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A dynamic learning method is developed for an uncertain 𝑛-link robot with unknown system dynamics, achieving predefined
performance attributes on the link angular position and velocity tracking errors. For a known nonsingular initial robotic
condition, performance functions and unconstrained transformation errors are employed to prevent the violation of the full-state
tracking error constraints. By combining two independent Lyapunov functions and radial basis function (RBF) neural network
(NN) approximator, a novel and simple adaptive neural control scheme is proposed for the dynamics of the unconstrained
transformation errors, which guarantees uniformly ultimate boundedness of all the signals in the closed-loop system. In the steady-
state control process, RBF NNs are verified to satisfy the partial persistent excitation (PE) condition. Subsequently, an appropriate
state transformation is adopted to achieve the accurate convergence of neural weight estimates. The corresponding experienced
knowledge on unknown robotic dynamics is stored in NNs with constant neural weight values. Using the stored knowledge, a static
neural learning controller is developed to improve the full-state tracking performance. A comparative simulation study on a 2-link
robot illustrates the effectiveness of the proposed scheme.

1. Introduction

In the past decades, the force/position tracking control
problem of robots has attracted wide attention in both theory
and applications [1, 2]. In the early stage of robotic tracking
control, the systemmodel is usually assumed to be accurately
known, and the corresponding model-based control method
has been proposed in [3, 4]. Along with the diversity of
robot working environment and the complexity of the robot’s
structure, the force/position tracking control has been stud-
ied in different kinds of uncertainties. Nowadays, ignoring
uncertainties to simplify control design may cause the large
steady-state errors or/and poor transient response [5]. For the
case of parametric uncertainties, adaptive controlmethod has
been presented in [6, 7] to make robots adapt the changing
control environment. In order to enhance system robustness
on the uncertain parameters in the presence of external
disturbances, sliding mode control [8, 9] has been proposed
to obtain the desired robotic tracking control performance.
Owing to the universal approximation property [10–17],

a great number of intelligent control schemes, such as adap-
tive neural/fuzzy control, have been developed for controlling
robotic systems with uncertain nonlinearities [18–22].

Although intelligent control of robotic systems has
attracted considerable attention in the past few years, rela-
tively few robot control methods could achieve human-like
performance in a dynamic and uncertain environment. It
is well known that intelligent control was initially inspired
by the learning and control abilities of human beings, thus
intelligent control should at least possess the aforemen-
tioned properties “learning by doing” and “doing with the
learned knowledge” [23–26]. But most existing intelligent
control schemes can only ensure the stability of closed-
loop systems without being able to achieve the information
acquisition and storage and utilization of unknown system
dynamics. This means that the existing intelligent control
schemes do not solve the accurate convergence of estimated
parameters, which usually needs to guarantee the exponential
stability of the derived closed-loop system. However, it is
extremely difficult for uncertain nonlinear systems to verify
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the exponential stability of the derived closed-loop system.
Recently, a deterministic learning method was proposed in
[27] using RBF NNs for a second-order Brunovsky system,
where the derived closed-loop system was described by
a class of linear time-varying systems. By verifying that
RBF NNs satisfied persistent excitation (PE) condition, the
convergence of partial neural weights and accurate neural
approximation of unknown system dynamics were guar-
anteed in [27] because of the exponential convergence of
the derived linear time-varying closed-loop systems. The
deterministic learning method was further extended to 𝑛th-
order Brunovsky systems with an unknown affine/nonaffine
term [28, 29], where the derivative of unknown affine terms
was assumed to be bounded. By combining backstepping
with a system decomposition strategy, an elegant dynamic
learning method was proposed to cope with the learning
and control problem of third-order strict-feedback systems
[30]. By combining dynamic surface control technology [31],
the result in [30] was further extended to 𝑛th-order strict-
feedback systems. The deterministic learning method was
also applied in many physical systems such as marine surface
vessels [32, 33] and robot manipulators [34].

Recently, the deterministic learning methods are mainly
used to solve the learning and control problem for single
input single output nonlinear systems without any constraint.
In practice, there are many different kinds of constraints in
most of physical systems, such as output or state constraints,
tracking performance constraints. The violation of the con-
straints may cause severe performance degradation, safety
problem, or system damage [35]. Therefore, it is of great
importance for solving the control and learning problem of
constrained systems. Based on Lyapunov theorem, a barrier
Lyapunov function (BLF) method has been presented to
solve output constraints for strict-feedback nonlinear systems
[36], output feedback nonlinear systems [37], flexible sys-
tems [38], and robotic manipulator [35, 39]. The BLF-based
methods were also extended to solve state constraints [40–
42]. Although the aforementioned results on the output or
state constraints can guarantee that system outputs or states
converge to a predefined bounded set, the predefined per-
formance requirements on the convergence rate, maximum
overshoot, and steady-state error have not been studied fully.
Thepredefined performance issue is an extremely challenging
problem. Recently, adaptive neural prescribed performance
controller was proposed in [43, 44] for feedback linearizable
nonlinear systems by means of transformation functions.
The proposed method was also developed to deal with
the constrained output tracking control problem in many
applications such as robotic systems [45], nonlinear servo
mechanisms [46], marine surface vessels [33], nonlinear
stochastic large-scale systems with actuator faults [47], and
switched nonlinear systems [48]. To solve partial tracking
error constraints, a fuzzy dynamic surface control design was
developed in [49, 50] for a class of strict-feedback nonlinear
systems by transforming the state tracking errors into new
virtual variables. However, the existing control schemes, such
as [35–51], can only guarantee the stability of closed-loop
systems with different constraints, which are not capable of
achieving the learning of unknown system dynamics. The

main reason is that the derived closed-loop error system is
extremely complex, such that its exponential convergence
is difficult to be verified using the existing stability analysis
tools. To solve this problem, a neural learning control with
the output tracking error constraint was presented in [52, 53]
for a class of nonlinear systems. These methods proposed in
[52, 53] cannot be adopted to deal with the dynamic learning
problem for multi-input and multioutput nonlinear systems
with full-state tracking error constraints.

Based on the above discussions, this paper proposes a
novel dynamic learning method for a multi-input and multi-
output 𝑛-link robot with full-state tracking error constraints
and a mild assumption. To prevent the violation of the full-
state tracking error constraints, performance functions are
firstly introduced to characterize the transient and steady-
state performance of full-state tracking errors. And then,
using a nonlinear transformation method, the constrained
tracking control problem is effectively transformed into the
stabilization problem of equivalent unconstrained transfor-
mation error systems. By combining backstepping and Lya-
punov stability, a novel adaptive neural control scheme is pro-
posed to guarantee the uniformly ultimate boundedness of
all closed-loop signals and the prescribed full-state tracking
error performance. It should be pointed out that the proposed
control scheme is different from the traditional backstepping
design. In our control design, the correlative interconnection
term can not be compensated in next step of backstepping
design because of the full-state tracking error constraints. To
overcome the difficulty, two independent Lyapunov functions
are constructed in each step of backstepping design. Based
on the independent Lyapunov functions, the unconstrained
transformation error of the link angular velocity tracking
error is firstly proved to be bounded, and the corresponding
link angular velocity tracking error is further proved to satisfy
the prescribed performance. Invoking the boundedness of the
link angular velocity tracking error, we backward derive the
link angular position tracking error to satisfy the prescribed
performance. By means of the tracking convergence in the
steady-state control process, the regression subvector consist-
ing of the RBFs along the recurrent tracking orbit satisfies
the partial PE condition. Subsequently, an appropriate state
transformation is introduced to transform the closed-loop
system into a linear time-varying (LTV) system with small
perturbed terms. With the perturbation theory of LTV
system, the knowledge of the closed-loop robotic dynamics
can be accurately stored by RBF NNs with constant weight
values.The stored knowledge can be reused to develop a static
neural learning controller for achieving the better control
performance with smaller transient-state tracking errors,
smaller control gains, and less computational time.

The rest of this paper is organized as follows. Section 2
introduces the system formulation, the full-state tracking
error transformation, and some useful preliminaries about
RBF networks. In Section 3, a novel adaptive neural con-
trol design is proposed for rigid robotic manipulators with
constrained full-state tracking performances.Neural learning
control is developed in Section 4, which achieves the knowl-
edge acquisition, storage, and utilization of unknown robotic
dynamics. In Section 5, simulation studies on 2-link robotic
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system are given to show the effectiveness of the proposed
method. Section 6 includes the conclusions of the paper.

2. Problem Formulation and Preliminaries

2.1. Uncertain Robotic System. The dynamics of an 𝑛-link
robotic system is described in the following Lagrange form
[1]:

𝑀(𝑞) ̈𝑞 + 𝑉𝑚 (𝑞, ̇𝑞) ̇𝑞 + 𝐺 (𝑞) + 𝐹 ( ̇𝑞) + 𝑑 (𝑡) = 𝜏, (1)

where 𝑞, ̇𝑞, ̈𝑞 ∈ 𝑅𝑛 are the angular position, velocity, and
acceleration, respectively, 𝜏 ∈ 𝑅𝑛 refers to the input torque,𝑀(𝑞) ∈ 𝑅𝑛×𝑛 is an unknown symmetric positive definite
inertia matrix, 𝑉𝑚(𝑞, ̇𝑞) ∈ 𝑅𝑛×𝑛 denotes unknown centripetal
and Coriolis torques, 𝐺(𝑞) ∈ 𝑅𝑛 is an unknown gravitational
force vector, 𝐹( ̇𝑞) ∈ 𝑅𝑛 is an unknown friction vector, and𝑑(𝑡) ∈ 𝑅𝑛 denotes unknown disturbances,

Property 1 (see [54]). The matrix 𝑀̇(𝑞) − 2𝑉𝑚(𝑞, ̇𝑞) is skew-
symmetric.

Assumption 1. The unknown external disturbance 𝑑(𝑡) is
bounded, that is, there exists a constant 𝑑∗ ∈ 𝑅+ such that‖𝑑(𝑡)‖ < 𝑑∗.

In this paper, we choose 𝑦𝑑 = 𝑥𝑑1 ∈ 𝑅𝑛 as a recurrent
reference trajectory of the angular position 𝑞, which is
generated by the following reference model:

𝑥̇𝑑1 = 𝑥𝑑2,
𝑥̇𝑑2 = 𝐹𝑑 (𝑥𝑑) , (2)

where 𝑥𝑑 = [𝑥𝑇𝑑1, 𝑥𝑇𝑑2]𝑇 ∈ 𝑅2𝑛 is the state vector of the
reference model, which is assumed to be recurrent signals,
and 𝐹𝑑(𝑥𝑑) is a known smooth function. The reference orbit
along the given initial condition 𝑥𝑑(0) is defined as 𝜑𝑑(𝑥𝑑(0)).
In this paper, 𝜑𝑑(𝑥𝑑(0)) is assumed to be a recurrent motion.

2.2. Full-State Tracking Constraints. Define full-state tracking
errors as 𝑒1 = 𝑞 − 𝑦𝑑 = [𝑒11, 𝑒12, . . . , 𝑒1𝑛]𝑇 ∈ 𝑅𝑛 and𝑒2 = 𝑥2 − 𝛼1 = [𝑒21, 𝑒22, . . . , 𝑒2𝑛]𝑇 ∈ 𝑅𝑛, where 𝛼1 ∈𝑅𝑛 are continuously differentiable virtual control signals.
For guaranteeing the prescribed transient and steady-state
bounds of full-state tracking errors, 𝑒1 and 𝑒2 need to satisfy
the following predefined condition:

−𝛿𝑖𝑗𝜌𝑖 (𝑡) < 𝑒𝑖𝑗 < 𝛿𝑖𝑗𝜌𝑖 (𝑡) , (3)

where 𝑖 = 1, 2, 𝑗 = 1, 2, . . . , 𝑛, and 𝛿𝑖𝑗, 𝛿𝑖𝑗 are positive design
constants and 𝜌𝑖(𝑡) is a smooth, strictly positive, bounded,
and decreasing function, which satisfies lim𝑡→∞𝜌𝑖(𝑡) > 0 and
is called performance function. In this paper, 𝜌𝑖(𝑡) is chosen
as the following exponential performance function:

𝜌𝑖 (𝑡) = (𝜌𝑖0 − 𝜌𝑖∞) 𝑒−𝜅𝑖𝑡 + 𝜌𝑖∞, ∀𝑡 ≥ 0, (4)

where 𝜌𝑖0, 𝜌𝑖∞ and 𝜅𝑖 are positive design constants.

For any given initial condition 𝑒𝑖(0), these design con-
stants 𝜌𝑖0, 𝛿𝑖𝑗 and 𝛿𝑖𝑗 can be chosen appropriately such
that 𝑒𝑖(0) satisfies the predefined condition (3). From (3)
and (4), the different selection of these design parameters,𝜌𝑖0, 𝜌𝑖∞, 𝜅𝑖, 𝛿𝑖𝑗 and 𝛿𝑖𝑗, can obtain different performance
requirements on the tracking error 𝑒𝑖𝑗.
2.3. RBF Neural Networks. The RBF NNs can be described
by 𝑓nn(𝑍) = 𝑊𝑇𝑆(𝑍), where 𝑍 ∈ Ω𝑍 ⊂ 𝑅𝑞 are NN
input variables with 𝑞 > 1 being NN input dimension andΩ𝑍 being a compact set, 𝑊 = [𝑤1, . . . , 𝑤𝑁]𝑇 ∈ 𝑅𝑁 is the
weight vector, 𝑁 > 1 is the NN node number, and 𝑆(𝑍) =[𝑠1(‖𝑍 − 𝜇1‖), . . . , 𝑠𝑁(‖𝑍 − 𝜇𝑁‖)]𝑇 is the radial basis function
vector. The RBF neural networks have the following desired
properties.

(1) Universal Approximation

Lemma 2 (see [55]). Using sufficiently large node number𝑁,
the RBF NNs𝑊𝑇𝑆(𝑍) can approximate any smooth function𝑓(𝑍) : Ω𝑍 → 𝑅𝑞 over a compact set Ω𝑍 to any arbitrary
accuracy as

𝑓 (𝑍) = 𝑊∗𝑇𝑆 (𝑍) + 𝜂 (𝑍) , (5)

where𝑊∗ is the ideal weight vector of𝑊 and 𝜂(𝑍) is any small
approximation error which satisfies |𝜂(𝑍)| ≤ 𝜂∗.
(2) Spatially Localized Approximation Property. It should be
noted that the radial basic function satisfies 𝑠𝑖(‖𝑍 − 𝜇𝑖‖) →0 when ‖𝑍 − 𝜇𝑖‖ → ∞. This property shows that the
network output is only locally affected by each basis function.
Therefore, any smooth function 𝑓(𝑍) over a compact set Ω𝑍
can be approximated using a limited number of neurons,
which are located in a local region along bounded input
trajectory 𝑍:

𝑓 (𝑍) = 𝑊∗𝑇𝜁 𝑆𝜁 (𝑍) + 𝜂𝜁 (𝑍) , (6)

where 𝑆𝜁(𝑍) ∈ 𝑅𝑁𝜁 , 𝑁𝜁 < 𝑁 is the subvector of 𝑆(𝑍), com-
posed of RBFs that are close to the trajectory 𝑍,𝑊∗𝜁 ∈ 𝑅𝑁𝜁
is the corresponding subvector of 𝑊∗, and approximation
errors 𝜂𝜁(𝑍) = 𝜂(𝑍) −𝑊∗𝑇𝜁 𝑆𝜁(𝑍), 𝜁 are defined as the region
far away from the trajectory 𝑍, which means ‖𝑆

𝜁
(𝑍)‖ → 0.

Therefore, 𝜂𝜁(𝑍) is close to 𝜂(𝑍), which is any small value.

(3) Partial PE Condition. Persistent excitation plays a key role
in accurate convergence of neural weight estimator. To clearly
show that RBFNNs satisfy the PE property, a definition of PE
condition is given as follows:

Definition 3 (see [55]). A continuous, uniformly bounded,
vector-valued function 𝑆 : [0,∞] → 𝑅𝑚 is said to satisfy
the persistent excitation condition, if there exist positive
constants 𝛼1, 𝛼2, and 𝛿 such that

𝛼1 ‖𝑐‖2 ≤ ∫𝑡0+𝜎
𝑡0

󵄨󵄨󵄨󵄨󵄨𝑆 (𝜏)𝑇 𝑐󵄨󵄨󵄨󵄨󵄨2 𝑑𝜇 (𝜏) ≤ 𝛼2 ‖𝑐‖2 , ∀𝑡0 ≥ 0, (7)
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holds for every constant vector 𝑐 ∈ 𝑅𝑁, where 𝜇 is a positive,∑ -finite Borel measure on [0,∞].
Lemma 4 (see [27]). Consider any recurrent orbit 𝑍 ∈ 𝑅𝑞,
remaining in a compact set Ω𝑍 with Ω𝑍 ⊂ 𝑅𝑞. Then, for the
RBF network𝑊𝑇𝑆(𝑍) with centers placed on a regular lattice,
which is large enough to cover the compact setΩ𝑍, the regressor
subvector 𝑆𝜁(𝑍) in (6) (rather than the entire regressor vector𝑆(𝑍)) is persistently exciting.
3. Adaptive Neural Control with Full-State
Tracking Error Constraints

In this section, a novel stable adaptive neural tracking control
scheme will be developed for the system (1) with full-
state tracking error constraints (3) using nonlinear error
transformations, independent Lyapunov functions, and back-
stepping.The proposed control scheme will guarantee that all
the signals in the closed-loop system are ultimately bounded
and the full-state tracking errors satisfy the prescribed per-
formances (3).

In order to transform the constrained tracking control
problem (3) into an equivalent unconstrained one, a perfor-
mance transformation method is introduced as follows:

𝑒𝑖𝑗 = 𝜌𝑖 (𝑡) 𝑇𝑖𝑗 (𝜍𝑖𝑗) , (8)

where𝑇𝑖𝑗(𝜍𝑖𝑗) is a smooth and strictly increasing function and
satisfies 𝑇𝑖𝑗(⋅) : (−∞,∞) → (−𝛿𝑖𝑗, 𝛿𝑖𝑗). In this paper, the
transformation function 𝑇𝑖𝑗(𝜍𝑖𝑗) is constructed as follows:

𝑇𝑖𝑗 (𝜍𝑖𝑗) = 𝛿𝑖𝑗𝑒
𝜍𝑖𝑗 − 𝛿𝑖𝑗𝑒−𝜍𝑖𝑗𝑒𝜍𝑖𝑗 + 𝑒−𝜍𝑖𝑗 . (9)

Owing to the properties 𝑇𝑖𝑗(𝜍𝑖𝑗) and 𝜌𝑖(𝑡) ≥ 𝜌𝑖∞ > 0, the
inverse transformation of 𝑇𝑖𝑗(𝜍𝑖𝑗) exists and is well defined as
follows:

𝜍𝑖𝑗 = 𝑇−1𝑖𝑗 [ 𝑒𝑖𝑗𝜌𝑖 (𝑡)] . (10)

From (3) and (10), if 𝜍𝑖𝑗 is verified to be bounded, then we can
obtain that 𝑒𝑖𝑗 satisfies the predefined error performance (3).
Differentiating 𝜍𝑖𝑗 yields

̇𝜍𝑖𝑗 = 𝑟𝑖𝑗 [ ̇𝑒𝑖𝑗 − ̇𝜌𝑖 (𝑡)𝜌𝑖 (𝑡) 𝑒𝑖𝑗] , (11)

where 𝑟𝑖𝑗 = 𝜕𝑇−1𝑖𝑗 [𝑒𝑖𝑗/𝜌𝑖(𝑡)]/[𝜌𝑖(𝑡)𝜕(𝑒𝑖𝑗/𝜌𝑖(𝑡))]. Next, define
the transformed unconstrained error vector 𝜉𝑖 = [𝜍𝑖1, 𝜍𝑖2, . . . ,𝜍𝑖𝑛]𝑇 ∈ 𝑅𝑛, 𝑖 = 1, 2. It follows from (11) that

̇𝜉𝑖 = Υ𝑖 ( ̇𝑒𝑖 − Ψ𝑖𝑒𝑖) , (12)

where Ψ𝑖 = ̇𝜌𝑖(𝑡)/𝜌𝑖(𝑡) and Υ𝑖 = diag{𝑟𝑖1, 𝑟𝑖2, . . . , 𝑟𝑖𝑛} ∈ 𝑅𝑛×𝑛.
Notice that 𝑒1 = 𝑞 − 𝑦𝑑 and 𝑒2 = ̇𝑞 − 𝛼1, using system (1),
and thus the dynamics of the transformed error vector can be
rewritten as

̇𝜉1 = Υ1 (𝑒2 + 𝛼1 − 𝑥𝑑2 − Ψ1𝑒1) , (13)

̇𝜉2 = Υ2𝑀−1 (𝑞) [𝐹 (𝑞, ̇𝑞, 𝜗) + 𝜏 − 𝑑 (𝑡)] , (14)

where 𝐹(𝑞, ̇𝑞, 𝜗) = −𝑉𝑚(𝑞, ̇𝑞) ̇𝑞 − 𝐺(𝑞) − 𝐹( ̇𝑞) − 𝑀(𝑞)𝜗 is
an unknown smooth function vector and 𝜗 = 𝛼̇1 + Ψ2𝑒2
is a computable variable. Next, a control scheme will be
developed for the system (13)-(14) based on backstepping.

Step 1. For the transformed error subsystem (13), design a
virtual control

𝛼1 = −𝑘1𝜉1 + 𝑥𝑑2 + Ψ1𝑒1. (15)

Then, we have

̇𝜉1 = Υ1 (𝑒2 − 𝑘1𝜉1) , (16)

where 𝑘1 = 𝑘10 + 𝑘11 with 𝑘10 > 0 and 𝑘11 > 0.
Constructing the following Lyapunov function candidate:

𝑉1 = 𝜉𝑇1 𝜉12 (17)

whose derivative along (16) yields

𝑉̇1 = −𝑘1𝜉𝑇1Υ1𝜉1 + 𝜉𝑇1Υ1𝑒2. (18)

Remark 5. From (18), the boundedness of the transformation
error 𝜉1 depends on the boundedness of the link angular
velocity tracking error 𝑒2. In the traditional backstepping
design, the term 𝜉𝑇1Υ1𝑒2 is called the correlative interconnec-
tion term, which can be usually compensated in the next
step of backstepping. However, in our control design, it is
impossible to deal with 𝜉𝑇1Υ1𝑒2 in Step 2. The main reason is
that the full-state tracking error constraints are considered in
this paper, which derives the transformation error 𝜉2 in Step 2,
instead of the traditional error 𝑒2. Therefore, it is difficult to
construct the Lyapunov 𝑉2 with 𝜉2 to compensate for 𝜉𝑇1Υ1𝑒2;
see Step 2 for details.

Step 2. By adding and subtracting Υ−12 𝑉𝑚(𝑞, ̇𝑞)𝜉2, the trans-
formed error subsystem (14) can be rewritten as

̇𝜉2 = Υ2𝑀−1 [Φ (𝑍) + 𝜏 − 𝑑 (𝑡) − Υ−12 𝑉𝑚 (𝑞, ̇𝑞) 𝜉2] , (19)

where 𝑍 = [𝑞𝑇, ̇𝑞𝑇, 𝜉𝑇2 , 𝜗𝑇]𝑇, and
Φ (𝑍) = 𝐹 (𝑞, ̇𝑞, 𝜗) + Υ−12 𝑉𝑚 (𝑞, ̇𝑞) 𝜉2. (20)

It should be pointed out that the term Υ−12 𝑉𝑚(𝑞, ̇𝑞)𝜉2 intro-
duced in (19) facilitates the stability analysis based on the
property (1). Since 𝐹(𝑞, ̇𝑞), 𝑀, and 𝑉𝑚(𝑞, ̇𝑞) are unknown
smooth function vectors,Φ(𝑍) is also unknown and smooth,
which can not directly be used to construct the controller.
To solve this problem, the unknown dynamics Φ(𝑍) are
approximated by RBF NN (5) in this paper. Then, we have

̇𝜉2 = Υ2𝑀−1 [𝑊∗𝑇𝑆 (𝑍) + 𝜂 (𝑍) + 𝜏 − Υ−12 𝑉𝑚 (𝑞, ̇𝑞) 𝜉2
− 𝑑 (𝑡)] , (21)
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where the approximation error 𝜂(𝑍) ∈ 𝑅𝑛 satisfies ‖𝜂(𝑍)‖ ≤𝜂∗ and𝑊∗ = [𝑊∗1 , . . . ,𝑊∗𝑛 ] ∈ 𝑅𝑁×𝑛 is the unknown optimal
NN weight vector with NN node number𝑁 > 1, and 𝑆(𝑍) =[𝑠1(𝑍), 𝑠2(𝑍), . . . , 𝑠𝑁(𝑍)]𝑇 ∈ 𝑅𝑁 is a radial basis function
vector. Define 𝑊̂ as the estimated weight values of𝑊∗, and
let 𝑊̃ = 𝑊̂−𝑊∗ be the corresponding estimated error.Then,
design the adaptive neural control law as

𝜏 = −𝑘20Υ−12 𝜉2 − 𝑘21Υ2𝜉2 − 𝑊̂𝑇𝑆 (𝑍) (22)

and construct the neural weight updated law as
̇̂𝑊 = ̇̃𝑊 = Γ𝑆 (𝑍) (Υ2𝜉2)𝑇 − 𝜎Γ𝑊̂, (23)

where 𝑘20 and 𝑘21 are positive design constants, Γ > 0 is
positive diagonal matrix, and 𝜎 > 0 is a small value, which
is used to improve the robustness of the adaptive controller
(22).

Substituting (22) into (21), we have
̇𝜉2 = Υ2𝑀−1 [−𝑘20Υ−12 𝜉2 − 𝑘21Υ2𝜉2 − 𝑊̃𝑇𝑆 (𝑍)
− Υ−12 𝑉𝑚 (𝑞, ̇𝑞) 𝜉2 + 𝜂] ,

(24)

where 𝜂 = 𝜂(𝑍) − 𝑑(𝑡). Noting that the inertia matrix𝑀 is
positive definite, thus we construct the following Lyapunov
function candidate:

𝑉2 = 12𝜉𝑇2𝑀𝜉2 + 12 tr [𝑊̃𝑇Γ−1𝑊̃] . (25)

In what follows, one of our main results will be shown by
the following theorem.

Theorem 6 (stability and tracking). Consider the closed-
loop system consisting of the robotic system (1), the bounded
reference trajectory (2), the full-state tracking performance
condition (3), the transformed error (10), the proposed adaptive
neural control law (22) with the virtual control law (15), and
the weight updated law (23). Assume the given bounded initial
conditions satisfy the condition (3) (this condition can be
satisfied by choosing proper designed parameters 𝛿𝑖𝑗, 𝛿𝑖𝑗, and𝜌𝑖0). Then, we have that

(1) all signals of the closed-loop system remain uniformly
ultimately bounded

(2) the constrained full-state tracking errors 𝑒𝑖𝑗 satisfy the
prescribed performance (3) and they converge to a small
residual set of zero in a finite time 𝑇.

Proof. Differentiating 𝑉2 in (25) with respect to time and
using (18), (24) yields

𝑉̇2 = 𝜉𝑇2Υ2 [−𝑘20Υ−12 𝜉2 − 𝑘21Υ2𝜉2 − 𝑊̃𝑇𝑆 (𝑍) + 𝜂]
+ 12𝜉𝑇2 (𝑀̇ − 2𝑉𝑚 (𝑞, ̇𝑞)) 𝜉2 + tr [𝑊̃𝑇Γ−1 ̇̂𝑊] .

(26)

Using the Property 1 and substituting (23) into (26), the
derivation of 𝑉2 is rewritten as

𝑉̇2 = tr [−𝜎𝑊̃𝑇𝑊̂]
+ 𝜉𝑇2Υ2 [−𝑘20Υ−12 𝜉2 − 𝑘21Υ2𝜉2 + 𝜂] .

(27)

Subsequently, using the appropriate inequality and combin-
ing Assumption 1, we have

𝜉𝑇2Υ2𝜂 ≤ 𝑘21𝜉𝑇2Υ22 𝜉2 + 𝜂
∗2

4𝑘21 ,
tr [−𝜎𝑊̃𝑇𝑊̂] ≤ −𝜎2 󵄩󵄩󵄩󵄩󵄩𝑊̃󵄩󵄩󵄩󵄩󵄩2𝐹 + 𝜎2 󵄩󵄩󵄩󵄩𝑊∗󵄩󵄩󵄩󵄩2𝐹 ,

(28)

where 𝜂∗2 = 𝜂∗ + 𝑑∗ is a positive constant. Substituting (28)
into (27) gives

𝑉̇2 ≤ −𝑘20𝜉𝑇2 𝜉2 − 𝜎2 󵄩󵄩󵄩󵄩󵄩𝑊̃󵄩󵄩󵄩󵄩󵄩2𝐹 + 𝜎2 󵄩󵄩󵄩󵄩𝑊∗󵄩󵄩󵄩󵄩2𝐹 + 𝜂
∗2

4𝑘21
≤ −𝑎2𝑉 + 𝑏2,

(29)

where 𝑎2 = min{𝑘20/𝜆max(𝑀), 𝜎𝜆min(Γ)}, 𝑏2 =(𝜎/2)‖𝑊∗‖2𝐹 + 𝜂∗2/4𝑘21. Let 𝛽2 = 𝑏2/𝑎2; we have
𝑉2 ≤ (𝑉2 (0) − 𝛽2) exp (−𝑎2𝑡) + 𝛽2. (30)

From the definition (25) of 𝑉2, the transformed error 𝜉2
and the neural weight error 𝑊̃ are bounded. Noticing that𝜉2 = [𝜍21, 𝜍22, . . . , 𝜍2𝑛]𝑇 ∈ 𝑅𝑛, and the error transformed
relationship (8)–(10), thus we obtain that the tracking error𝑒2 is bounded and satisfies the prescribed tracking error
constraints (3). This means ‖𝑒2‖ ≤ 𝛿∗, 𝛿∗ is any small value
depending on design parameters 𝛿𝑖𝑗, 𝛿𝑖𝑗, 𝜌20, and 𝜌2∞. Using
the bounded property of 𝑒2, we can obtain that

𝜉𝑇1Υ1𝑒2 ≤ 𝑘11𝜉𝑇1Υ1𝜉1 + max (𝑟𝑖1) 𝛿∗24𝑘11 . (31)

Noting 𝑘1 = 𝑘10 + 𝑘11, thus (18) can be rewritten as

𝑉̇1 ≤ −𝑘10𝜉𝑇1Υ1𝜉1 + max (𝑟𝑖1) 𝛿∗24𝑘11 ≤ −𝑎1𝑉1 + 𝑏1, (32)

where 𝑎1 = min{2𝑘10/𝜆max(Υ)}, 𝑏1 = max(𝑟𝑖1)𝛿∗2/4𝑘11.
Further, let 𝛽1 = 𝑏1/𝑎1; we have

𝑉1 ≤ (𝑉1 (0) − 𝛽1) exp (−𝑎1𝑡) + 𝛽1. (33)

Since 𝑉1 = 𝜉𝑇1 𝜉1/2, it follows from (33) that 𝜉1 is bounded.
Similarly, we can obtain that the tracking error 𝑒1 is bounded
and satisfies the prescribed tracking error constraints (3).
By combining the boundedness of 𝑥𝑑1, 𝑥𝑑2 and the deigned
bounded function Υ, Ψ1, it can be verified that 𝑞 and 𝛼1
are bounded. Because of 𝑒2 = ̇𝑞 − 𝛼1, ̇𝑞 is also bounded.
Because the desired weight 𝑊∗ is bounded, the weight
estimate 𝑊̂ is also bounded. From (22), we can verify that 𝜏
is also bounded. Hence, all closed-loop signals are uniformly
ultimately bounded.
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Moreover, from (17), (25), (30), and (33), we can obtain
the convergence region of the transformed error 𝜉1, 𝜉2 as
follows:

𝑛∑
𝑖=1

𝜍21𝑖 ≤ 2𝛽1 + 2𝑉1 (0) exp (−𝑎1𝑡) ,
𝑛∑
𝑖=1

𝜍22𝑖 ≤ 2𝛽2𝜆min (𝑀) +
2𝑉2 (0) exp (−𝑎2𝑡)𝜆min (𝑀) .

(34)

By choosing 𝜑1 > √2𝛽1 and 𝜑2 > √2𝛽2/𝜆min(𝑀), there
exists a finite time 𝑇, such that for ∀𝑡 > 𝑇 the transformed
error 𝜍𝑖𝑗 satisfies

󵄨󵄨󵄨󵄨󵄨𝜍𝑖𝑗󵄨󵄨󵄨󵄨󵄨 < 𝜑𝑖, 𝑖 = 1, 2, 𝑗 = 1, 2, . . . , 𝑛. (35)

Subsequently, the convergence region after a finite time𝑇 can
be constructed as follows:

Ω𝜍 = {𝜍𝑖𝑗 | 󵄨󵄨󵄨󵄨󵄨𝜍𝑖𝑗󵄨󵄨󵄨󵄨󵄨 < 𝜑𝑖, 𝑋𝑑 ∈ Ω𝑑} , (36)

where 𝜑 can be adjusted to be arbitrarily small if we choose
appropriate controller parameters 𝑘𝑖0, 𝑘𝑖1, and 𝜎.

From (36), the transformed error 𝜍𝑖𝑗 converges to a small
residual setΩ𝜍 in a finite time𝑇. Owing to the convergence of𝜍𝑖𝑗 and the error transformed relationship (8)–(10), the full-
state constrained tracking errors 𝑒𝑖𝑗(𝑡) satisfy (3) in a finite
time 𝑇. From (3) and (4), the tracking error 𝑒𝑖 exponentially
converges to the interval [−𝛿𝑖𝑗𝜌𝑖∞, 𝛿𝑖𝑗𝜌𝑖∞], which can be
adjusted to be a small residual set of zero by choosing the
appropriate design parameters 𝜌𝑖∞, 𝛿𝑖𝑗, 𝛿𝑖𝑗.
Remark 7. In order to verify the boundedness of transforma-
tion errors 𝜉1 and 𝜉2, two independent Lyapunov functions𝑉1
and𝑉2 are constructed in Steps 1 and 2. Using the appropriate
inequality technology, we firstly prove the transformation
error 𝜉2 is bounded. Subsequently, the boundedness of
the tracking error 𝑒2 is indirectly verified based on the
error transformed relationship (8)–(10). As indicated by the
Remark 5, the boundedness of 𝑒2 backward derives the
boundedness of the transformation error 𝜉1. Similarly, 𝑒1 can
be verified to satisfy the predefined tracking performance (3).

Remark 8. In order to verify the boundedness of transforma-
tion errors 𝜉1 and 𝜉2, two independent Lyapunov functions𝑉1
and𝑉2 are constructed in Steps 1 and 2. Using the appropriate
inequality technology, we firstly prove the transformation
error 𝜉2 is bounded. Although the boundedness of 𝜉2 depends
on 𝑊∗ in (30) which may be large, the tracking error 𝑒2
can still satisfy the prescribed performance (3) based on the
error transformed relationship (8)–(10). Subsequently, the
boundedness of 𝑒2 backward derives the boundedness of the
transformation error 𝜉1. Similarly, 𝑒1 can be verified to satisfy
the predefined tracking performance (3).

4. Neural Learning Control

Based on the stable adaptive neural control scheme developed
in Section 3, this section will use the spatially localized

approximation ability of RBF NNs to achieve the knowledge
acquisition and storage of the unknown system dynamicsΦ(𝑍). And then, the stored knowledge will be reused to
develop a neural learning controller so that the improved
control performance of the robotic system (1) can be achieved
for the same or a similar control task.

4.1. Knowledge Acquisition, Expression, and Storage. In this
section, the regression subvector 𝑆𝜁(𝑍) of RBF NN is firstly
verified to satisfy the PE condition, which is key to achieve
the exponential convergence of NN weight values 𝑊̂ and
the accurate NN approximation of the unknown system
dynamics Φ(𝑍). From Lemma 4, the NN input vector 𝑍 =[𝑞𝑇, ̇𝑞𝑇, 𝜉𝑇2 , 𝜗𝑇]𝑇 needs to be verified as recurrent signals, so
that the regression subvector 𝑆𝜁(𝑍) along the input orbit 𝑍
satisfies partial PE condition. Based on Theorem 6, it can
be obtained that the system output 𝑞 converges to a small
neighborhood of 𝑦𝑑 for ∀𝑡 > 𝑇. Since 𝑦𝑑 is a recurrent signal,𝑞 is also recurrent. Since ̇𝑞 = 𝛼1+𝑒2, 𝛼1 = −𝑘1𝜉1+𝑥𝑑2+Ψ1𝑒1,𝑒1, and 𝜉1 are very small values, ̇𝑞 is recurrent with the same
period as 𝑥𝑑2. In the steady-state control, 𝜉2 is small and
recurrent. Noting that 𝜗 = 𝛼̇1 + Ψ2𝑒2, which is a function of
the variables 𝑒𝑖, 𝜉𝑖, 𝑥𝑖, and 𝑥𝑑𝑖, so it can be recurrently verified
as a recurrent signal. According to Lemma 4, the regression
subvector 𝑆𝜁(𝑍) satisfies partial PE condition.

Using the spatially localized approximation ability of RBF
NNs, the closed-loop system from (23) and (24) can be given
by

̇𝜉2 = 𝐺 (Υ2, 𝑞) [−𝐾2 (𝑡) 𝜉2 − 𝑊̃𝑇𝜁 𝑆𝜁 (𝑍) + 𝜂𝜁] ,
̇̃𝑊𝜁 = Γ𝜁𝑆𝜁 (𝑍) (Υ2𝜉2)𝑇 − 𝜎Γ𝜁𝑊̂𝜁,
̇̃𝑊
𝜁
= Γ
𝜁
𝑆
𝜁 (𝑍) (Υ2𝜉2)𝑇 − 𝜎Γ𝜁𝑊̂𝜁,

(37)

where 𝐾2(𝑡) = 𝑘20Υ−12 + 𝑘21Υ2 + Υ−12 𝑉𝑚(𝑞, ̇𝑞), 𝐺(Υ2, 𝑞) =Υ2𝑀−1, which is a positive definite and symmetric matrix,𝑆𝜁(𝑍) is the subvector of 𝑆(𝑍), which is composed of
RBFs that are close to the reference orbit 𝑍, 𝑊̂𝜁 =
[Ŵ𝜁1, 𝑊̂𝜁2, . . . , 𝑊̂𝜁𝑛] ∈ 𝑅𝜁×𝑛 is the corresponding estimated
weight subvector with 𝑊̂𝜁𝑖 ∈ 𝑅𝜁 and 0 < 𝜁 < 𝑁, 𝜁 denotes the
region far away from the orbit 𝑍, and 𝜂𝜁 = 𝜂 − 𝑊̃𝑇𝜁 𝑆𝜁(𝑍) are
the approximate errors along the reference orbit.

Theorem 9. Consider the closed-loop system consisting of the
robotic system (1) with Assumption 1, the bounded reference
model (2), full-state tracking error constrained condition (3),
the transformation error (10) and adaptive neural control law
(22) with the virtual control law (15), and the NN updated
law (23). Assume the given bounded initial conditions satisfy
(3) and 𝑊̂𝑖(0) = 0, 1 ≤ 𝑖 ≤ 𝑛. Then, for any recurrent
orbit 𝜙𝑑(𝑥𝑑(𝑡))|𝑡 ≥ 0, we have that the NN weight estimates𝑊̂𝑖 exponentially converge to a small neighborhood of optimal
values𝑊∗𝑖 after 𝑡 ≥ 𝑇, and the corresponding system dynamics
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Φ𝑖(𝑍) along recurrent signals 𝑍 is approximated by the stored
neural knowledge𝑊𝑇𝑖 𝑆(𝑍) as:

Φ𝑖 (𝑍) = 𝑊𝑇𝑖 𝑆 (𝑍) + 𝜂𝑖𝑊 (𝑍) , (38)

where 𝜂𝑖𝑊(𝑍) approaches the desired error 𝜂∗𝑖 , and the constant
weight values𝑊𝑖 are chosen as

𝑊𝑖 = mean𝑡∈[𝑡𝑎𝑖 ,𝑡𝑏𝑖]𝑊̂𝑖 (𝑡) = 1𝑡𝑏𝑖 − 𝑡𝑎𝑖 ∫
𝑡𝑏𝑖

𝑡𝑎𝑖

𝑊̂𝑖 (𝑠) 𝑑𝑠 (39)

with [𝑡𝑎𝑖, 𝑡𝑏𝑖], 1 ≤ 𝑖 ≤ 𝑛, 𝑡𝑏𝑖 > 𝑡𝑎𝑖 > 𝑇 representing a time
segment in a steady-state stage.

Proof. Up to now, we have verified that 𝑆𝜁(𝑍) satisfies the PE
condition. Furthermore, in order to achieve the exponential
convergence of neural weight estimates 𝑊̂𝑖, the closed-loop
system (37) needs to be transformed into a class of linear
time-varying (LTV) systems with small perturbations based
on Lemma 4.6 given in [56]. From (37), the perturbation
term 𝐺(Υ2, 𝑞)𝜂𝜁 may be very large. The main reasons lie in
the fact that the term 𝜂𝜁 = 𝜂 − 𝑊̃𝑇𝜁 𝑆𝜁(𝑍) = 𝜂(𝑍) − 𝑑(𝑡) −𝑊̃𝑇
𝜁
𝑆
𝜁
(𝑍) may be large with the possible large 𝑑(𝑡) and the

term 𝐺(Υ2, 𝑞) = Υ2𝑀−1(𝑞) may be also large due to the
possible large Υ2 and 𝑀−1(𝑞). Noting 𝐺(Υ2, 𝑞) is a positive
definite and symmetric matrix, a state transformation 𝐸2 =𝐺−1(Υ2, 𝑞)𝜉2/𝑀𝑠 is introduced to obtain the following class
of LTV systems:

[[[[[[[[
[

𝐸̇2̇̃𝑊𝜁1...
̇̃𝑊𝜁𝑛

]]]]]]]]
]
= [ 𝐴 (𝑡) 𝐵𝑇 (𝑡)−𝐶 (𝑡) 0 ]

[[[[[[
[

𝐸2𝑊̃𝜁1...
𝑊̃𝜁𝑛

]]]]]]
]
+
[[[[[[[[
[

𝜂𝜁𝑀𝑠−𝜎Γ𝜁𝑊̂𝜁1...
−𝜎Γ𝜁𝑊̂𝜁𝑛

]]]]]]]]
]
, (40)

where 𝐺 is abbreviation of 𝐺(Υ2, 𝑞), and
𝐴 (𝑡) = −𝐾2 (𝑡) 𝐺 + 𝐺̇−1𝐺 ∈ 𝑅𝑛×𝑛,
𝐵𝑇 (𝑡) = − 1𝑀𝑠 diag {𝑆𝑇𝜁 , . . . , 𝑆𝑇𝜁 } ∈ 𝑅𝑛×𝜁,
𝐶 (𝑡) = −𝑀𝑠Γ𝜁𝑆𝜁 (𝑍) Υ2𝐺 ∈ 𝑅𝜁×𝑛,
Γ𝜁 = diag {Γ𝜁, . . . , Γ𝜁} ∈ 𝑅𝜁×𝜁,
𝑆𝜁 = diag {𝑆𝜁, . . . , 𝑆𝜁} ∈ 𝑅𝜁×𝑛.

(41)

It is worth pointing out that 𝜂𝜁/𝑀𝑠 and −𝜎Γ𝜁𝑊̂𝜁𝑖 are
small perturbations by choosing large enough𝑀𝑠 and small
enough 𝜎. Therefore, the system (40) can be regarded as a
class of LTV systems with very small perturbations. It has
been shown in [28] that the nominal part of the system (40)

can be guaranteed to be exponentially stable if the system (40)
satisfies the following three conditions:

(i) There exists a positive constant 𝜓 such that, for all 𝑡 ≥0, the bound max{‖𝐵(𝑡)‖, ‖𝑑𝐵(𝑡)/𝑑𝑡‖} ≤ 𝜓 is satisfied;
(ii) There exist symmetric and positive matrices 𝑃(𝑡) and𝑄(𝑡) such that 𝐴𝑇(𝑡)𝑃(𝑡) + 𝑃(𝑡)𝐴(𝑡) + 𝑃̇(𝑡) = −𝑄(𝑡);
(iii) 𝑆𝜁(𝑍) satisfies the PE condition.

From Section 3, all closed-loop signals remain uniformly
ultimately bounded. Therefore, the satisfaction of condition
(i) can be easily checked. Moreover, we have verified that𝑆𝜁(𝑍) satisfy the PE condition (see the above analysis of
Theorem 9 for the details). Next, choose a matrix 𝑃(𝑡) = Υ2𝐺.
SinceΥ2 and𝐺 are positive definite and symmetric, thematrix𝑃(𝑡) is also symmetric and positive. Then, we have

𝐴𝑇 (𝑡) 𝑃 (𝑡) + 𝑃 (𝑡) 𝐴 (𝑡) + 𝑃̇ (𝑡)
= 2 [−𝐾2 (𝑡) 𝐺 + 𝐺̇−1𝐺]Υ2𝐺 + Υ̇2𝐺 + Υ2𝐺̇. (42)

The inequality 𝐴𝑇𝑃 + 𝑃𝐴 + 𝑃̇ < 0 holds when choosing
the appropriate control parameter 𝐾2(𝑡) > (2𝐺̇−1𝐺Υ2𝐺 +Υ̇2𝐺+Υ2𝐺̇) ∗ (𝐺Υ2𝐺)−1/2. Therefore, we has verified that the
nominal part of the system (40) is uniformly exponentially
stable. Further, based on the perturbation theory given in
Lemma 4.6 [56], the weight estimate error 𝑊̃𝑖𝜁 converges
exponentially to a small neighborhood of zero for ∀𝑡 ≥ 𝑇.
Noting that 𝑊̃𝑖𝜁 = 𝑊̂𝑖𝜁 −𝑊∗𝑖𝜁 , so 𝑊̂𝑖𝜁 converges exponentially
to a small neighborhood of the desired weight value𝑊∗𝑖𝜁 in a
finite time𝑇, and the corresponding desired weight value can
be stored by constant neural weight values𝑊𝑖 in (39).

Based on the spatially localized approximation property
of RBF NN (6) and the constant weight values 𝑊, the
unknown system dynamics 𝜙(𝑍) could be expressed as

𝜙 (𝑍) = 𝑊𝑇𝜁 𝑆𝜁 (𝑍) + 𝜂𝜁 = 𝑊𝑇𝑆 (𝑍) + 𝜂, (43)

where 𝜂𝜁 and 𝜂 are close to 𝜂. From (43), neural networks
𝑊𝑇𝑆(𝑍), containing the experience knowledge 𝑊, can be
used to accurately approximate the unknown system dynam-
ics Φ(𝑍).

Furthermore, the learned knowledge can be described as
follows: for the experienced recurrent orbit 𝜑𝑑(𝑥𝑑(𝑡)), there
exist positive constants 𝑑 and 𝜁∗, which describe a local
regionΩ𝑥𝑑 along 𝜑𝑑(𝑥𝑑(𝑡)) such that

dist (𝜑 (𝑍 (𝑡))󵄨󵄨󵄨󵄨𝑡≥𝑇 , 𝜑𝑑 (𝑥𝑑 (𝑡))) < 𝑑 󳨐⇒󵄨󵄨󵄨󵄨󵄨󵄨𝑊𝑇𝑆 (𝑍) − 𝜙 (𝑍)󵄨󵄨󵄨󵄨󵄨󵄨 < 𝜁∗,
(44)

where 𝜁∗ is close to 𝜂∗. For a new task, once the NN inputs
𝑍(𝑡) enter the regionΩ𝑥𝑑 , the trained RBF networks𝑊𝑇𝑆(𝑍)
can accurately approximate the uncertain nonlinearity 𝜙(𝑍).
4.2. Static Controller Design with Knowledge Utilization. By
invoking the stored weight values𝑊 (39), a static controller
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will be developed in this section to guarantee the prescribed
performance of full-state tracking errors of the robotic system
(1) for the same or a similar control task. Using the stored
knowledge 𝑊 in (39), a static control law without neural
weight estimated parameter adjustment online, instead of the
adaptive NN control law (22), is designed as follows:

𝜏 = −𝑘20Υ−12 𝜉2 − 𝑘21Υ2𝜉2 −𝑊𝑇𝑆 (𝑍) , (45)

where 𝑘20 and 𝑘21 are positive design parameters and 𝜉2 andΥ2 are defined in (12). Moreover, the virtual control law 𝛼 is
chosen the as same as Section 3; see (15) for the detail. Then,
by combining (16), (19), and (45), we can obtain the following
closed-loop system:

̇𝜉1 = Υ1 (𝑒2 − 𝑘1𝜉1) ,
̇𝜉2 = Υ2𝑀−1 [−𝑘20Υ−12 𝜉2 − 𝑘21Υ2𝜉2 + Φ (𝑍)
−𝑊𝑇𝑆 (𝑍) − Υ−12 𝑉𝑚 (𝑞, ̇𝑞) 𝜉2 + 𝜂󸀠] ,

(46)

where 𝜂󸀠 = −𝑑(𝑡). Subsequently, construct the following
Lyapunov function candidate:

𝑉1 = 𝜉𝑇1 𝜉12 ,
𝑉2 = 12𝜉𝑇2𝑀𝜉2.

(47)

Noting the condition (44) and applying the similar backstep-
ping step in Section 3, we have the following results.

Theorem 10. Consider the closed-loop system consisting of the
robotic system (1), the bounded reference trajectory (2), the
full-state tracking performance condition (3), the transformed
error (10), the static neural learning control law (45) with
the stored constant weight 𝑊 given in (39), and the virtual
control law (15). Then, for the same or a similar recurrent
reference orbit 𝜑𝑑(𝑥𝑑(𝑡)) given in Theorem 6 and the initial
conditions satisfying the prescribed performance (3), it can
be guaranteed that all the closed-loop signals are uniformly
ultimately bounded, and the constrained full-state tracking
errors 𝑒𝑖𝑗 satisfy the prescribed performance (3) and converge
to a small residual set of zero.

5. Simulation Results

To demonstrate the effectiveness of the proposed dynamic
learning scheme, we consider a 2-link robot manipulator
which is shown in Figure 1. From the 𝑛-link rigid robotic
system (1), 𝑞 = [𝑞1, 𝑞2]𝑇 denotes the angular position of each
joint and 𝜏 = [𝜏1, 𝜏2]𝑇 is the actuator input applied at the
manipulator joints, respectively. Based on the system (1), the
dynamic parameters of a 2-link robot manipulator are given
by

𝑀(𝑞) = [𝑀11 𝑀12𝑀12 𝑀22] ,

q1

q2

x

y

l2

l1

Figure 1: Diagram of a 2-link robotic manipulator.

𝐹 ( ̇𝑞) = [0.8 ̇𝑞10.6 ̇𝑞2] ,

𝑉𝑚 (𝑞, ̇𝑞) ̇𝑞 = [−2𝑙1𝑙2𝑚2 sin (𝑞2) ( ̇𝑞1 ̇𝑞2 + 0.5 ̇𝑞
2
2)

0.52𝑙1𝑙2𝑚2 sin (𝑞2) ̇𝑞21 ] ,

𝐺 (𝑞) = [(𝑚1 + 𝑚2) 𝑙1𝑔 cos (𝑞1) + 𝑚2𝑙2𝑔 cos (𝑞2)𝑚2𝑙2𝑔 cos (𝑞1 + 𝑞2) ] ,
(48)

where

𝑀11 = 𝑙22𝑚2 + 𝑙21 (𝑚1 + 𝑚2) + 2𝑙1𝑙2𝑚2 cos (𝑞2) ,
𝑀12 = 𝑙22𝑚2 + 0.52𝑙1𝑙2𝑚2 cos (𝑞2) ,
𝑀22 = 𝑙22𝑚2,

(49)

and 𝑙𝑖 and𝑚𝑖 denote the length and themass of link-𝑖, 𝑖 = 1, 2,
and 𝑔 denotes the gravity acceleration. In this paper, these
system parameters are chosen as 𝑚1 = 𝑚2 = 1 kg, 𝑙1 = 0.8m,𝑙2 = 2.3m, and 𝑔 = 9.8m/s2, and the external disturbances𝑑 = [0.1 sin(𝑡), 0.1 cos(𝑡)]𝑇, which are bounded and satisfy
Assumption 1.

The system output 𝑦 is required to track the following
desired reference trajectory 𝑌𝑑 = [𝑦𝑑1, 𝑦𝑑2]𝑇:

𝑦𝑑1 = 80𝜋360 sin(2𝜋𝑡7 ) ,
𝑦𝑑2 = 60𝜋360 cos(2𝜋𝑡7 ) .

(50)

For full-state constrained tracking errors 𝑒1 = 𝑦 − 𝑦𝑑 =[𝑒11, 𝑒12]𝑇 and 𝑒2 = ̇𝑞−𝛼1 = [𝑒21, 𝑒22]𝑇, our target is to achieve
the following prescribed transient and steady-state tracking
error bounds:

−𝛿𝑖𝑗𝜌𝑖 (𝑡) < 𝑒𝑖𝑗 (𝑡) < 𝛿𝑖𝑗𝜌𝑖 (𝑡) , (51)



Complexity 9

−1.5

−1

−0.5

0

0.5

1

5 10 15 20 25 300
Time (seconds)

Figure 2: Angular position tracking error 𝑒11: ANC with error
transformation method (—), ANC in [30] (-⋅-⋅), and the error
bounds (- - -).

where 𝑖 = 1, 2, 𝑗 = 1, 2, 𝛿11 = 𝛿21 = 0.6, 𝛿11 = 𝛿21 = 1 𝛿12 =𝛿22 = 1, and 𝛿12 = 𝛿22 = 0.6; the performance function 𝜌𝑖(𝑡)
and the transformation function 𝑇−1𝑖𝑗 [𝑒𝑖𝑗/𝜌𝑖(𝑡)] are designed
as

𝜌1 (𝑡) = (1.5 − 0.05) 𝑒−𝑡 + 0.05, ∀𝑡 ≥ 0, (52)

𝜌2 (𝑡) = (4 − 0.1) 𝑒−𝑡 + 0.1, ∀𝑡 ≥ 0, (53)

𝑇−1𝑖𝑗 [ 𝑒𝑖𝑗𝜌𝑖 (𝑡)] =
12 ln
𝛿𝑖𝑗 + 𝑒𝑖𝑗/𝜌𝑖 (𝑡)
𝛿𝑖𝑗 − 𝑒𝑖𝑗/𝜌𝑖 (𝑡) . (54)

5.1. ANC Results with Full-State Tracking Error Constraints.
According to Theorems 6 and 9, the main objective of
this section is to use the proposed stable adaptive neural
controller (22) with virtual control law (15) and neural weight
adaptation law (23) such that the full-state tracking errors𝑒1 and 𝑒2 satisfy the prescribed performance (51); the neural
weight estimator 𝑊̂ exponentially converges to the constant
weight value 𝑊; the unknown system dynamics Φ(𝑍) in
(20) is accurately approximated by the constant RBF NNs
𝑊𝑇𝑆(𝑍).

In the simulation studies, the RBF network 𝑊𝑇𝑆(𝑍)
consists of 3375 neurons whose centers are evenly spaced on[−0.9, 0.9]×[−0.9, 0.9]×[−0.9, 0.9]×[−0.5, 0.5]×[−0.5, 0.5]×[−0.5, 0.5] with the width 𝜂𝑖 = 0.4. The other design
parameters are chosen as follows: 𝑘10 = 5, 𝑘20 = 25,𝑘21 = 10, Γ = 15, and 𝜎 = 0.001. The initial states are𝑊̂1(0) = 𝑊̂2(0) = 0, 𝑞(0) = [−0.6, 1]𝑇, and ̇𝑞(0) = [1.5, −1]𝑇.
Simulation results are shown in Figures 2–10. Figures 2–5
show the constrained joint angular position and velocity
tracking error performances, respectively. From Figures 2–5,
it can be clearly seen that good transient performances have
been achieved by adjusting the performance function (53)
and design parameters 𝛿𝑖𝑗, 𝛿𝑖𝑗. The control input response is

5 10 15 20 25 300
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Figure 3: Angular position tracking error 𝑒12: ANC with error
transformation method (—), ANC method in [30] (-⋅-⋅), and the
error bounds (- - -).
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Figure 4: Angular velocity tracking error 𝑒21: ANC with error
transformation method (—), ANC in [30] (-⋅-⋅), and the error
bounds (- - -).

given in Figure 6. The partial weight convergence of 𝑊̂ =[𝑊̂1, 𝑊̂2] is presented in Figures 7 and 8. It can be seen from
Figures 7 and 8 that only partial weights converge to relatively
large values, which means only the neurons along recurrent
input signals 𝑍 can be motivated. Based on Theorem 9, the
constant neural weight𝑊𝑖 is chosen in the simulation as

𝑊𝑖 = min
𝑡∈[80,100]

𝑊̂𝑖 (𝑡) , 𝑖 = 1, 2. (55)

Figures 9 and 10 display unknown system dynamics Φ1(𝑍)
and Φ2(𝑍), along the periodic reference signals 𝑍, and can
be accurately approximated by the constant RBFNN𝑊𝑇1 𝑆(𝑍)
and𝑊𝑇2 𝑆(𝑍).

To further show the improved transient and steady-state
tracking performance for the proposed control method with
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Figure 5: Angular velocity tracking error 𝑒22: ANC with error
transformation method (—), ANC method in [30] (-⋅-⋅), and the
error bounds (- - -).
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Figure 6: Control input responses: 𝜏1 (—), 𝜏2 (-⋅-⋅): (a) ANC with
error transformation and (b) ANC in [30].

full-state tracking performance constraints, the simulation
comparison is given between the proposed method and the
existing method without prescribed performances [30]. For
comparison purpose, the existing method [30] is also used
to control the same 2-link robot manipulator with the same
initial condition 𝑞(0) = [−0.6, 1]𝑇, ̇𝑞(0) = [1.5, −1]𝑇 and
the same reference trajectory (50). For clarity, the existing
method without prescribed performance proposed in [30] is
recalled as follows: the control law is 𝜏 = −𝑒1 −𝑐2𝑒2 −𝑊̂𝑇𝑆(𝑍)
and neural weight updated laws ̇̂𝑊 = Γ[𝑆(𝑍)𝑒𝑇2 − 𝜎𝑊̂]
and 𝛼1 = −𝑐1𝑒1 + 𝑥𝑑2. By choosing the appropriate control
parameters 𝑐1 = 1, 𝑐2 = 18, 𝜎 = 0.001, and Γ = 10, to
be fair, both control input signals of the two methods are
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Figure 7: Partial parameter convergence of 𝑊̂1.
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Figure 8: Partial parameter convergence of 𝑊̂2.
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Figure 9: Function approximation: Φ1(𝑍) (—) and𝑊𝑇1 𝑆(𝑍) (-⋅-⋅).
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Figure 10: Function approximation: Φ2(𝑍) (—) and𝑊𝑇2 𝑆(𝑍) (-⋅-⋅).

required to have the similar amplitude, which is shown in
Figure 6. The simulation results for comparison are given
in Figures 2–5. It is clearly showed from Figures 2–5 that
the proposed adaptive neural control scheme with full-state
tracking performance constraints achieves a better transient
and steady-state tracking control performance with smaller
overshoot, faster convergence rate, and smaller steady-state
error.

Remark 11. It is well known that the tracking performance
relies on the choice of the control parameters and structure of
RBFneural networks.However, how to choose design param-
eters for achieving the good tracking performance is still an
open problem. In this simulation, the RBF networks𝑊𝑇𝑆(𝑍)
are constructed appropriately such that all neurons can cover
the entire NN input trajectory 𝑍(𝑡) space. Moreover, these
controller parameters are chosen with large enough 𝑘10, 𝑘20,𝑘21, and Γ and small enough 𝜎. It should be pointed out that
these design parameters are chosen in this simulation by a
trial-and-error method.

5.2. Neural Learning Control Results. By using the stored
constant weight values𝑊𝑖 in (55), the objective of this section
is to invoke a static neural learning controller (45) to achieve
the improved control performance with full-state tracking
error constraints for the same or similar control tasks. For
comparison purpose, the plant controlled, the reference
trajectory, and the constrained tracking error performance
are chosen the same as Section 5.1, while the initial conditions
and the neural network structures are unchanged. In the
simulation, with the control gains selected as 𝑘10 = 3, 𝑘20 =15, and 𝑘21 = 8, simulation results for static neural learning
control (45) are shown in Figures 11–15. From Figures 11–14,
it can be seen that the smaller overshoot and the faster
convergence are obtained using the learned knowledge 𝑊𝑖
in (55), while full-state tracking errors satisfy the prescribed
performance. It is worth pointing out that a smaller control
signal is used in neural learning control to achieve the
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Figure 11: Angular position tracking error 𝑒11: neural learning
control (—), ANC (-⋅-⋅), and the error bounds (- - -).
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Figure 12: Angular position tracking error 𝑒12: neural learning
control (—), ANC (-⋅-⋅), and the error bounds (- - -).

aforementioned improved tracking control performance; see
Figure 15 for the details. Moreover, because the proposed
static learning control scheme avoids the online adjustment
of the neural weight values, the running time saves nearly
1/2 for the same simulation time interval 𝑡 = [0, 100] s and
the same computer configuration. The static neural learning
controller (45) especially avoids the trial-and-error process
on control design parameters and NN parameters which
is tuned in adaptive neural control process. Therefore, the
proposed learning control scheme avoids effectively a great
deal of time consumed by the adaptive neural control process.

6. Conclusions

This paper focused on the problem of full-state tracking
error constraints for an 𝑛-link rigid robot with unknown
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Figure 13: Angular velocity tracking error 𝑒21: neural learning
control (—), ANC (-⋅-⋅), and the error bounds (- - -).
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Figure 14: Angular velocity tracking error 𝑒22: neural learning
control (—), ANC (-⋅-⋅), and the error bounds (- - -).

system dynamics and external disturbances. The perfor-
mance transformation method was employed to transform
the constrained full-state tracking errors into the uncon-
strained ones. By combining backstepping design and two
independent Lyapunov functions, a novel adaptive neural
control scheme was presented to guarantee all the signals in
the closed-loop system are uniformly ultimately bounded,
while this control scheme achieves predefined transient and
steady-state tracking control performances concerning the
link angular position and velocity tracking errors. Particu-
larly, in the steady-state control process, the proposed neural
control scheme can acquire, express, and store the knowledge
of unknown system dynamics. The stored knowledge was
reused to complete the same or similar tasks, so that the
improved control performance was achieved with the less
computational burden and the better transient-state tracking

10 20 30 40 500
−20

0

20

40

60

Time (seconds)

(a)

−50

0

50

100

10 20 30 40 500
Time (seconds)

(b)

Figure 15: Control input responses: 𝜏1 (—), 𝜏2 (-⋅-⋅): (a) neural
learning control and (b) ANC.

performance. It should be pointed out that the considered𝑛-link rigid robot is a class of simple multi-input and
multioutput nonlinear systems. Therefore, how to extend
the proposed method to complex nonlinear systems, such
as nonaffine nonlinear systems, switched nonlinear systems,
and stochastic large-scale systems, presents a challenging
opportunity for future work.
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