69 research outputs found

    High dynamic range video compression exploiting luminance masking

    Get PDF

    Towards one video encoder per individual : guided High Efficiency Video Coding

    Get PDF

    Algorithms for compression of high dynamic range images and video

    Get PDF
    The recent advances in sensor and display technologies have brought upon the High Dynamic Range (HDR) imaging capability. The modern multiple exposure HDR sensors can achieve the dynamic range of 100-120 dB and LED and OLED display devices have contrast ratios of 10^5:1 to 10^6:1. Despite the above advances in technology the image/video compression algorithms and associated hardware are yet based on Standard Dynamic Range (SDR) technology, i.e. they operate within an effective dynamic range of up to 70 dB for 8 bit gamma corrected images. Further the existing infrastructure for content distribution is also designed for SDR, which creates interoperability problems with true HDR capture and display equipment. The current solutions for the above problem include tone mapping the HDR content to fit SDR. However this approach leads to image quality associated problems, when strong dynamic range compression is applied. Even though some HDR-only solutions have been proposed in literature, they are not interoperable with current SDR infrastructure and are thus typically used in closed systems. Given the above observations a research gap was identified in the need for efficient algorithms for the compression of still images and video, which are capable of storing full dynamic range and colour gamut of HDR images and at the same time backward compatible with existing SDR infrastructure. To improve the usability of SDR content it is vital that any such algorithms should accommodate different tone mapping operators, including those that are spatially non-uniform. In the course of the research presented in this thesis a novel two layer CODEC architecture is introduced for both HDR image and video coding. Further a universal and computationally efficient approximation of the tone mapping operator is developed and presented. It is shown that the use of perceptually uniform colourspaces for internal representation of pixel data enables improved compression efficiency of the algorithms. Further proposed novel approaches to the compression of metadata for the tone mapping operator is shown to improve compression performance for low bitrate video content. Multiple compression algorithms are designed, implemented and compared and quality-complexity trade-offs are identified. Finally practical aspects of implementing the developed algorithms are explored by automating the design space exploration flow and integrating the high level systems design framework with domain specific tools for synthesis and simulation of multiprocessor systems. The directions for further work are also presented

    Cross-color channel perceptually adaptive quantization for HEVC

    Get PDF
    HEVC includes a Coding Unit (CU) level luminance-based perceptual quantization technique known as AdaptiveQP. AdaptiveQP perceptually adjusts the Quantization Parameter (QP) at the CU level based on the spatial activity of raw input video data in a luma Coding Block (CB). In this paper, we propose a novel cross-color channel adaptive quantization scheme which perceptually adjusts the CU level QP according to the spatial activity of raw input video data in the constituent luma and chroma CBs; i.e., the combined spatial activity across all three color channels (the Y, Cb and Cr channels). Our technique is evaluated in HM 16 with 4:4:4, 4:2:2 and 4:2:0 YCbCr JCT-VC test sequences. Both subjective and objective visual quality evaluations are undertaken during which we compare our method with AdaptiveQP. Our technique achieves considerable coding efficiency improvements, with maximum BD-Rate reductions of 15.9% (Y), 13.1% (Cr) and 16.1% (Cb) in addition to a maximum decoding time reduction of 11.0%

    Visually lossless coding in HEVC : a high bit depth and 4:4:4 capable JND-based perceptual quantisation technique for HEVC

    Get PDF
    Due to the increasing prevalence of high bit depth and YCbCr 4:4:4 video data, it is desirable to develop a JND-based visually lossless coding technique which can account for high bit depth 4:4:4 data in addition to standard 8-bit precision chroma subsampled data. In this paper, we propose a Coding Block (CB)-level JND-based luma and chroma perceptual quantisation technique for HEVC named Pixel-PAQ. Pixel-PAQ exploits both luminance masking and chrominance masking to achieve JND-based visually lossless coding; the proposed method is compatible with high bit depth YCbCr 4:4:4 video data of any resolution. When applied to YCbCr 4:4:4 high bit depth video data, Pixel-PAQ can achieve vast bitrate reductions – of up to 75% (68.6% over four QP data points) – compared with a state-of-the-art luma-based JND method for HEVC named IDSQ. Moreover, the participants in the subjective evaluations confirm that visually lossless coding is successfully achieved by Pixel-PAQ (at a PSNR value of 28.04 dB in one test)

    Video Compression and Optimization Technologies - Review

    Get PDF
    The use of video streaming is constantly increasing. High-resolution video requires resources on both the sender and the receiver side. There are many compression techniques that can be utilized to compress the video and simultaneously maintain quality. The main goal of this paper is to provide an overview of video streaming and QoE. This paper describes the basic concepts and discusses existing methodologies to measure QoE. Subjective, objective, and video compression technologies are discussed. This review paper gathers the codec implementation developed by MPEG, Google, and Apple. This paper outlines the challenges and future research directions that should be considered in the measurement and assessment of quality of experience for video services

    IQNet: Image Quality Assessment Guided Just Noticeable Difference Prefiltering For Versatile Video Coding

    Full text link
    Image prefiltering with just noticeable distortion (JND) improves coding efficiency in a visual lossless way by filtering the perceptually redundant information prior to compression. However, real JND cannot be well modeled with inaccurate masking equations in traditional approaches or image-level subject tests in deep learning approaches. Thus, this paper proposes a fine-grained JND prefiltering dataset guided by image quality assessment for accurate block-level JND modeling. The dataset is constructed from decoded images to include coding effects and is also perceptually enhanced with block overlap and edge preservation. Furthermore, based on this dataset, we propose a lightweight JND prefiltering network, IQNet, which can be applied directly to different quantization cases with the same model and only needs 3K parameters. The experimental results show that the proposed approach to Versatile Video Coding could yield maximum/average bitrate savings of 41\%/15\% and 53\%/19\% for all-intra and low-delay P configurations, respectively, with negligible subjective quality loss. Our method demonstrates higher perceptual quality and a model size that is an order of magnitude smaller than previous deep learning methods

    Objective and subjective evaluation of High Dynamic Range video compression

    Get PDF
    A number of High Dynamic Range (HDR) video compression algorithms proposed to date have either been developed in isolation or only-partially compared with each other. Previous evaluations were conducted using quality assessment error metrics, which for the most part were developed for qualitative assessment of Low Dynamic Range (LDR) videos. This paper presents a comprehensive objective and subjective evaluation conducted with six published HDR video compression algorithms. The objective evaluation was undertaken on a large set of 39 HDR video sequences using seven numerical error metrics namely: PSNR, logPSNR, puPSNR, puSSIM, Weber MSE, HDR-VDP and HDR-VQM. The subjective evaluation involved six short-listed sequences and two ranking-based subjective experiments with hidden reference at two different output bitrates with 32 participants each, who were tasked to rank distorted HDR video footage compared to an uncompressed version of the same footage. Results suggest a strong correlation between the objective and subjective evaluation. Also, non-backward compatible compression algorithms appear to perform better at lower output bit rates than backward compatible algorithms across the settings used in this evaluation
    • …
    corecore