IV.6), the 𝔢ℱ ,  derivative can be given as: 

�̇�ℱ , = ℱ (χ)+𝒢 (χ)𝒰 +p (t) − �̇�ℱℬ,= −�̈� , + 𝜂 , 𝒟 𝓆𝔢 , + 𝜂 , 𝒟 𝓇𝔢 , + 𝒞ℱ , 𝔢 ,  
(IV.7) 

 

Theorem 1. The quadrotor system stability  can be guaranteed if the control law of the FOBC 

system 𝒰ℱ , , described in equation.( IV.8), is applied under the condition ℱ (𝜒) and 𝒢 (𝜒) are perfectly known and the system neither subject to any parametric variations and 

𝒬ℱ , = �̇� + 𝜂 , 𝒟𝓆𝔢 , + 𝜂 , 𝒟 𝓇𝔢 , + 𝒞ℱ , 𝔢 , , 𝑖 ∈ {𝑥, 𝑦, 𝑧, 𝜙, 𝜃, 𝜓} (IV.5) 

𝔢ℱ , = �̇� − 𝒬ℱ , = 𝜂 , 𝒟𝓆𝔢 , + 𝜂 , 𝒟 𝓇𝔢 , + 𝒞ℱ , 𝔢 , − �̇� ,  ( IV.6) 
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external  disturbances. In difference to the control law 𝒰 ,  as expressed in equation (III.19), 

the control law 𝒰ℱ , with two additional FO parameters 𝓆 and 𝓇 delivers further flexibility 

and opportunity to perfectly adjust the dynamical properties of the control system. 

Proof. We outline the Lyapunov function candidate as: 

 
For FOBC, we express the second Lyapunov function by: 

 

If we differentiate equation.( IV.10) and use equations.( IV.6) and (III.1), we can achieve: �̇�ℱ , = �̇� + 𝔢 , 𝔢ℱ , + 𝔢ℱ ,{ , , , , , } �̇�ℱ ,    
= ({ , , , , , } − 𝜂 , 𝔢 , 𝒟𝓆𝔢 , − 𝜂 , 𝔢 , 𝒟 𝓇𝔢 , − 𝒞ℱ , 𝔢 , )  
+ −𝔢 , 𝔢ℱ , + 𝔢ℱ ,{ , , , , , }   ℱ (𝜒) + 𝒢 (𝜒)𝒰 − �̇�ℱ ,  

 

(IV.11) 

By substituting equation ( IV.8) in equation.( IV.11), we obtain: 

                          �̇�ℱ , = ∑ −𝒞ℱ , 𝔢 ,{ , , , , , }  + ∑ −𝒞ℱ , 𝔢ℱ ,{ , , , , , }  (IV.12)                         �̇�ℱ , = − 𝒞ℱ , 𝔢 ,{ , , , , , } −  𝒞ℱ , 𝔢ℱ ,{ , , , , , }≤ 0    
   

(IV.13) 

𝒰ℱ , = 𝒢 (𝜒) −ℱ (𝜒) + 𝔢 , − 𝒞ℱ , 𝔢ℱ ,+ 𝔢ℱ , 𝜂 , 𝔢 , 𝒟𝓆𝔢 , + 𝜂 , 𝔢 , 𝒟 𝓇𝔢 , + �̇�ℱ ,  
( IV.8)

    �̇� = ∑ 𝔢 , �̇� ,{ , , , , , }  = ∑ 𝔢 , ({ , , , , , } �̇� − �̇� ) 

      = ∑ 𝔢 , ({ , , , , , } �̇� − 𝑥 , )           = ∑ 𝔢 ,{ , , , , , } (−𝜂 , 𝒟𝓆𝔢 , − 𝜂 , 𝒟 𝓇𝔢 , − 𝒞ℱ , 𝔢 , )              

       =   ∑ ({ , , , , , } − 𝜂 , 𝔢 , 𝒟𝓆𝔢 , − 𝜂 , 𝔢 , 𝒟 𝓇𝔢 , − 𝒞ℱ , 𝔢 , )             

 

    

(IV.9) 

 𝒱ℱ , = 𝒱 + 1 2 𝔢ℱ ,{ , , , , , }  (IV.10) 
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Since 𝒞ℱ , , 𝒞ℱ ,  are positive constants, the derivative of  𝒱ℱ ,  is a semi-negative definite 

function . This involves that the stability of the FOBC closedloop system of QUAV can be 

ensured and the signals 𝔢 ,  and 𝔢ℱ ,  go to zero asymptotically. Moreover, we assume that 

the nonlinear functions ℱ (𝜒)and 𝒢 (𝜒)  are unknown. Hence, it is hard to develop an 

appropriate control law that makes the system outputs 𝑦  follow quickly and perfectly a 

definite  chosen trajectories 𝑦  and ensure the boundedness of every signal in the closed-loop 

system. Hence, we develop a control strategy based neural network approach to approximate 

the nonlinearities. Basing on the specified approximations, adaptive controller is intended to 

succeed the control objective. 

 

Remark 3 The entire quadrotor, represented by (II.27) as a large-scale system, is stabilized 

by choosing the virtual control input as (II.28) and the BC law as (III.19). Asymptotic 

convergence of the output𝑦 , position and attitude to the desired trajectory 𝑦  is attained by 

the use of various Lyapunov functions such as (IV.9) and (IV.10) i.e., 𝒱 = ∑ 𝒱 ,{ , , , , , } . 

This helps ensure the stability of the entire system. This suggestion offers a new solution for 

constructing candidate Lyapunov functions for control problems in quadrotor and similar 

application systems. Moreover, the backstepping control technique is applied to the low-

dimensional subsystems, thus avoiding the problem of explosion and complexity of the 

backstepping control technique.  

 

 
Figure IV.1. Radial basis function neural network (RBFNN) structure. 
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IV.4 RBF neural network approximator 

In this subsection, we designed the NNFOBC which uses a RBFNN to approximate the 

unknown nonlinear functions ℱ (𝜒) and 𝒢 (𝜒) of every subsystem as seen in figure (IV.1). In 

general, RBFNN can approximate every nonlinear continuous function against a solid set to 

random accuracy [72].On behalf of the QUAV system, we accept that the nonlinear functions ℱ (𝜒) and 𝒢 (𝜒) may be approximated against a compact set Ω ∈ ℝ  by the structure of 

RBFNN as expressed in [72]: 

ℱ 𝜋ℱ , 𝜒 = 𝜋ℱ∗ ℋ(𝜒) + 𝜀ℱ (𝜒) (IV.14)

𝒢 𝜋𝒢 , 𝜒 = 𝜋𝒢∗ ℋ𝒢 (𝜒) + 𝜀𝒢 (𝜒) (IV.15)

Assuming , 𝜒 the input of the neural network, ℋℱ (𝜒) = ℋℱ , (𝜒), … , ℋℱ , (𝜒) and ℋ𝒢 (𝜒) = ℋ𝒢 , (𝜒), … , ℋ𝒢 , (𝜒) are the RBFNN activate functions of ℱ (𝜒) and 𝒢 (𝜒)  respective,𝑁 and 𝐿 are their neuron node numbers in hidden layer,𝜋ℱ =𝜋ℱ , , … , 𝜋ℱ , and 𝜋𝒢 = 𝜋𝒢 , , … , 𝜋𝒢 , are the ideal weight vectors of ℱ (𝜒) and 𝒢 (𝜒)  minimizing the network approximation errors  𝜀ℱ (𝜒) and 𝜀𝒢 (𝜒) respectively. The 

optimal parameters verify : 𝜋ℱ = arg min ℱ sup ∈ ℱ (𝜒) − ℱ 𝜋ℱ , 𝜒  (IV.16)

𝜋𝒢 = arg min 𝒢 sup ∈ 𝒢 (𝜒) − 𝒢 𝜋𝒢 , 𝜒  (IV.17)

ℱ (𝜋ℱ , 𝜒) and 𝒢 𝜋𝒢 , 𝜒  are utilized by RBFNN to approximate equations.( IV.14) and 

(IV.15) as the ideal weights  𝜋ℱ and 𝜋𝒢 which usually unknowns are estimated respectively 

by 𝜋ℱ  and 𝜋𝒢 . The mentioned values to be adjusted by a weight learning law that can be 

specified afterward. Moreover, the RBFNN activation function is considered in this study, one 

of the common used activation functions is Gaussian function:  
ℋℱ , (𝜒) = exp −( 𝜒 − 𝑐ℱ , )/2𝑏ℱ ,  (IV.18)
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 𝑐 , is the center of the jth  neuron node for the 𝜒 input signal, and 𝑏 , is the width of the jth 

neuron of the Gaussian function  ,where Π = ℱ, 𝒢 . Trough the above analysis, we conclude: 

 𝜋ℱ =  𝜋ℱ − 𝜋ℱ  and 𝜋𝒢 = 𝜋𝒢 − 𝜋𝒢 represent the parameters estimation errors. 

 

Assumption 5. From the universal approximation ability, the RBFNN are supposed to ensure 

the estimate error ultimately converge to a satisfactorily small compact set, i.e. there exists a 

positive constants 𝜀ℱ and 𝜀𝒢  such as: 

 

From the above approximations, the 𝒰  adaptive control law to be expressed as: 

 

The control law described above incorporates the sum of the term adaptive control introduced 

to handle with nonlinear systems of unknown performance, whilst the second is a robust term 

dealing with approximation errors and disturbances. The proposed NNFOBC is recapped in 

figure (IV.2). 

ℋ𝒢 , (𝜒) = exp −( 𝜒 − 𝑐𝒢 , )/2𝑏𝒢 ,  (IV.19) 

ℱ (𝜒) − ℱ 𝜋ℱ , 𝜒 = 𝜋ℱ ℋℱ (𝜒) + 𝜀ℱ (𝜒) (IV.20)𝒢 (𝜒) − 𝒢 𝜋𝒢 , 𝜒 = 𝜋𝒢 ℋ𝒢 (𝜒) + 𝜀𝒢 (𝜒) (IV.21)

𝜀ℱ (𝜒) ≤ 𝜀ℱ  and 𝜀𝒢 (𝜒) ≤ 𝜀𝒢 for all 𝜒 ∈ Ω  (IV.22)

𝒰 = 𝒰 ℱ , + 𝒰 ,  (IV.23)
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Figure IV.2. Block diagram of quadrotor system based on NNFOBC. 

The following form will be taken by the adaptive term: 

The robust controller term will income the described form below: 

 

where 𝜚 is the design positive constant, εℱ  and ε𝒢  are the estimate of 𝜀ℱ  and 𝜀𝒢  

respectively.  

Remark 4 From equations (IV.23), (IV.24) and (IV.25),it is obvious that the quadrotor inputs 

are totally independent since the control values of each subsystem are only calculated 

through its local measurements, that is, 𝒰  for 𝑖 ∈ {𝑥, 𝑦, 𝑧, 𝜙, 𝜃, 𝜓}are related only to the local 

tracking errors 𝔢 ,  and 𝔢ℱ , . Thus, no interaction exists between the control of position and 

attitude subsystems which lead in effect to have a decentralized (decoupled) control structure. 

Where the decentralized control allowed to manage independently the position and 

𝒰 ℱ , = 𝒢 (𝜒)𝒢 (𝜒) +∝  −ℱ (𝜒) + 𝔢 , − 𝒞ℱ , 𝔢ℱ ,+ 𝔢ℱ , 𝜂 , 𝔢 , 𝒟𝓆𝔢 , + 𝜂 , 𝔢 , 𝒟 𝓇𝔢 , + �̇�ℱ ,  
(IV.24)

𝒰 , = 𝒢 (𝜒)𝒢 (𝜒) +∝  −𝜚𝔢ℱ , − εℱ 𝑠𝑔𝑛 𝔢ℱ , − ε𝒢 𝑠𝑔𝑛(𝔢ℱ , )  
              
(IV.25) 
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orientation dynamic subsystems which makes the control architecture more simple and easy 

to implement in real time. 

We describe the adaptive parameters by: 

Where: 𝛾ℱ  , 𝜎ℱ  , 𝛾𝒢   , 𝜎𝒢 , ρℱ and ρ𝒢  are positive designing constants. 

Lemma 2 [72]: For ∀(𝔞, 𝔟) ∈ 𝑅 , the inequality described below holds:  𝔞, 𝔟 ≤ 𝔶𝒪𝒪 |𝔞|𝒪 + 𝒪 𝔶𝒮|𝔞|𝒮𝒪where:  𝔶 > 0, 𝒪 > 1, 𝒮 > 1, (𝒪 − 1)(𝒮 − 1) = 1.               (IV.30)                   

IV.5 Stability analysis 

The next theorem reveals the closed-loop system stability to be confirmed via Lyapunov 

analysis. 

Theorem 2 Considering the quadrotor system model described by equation.( II.27) and 

satisfying assumptions (1-5), The designed NNFOBC shown in equation.( IV.21), with the 

adaptive term  equation. (IV.23), robust term equation (IV.23),  and the adaptation laws 

equations. (IV.21– IV.28) guarantees the delimitation of every signals in the closed loop 

system and the asymptotic convergence of the tracking errors at zero i.e 𝑙𝑖𝑚→ 𝔢 , (𝑡) = 0. 

Proof :  We outline the Lyapunov function candidate as: 

�̇�ℱ = −�̇�ℱ =
𝔢ℱ , ℋℱ ( ) ℱ ℱℱ  

 

              
  (IV.26) 

 �̇�𝒢 = −�̇�𝒢 =
𝔢ℱ , ℋ𝒢 ( )𝒰 𝒢 𝒢𝒢   (IV.27) ε̇ℱ = ρℱ 𝔢ℱ ,   (IV.28) ε̇𝒢 = ρ𝒢 𝔢ℱ , 𝒰    (IV.29) 

 𝒱 =  𝒱ℱ , + 12 𝜋ℱ 𝜋ℱ𝛾ℱ∈{ , , , , , } + 12 𝜋𝒢 𝜋𝒢𝛾𝒢∈{ , , , , , }+ 12 εℱ εℱρℱ∈{ , , , , , } + 12 ε𝒢 ε𝒢ρ𝒢∈{ , , , , , }  
 ( IV.31)
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Where 𝜀ℱ̃ = 𝜀ℱ − 𝜀ℱ̂  and 𝜀�̃� = 𝜀𝒢 − 𝜀�̂�  are the parameter estimation errors. So the time 

derivative of 𝑣  as follows 

Thus, from equations.( IV.11) and (IV.32), it is shown that of  �̇� satisfies: 

Substituting equations.( IV.20), (IV.21) and (IV.21) into equation.( IV.33) results in: 

Substituting equations (IV.20) and (IV.21) into equation (IV.34), we achieve: 

 �̇� =  �̇�ℱ , + 𝜋ℱ �̇�ℱ𝛾ℱ∈{ , , , , , } + 𝜋𝒢 �̇�𝒢𝛾𝒢∈{ , , , , , }+ εℱ ε̇ℱρℱ∈{ , , , , , } + ε𝒢 ε̇𝒢ρ𝒢∈{ , , , , , }  

 

(IV.32) 

    �̇� = ({ , , , , , } − 𝜂 , 𝔢 , 𝒟𝓆𝔢 , − 𝜂 , 𝔢 , 𝒟 𝓇𝔢 , − 𝒞ℱ , 𝔢 , )
− 𝔢 , 𝔢ℱ , − 𝔢ℱ ,∈{ , , , , , }   ℱ (𝜒) + 𝒢 (𝜒)𝒢 (𝜒) +∝  𝒰 + 𝑝 (𝑡)
− �̇�ℱ , − 𝜋ℱ �̇�ℱ𝛾ℱ∈{ , , , , , } − 𝜋𝒢 �̇�𝒢𝛾𝒢∈{ , , , , , }− εℱ ε̇ℱρℱ∈{ , , , , , } − ε𝒢 ε̇𝒢ρ𝒢∈{ , , , , , }  

(IV.33) 

�̇� =  𝔢ℱ ,{ , , , , , } ℱ (𝜒) − ℱ (𝜒) + 𝒢 (𝜒) − 𝒢 (𝜒) 𝒰− εℱ 𝑠𝑔𝑛 𝔢ℱ , − ε𝒢 𝑠𝑔𝑛 𝔢ℱ , 𝒰 + 𝑝 (𝑡) − 𝒞ℱ , 𝔢ℱ ,− 𝜚𝔢ℱ ,  − 𝒞ℱ , 𝔢 , − 𝜋ℱ �̇�ℱ𝛾ℱ∈{ , , , , , }− 𝜋𝒢 �̇�𝒢𝛾𝒢∈{ , , , , , } − εℱ ε̇ℱρℱ∈{ , , , , , }− ε𝒢 ε̇𝒢ρ𝒢∈{ , , , , , }  

 

 

 

 

(IV.34) 
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From the adaptive laws equations.( IV.21) – (IV.21), we get: 

�̇� =  𝔢ℱ ,{ , , , , , } ℰℱ + ℰ𝒢 𝒰 + 𝑝 (𝑡)− 𝒞ℱ , 𝔢ℱ , + 𝜚𝔢ℱ , + 𝒞ℱ , 𝔢 ,{ , , , , , }− (ℰℱ 𝔢ℱ , + ℰ𝒢∈{ , , , , , } 𝔢ℱ , 𝒰 )
+ 𝜎ℱ 𝜋ℱ 𝜋ℱ∈{ , , , , , } + 𝜎𝒢 𝜋𝒢 𝜋𝒢∈{ , , , , , }  

(IV.36)

By using the lemma1, yields: 

ℰ𝒢 𝔢ℱ , = ε𝒢 + ε𝒢 𝔢ℱ , ≤ ε𝒢2 + 𝔢ℱ ,2  (IV.40)

By using hypothesis 3 and 5, and above inequality, equation.(IV.36) can be expressed as: 

�̇� =  𝔢ℱ ,{ , , , , , } ℰℱ (𝑡) + ℰ𝒢 (𝑡)𝒰 + 𝑝 (𝑡) − 𝒞ℱ , 𝔢ℱ , − 𝜚𝔢ℱ ,  − 𝒞ℱ , 𝔢 , + 𝜎ℱ 𝜋ℱ 𝜋ℱ∈{ , , , , , } + 𝜎𝒢 𝜋𝒢 𝜋𝒢∈{ , , , , , }− ε𝒢 𝔢ℱ , 𝒰 + εℱ (𝔢ℱ , )∈{ , , , , , }  

 

 

 (IV.35) 

𝜎ℱ 𝜋ℱ 𝜋ℱ = 𝜎ℱ 𝜋ℱ 𝜋ℱ − 𝜋ℱ ≤ −𝜎ℱ2 𝜋ℱ + −𝜎ℱ2 𝜋ℱ       
(IV.37) 𝜎𝒢 𝜋𝒢 𝜋𝒢 = 𝜎𝒢 𝜋𝒢 𝜋𝒢 − 𝜋𝒢 ≤ −𝜎𝒢2 𝜋𝒢 + −𝜎𝒢2 𝜋𝒢            
(IV.38) 

ℰℱ 𝔢ℱ , = εℱ + εℱ 𝔢ℱ , ≤ εℱ2 + 𝔢ℱ ,2  
( IV.39) 
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Define 𝔓 = 𝑚𝑖𝑛 2𝒞ℱ , , 2 𝒞ℱ , + 𝜚 , 𝜎ℱ , 𝜎𝒢  and 𝔇 = ℱ + 𝒢 + ℒ∗  , results in 

equation.( IV.41), where 𝔓 = ∑ 𝔓∈{ , , , , , }  and 𝔇 = ∑ 𝔇∈{ , , , , , } . 

 

And integrating equation.( IV.42) in [0, 𝑡], we can achieve: 

From equation.( IV.43), it can be shown that the signals 𝔢 , , 𝔢ℱ , ,, 𝜋ℱ , 𝜋𝒢 , εℱ , ε𝒢 and 𝒰 ℱ ,  are bounded. Moreover, from equations.( IV.21) and (IV.25) we can write: 

 

where 𝔢 , , 𝔢ℱ ,  values can be decreased as near to zero as possible by considering suitably 

the design parameters 𝒞ℱ , , 𝒞ℱ , , 𝜚, 𝜎ℱ , 𝜎𝒢 , 𝛾ℱ , 𝛾𝒢   .  

�̇� ≤  − 𝒞ℱ , 𝔢 , + 𝒞ℱ , + 𝜚 𝔢ℱ ,∈{ , , , , , }− 𝜎ℱ 𝜋ℱ 𝜋ℱ2 + 𝜎𝒢 𝜋𝒢 𝜋𝒢2 + εℱ2 + ε𝒢2∈{ , , , , , }+ εℱ2 + ε𝒢2 + ℒ∗2∈{ , , , , , }  

 

 

      
(IV.41) 

�̇� ≤ −𝔓𝑣 + 𝔇 (IV.42) 

0 ≤ 𝑣 (𝑡) ≤ 𝑣 (0)𝑒 𝔓 + 𝔇𝔓 (IV.43) 

𝔢 , ≤ 2 𝑣 (0)𝑒 𝔓 + 𝔇𝔓  (IV.44) 

𝔢ℱ , ≤ 2 𝑣 (0)𝑒 𝔓 + 𝔇𝔓  (IV.45) 
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                                           Figure IV.3 External force function. 

Table IV.1. Control gains. 

 

 

 

 

 

 

 

 

IV.6 Numerical results 

In this part, using two different cases. To investigate the robustness and effectiveness of 

the proposed control, the performance of the tracking control problem have been verified, 

where the developed controller (NNFOBC) is compared with the classical BC and fractional-

order backstepping (FOBC). The disturbances and parameter uncertainties have been 

considered to prove the robustness of the developed control strategy. The disturbances 𝑝(𝑡) 

Controllers 𝑥, 𝑦 𝑧 𝜙, 𝜃 𝜓 

BC 𝒞 = 0.01 𝒞 = 0.02 
𝒞 = 0.01 𝒞 = 0.02 

𝒞 = 0.1 𝒞 = 0.3 
𝒞 = 0.2 𝒞 = 0.4 

 
FOBC 

𝒞ℱ , = 1.5 𝒞ℱ , = 4 𝜂 , = 4.5 𝜂 , = 3.5 

𝒞ℱ , = 2.5 𝒞ℱ , = 3.5 𝜂 , = 4.6 𝜂 , = 5.2 

𝒞ℱ , = 5 𝒞ℱ , = 5.5 𝜂 , = 4.7 𝜂 , = 4.6 

𝒞ℱ , = 6 𝒞ℱ , = 5.5 𝜂 , = 1.5 𝜂 , = 1.5 
NNBC 𝒞 = 0.05 𝒞 = 0.02 

𝒞 = 0.01 𝒞 = 0.09 
𝒞 = 0.07 𝒞 = 0.09 

𝒞 = 0.1 𝒞 = 0.09 
NNFOBC 𝒞ℱ , = 1.5 𝒞ℱ , = 4 𝜂 , = 4.5 𝜂 , = 3.5 

𝒞ℱ , = 1.5 𝒞ℱ ,  = 4 𝜂 , = 4.5 𝜂 , = 3.5 

𝒞ℱ , = 1.5 𝒞ℱ , = 4 𝜂 , = 4.5 𝜂 , = 3.5 

𝒞ℱ , = 1.5 𝒞ℱ , = 4 𝜂 , = 4.5 𝜂 , = 3.5 
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are shown in Fig. (IV.3), the disturbances used in two cases are the same are applied at t > 30 

sec. For the condition of parameter uncertainties, 50% uncertainty are used for moment 

coefficients 𝐼 , 𝐼 , 𝐼 . The RBFNN employs (2,5,1) neurons at the input, hidden and output 

layers. Where the 𝑐 ,  is spaced uniformly in the interval [−3 3] and the width 𝑏 , = 1 . 
Those of FOBC 𝓆 = 0.3, 𝓇 = 0.1.The proposed NNFOBC parameters and FOBC, BC are 

listed in Table (IV.1). These parameters were selected by trial-and error processes to realize 

optimal performances for two different cases. We employed a three-order approximation for 

the FO procedure. Furthermore, in the experiment, we implemented a three order 

approximation for the FO operation. In addition, the root-mean-square error (RMSE) criterion 

can be defined mathematically as : ℐ = ∑ (𝑦 − 𝑦 ) /𝑁  , with 𝑁 is the sampling time 

size and 𝑖 ∈ {𝑥, 𝑦, 𝑧, 𝜙, 𝜃, 𝜓}, where RMSE for the position subsystems is chosen as RMSE  = ∑ ℐ∈{ , , } , and the RMSE for the rotation subsystems is selected as RMSE = ∑ ℐ∈{ , , }  

 
Figure IV.4. Quadrotor attitude response controlled with BC, FOBC and NNFOBC (Case 1). 

 



Chapter IV: Control for QUAV Using Fractional-Order Non-
linear Controller 
 

 

 

 
74 

 
 

Figure IV.5.  3D space for the quadrotor with BC (a), FOBC (b), NNFOBC (c) against 
external forces (Case 1). 

 
Figure IV.6. Control input of NNFOBC (Case 1). 

Case 1: Stability performances under external forces  

This case  investigates the quadrotor system stability under external disturbances.The wind 

disturbance is considered in the form of multiplication of three sine waves with different 

frequencies. The chosen trajectory is outlined.The desired trajectory is defined as: 𝑦 = 0𝑚, 
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𝑦 = 0𝑚, 𝑦 = 2.5𝑚, 𝑦 = 0𝑟𝑎𝑑. The initial conditions (position,rotation,position 

velocity,rotation velocity)of the quadrotor is set to be : 

⎩⎨
⎧ 𝑥 = 0𝑚 𝑦 = 0𝑚 𝑧 = 2𝑚𝜙 = 0𝑟𝑎𝑑 𝜃 = 0𝑟𝑎𝑑 𝜓 = 0𝑟𝑎𝑑�̇� = 0𝑚/𝑠�̇� = 0𝑟𝑎𝑑/𝑠 �̇� = 0𝑚/𝑠�̇� = 0𝑟𝑎𝑑/𝑠 �̇� = 0𝑚/𝑠�̇� = 0𝑟𝑎𝑑/𝑠 

This case aims stabilizing the quadrotor at a definite chosen attitude, so that the quadrotor 

be able to fly at a fixed point. The responses of the angles attitude with three controllers BC, 

FOBC and  NNFOBC is presented in figure. (IV.4).The numerical outcomes for QUAV 

stabilization in 3D are showed in Figure (IV.6). From figure s (IV.6) and( IV.5), the BC and 

FOBC are powerless to stabilize the quadrotor successfully under external forces. Whereas, 

the proposed controller (NNFOBC) strongly handles external disturbances and maintains 

flight capability and neglecting tracking errors. Figure. (IV.6) shows the input signals. It is 

shown that the input signal has a smooth variation. 

 

Figure IV.7. Quadrotor attitude response controlled by BC,FOBC and NNFOBC (Case 2). 
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Figure IV.8.  3D space with BC (a), FOBC (b) and NNFOBC (c) controllers and comparison 

between them (d) with external forces (Case 2). 

 

    

Figure IV.9. Control inputs of NNFOBC (Case 2). 

 
Case2: trajectory tracking performances against external disturbances 
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This scenario shows the ability of the quadrotor to follow the designed trajectory and its 

robustness against wind disturbances which are imposed on the quadrotor at 𝑡 > 30𝑠. The 

desired trajectory 8-shape trajectory with altitude 𝑦 = 4𝑚, 𝑦 = 0.5𝑟𝑎𝑑 is generated using 

the following command: 

 

 𝑦 = 0𝑚, 𝑡 < 10𝑠cos ∗ 𝑡 𝑚, 10𝑠 ≤ 𝑡 < 60𝑠    ,  𝑦 = 0𝑚, 𝑡 < 10𝑠−sin ∗ 𝑡 𝑚, 10𝑠 ≤ 𝑡 < 60𝑠 

 

The initial conditions (position,rotation,position velocity,rotation velocity) of the quadrotor  

are:           ⎩⎨
⎧ 𝑥 = 0𝑚 𝑦 = 0𝑚 𝑧 = 2𝑚𝜙 = 0𝑟𝑎𝑑 𝜃 = 0𝑟𝑎𝑑 𝜓 = 0𝑟𝑎𝑑�̇� = 0𝑚/𝑠�̇� = 0𝑟𝑎𝑑/𝑠 �̇� = 0𝑚/𝑠�̇� = 0𝑟𝑎𝑑/𝑠 �̇� = 0𝑚/𝑠�̇� = 0𝑟𝑎𝑑/𝑠 

Figures (IV.7) and (IV.8) present the attitude angles response and The 8-shape trajectory 

tracking 3D, respectively. It is observed that  the proposed NNFOBC control and the 

comparative BC and FOBC control the attitude angles converge to their references but severe 

deviations are noticeable  under  external disturbances with the control BC we observe the 

most deviation on the reference path  than the FOBC control. But the NNFOBC can provide a 

better performance. It is demonstrated that NNFOBC capable to deal successfully against 

external disturbances and providing significant tracking performance.  
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Figure IV.10. Quadrotor attitude response controlled performed by BC, FOBC and NNFOBC 

(Case3) 

 
  

Figure IV.11. 3D space with BC (a) ,FOBC (b) and NNFOBC (c) controllers and comparison 
between them (d) with external disturbances and uncertainties of the inertia(Case 3). 
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Figure IV.12. Control inputs of NNFBC (Case 3) 

 
Case 3: trajectory tracking performances with external disturbances and uncertainties of the 

inertia. 

The QUAV is supposed in hovering case and tracking space circle trajectory on 3D.The 

considered space circle trajectory is specified as:   

𝑦 = 0𝑚, 𝑡 < 10𝑠cos ∗ 𝑡 𝑚, 10𝑠 ≤ 𝑡 < 60𝑠 ,𝑦 = 0𝑚, 𝑡 < 10𝑠sin ∗ 𝑡 𝑚, 10𝑠 ≤ 𝑡 < 60𝑠  

 

For the studied quadrotor, the positions and angles values initially set to zero. We 

summarize the inertias uncertainties adopted to confirm the robustness of the designed control 

approach as ∆𝐼𝓍 = 0.5𝐼 , ∆𝐼 = 0.5𝐼  and ∆𝐼 = 0.5𝐼  applied at different times  at 𝑡 ≥12𝑠 , 𝑡 ≥ 14𝑠, 𝑡 ≥ 16𝑠 for 𝐼𝓍 , 𝐼 , 𝐼 , respectively. The achieved outcomes are represented in 

figures (IV.10), (IV.11) and (IV.12).Figure (IV.10) shows the attitude angles response when 

the parametric variations are introduced. Whereas, we observe that the NNFOBC provided the 

best converge with the reference trajectories compared to the BC and FOBC techniques. 

Figure (IV.12)  shows the quadrotor position and orientation over its flight in 3D, from which 

the controller showed a remarkable immunization over parameters change, such as, the closed 
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loop dynamics stability that proves the designed control approach robustness. From figure 

IV.12, it is clearly, the inputs signal illustrates a smooth variation.  

 
Figure IV.13. Quadrotor attitude response controlled performed by NNFOBC (Case4). 

 

Figure IV.14. Quadrotor attitude response controlled performed by NNFOBC (Case4). 
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Figure IV.15. 3D space with NNBC (a) , NNFOBC (b) controllers and comparison between 

them (c) with external disturbances and uncertainties of the inertia (Case 4) 

 

 Figure IV.16. Control inputs of NNFOBC (Case 4). 
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Case 4. Comparison study (NNFOBC-NNBC) with external disturbances and uncertainties of 

the inertia. 

For further verifying the proposed NNFOBC performances, a comparison with the 

classical adaptive neural network  backstepping (NNBC) are conducted. Where, the NNBC 

combining a (RBFNN) approximator and classical BC. The desired trajectory of the quadrotor 

is made as: 𝑦 = 0.05(𝑡 + 2)𝑚, 𝑦 = 0.4𝑟𝑎𝑑 

 

𝑦 = 0𝑚, 𝑡 < 10𝑠cos 𝜋10 ∗ 𝑡 𝑚, 10𝑠 ≤ 𝑡 < 60𝑠 𝑦 = 0𝑚, 𝑡 < 10𝑠sin 𝜋10 ∗ 𝑡 𝑚, 10𝑠 ≤ 𝑡 < 60𝑠 

 

The initial position and rotation values of the quadrotor all through this simulation are the 

same adopted in case 3. Figure (IV.13– IV.16) shows the simulation results for this case. 

Figures (IV.14) shows how the quadrotor's attitude changes during the simulation. The 

trajectory tracking performance in 3D space is shown in figure (IV.15), where the position of 

the quadrotor response is depicted. The transients of the control inputs are shown in figure 

(IV.16) which illustrates the smooth control signals.  

We discover that NNFOBC has the quickest dynamic reaction overall performance and 

maximum position tracking precision over the disturbances and inertial uncertainties, these 

last are the same than case 3. Therefore, it is verified that the NNFOBC outperforms the 

NNBC. Additionally, FO calculations are used to add flexibility in tuning parameters and 

advance control performance. In short, the application of NNFOBC to quadrotor system is 

effective and feasible, it possesses the highest position tracking accuracy and the fastest 

dynamic performance compared with the other three controllers (BC, FOBC, NNBC). 

Moreover, it can be further concluded that the introduction of FO calculus can make the 

performance better. From the preceding figures it is not possible to see the differences 

between the controllers. For further investigation of the designed controller’s performances 

and get a closer sight on the profound characteristics, RMSE and the maximum absolute 

values of the tracking errors (MaxAE) were calculated for these cases. Table (IV.2) presents 

RMS and MaxAE results for BC, FOBC, NNBC and the proposed NNFOBC. 
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Table IV.2. RMSE and MaxAE values of BC, FOBC, NNBC and the proposed NNFOBC. 

 

IV.7 Conclusion 

In this chapter, we confirmed the efficiency of the developed NNFOBC to surmount the 

problems in unknown nonlinear dynamics, parametric uncertainty and external disturbances 

for QUAV model.  We considered a classical BC to control the quadrotor then we suggested a 

FOBC, which based on a FO stabilizing function to produce the suitable control signal, which 

leads to better response speed and decreases steady-state error. We designed a NNFOBC to 

deal with unknown system. As a final point, according the Lyapunov stability hypothesis, we 

derived an adaptive estimation laws for the NNFOBC. The performance evaluation of the 

proposed NNFOBC illustrated the robustness under parametric uncertainties, unknown 

system and external disturbances. 

 

  

 

Controllers 

 

Subsystem 

 

RMSE MaxAE 

case 1 case 2 case 3 case4 case 1 case 2 case 3 case 4 

BC Rotation(rad) 

Position(m) 

0.0520 0.4277 

0.006 0.542 

0.0192 0.346 

/ 0.111 0.9036 

0.0231 0.855 

0.041 0.834 

/ 

FOBC 

 

Rotation(rad) 

Position(m) 

0.0035 
 0.369 

0.0014 
 0.507 

0.20 0.0038 

/ 0.0092 0.118 

0.007 0.638 

0.009   0.817 

/ 

NNBC Rotation (rad) 

Position(m) 

/ / / 0.018 0.02 

/ / / 0.007   0.615 
NNFOBC Rotation (rad) 

Position(m) 

0.0043 
 0.081 

2.98× 10  0.0164 

1.85× 10  0.0164 

2× 10  0.024 

0.0044 0.0164 
0.0114 0.1167 

8.65× 10  0.5094 

9× 10  0.7094 
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Conclusion 

 

Because of their exceptional battle capability in distant area even in critical environment, 

QUAVs have been widely adopted in various fields. Nevertheless, due to the complexity of 

QUAV structures, modeling error among the adopted perfect model might occur, leading to 

system uncertainties in QUAV systems. Otherwise, as the flight setting of QUAVs is 

continuously varying, the consistency of the flight control systems is at risk to external 

disturbances. System uncertainties and external disturbances will not solely decrease the flight 

control performance of the QUAV system but could be unstable and unsafe and subsequently 

dangerous. Besides, backstepping and sliding mode control with their related control 

techniques are more appropriate designs to control the quadcopter system. Hence, the study of 

the high order sliding mode control techniques with efficient robustness to uncertainties and 

external disturbances on the flight QUAV control performances is mandatory to get better the 

tracking performance that becoming the main issue to be adopted in the investigation of hover 

control methods for quadrotor system. The uncertainties and external disturbances are 

considered, and the variation of drag coefficient problems is less taken in the conventional 

scheme of flight control schemes for QUAV system. As a solution, using the fractional 

calculus and sliding mode control or backstepping approaches guiding to enhance the rapidity 

of the response and increase the convergence of states. Thus, a robust fractional order control 

among the key solutions for investigate on advanced approaches of flight control of QUAV 

systems, robust fractional-order control is also one of the main solutions to deal with such 

disturbance but the problem is its difficulty to use in the design of QUAVs control techniques. 

 

In this thesis, external disturbances, QUAV system uncertainties and unknown nonlinear 

dynamics are taken into account to propose a robust flight control techniques. Below we 

resume the main contributions an research results: 

1. This thesis explores histories and the motivation of QUAVs control, such as the 

literatures of recent investigations of current control approaches, adaptive control 

techniques, and the control using fractional-order theories. 
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2. A model of six degrees of freedom rigid body is considered by the use of the 

Newton-Euler theory. Next, the key moments and forces performing on QUAVs 

are adopted. Moreover, the wind effect was investigated and included into the 

main multi–rotor model. The outcoming equations are nonlinear which 

complicate the direct application of the synthesis of control and estimation 

algorithms. To defeat this difficulty, a number of simplifications were used to 

advance reasonably simple control laws for application purposes. Generally, the 

QUAV system is expressed in state space outline to demonstrate the controls and 

wind effects. Considering, this state space version, the control laws and algorithm 

evaluation are calculated. 

3. The advance of an intelligent adaptive control approach which divided into two                 

different parts: the attitude subsystem control. Firstly, the adaptive Fuzzy-  neural 

network (FNN) is considered to approximate unknown dynamic functions for 

every subsystem that that constitute the system. Secondly, this approximation to 

be used with a backstepping procedure to carry out the desired. Furthermore, the 

developed controller can rapidly and perfectly follow the quadrotor path, the 

asymptotic of the closed-loop system stability is guaranteed. This nonlinear 

approach ensured the tracking errors convergence.  

4. Designing a new controller, a combination of the nonlinear function 

approximation capability of fuzzy system and Chebyshev network are introduced 

at the same time in sliding mode continuous controller to design a robust adaptive 

control scheme.For eliminating the chattering effect of classical SMC technique, 

second order sliding mode(SOSMC) control is applied as well to deal with the 

approximation error, parameters uncertainties and external disturbances. Finally, 

the simulation results demonstrate that the approaches cover an extremely high 

resistance to perturbations. 

5. The tracking control approach named NNFOBC based fractional order (FO) 

backstepping controller (BC) and neural networks (NNs) for QUAV is proposed . 

NNFOBC will lead to a strong robustness and high tracking accuracy. FO 

backstepping controller (FOBC) is employed to decrease uncertainties and 

disturbances effect. Adaptive RBFNN approximator of unknown dynamics and a 

local robust control term are incorporated to ensure a robust tracking 

convergence. NNFOBC be able to successfully improve the control performance 
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of the classical BC. it doesn’t require perfect mathematical system dynamics 

information.The method is able to maintain best performance of the QUAV even 

in the presence of unknown dynamics, parametric uncertainties and external 

disturbance.  

6. Lastly, results show proved the efficacy of the proposed approachs  in 

comparison with some  robust techniques. Where the method is able to maintain 

best performance of the QUAV even in the presence of unknown dynamics, 

parametric uncertainties and external disturbance. 

Future research prospect 

In this work, the developed flight control of a QUAV has been investigated, by focusing on 

the control problem of a dynamics model of a QUAV over parametric uncertainties, external 

disturbances and the unknown dynamics problem, , and various research results have been 

carried out. Though, because the time and capacity constraints, it is remain a lot to be 

explored and mastered in the advanced finite time flight control system of quadrotors: 

1. Regarding the multirotor model, the formulation of the candidate model to be further 

enriched with the addition of a number of fundamental ignored terms that are not 

tested or validated in this study. Otherwise, the four motors that drive the quadcopter 

have a number of differences due to the manufacturing procedure. 

2. Every approaches advanced in this thesis have been confirmed by simulation results. 

Hence, an experimental confirmation should be carried out to validate the simulation 

results. 

3. In addition, as prospect work, fault diagnosis and fault tolerant control algorithm of 

multi–rotor systems for quadrotor with actuator fault to be investigated and designed. 

The idea is when faults happen in the actuator of multi-rotor, a nonlinear observer 

based on RBFNN or another controller that will be designed to assess the fault 

information. Once the fault information is achieved, an adaptive controller is 

considered to control the quadrotor to attain the preferred path.  
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